Technical Report Series on the Boreal Ecosystem-Atmosphere Study (BOREAS)

Forrest G. Hall and Shelaine Curd, Editors

Volume 155
BOREAS TE-9 NSA Leaf Chlorophyll Density

H. Margolis and M. Sy

National Aeronautics and Space Administration
Goddard Space Flight Center
Greenbelt, Maryland 20771

October 2000
Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the lead center for NASA's scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA's institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA's counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- TECHNICAL MEMORANDUM. Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees.

- CONFERENCE PUBLICATION. Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, projects, and mission, often concerned with subjects having substantial public interest.

- TECHNICAL TRANSLATION. English-language translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services that complement the STI Program Office's diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results... even providing videos.

For more information about the NASA STI Program Office, see the following:

- E-mail your question via the Internet to help@sti.nasa.gov
- Fax your question to the NASA Access Help Desk at (301) 621-0134
- Telephone the NASA Access Help Desk at (301) 621-0390
- Write to: NASA Access Help Desk NASA Center for AeroSpace Information 7121 Standard Drive Hanover, MD 21076-1320
Technical Report Series on the
Boreal Ecosystem-Atmosphere Study (BOREAS)

Forrest G. Hall and Shelaine Curd, Editors

Volume 155

BOREAS TE-9 NSA Leaf
Chlorophyll Density

Hank Margolis and Mikailou Sy
Université Laval, Sainte-Foy, Quebec, Canada

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

October 2000
BOREAS TE-9 NSA Leaf Chlorophyll Density

Hank Margolis, Mikailou Sy

Summary

The BOREAS TE-9 team collected several data sets related to chemical and photosynthetic properties of leaves in boreal forest tree species. These data were collected to help provide an explanation of potential seasonal and spatial changes of leaf pigment properties in boreal forest species at the NSA. At different dates (FFC-Winter, FFC-Thaw, IFC-1, IFC-2, and IFC-3), foliage samples were collected from the upper third of the canopy for five NSA sites (YJP, OJP, OBS, UBS, and OA) near Thompson, Manitoba. Subsamples of 100 needles for black spruce, 20 needles for jack pine, and single leaf for trembling aspen were cut into pieces and immersed in a 20-mL DMF aliquot in a Nalgene test tube. The extracted foliage materials were then oven-dried at 68 °C for 48 hours and weighed. Extracted leaf dry weight was converted to a total leaf area basis to express the chlorophyll content in mg/cm² of total leaf area. The data are provided in tabular ASCII files.

Table of Contents

1) Data Set Overview
2) Investigator(s)
3) Theory of Measurements
4) Equipment
5) Data Acquisition Methods
6) Observations
7) Data Description
8) Data Organization
9) Data Manipulations
10) Errors
11) Notes
12) Application of the Data Set
13) Future Modifications and Plans
14) Software
15) Data Access
16) Output Products and Availability
17) References
18) Glossary of Terms
19) List of Acronyms
20) Document Information

1. Data Set Overview

1.1 Data Set Identification
BOREAS TE-09 NSA Leaf Chlorophyll Density

1.2 Data Set Introduction
The BOREal Ecosystem-Atmosphere Study (BOREAS) Terrestrial Ecology (TE)-09 team provided several data sets containing information about the state and response of boreal forest tree species. This data set contains information on the spatial density of chlorophyll in the leaves of three boreal tree species collected at five different sites at various times during 1994.
1.3 Objective/Purpose
These data were collected to help provide an explanation of potential seasonal and spatial changes of leaf pigment properties in boreal forest species at the BOREAS Northern Study Area (NSA).

