Technical Report Series on the Boreal Ecosystem-Atmosphere Study (BOREAS)

Forrest G. Hall and Andrea Papagno, Editors

Volume 149

BOREAS TE-7 Dendrology Data

T.M.L. Varem-Sanders and I.D. Campbell
Canadian Forest Service, Edmonton, Alberta, Canada

National Aeronautics and Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

October 2000
BOREAS TE-7 Dendrology Data

T.M.L. Varem-Sanders, I.D. Campbell

Summary

The BOREAS TE-7 team collected data sets in support of its efforts to characterize and interpret information on the sapflow and dendrology of boreal vegetation. This data set contains dendrology measurements, consisting of tree ring width and density taken at several points within each ring. Measurements were taken near the TE towers at the OJP and OBS sites in NSA. In the SSA, measurements were taken near the TE towers at the MIX, OBS, and OJP sites; at the AIM-13 and BMH-9 sites; and near the TF-YJP site. All data were collected during the summer of 1994.

Note that the TE-7 dendrology data are not contained on the BOREAS CD-ROM series. An inventory listing is supplied on the CD-ROM set to inform users of the data that were collected. See Section 15 for information about how to acquire actual data files.

Table of Contents

1) Data Set Overview
2) Investigator(s)
3) Theory of Measurements
4) Equipment
5) Data Acquisition Methods
6) Observations
7) Data Description
8) Data Organization
9) Data Manipulations
10) Errors
11) Notes
12) Application of the Data Set
13) Future Modifications and Plans
14) Software
15) Data Access
16) Output Products and Availability
17) References
18) Glossary of Terms
19) List of Acronyms
20) Document Information

1. Data Set Overview

1.1 Data Set Identification
BOREAS TE-07 Dendrology Data

1.2 Data Set Introduction
Field studies of X-ray densitometry analysis of samples were taken by the Terrestrial Ecology (TE)-07 team as part of the BOREal Ecosystem-Atmosphere Study (BOREAS) during the summer of 1994.

1.3 Objective/Purpose
The objective of this research was to perform densitometry analysis as part of the BOREAS allometry program, which was aimed at developing allometric equations for tree volume increment for use in forest growth models.

Page 1
1.4 Summary of Parameters

Tree Summary Data on the BOREAS Compact Disk-Read Only Memory (CD-ROM): Each record includes the tree id, plot id, species, tree diameter taken at breast height, height from the ground to the base of the crown, tree height, basic density factor, and image condition.

TIFF Images on the Canadian Forest Service (CFS) CD-ROM: Each image file is a series of X-ray images of a particular tree.

Report Files on the CFS CD-ROM: Density and Width Summary includes year of the ring, fresh ring width, relative latewood width, maximum ring density, minimum ring density, average ring density. Raw Profile includes density of each pixel and the year of the ring.

1.5 Discussion

Samples were collected from tower sites used for gas flux experiments. In the Northern Study Area (NSA), the TE towers at the Old Jack Pine (OJP) and Old Black Spruce (OBS) sites were visited. In the Southern Study Area (SSA), samples were collected from the TE tower at Mixed wood (MIX), Aspen Immature Medium (AIM)-13, Tower Flux (TF) Young Jack Pine (YJP), and the TE towers at black spruce mature high (BMH)-9 and at OJP. Detailed information about each site can be found in Halliwell and Apps (1997a,b,c). Dendrology data were collected from 75 trees. The trees ranged from 1.85 m to 18.3 m in height and included 29 jack pine (Pinus banksiana), 33 black spruce (Picea mariana), 8 white spruce (Picea glauca), and 10 trembling aspen (Populus tremuloides). The samples used here are replicates of samples used by Gower et al. (1997) for the development of volume allometric equations. Not all samples used by Gower have been included, due to the magnitude of the project; some samples were lost in transit, destroyed in processing, or received with illegible or incorrect labels. Every effort has been made to ensure the accuracy of the data included in this data set.

