Technical Report Series on the
Boreal Ecosystem-Atmosphere Study (BOREAS)

Forrest G. Hall and Jaime Nickeson, Editors

Volume 70

BOREAS RSS-17 Dielectric Constant Profile Measurements

K.C. McDonald, R. Zimmerman, and J.B. Way

National Aeronautics and Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

August 2000
The NASA STI Program Office ... in Profile

Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the lead center for NASA’s scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA’s institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- **TECHNICAL PUBLICATION.** Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA’s counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- **TECHNICAL MEMORANDUM.** Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- **CONTRACTOR REPORT.** Scientific and technical findings by NASA-sponsored contractors and grantees.

- **CONFERENCE PUBLICATION.** Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- **SPECIAL PUBLICATION.** Scientific, technical, or historical information from NASA programs, projects, and mission, often concerned with subjects having substantial public interest.

- **TECHNICAL TRANSLATION.** English-language translations of foreign scientific and technical material pertinent to NASA’s mission.

Specialized services that complement the STI Program Office’s diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results ... even providing videos.

For more information about the NASA STI Program Office, see the following:

- E-mail your question via the Internet to help@sti.nasa.gov
- Fax your question to the NASA Access Help Desk at (301) 621-0134
- Telephone the NASA Access Help Desk at (301) 621-0390
- Write to: NASA Access Help Desk NASA Center for AeroSpace Information 7121 Standard Drive Hanover, MD 21076-1320
Technical Report Series on the
Boreal Ecosystem-Atmosphere Study (BOREAS)

Forrest G. Hall and Jaime Nickeson, Editors

Volume 70
BOREAS RSS-17 Dielectric
Constant Profile Measurements

Kyle C. McDonald, Jet Propulsion Laboratory, Pasadena, California
Reiner Zimmerman, Bayreuth Institute for Terrestrial Ecosystem Research (BITOEK),
University of Bayreuth, Bayreuth, Germany
JoBea Way, Jet Propulsion Laboratory, Pasadena, California

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

August 2000
BOREAS RSS-17 Dielectric Constant Profile Measurements

Kyle McDonald, Reiner Zimmermann, JoBea Way

Summary

The BOREAS RSS-17 team acquired and analyzed imaging radar data from the ESA's ERS-1 over a complete annual cycle at the BOREAS sites in Canada in 1994 to detect shifts in radar backscatter related to varying environmental conditions. This data set consists of dielectric constant profile measurements from selected trees at various BOREAS flux tower sites. The relative dielectric constant was measured at C-band (frequency = 5 GHz) as a function of depth into the trunk of three trees at each site. Measurements were made during April 1994 with an Applied Microwave Corporation field PDP fitted with a 0.358-cm (0.141-inch) diameter coaxial probe tip. The data are available in tabular ASCII files.

Table of Contents

1) Data Set Overview
2) Investigator(s)
3) Theory of Measurements
4) Equipment
5) Data Acquisition Methods
6) Observations
7) Data Description
8) Data Organization
9) Data Manipulations
10) Errors
11) Notes
12) Application of the Data Set
13) Future Modifications and Plans
14) Software
15) Data Access
16) Output Products and Availability
17) References
18) Glossary of Terms
19) List of Acronyms
20) Document Information

1. Data Set Overview

1.1 Data Set Identification
BOREAS RSS-17 Dielectric Constant Profile Measurements

1.2 Data Set Introduction
The dielectric constant provides an indication of how a material responds in an electric field. Thus, it is useful to quantify this property in order to interpret radar remote sensing signatures. When considering the microwave frequency spectrum, the dielectric constant of liquid water is much higher than that of other components of a natural landscape. Thus, variations in the amount (moisture content) and state (frozen vs. thawed) of water in a vegetation canopy can significantly affect radar backscatter. The relative dielectric constant was measured as a function of depth into the trunks of three trees at each of seven treed BOREal Ecosystem-Atmosphere Study (BOREAS) tower sites. In the Northern Study Area (NSA), measurements were taken at the Old Black Spruce (OBS), Young Jack Pine (YJP),
and Old Jack Pine (OJP) sites. In the Southern Study Area (SSA), measurements were taken at the YJP, OJP, OBS, and Old Aspen (OA) sites. An Applied Microwave Corporation C-band field portable dielectric probe (PDP) was used to measure these data. Profiles were obtained during April 1994, shortly after the trees thawed.