1.4 Summary of Parameters
Site ID, sample number, total chlorophyll density per total leaf area (mg/cm²).

1.5 Discussion
At different dates (Focused Field Campaign [FFC]-Winter, FFC-Thaw, Intensive Field Campaign [IFC]-1, IFC-2, and IFC-3), foliage samples were collected from the upper third of the canopy for five sites (Young Jack Pine [YJP], Old Jack Pine [OJP], Old Black Spruce [OBS], Upland Black Spruce [UBS], and Old Aspen [OA]) at the NSA in Thompson, Manitoba. For both winter and thaw periods, no sample was taken at the OA site. Samples were randomly harvested from five dominant trees (five replications), and analyses were conducted on three different subsamples per tree. Subsamples of 100 needles for black spruce, 20 needles for jack pine, and single leaf for trembling aspen were cut into pieces and immersed in a 20-mL N,N-Dimethylformamide (DMF) aliquot in a Nalgene test tube. In some cases, two extraction series were necessary to remove all the chlorophyll (Chl). These subsamples were wrapped in aluminum foil and stored at 4 °C in a cold chamber or a refrigerator throughout the extraction period. Aliquots were adjusted to 21 mL after extraction before absorbance measurements were taken at 647 and 664.5 nm using two optical glass cells in an ultraviolet/visible (UV/VIS) spectrophotometer. The extracted foliage materials were then oven-dried at 68 °C for 48 hours and weighed. Extracted leaf dry weight was converted to a total leaf area basis to express the Chl content in mg/cm² of total leaf area. Additional subsamples were collected from all samples (five replications) at all sampling dates and for all sites. Total leaf surface area (cm²) was measured using volume displacement method, leaf fresh weight (g), projected leaf area (cm²), and leaf dry weight (g). For aspen leaves, total leaf area was assumed to be double the projected leaf area. This method allowed calculation of the total leaf area/fresh weight ratio (cm²/g). Also, the leaf fresh weight (g) was measured, the Chl was extracted, and the residues were oven-dried to determine the leaf dry weight after extraction (g). This allowed calculation of the leaf dry weight after extraction/leaf fresh weight ratio. Multiplying (Chl / dry weight after extraction) x (dry weight after extraction / leaf fresh weight) x (leaf fresh weight / total leaf area) yielded the Chl concentration per total leaf area.

DMF is a very convenient solvent for Chl extraction because it is effective on intact plant parts and Chl is quite stable in DMF. Chl extracts were shown to be stable in DMF for up to 20 days when stored at 4 °C in the dark (Moran and Porath, 1980). Because Chl degrades at high temperatures, it is advisable to store tissues at a low temperature (not higher than 5 °C) until solvent extraction is completed. DMF extraction is often used because it avoids mechanical maceration and particle removal (Yoder and Deley, 1989). Furthermore, Moran and Porath (1980) found no differences in pigment concentration in DMF extracts prepared by grinding compared to those prepared by direct immersion. Inskeep and Bloom (1985) studied the absorption spectra of Chl a and Chl b in DMF and established equations that quantify Chl a, Chl b, and total Chl using absorbance measurements at 647 nm (maximum for Chl a) and at 664.5 nm (maximum for Chl b).

1.6 Related Data Sets
BOREAS TE-10 Leaf Chemistry Data
BOREAS RSS-04 1994 Jack Pine Leaf Biochemistry and Modeled Spectra in the SSA
2. Investigator(s)

2.1 Investigator(s) Name and Title
Hank Margolis, Ph.D.
Universite Laval
Faculte de foresterie et de geomatique
Pavillon Abitibi-Price

2.2 Title of Investigation
Relationship Between Measures of Absorbed and Reflected Radiation and the Photosynthetic Capacity of Boreal Forest Canopies and Understories

2.3 Contact Information

Contact 1: Mikailou Sy
Universite Laval
Faculte de foresterie et de geomatique
Pavillon Abitibi-Price
Sainte-Foy, Quebec
G1K 7P4 Canada

Contact 2: Hank Margolis, Ph.D.
Universite Laval
Faculte de foresterie et de geomatique
Pavillon Abitibi-Price
Sainte-Foy, Quebec
G1K 7P4 Canada
(418) 656-7120
margolha@vm1.ulaval.ca

Contact 3: Shelaine Curd
Raytheon ITSS
Code 923
NASA GSFC
Greenbelt, MD 20771
(301) 286-2447
Shelaine.Curd@gsfc.nasa.gov

3. Theory of Measurements

DMF is a very convenient solvent for Chl extraction because it is effective on intact plant parts and Chl is quite stable in DMF. Chl extracts were shown to be stable in DMF for up to 20 days when stored at 4 °C in the dark (Moran and Porath, 1980). Because Chl degrades at high temperatures, it is advisable to store tissues at a low temperature (not higher than 5 °C) until solvent extraction is completed. DMF extraction is often used because it avoids mechanical maceration and particle removal (Yoder and Deley, 1989). Furthermore, Moran and Porath (1980) found no differences in pigment concentration in DMF extracts prepared by grinding compared to those prepared by direct immersion. Inskeep and Bloom (1985) studied the absorption spectra of Chl a and Chl b in DMF and established equations that quantify Chl a, Chl b, and total Chl using absorbance measurements at 647 nm (maximum for Chl a)
and at 664.5 nm (maximum for Chl b).

Total leaf surface area (cm²) was measured using volume displacement method, leaf fresh weight (g), projected leaf area (cm²), and leaf dry weight (g). For aspen leaves, total leaf area was assumed to be double the projected leaf area. This method allowed calculation of the total leaf area/fresh weight ratio (cm²/g). Also, the leaf fresh weight (g) was measured, the Chl was extracted, and the residues were oven-dried to determine the leaf dry weight after extraction (g). This allowed calculation of the leaf dry weight after extraction/leaf fresh weight ratio. Multiplying (Chl / dry weight after extraction) x (dry weight after extraction / leaf fresh weight) x (leaf fresh weight / total leaf area) yielded the Chl concentration per total leaf area.

Total leaf area of conifer samples was obtained by the volume displacement method as described in Appendix C of the BOREAS Experiment Plan. The total length of needles and projected area of aspen leaves were obtained using an optical planimeter.

4. Equipment

4.1 Sensor/Instrument Description

 Shotgun, cooler with ice, plastic bags, pruner, blade, DMF, automatic dispenser, optical glass cells, Nalgene calibrated tube, Nalgene test tubes, Eppendorf pipet, UV/VIS spectrophotometer, high-precision balance, optical planimeter.

4.1.1 Collection Environment

 Two team members collected branches at all sites, kept them in identified plastic bags in a cooler, and transported them to the laboratory. Needles or leaves were then manually selected, immersed in DMF, wrapped in aluminum foil within a few hours of harvest, and kept at 4°C. At the times of collection, ambient outdoor temperatures ranged from -10 to 25°C.

4.1.2 Source/Platform

 Ground collection with shotgun removal of foliage material.

4.1.3 Source/Platform Mission Objectives

 The mission was undertaken in order to compare collected data with those from aircraft measurements. Also, these ground data were collected to help provide an explanation of potential seasonal and spatial changes of leaf pigment properties in boreal forest species at the NSA.

4.1.4 Key Variables

 Chl density on a total leaf area basis.

4.1.5 Principles of Operation

 For each subsample, foliage material was cut into four pieces and immersed in a 20-mL aliquot of DMF in a Nalgene test tube that was then wrapped in aluminum foil and kept in a dark chamber maintained at 4°C. A shaker was used for faster Chl extraction. After 72 hours, the solvent was removed and adjusted to 21 mL using a 25-mL Nalgene calibrated tube. Another aliquot of 20 mL was added to the tube for a second extraction. Both adjusted aliquots were successively analyzed with the spectrophotometer, and the results were then combined. Extracted leaf materials were oven-dried and weighed. The dry weight was converted into total leaf area.

 Total leaf area of conifer samples was obtained by the volume displacement method as described in Appendix C of the BOREAS Experiment Plan. The total length of needles and projected area of aspen leaves were obtained using an optical planimeter.

4.1.6 Sensor/Instrument Measurement Geometry

 Samples were harvested from the upper third of the canopy of dominant trees at all sites and at all sampling periods.
4.1.7 Manufacturer of Sensor/Instrument

Projected leaf area or leaf length measurement system/optical image analysis system (AgVision, monochrome system, root and leaf analysis):

Decagon Devices, Inc.
P.O. Box 835
Pullman, WA 99163
(800) 755-2751

Spectrophotometer:
Perkin-Elmer, Lambda 3B, UV/VIS spectrophotometer
Oak Brook, IL

Dispenser:
Compet, 5-mL bottle top dispenser
Nichiryo Co. LTD.
Tokyo, Japan

Optical glass cells:
Hellma, 360-2500 nm, light path 10
Fisher Scientific,
8505 Devonshire Rd.
Montreal, Quebec
Canada H4P 2 L4

4.2 Calibration

4.2.1 Specifications
The weighing balance was accurate to within 0.0001 g. The leaf area system was accurate to within 1%. The automatic dispenser was accurate to within 1%. The spectrophotometer was accurate to within 0.001 absorbance unit.

4.2.1.1 Tolerance
The weighing balance was accurate to within 0.0001 g. The leaf area system was accurate to within 1%. The automatic dispenser was accurate to within 1%. The spectrophotometer was accurate to within 0.001 absorbance unit.

4.2.2 Frequency of Calibration
A control reading was taken on the spectrophotometer (0 absorbance unit) after each group of 15 samples using DMF as reference solvent in both optical glass cells. The leaf area system was calibrated once for each sampling date. The weighing balance was tared after each group of 15 samples. All foliage materials were oven-dried at 68 °C for 48 hours.