1.3 Objective/Purpose
These measurements were taken to assist with interpretation of radar backscatter measurements obtained with the Earth Resource Satellite-1 (ERS-1) Synthetic Aperture Radar (SAR). The dielectric constant of woody vegetation varies dramatically as the vegetation transitions from a frozen to a thawed state. Because radar backscatter responds to changes in the dielectric constant, these measurements were obtained to verify that the trees had undergone the spring thaw transition. These data may also be used as parameter inputs to radar backscatter models to assist in interpretation of radar remote sensing measurements obtained at the BOREAS sites.

1.4 Summary of Parameters and Variables
Each line provides the real and imaginary parts of the relative dielectric constant at a single depth in the trunk of a selected tree of the indicated BOREAS stand. Each of these measurements represents the arithmetic mean of three samples taken at the same location in that tree. For a given tree, a measurement series represents the relative dielectric constant as a function of depth into the tree trunk.

1.5 Discussion
The dielectric constant of woody vegetation varies dramatically as the vegetation transitions from a frozen to a thawed state. Because radar backscatter responds to changes in dielectric constant, these measurements were obtained to verify that the trees had undergone the spring thaw transition.

The relative dielectric constant was measured as a function of depth into the trunks of three trees in each of seven BOREAS tower sites. An Applied Microwave Corporation C-band field PDP was used to measure these data. Profiles were obtained during April 1994, shortly after the trees thawed.

1.6 Related Data Sets
BOREAS RSS-15 SIR-C and Landsat TM Biomass and Landcover Maps
BOREAS RSS-16 Level-3b DC-8 AirSAR CM Images
BOREAS RSS-16 Level-3b DC-8 AirSAR SY Images
BOREAS RSS-17 Stem and Air Temperature Measurements
BOREAS RSS-17 1994 ERS-1 Level-1 Backscatter Change Images
BOREAS RSS-17 Xylem Flux Density Measurements at the SSA-OBS Site

2. Investigators

2.1 Investigator(s) Name and Title
Principal Investigator
Dr. JoBea Way
Jet Propulsion Laboratory

Co-Investigator
Dr. Kyle McDonald
Jet Propulsion Laboratory
Dr. Reiner Zimmermann
Bayreuth Institute for Terrestrial Ecosystem Research (BITOEK)
2.2 Title of Investigation
Monitoring Environmental and Phenologic State and Duration of State with SAR as Input to Improved CO₂ Flux Models

2.3 Contact Information

Contact 1:
Dr. JoBea Way
Jet Propulsion Laboratory
Mail Stop 300-233
California Institute of Technology
4800 Oak Grove Drive
Pasadena, CA 91109
(818) 354-8225
(818) 354-9476 (fax)
way@lor.jpl.nasa

Contact 2:
Dr. Kyle McDonald
Jet Propulsion Laboratory
Mail Stop 300-233
California Institute of Technology
4800 Oak Grove Drive
Pasadena, CA 91109
(818) 354-3263
(818) 354-9476 (fax)
kyle.mcdonald@jpl.nasa.gov

Contact 3:
Dr. Reiner Zimmermann
Bayreuth Institute for Terrestrial Ecosystem Research (BITOEK)
Plant Ecology II
University of Bayreuth
D-95445 Bayreuth
GERMANY
reiner.zimmermann@bitoek.uni-bayreuth.de

Contact 4:
Jaime Nickeson
Raytheon ITSS
NASA GSFC
Code 923
Greenbelt, Maryland 20771
(301) 286-3373
(301) 286-0239 (fax)
Jaime.Nickeson@gsfc.nasa.gov

3. Theory of Measurements

The relative dielectric constant is monitored with an Applied Microwave Corporation field PDP. The PDP used here measures the complex reflection coefficient (magnitude and phase) at the point of contact between a material of unknown dielectric constant and a semirigid coaxial probe tip. The reflection coefficient was measured at a frequency of 5 GHz, corresponding to the C-band portion of
the electromagnetic spectrum. The real and imaginary parts of the relative dielectric constant are
determined from the complex reflection coefficient through application of a calibration equation
determined from measurements of reflection coefficient made on a series of reference dielectric liquids.