4.2.3 Other Calibration Information
Not available.
5. Data Acquisition Methods

Sites: Samples were collected from five sites at the NSA in Thompson, Manitoba. The sites are described in Appendix I and can be identified in Figure 5.1.5a of the BOREAS Experiment Plan Version 3.0.

NSA-YJP: T8S9T
NSA-OJP: T7Q8T
NSA-OBS: T3R8T
NSA-BS: T6R5S
NSA-OA: T2Q6A

Sampling: Sampling dates, except those in the winter and thaw periods, generally correspond to either the day of or the day following the Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) missions. For each site, branches were cut from the upper third of the canopy of five dominant trees in a representative location using a shotgun. Branches were kept in identified plastic bags, stored in a cooler with ice, and transported to the laboratory in Thompson. From each bag, three subsamples of 100 needles each for black spruce, 20 needles for jack pine, and a single leaf for trembling aspen were collected and immersed in a 20-mL aliquot of DMF solvent for extraction. Two additional equivalent subsamples were taken from each bag, for obtaining information on (dry weight after extraction / leaf fresh weight) and (leaf fresh weight / total leaf area).

Extraction: An automatic dispenser was used to deliver the 20-mL aliquots in Nalgene tubes, which were wrapped with aluminum foil to avoid light degradation effects on Chl and stored at 4 °C in a refrigerator. Samples were then transported to Laval University in Quebec City. Needles and aspen leaves were cut into pieces, and tubes were maintained on a shaker for faster Chl extraction. These first extracts were adjusted to 21 mL after 1 week, and the absorbance measurements were taken using two optical glass cells and a UV/VIS spectrophotometer. A second extraction was run following the same procedure.

Absorbance measurements: For each subsample, absorbance measurements were taken successively at 647 and 664.5 nm using a 2-mL aliquot of the extracts in an optical glass cell. The other cell contained a 2-mL aliquot of DMF as the reference solvent. Spectrophotometer zeroing was done after each group of 15 subsamples.

6. Observations

6.1 Data Notes
None.

6.2 Field Notes
None given.
7. Data Description

7.1 Spatial Characteristics

7.1.1 Spatial Coverage
Samples were collected in a 20-m-diameter area from five dominant trees. Sampling location was chosen to be like the tower flux or the canopy access tower location. Sampling location changed from date to date. The North American Datum of 1983 (NAD83) coordinates for the sites are:
- NSA-YJP = Lat/Long: 55.895°N, 98.28706°W; Universal Transverse Mercator (UTM) Zone 14 N:6194706 E:544583
- NSA-OJP = Lat/Long: 55.928°N, 98.624°W; UTM Zone 14 N:6198176 E:523496
- NSA-OBS = Lat/Long: 55.880°N, 98.481°W; UTM Zone 14 N:6192853 E:532444
- NSA-UBS = Lat/Long: 55.908°N, 98.519°W; UTM Zone 14 N:6195947 E:530092
- NSA-OA = Lat/Long: 55.887°N, 98.675°W; UTM Zone 14 N:6193540 E:520342

7.1.2 Spatial Coverage Map
Not available.

7.1.3 Spatial Resolution
These data represent measurements taken from longitude coordinates. The user will need to assume how representative they are for extrapolation.

7.1.4 Projection
Not applicable.

7.1.5 Grid Description
Not applicable.

7.2 Temporal Characteristics

7.2.1 Temporal Coverage
The overall period of sample acquisition was from 01-Feb-1994 through 18-Sep-1994. Extractions were run immediately after harvesting, and analyses were conducted within 1 week of each sampling date. The precise dates of sampling were as follows:

<table>
<thead>
<tr>
<th>IFC</th>
<th>Sites (NSA) and Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>FFC-W</td>
<td>OJP, OBS, and YJP on 17-Feb-1994; TE-BS on 18-Feb-1994</td>
</tr>
<tr>
<td>FFC-T</td>
<td>OJP, OBS, and YJP on 28-Apr-1994; TE-BS on 29-Apr-1994</td>
</tr>
<tr>
<td>IFC-1</td>
<td>OA, OJP, and YJP on 08-Jun-1994; OBS and BS on 09-Jun-1994</td>
</tr>
<tr>
<td>IFC-2</td>
<td>OASP, OJP, and BS on 04-Aug-1994; OBS and YJP on 05-Aug-1994</td>
</tr>
<tr>
<td>IFC-3</td>
<td>OBS on 15-Sep-1994; OASP, YJP, OJP, and BS on 16-Sep-1994</td>
</tr>
</tbody>
</table>

7.2.2 Temporal Coverage Map
The precise dates of sampling are shown above.
7.2.3 Temporal Resolution
For each sampling date, branches were collected at 6:00 a.m. in OBS; at 8:00 a.m. in YJP; and between 3:00 and 6:00 p.m. in UBS, OJP, and OA. After Chl extraction, spectrophotometer measurements were taken on the same day.