4. Equipment

4.1 Sensor/Instrument Description
The dielectric constant was measured with a field PDP manufactured by Applied Microwave
Corporation, Lawrence, KS. These instruments are no longer in production.

4.1.1 Collection Environment
Data were collected in April 1994. Air temperature was above 0 °C. Weather conditions varied
from cool and clear to rainy.

4.1.2 Source/Platform
The PDP is a hand-held, field portable device.

4.1.3 Source/Platform Mission Objectives
This study was undertaken to combine ERS-1 SAR with ecosystem CO2 flux models. The
objective is to use SAR observations as direct inputs to these models to improve their estimates
of seasonal CO2 flux.

4.1.4 Key Variables
Relative dielectric constant (C-band).

4.1.5 Principles of Operation
The PDP provides a direct measurement of the complex reflection coefficient. The relative dielectric
constant is inferred through application of a calibration transformation equation determined from an
equivalent circuit model applied to the coaxial probe tip. The parameters of the calibration
transformation equation are determined from measurements taken on a series of liquids of known
dielectric constant.

4.1.6 Sensor/Instrument Measurement Geometry
The dielectric constant was inferred from measurements of the complex reflection coefficient
measured at the interface of a 0.358 cm (0.141 inch) diameter semirigid coaxial probe tip and with an
unknown dielectric constant, the tree trunk.

4.1.7 Manufacturer of Sensor/Instrument
Applied Microwave Corporation
Lawrence, KS

The PDP is no longer in production.

4.2 Calibration
Calibration and processing of the dielectric data were performed with Mathematica 2.0 for the
Macintosh (Wolfram Research, Inc.). The calibration technique is described in the PDP manual (1989)
and by Dobson (1990).

4.2.1 Specifications
None given.

4.2.1.1 Tolerance
None given.
4.2.2 Frequency of Calibration
Calibration against a series of dielectric liquids was performed in the laboratory at the Jet
Propulsion Laboratory (JPL) shortly before going to the BOREAS sites in April. In-field calibration
checks are performed against an air standard immediately before each dielectric measurement.

4.2.3 Other Calibration Information
Not available.

5. Data Acquisition Methods
Profiles of the relative dielectric constant were obtained for each tree by drilling a small hole in the tree
trunk to the desired depth, measuring the depth of the hole with a caliper, inserting the coaxial probe
tip, and measuring the complex reflection coefficient. The process is repeated in the same hole, drilled
successively deeper, until a point near the center of the tree trunk is reached, or until the probe tip
cannot be inserted any further. Data are stored in a hand-held computer and loaded onto a PC for
postprocessing. A series of three measurements was obtained at each depth. The values for the relative
dielectric constant provided in the data file were computed by averaging the three values of dielectric
constant obtained from these measurements.

6. Observations

6.1 Data Notes
The time values for the SSA-OA site on 19-April do not change except for the last few record on
that day. The clock on the calculator was not set properly. The measurements acquired at time = 14.00
(20:00 Greenwich Mean Time (GMT)) were collected at approximately 14:00 +/- 15 minutes according
to field notes. The calculator's internal clock was reset to correct the time problem at 14.24 (20:24
GMT). As this data set is not time-critical over the acquisition period of each profile, this will have no
effect on the data quality.

6.2 Field Notes
None given.

7. Data Description

7.1 Spatial Characteristics

7.1.1 Spatial Coverage
Each measurement is taken from one tree within a stand. Groups of three individual trees were
measured at the BOREAS tower sites. The following North American Datum of 1983 (NAD83) site
locations were sampled in the NSA and SSA:

<table>
<thead>
<tr>
<th>Site</th>
<th>UTM Zone</th>
<th>UTM Northing (m)</th>
<th>UTM Easting (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSA-OBS</td>
<td>14</td>
<td>6192853.4</td>
<td>532444.5</td>
</tr>
<tr>
<td>NSA-YJP</td>
<td>14</td>
<td>6194706.9</td>
<td>544583.9</td>
</tr>
<tr>
<td>NSA-OJP</td>
<td>14</td>
<td>6198176.3</td>
<td>523496.2</td>
</tr>
<tr>
<td>SSA-YJP</td>
<td>13</td>
<td>5969762.5</td>
<td>523320.2</td>
</tr>
<tr>
<td>SSA-OJP</td>
<td>13</td>
<td>5974257.5</td>
<td>520227.7</td>
</tr>
<tr>
<td>SSA-OBS</td>
<td>13</td>
<td>5982100.5</td>
<td>492276.5</td>
</tr>
<tr>
<td>SSA-OA</td>
<td>13</td>
<td>5942899.9</td>
<td>4200790.5</td>
</tr>
</tbody>
</table>
7.1.2 Spatial Coverage Map
Not available.

7.1.3 Spatial Resolution
The spatial resolution of a given measurement is one tree. A series of records corresponding to a single tree and tower site corresponds to one dielectric profile.

7.1.4 Projection
Not applicable.

7.1.5 Grid Description
Not applicable.

7.2 Temporal Characteristics

7.2.1 Temporal Coverage
Data collection took place from 19-April to 28-April-1994.

7.2.2 Temporal Coverage Map
The dates when the various sites were measured are:

SSA-OA 19-April-1994
SSA-OBS 20-April-1994
SSA-YJP 21-April-1994
SSA-OJP 25-April-1994
NSA-YJP 27-April-1994
NSA-OBS 28-April-1994
NSA-OJP 28-April-1994

7.2.3 Temporal Resolution
One measurement of dielectric constant takes less than 1 minute. Measurements at each tree were taken at 2- to 4-minute intervals. A complete profile series can be completed within 1 hour.

7.3 Data Characteristics

7.3.1 Parameter/Variable
The parameters contained in the data files on the CD-ROM are

<table>
<thead>
<tr>
<th>Column Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
</tr>
<tr>
<td>SUB_SITE</td>
</tr>
<tr>
<td>DATE_OBS</td>
</tr>
<tr>
<td>TIME_OBS</td>
</tr>
<tr>
<td>TREE</td>
</tr>
<tr>
<td>TREE_DIAMETER</td>
</tr>
<tr>
<td>PROBE_DEPTH</td>
</tr>
<tr>
<td>MEAN_DIELECTRIC_CONSTANT_REAL</td>
</tr>
<tr>
<td>MEAN_DIELECTRIC_CONSTANT_IMGNRY</td>
</tr>
<tr>
<td>CRTFCN_CODE</td>
</tr>
<tr>
<td>REVISION_DATE</td>
</tr>
</tbody>
</table>
7.3.2 Variable Description/Definition

The descriptions of the parameters contained in the data files on the CD-ROM are:

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
<td>The identifier assigned to the site by BOREAS, in the format SSS-TTT-CCCCC, where SSS identifies the portion of the study area: NSA, SSA, REG, TRN, and TTT identifies the cover type for the site, 999 if unknown, and CCCCC is the identifier for site, exactly what it means will vary with site type.</td>
</tr>
<tr>
<td>SUB_SITE</td>
<td>The identifier assigned to the sub-site by BOREAS, in the format GGGGG-III, where GGGGG is the group associated with the sub-site instrument e.g. HYD06 or STAFF, and III is the identifier for sub-site, often this will refer to an instrument.</td>
</tr>
<tr>
<td>DATE_OBS</td>
<td>The date on which the data were collected.</td>
</tr>
<tr>
<td>TIME_OBS</td>
<td>The Greenwich Mean Time (GMT) when the data were collected.</td>
</tr>
<tr>
<td>TREE</td>
<td>The individual tree from which measurements were taken.</td>
</tr>
<tr>
<td>TREE_DIAMETER</td>
<td>The diameter of the tree measured near the probe insertion point.</td>
</tr>
<tr>
<td>PROBE_DEPTH</td>
<td>The depth of the sensor probe into the tree trunk.</td>
</tr>
<tr>
<td>MEAN_DIELECTRIC_CONSTNT_REAL</td>
<td>The real portion of the relative dielectric constant, determined through application of a calibration equation applied to the reflection coefficient measured by the probe.</td>
</tr>
<tr>
<td>MEAN_DIELECTRIC_CONSTNT_IMGNRY</td>
<td>The imaginary portion of the relative dielectric constant, determined through application of a calibration equation applied to the reflection coefficient measured by the probe.</td>
</tr>
<tr>
<td>CRTFCN_CODE</td>
<td>The BOREAS certification level of the data. Examples are CPI (Checked by PI), CGR (Certified by Group), PRE (Preliminary), and CPI-?? (CPI but questionable).</td>
</tr>
<tr>
<td>REVISION_DATE</td>
<td>The most recent date when the information in the referenced data base table record was revised.</td>
</tr>
</tbody>
</table>