7.3 Data Characteristics

7.3.1 Parameter/Variable
The parameters contained in the data files on the CD-ROM are:

<table>
<thead>
<tr>
<th>Column Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
</tr>
<tr>
<td>SUB_SITE</td>
</tr>
<tr>
<td>DATE_COLLECTED</td>
</tr>
<tr>
<td>TIME_COLLECTED</td>
</tr>
<tr>
<td>SAMPLE_ID</td>
</tr>
<tr>
<td>SPECIES</td>
</tr>
<tr>
<td>CHLOROPHYLL_DENSITY</td>
</tr>
<tr>
<td>CRTFCN_CODE</td>
</tr>
<tr>
<td>REVISION_DATE</td>
</tr>
</tbody>
</table>

7.3.2 Variable Description/Definition
The descriptions of the parameters contained in the data files on the CD-ROM are:

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
<td>The identifier assigned to the site by BOREAS, in the format SSS-TTT-CCCCC, where SSS identifies the portion of the study area: NSA, SSA, REG, T RN, and TTT identifies the cover type for the site, 999 if unknown, and CCCCC is the identifier for site, exactly what it means will vary with site type.</td>
</tr>
<tr>
<td>SUB_SITE</td>
<td>The identifier assigned to the sub-site by BOREAS, in the format GGGGG-IIIII, where GGGGG is the group associated with the sub-site instrument, e.g. HYD06 or STAFF, and IIIII is the identifier for sub-site, often this will refer to an instrument.</td>
</tr>
<tr>
<td>DATE_COLLECTED</td>
<td>The date on which the samples were collected.</td>
</tr>
<tr>
<td>TIME_COLLECTED</td>
<td>The Greenwich Mean Time (GMT) when the samples were collected.</td>
</tr>
<tr>
<td>SAMPLE_ID</td>
<td>The sample identifier used by data collectors (see documentation for a detailed description).</td>
</tr>
<tr>
<td>SPECIES</td>
<td>Botanical (Latin) name of the species (Genus species).</td>
</tr>
<tr>
<td>CHLOROPHYLL_DENSITY</td>
<td>Chlorophyll density per unit area of a given sample.</td>
</tr>
<tr>
<td>CRTFCN_CODE</td>
<td>The BOREAS certification level of the data. Examples are CPI (Checked by PI), CGR (Certified by Group), PRE (Preliminary), and CPI-??? (CPI but questionable).</td>
</tr>
<tr>
<td>REVISION_DATE</td>
<td>The most recent date when the information in the referenced data base table record was revised.</td>
</tr>
</tbody>
</table>
7.3.3 Unit of Measurement

The measurement units for the parameters contained in the data files on the CD-ROM are:

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
<td>[none]</td>
</tr>
<tr>
<td>SUB_SITE</td>
<td>[none]</td>
</tr>
<tr>
<td>DATE_COLLECTED</td>
<td>[DD-MON-YY]</td>
</tr>
<tr>
<td>TIME_COLLECTED</td>
<td>[HHMM GMT]</td>
</tr>
<tr>
<td>SAMPLE_ID</td>
<td>[none]</td>
</tr>
<tr>
<td>SPECIES</td>
<td>[none]</td>
</tr>
<tr>
<td>CHLOROPHYLL_DENSITY</td>
<td>[milligrams][meter^-2]</td>
</tr>
<tr>
<td>CRTFCN_CODE</td>
<td>[none]</td>
</tr>
<tr>
<td>REVISION_DATE</td>
<td>[DD-MON-YY]</td>
</tr>
</tbody>
</table>

7.3.4 Data Source

The sources of the parameter values contained in the data files on the CD-ROM are:

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
<td>[BORIS Designation]</td>
</tr>
<tr>
<td>SUB_SITE</td>
<td>[BORIS Designation]</td>
</tr>
<tr>
<td>DATE_COLLECTED</td>
<td>[Human Observer]</td>
</tr>
<tr>
<td>TIME_COLLECTED</td>
<td>[Human Observer]</td>
</tr>
<tr>
<td>SAMPLE_ID</td>
<td>[Human Observer]</td>
</tr>
<tr>
<td>SPECIES</td>
<td>[Human Observer]</td>
</tr>
<tr>
<td>CHLOROPHYLL_DENSITY</td>
<td>[Laboratory Equipment]</td>
</tr>
<tr>
<td>CRTFCN_CODE</td>
<td>[BORIS Designation]</td>
</tr>
<tr>
<td>REVISION_DATE</td>
<td>[BORIS Designation]</td>
</tr>
</tbody>
</table>

7.3.5 Data Range

The following table gives information about the parameter values found in the data files on the CD-ROM.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Minimum Data Value</th>
<th>Maximum Data Value</th>
<th>Missng Data Value</th>
<th>Unrel Data Value</th>
<th>Below Data Limit</th>
<th>Detect</th>
<th>Cllctd</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
<td>NSA-9BS-9TETR</td>
<td>NSA-YJP-FLXTR</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>SUB_SITE</td>
<td>9TE09-CHL01</td>
<td>9TE09-CHL01</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>DATE_COLLECTED</td>
<td>17-FEB-94</td>
<td>16-SEP-94</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>TIME_COLLECTED</td>
<td>1100</td>
<td>2100</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>SAMPLE_ID</td>
<td>1.1</td>
<td>5.3</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>SPECIES</td>
<td>N/A</td>
<td>N/A</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>CHLOROPHYLL_DENSITY</td>
<td>9.9</td>
<td>266.8</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>CRTFCN_CODE</td>
<td>CPI</td>
<td>CPI</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>REVISION_DATE</td>
<td>18-SEP-96</td>
<td>18-SEP-96</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

Minimum Data Value -- The minimum value found in the column.
Maximum Data Value -- The maximum value found in the column.
Missng Data Value -- The value that indicates missing data. This is used to indicate that an attempt was made to determine the parameter value, but the attempt was unsuccessful.
Unrel Data Value -- The value that indicates unreliable data. This is used to indicate an attempt was made to determine the
parameter value, but the value was deemed to be unreliable by the analysis personnel.

Below Detect Limit -- The value that indicates parameter values below the instruments detection limits. This is used to indicate that an attempt was made to determine the parameter value, but the analysis personnel determined that the parameter value was below the detection limit of the instrumentation.

Data Not Cllctd -- This value indicates that no attempt was made to determine the parameter value. This usually indicates that BORIS combined several similar but not identical data sets into the same database table but this particular science team did not measure that parameter.

Blank -- Indicates that blank spaces are used to denote that type of value.
N/A -- Indicates that the value is not applicable to the respective column.
None -- Indicates that no values of that sort were found in the respective column.

7.4 Sample Data Record
The following is a sample of the first few records from the data table on the CD-ROM:

SITE_NAME, SUB_SITE, DATE_COLLECTED, TIME_COLLECTED, SAMPLE_ID, SPECIES, CHLOROPHYLL_DENSITY, CRTFCN_CODE, REVISION_DATE
'NSA-9BS-9TETR', '9TE09-CHL01', 18-FEB-94, 2100, 'I.1', 'Picea mariana', 149.6, 'CPI', 18-SEP-96

8. Data Organization
8.1 Data Granularity
The smallest unit of data tracked by BOREAS Information System (BORIS) staff was that collected at a given site on a given date.

8.2 Data Format(s)
The Compact Disk-Read-Only Memory (CD-ROM) files contain American Standard Code for Information Interchange (ASCII) numerical and character fields of varying length separated by commas. The character fields are enclosed with single apostrophe marks. There are no spaces between the fields.

Each data file on the CD-ROM has four header lines of Hyper-Text Markup Language (HTML) code at the top. When viewed with a Web browser, this code displays header information (data set title, location, date, acknowledgments, etc.) and a series of HTML links to associated data files and related data sets. Line 5 of each data file is a list of the column names, and line 6 and following lines contain the actual data.
9. Data Manipulations

9.1 Formulae

9.1.1 Derivation Techniques and Algorithms

Chl density was calculated using the following equations:

\[T_1 = 17.9D_{647} + 8.08D_{664.5} \text{ (mg/L)} \]

where: \(D \) is the absorbance at the indicated wavelength.

\[T_{CHLx} = \frac{(T_1 \times 0.021 \times B_x)}{(A_x \times LDW_x)} \text{ (mg/cm}^2) \]

where: 0.021 is the aliquot volume (L)
Ax is the total leaf area/fresh weight ratio (cm2/g)
Bx is the dry weight after extraction/fresh weight ratio
LDWx is leaf dry weight after extraction (g).

9.2 Data Processing Sequence

9.2.1 Processing Steps

Not applicable.

9.2.2 Processing Changes

Not applicable.

9.3 Calculations

9.3.1 Special Corrections/Adjustments

Extractions were made to remove all leaf Chl content. Volume adjustments were made uniformly. Spectrophotometer readings were carefully conducted.
The weighing balance used for volume displacement was accurate to 0.0001 g. Projected leaf area for aspen and total length of needles were measured using a well-calibrated system image analysis system (±1% error).

9.3.2 Calculated Variables

Chl density was calculated using the following equations:

\[T_1 = 17.9D_{647} + 8.08D_{664.5} \text{ (mg/L)} \]

where: \(D \) is the absorbance at the indicated wavelength.

\[T_{CHLx} = \frac{(T_1 \times 0.021 \times B_x)}{(A_x \times LDW_x)} \text{ (mg/cm}^2) \]

where: 0.021 is the aliquot volume (L)
Ax is the total leaf area/fresh weight ratio (cm2/g)
Bx is the dry weight after extraction/fresh weight ratio
LDWx is leaf dry weight after extraction (g).

9.4 Graphs and Plots

None.
10. Errors

10.1 Sources of Error
Extractions were made to remove all leaf Chl content. Volume adjustments were made uniformly. Spectrophotometer readings were carefully conducted.

The weighing balance used for volume displacement was accurate to 0.0001 g. Projected leaf area for aspen and total length of needles were measured using a well-calibrated image analysis system (±1% error).

10.2 Quality Assessment

10.2.1 Data Validation by Source
Data were checked for obvious readings and results.

10.2.2 Confidence Level/Accuracy Judgment
High.

10.2.3 Measurement Error for Parameters
Not applicable.

10.2.4 Additional Quality Assessments
Not applicable.

10.2.5 Data Verification by Data Center
BORIS staff reviewed the data for scientific clarity, consistency, and agreement with provided documentation.

11. Notes

11.1 Limitations of the Data
Only single extractions were done for the winter and thaw sampling dates. All the Chl was extracted. Two extractions were necessary for IFCs 1, 2, and 3.

11.2 Known Problems with the Data
None.

11.3 Usage Guidance
Only single extractions were done for the winter and thaw sampling dates. All the Chl was extracted. Two extractions were necessary for IFCs 1, 2, and 3.

11.4 Other Relevant Information
Not applicable.

12. Application of the Data Set

These data can be used for studies considering leaf Chl content as well as for photosynthesis rate studies.
13. Future Modifications and Plans

Not applicable.

14. Software

14.1 Software Description
None given.

14.2 Software Access
None given.

15. Data Access

The TE-09 leaf chlorophyll density data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

15.1 Contact Information
For BOREAS data and documentation please contact:

ORNL DAAC User Services
Oak Ridge National Laboratory
P.O. Box 2008 MS-6407
Oak Ridge, TN 37831-6407
Phone: (423) 241-3952
Fax: (423) 574-4665
E-mail: ornldaac@ornl.gov or ornl@eos.nasa.gov

15.2 Data Center Identification
Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC) for Biogeochemical Dynamics

15.3 Procedures for Obtaining Data
Users may obtain data directly through the ORNL DAAC online search and order system [http://www-eosdis.ornl.gov/] and the anonymous FTP site [ftp://www-eosdis.ornl.gov/data/] or by contacting User Services by electronic mail, telephone, fax, letter, or personal visit using the contact information in Section 15.1.

15.4 Data Center Status/Plans
The ORNL DAAC is the primary source for BOREAS field measurement, image, GIS, and hardcopy data products. The BOREAS CD-ROM and data referenced or listed in inventories on the CD-ROM are available from the ORNL DAAC.
16. Output Products and Availability