7.3.3 Unit of Measurement

The measurement units for the parameters contained in the data files on the CD-ROM are:

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
<td>[none]</td>
</tr>
<tr>
<td>SUB_SITE</td>
<td>[none]</td>
</tr>
<tr>
<td>DATE_OBS</td>
<td>[DD-MON-YY]</td>
</tr>
<tr>
<td>TIME_OBS</td>
<td>[HHMM GMT]</td>
</tr>
<tr>
<td>TREE</td>
<td>[none]</td>
</tr>
<tr>
<td>TREE_DIAMETER</td>
<td>[millimeters]</td>
</tr>
<tr>
<td>PROBE_DEPTH</td>
<td>[millimeters]</td>
</tr>
</tbody>
</table>
7.3.4 Data Source

The sources of the parameter values contained in the data files on the CD-ROM are:

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
<td>[Assigned by BORIS Staff]</td>
</tr>
<tr>
<td>SUB_SITE</td>
<td>[Assigned by BORIS Staff]</td>
</tr>
<tr>
<td>DATE_OBS</td>
<td>[RSS-17 team]</td>
</tr>
<tr>
<td>TIME_OBS</td>
<td>[Hand-held calculator]</td>
</tr>
<tr>
<td>TREE</td>
<td>[RSS-17 team]</td>
</tr>
<tr>
<td>TREE_DIAMETER</td>
<td>[RSS-17 team]</td>
</tr>
<tr>
<td>PROBE_DEPTH</td>
<td>[Dielectric probe]</td>
</tr>
<tr>
<td>MEAN_DIELECTRIC_CONSTNT_REAL</td>
<td>[Dielectric probe]</td>
</tr>
<tr>
<td>MEAN_DIELECTRIC_CONSTNT_IMGNRY</td>
<td>[Assigned by BORIS Staff]</td>
</tr>
<tr>
<td>CRTFCN_CODE</td>
<td>[Assigned by BORIS Staff]</td>
</tr>
<tr>
<td>REVISION_DATE</td>
<td>[Assigned by BORIS Staff]</td>
</tr>
</tbody>
</table>

7.3.5 Data Range

The following table gives information about the parameter values found in the data files on the CD-ROM.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Minimum Data Value</th>
<th>Maximum Data Value</th>
<th>Missng Data Value</th>
<th>Unrel Data Value</th>
<th>Below Detect Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
<td>NSA-OBS-FLXTR</td>
<td>SSA-YJP-FLXTR</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>SUB_SITE</td>
<td>RSS17-DIE01</td>
<td>RSS17-DIE01</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>DATE_OBS</td>
<td>19-APR-94</td>
<td>28-APR-94</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>TIME_OBS</td>
<td>1703</td>
<td>2345</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>TREE</td>
<td>A</td>
<td>C</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>TREE_DIAMETER</td>
<td>33</td>
<td>216</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>PROBE_DEPTH</td>
<td>0</td>
<td>99</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>MEAN_DIELECTRIC_CONSTNT_REAL</td>
<td>1.649</td>
<td>15.74</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>MEAN_DIELECTRIC_CONSTNT_IMGNRY</td>
<td>.164</td>
<td>6.616</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>CRTFCN_CODE</td>
<td>CPI</td>
<td>CPI</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>REVISION_DATE</td>
<td>17-SEP-98</td>
<td>17-SEP-98</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

Minimum Data Value -- The minimum value found in the column.
Maximum Data Value -- The maximum value found in the column.
Missng Data Value -- The value that indicates missing data. This is used to indicate that an attempt was made to determine the parameter value, but the attempt was unsuccessful.
Unrel Data Value -- The value that indicates unreliable data. This is used to indicate an attempt was made to determine the parameter value, but the value was deemed to be unreliable by the analysis personnel.
Below Detect Limit -- The value that indicates parameter values below the instruments detection limits. This is used to
indicate that an attempt was made to determine the parameter value, but the analysis personnel determined that the parameter value was below the detection limit of the instrumentation.

Data Not Cllctd -- This value indicates that no attempt was made to determine the parameter value. This usually indicates that BORIS combined several similar but not identical data sets into the same data base table but this particular science team did not measure that parameter.

Blank -- Indicates that blank spaces are used to denote that type of value.
N/A -- Indicates that the value is not applicable to the respective column.
None -- Indicates that no values of that sort were found in the column.

7.4 Sample Data Record
The following is a sample of the first few records from the data table on the CD-ROM:

<table>
<thead>
<tr>
<th>SITE_NAME, SUB_SITE, DATE_OBS, TIME_OBS, TREE, TREE_DIAMETER, PROBE_DEPTH, MEAN_DIELECTRIC_CONSTANT_REAL, MEAN_DIELECTRIC_CONSTANT_IMGNRY, CRTFCN_CODE, REVISION_DATE</th>
</tr>
</thead>
</table>

8. Data Organization

8.1 Data Granularity
The smallest unit of data tracked by BOREAS Information System (BORIS) is all of the measurements for a given site on a given day.

8.2 Data Format(s)
The Compact Disk-Read-Only Memory (CD-ROM) files contain American Standard Code for Information Interchange (ASCII) numerical and character fields of varying length separated by commas. The character fields are enclosed with single apostrophe marks. There are no spaces between the fields.

Each data file on the CD-ROM has four header lines of Hyper-Text Markup Language (HTML) code at the top. When viewed with a Web browser, this code displays header information (data set title, location, date, acknowledgments, etc.) and a series of HTML links to associated data files and related data sets. Line 5 of each data file is a list of the column names, and line 6 and following lines contain the actual data.
9. Data Manipulations

9.1 Formulae
None given.

9.1.1 Derivation Techniques and Algorithms
None given.

9.2 Data Processing Sequence

9.2.1 Processing Steps
None given.

9.2.2 Processing Changes
Not applicable.

9.3 Calculations

9.3.1 Special Corrections/Adjustments
Not applicable.

9.3.2 Calculated Variables
None given.

9.4 Graphs and Plots
Not available.

10. Errors

10.1 Sources of Error
Instabilities in the electronics of the PDP are taken into account by repeated calibration of the PDP with free space as the calibration standard. Accuracy of the dielectric constant measurement is limited by the range of the dielectric constant of the liquid standards used in laboratory calibration of the PDP.

10.2 Quality Assessment

10.2.1 Data Validation by Source
None given.

10.2.2 Confidence Level/Accuracy Judgment
Accuracy of the dielectric constant is estimated to be +/- 10% when the real portion, Re(eps), is less than 15 and when the imaginary portion, Im(eps), is less than 4. The accuracy of the dielectric constant decreases to +/- 30% when Re(eps) is greater than 15 and Im(eps) is greater than 4, where eps is the complex relative dielectric constant.

10.2.3 Measurement Error for Parameters
Not available.

10.2.4 Additional Quality Assessments
Not applicable.

10.2.5 Data Verification by Data Center
Data have been checked for content as described and for format.
11. Notes

11.1 Limitations of the Data
None given.

11.2 Known Problems with the Data
None given.

11.3 Usage Guidance
These data are typically used to estimate the gross vegetation dielectric constant for application to radar remote sensing studies (e.g., Way et al., 1997).

11.4 Other Relevant Information
Not available.

12. Application of the Data Set
These data can be used for site-level observations related to the state of the stand or the forest, either frozen or thawed.