16.1 Tape Products
None.

16.2 Film Products
None.

16.3 Other Products
These data are available on the BOREAS CD-ROM series.

17. References

17.1 Platform/Sensor/Instrument/Data Processing Documentation
None.

17.2 Journal Articles and Study Reports

17.3 Archive/DBMS Usage Documentation
None.

18. Glossary of Terms
None.

19. List of Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASCII</td>
<td>American Standard Code for Information Interchange</td>
</tr>
<tr>
<td>AVIRIS</td>
<td>Airborne Visible and Infrared Imaging Spectrometer</td>
</tr>
<tr>
<td>BOREAS</td>
<td>BOReal Ecosystem-Atmosphere Study</td>
</tr>
<tr>
<td>BORIS</td>
<td>BOREAS Information System</td>
</tr>
<tr>
<td>CD-ROM</td>
<td>Compact Disk-Read-Only Memory</td>
</tr>
<tr>
<td>Chl</td>
<td>Chlorophyll</td>
</tr>
<tr>
<td>DAAC</td>
<td>Distributed Active Archive Center</td>
</tr>
<tr>
<td>DMF</td>
<td>N,N-Dimethylformamide</td>
</tr>
<tr>
<td>EOS</td>
<td>Earth Observing System</td>
</tr>
<tr>
<td>EOSDIS</td>
<td>EOS Data and Information System</td>
</tr>
<tr>
<td>FFC</td>
<td>Focused Field Campaign</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographic Information System</td>
</tr>
<tr>
<td>GMT</td>
<td>Greenwich Mean Time</td>
</tr>
<tr>
<td>GSFC</td>
<td>Goddard Space Flight Center</td>
</tr>
<tr>
<td>HTML</td>
<td>HyperText Markup Language</td>
</tr>
<tr>
<td>IFC</td>
<td>Intensive Field Campaign</td>
</tr>
<tr>
<td>NAD83</td>
<td>North American Datum of 1983</td>
</tr>
<tr>
<td>NASA</td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td>NSA</td>
<td>Northern Study Area</td>
</tr>
<tr>
<td>OA</td>
<td>Old Aspen</td>
</tr>
<tr>
<td>OBS</td>
<td>Old Black Spruce</td>
</tr>
<tr>
<td>OJP</td>
<td>Old Jack Pine</td>
</tr>
<tr>
<td>ORNL</td>
<td>Oak Ridge National Laboratory</td>
</tr>
<tr>
<td>PANP</td>
<td>Prince Albert National Park</td>
</tr>
<tr>
<td>SSA</td>
<td>Southern Study Area</td>
</tr>
<tr>
<td>TE</td>
<td>Terrestrial Ecology</td>
</tr>
<tr>
<td>UBS</td>
<td>Upland Black Spruce site</td>
</tr>
<tr>
<td>URL</td>
<td>Uniform Resource Locator</td>
</tr>
<tr>
<td>UTM</td>
<td>Universal Transverse Mercator</td>
</tr>
<tr>
<td>UV-VIS</td>
<td>Ultraviolet/Visible</td>
</tr>
<tr>
<td>YJP</td>
<td>Young Jack Pine</td>
</tr>
</tbody>
</table>

20. Document Information

20.1 Document Revision Date
Written: 04-Dec-1997
Last Updated: 27-May-1999

20.2 Document Review Date(s)
BORIS Review: 07-May-1997
Science Review: 18-Feb-1998
When using these data, please include the following acknowledgment as well as citations of relevant papers in Section 17.2:

Samples were collected by Hank Margolis and other TE-09 members at five sites in the NSA (Thompson, Manitoba) for different dates (FFC-Winter, FFC-Thaw, IFC-1, IFC-2, and IFC-3). Sites were OBS, UBS, YJP, OJP, and OA. Laboratory analyses were conducted by Mikailou Sy.

If using data from the BOREAS CD-ROM series, also reference the data as:

Also, cite the BOREAS CD-ROM set as:

The BOREAS TE-9 team collected several data sets related to chemical and photosynthetic properties of leaves in boreal forest tree species. These data were collected to help provide an explanation of potential seasonal and spatial changes of leaf pigment properties in boreal forest species at the NSA. At different dates (FFC-Winter, FFC-Thaw, IFC-1, IFC-2, and IFC-3), foliage samples were collected from the upper third of the canopy for five NSA sites (YJP, OJP, OBS, UBS, and OA) near Thompson, Manitoba. Subsamples of 100 needles for black spruce, 20 needles for jack pine, and single leaf for trembling aspen were cut into pieces and immersed in a 20-mL DMF aliquot in a Nalgene test tube. The extracted foliage materials were then oven-dried at 68 °C for 48 hours and weighed. Extracted leaf dry weight was converted to a total leaf area basis to express the chlorophyll content in mg/cm² of total leaf area. The data are provided in tabular ASCII files.