13. Future Modifications and Plans
None.

14. Software

14.1 Software Description
Data collection and preprocessing of the PDP data files were performed with custom software written for the HP hand-held computer at the University of Michigan radiation laboratory. Calibration and processing of the dielectric data were performed with Mathematica 2.0 for the Macintosh (Wolfram Research, Inc.).

14.2 Software Access
None given.
15. Data Access

The dielectric constant profile data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

15.1 Contact Information
For BOREAS data and documentation please contact:

ORNL DAAC User Services
Oak Ridge National Laboratory
P.O. Box 2008 MS-6407
Oak Ridge, TN 37831-6407
Phone: (423) 241-3952
Fax: (423) 574-4665
E-mail: ornldaac@ornl.gov or ornl@eos.nasa.gov

15.2 Data Center Identification
Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC) for Biogeochemical Dynamics
http://www-eosdis.orl.gov/ [Internet Link].

15.3 Procedures for Obtaining Data
Users may obtain data directly through the ORNL DAAC online search and order system [http://www-eosdis.orl.gov/] and the anonymous FTP site [ftp://www-eosdis.orl.gov/data/] or by contacting User Services by electronic mail, telephone, fax, letter, or personal visit using the contact information in Section 15.1.

15.4 Data Center Status/Plans
The ORNL DAAC is the primary source for BOREAS field measurement, image, GIS, and hardcopy data products. The BOREAS CD-ROM and data referenced or listed in inventories on the CD-ROM are available from the ORNL DAAC.

16. Output Products and Availability

16.1 Tape Products
None.

16.2 Film Products
None.

16.3 Other Products
These data are available on the BOREAS CD-ROM series.
17. References

17.1 Platform/Sensor/Instrument/Data Processing Documentation

17.2 Journal Articles and Study Reports

17.3 Archive/DBMS Usage Documentation
None.
18. Glossary of Terms
None.

19. List of Acronyms

- ASCII - American Standard Code for Information Interchange
- BOREAS - BOReal Ecosystem-Atmosphere Study
- BORIS - BOREAS Information System
- CD-ROM - Compact Disk-Read-Only Memory
- DAAC - Distributed Active Archive Center
- EOS - Earth Observing System
- EOSDIS - EOS Data and Information System
- ERS-1 - Earth Resources Satellite-1
- GIS - Geographic Information System
- GMT - Greenwich Mean Time
- GSFC - Goddard Space Flight Center
- HTML - HyperText Markup Language
- JPL - Jet Propulsion Laboratory
- NAD83 - North American Datum of 1983
- NASA - National Aeronautics and Space Administration
- NSA - Northern Study Area
- OA - Old Aspen
- OBS - Old Black Spruce
- OJP - Old Jack Pine
- ORNL - Oak Ridge National Laboratory
- PANP - Prince Albert National Park
- PDP - Portable Dielectric Probe
- RSS - Remote Sensing Science
- SAR - Synthetic Aperture Radar
- SSA - Southern Study Area
- URL - Uniform Resource Locator
- UTM - Universal Transverse Mercator
- YJP - Young Jack Pine

20. Document Information

20.1 Document Revision Date(s)
Written: 10-Jun-1997
Last Updated: 06-Aug-1999

20.2 Document Review Date(s)
BORIS Review: 10-Sep-1997

20.3 Document ID
20.4 Citation
When using these data, please acknowledge K.C. McDonald, J.B. Way, and R. Zimmermann for providing the data and include citations of relevant papers in Section 17.2.

If using data from the BOREAS CD-ROM series, also reference the data as:

Also, cite the BOREAS CD-ROM set as:

20.5 Document Curator

20.6 Document URL
The BOREAS RSS-17 team acquired and analyzed imaging radar data from the ESA's ERS-1 over a complete annual cycle at the BOREAS sites in Canada in 1994 to detect shifts in radar backscatter related to varying environmental conditions. This data set consists of dielectric constant profile measurements from selected trees at various BOREAS flux tower sites. The relative dielectric constant was measured at C-band (frequency = 5 GHz) as a function of depth into the trunk of three trees at each site. Measurements were made during April 1994 with an Applied Microwave Corporation field PDP fitted with a 0.358-cm (0.141-inch) diameter coaxial probe tip. The data are available in tabular ASCII files.