The images and report files are stored on the CD-ROM provided free of charge by the CFS at this address:

Natural Resources Canada
Canadian Forest Service
Northern Forest Centre
5320 - 122 Street
Edmonton, Alberta
T6H 3S5

1.6 Related Data Sets

BOREAS TE-06 Allometry Data
BOREAS TE-06 Biomass and Foilage Area Data

2. Investigator(s)

2.1 Investigator(s) Name and Title
T.M.L. Varem-Sanders
I.D. Campbell

2.2 Title of Investigation
Climate Change Effects on Net Primary Productivity of Aspen and Jack Pine at the Southern Limit of the Boreal Forest
2.3 Contact Information

Contact 1:
T.M.L. Varem-Sanders
Canadian Forest Service
Northern Forestry Centre
5320-122 Street
Edmonton, Alberta
T6H 3S5
Canada
tvarem@nofc.forestry.ca

Contact 2:
I.D. Campbell
Canadian Forest Service
Northern Forestry Centre
5320-122 Street
Edmonton, Alberta
T6H 3S5
Canada
icampbel@nrcan.gc.ca

Contact 3:
Andrea Papagno
Raytheon ITSS
NASA GSFC
Code 923
Greenbelt, MD 20771
(301) 286-3134
(301) 286-0239 (fax)
Andrea.Papagno@gsfc.nasa.gov

3. Theory of Measurements

X-ray densitometry enables the simultaneous measurement of ring width and density at several points within each ring. Ring width data are required to calculate volume increment, while wood density is a critical variable affecting wood quality (Jozsa and Middleton, 1994). Biomass increment calculations also require both ring width and density data.

Tree ring widths have often been used to determine the sensitivity of tree growth to climate and other environmental factors (Fritts, 1976). Similarly, tree density has been shown to be highly sensitive to climate and other factors, and in closed boreal forest stands, where ring width is often only weakly sensitive to climate, ring density has been shown to be much more strongly linked to climate (Jozsa et al., 1984).
4. Equipment

4.1 Sensor/Instrument Description

4.1.1 Collection Environment
TE and TF towers were used to access the trees. Disks were cut from selected trees at the base of the tree, at breast height, at the base of the live crown, and at regular 2-m intervals along the entire stem.

4.1.2 Source/Platform
An optical gray-scale desktop scanner was used under laboratory conditions.

4.1.3 Source/Platform Mission Objectives
None given.

4.1.4 Key Variables
Tree Summary Data on the BOREAS CD-ROM: The overall summary data includes the tree id, plot id, species, tree diameter taken at breast height, height from the ground to the base of the crown, tree height, basic density factor, and image condition.
TIFF Images on the CFS CD-ROM: Each image file is a series of X-ray images of a particular tree.
Report Files on the CFS CD-ROM: Density and Width Summary includes year of the ring, fresh ring width, relative latewood width, maximum ring density, minimum ring density, average ring density. Raw Profile includes density of each pixel and the year of the ring.

4.1.5 Principles of Operation
The images were photographically enlarged by a factor of 2x, and the prints were scanned using a 600-dots per inch (dpi) (optical) gray-scale desktop scanner. After further analysis (explained in Section 5), the images provided were rescanned from the original negatives using a 2000-dpi (optical) desktop scanner.

4.1.6 Sensor/Instrument Measurement Geometry
None given.

4.1.7 Manufacturer of Sensor/Instrument
None given.

4.2 Calibration

4.2.1 Specifications
The calibration wedge specifications are:
- Thickness at the thick end: 0.3797 cm
- Thickness at the thin end (inside the wire): 0.0290 cm
- Length (to the inside of the wire): 5.194 cm
- Calibration constant: 0.7438 g/cm³
- Corrected calibration constant: 0.7069 g/cm³

4.2.1.1 Tolerance
None given.

4.2.2 Frequency of Calibration
None given.

4.2.3 Other Calibration Information
Not applicable.
5. Data Acquisition Methods

Sampling was conducted during the summer of 1994. Disks were cut from selected trees at selected sites, at the base of the tree, at breast height, at the base of the live crown, and at regular 2-m intervals along the entire stem.

These disks were measured in the field to obtain a fresh (or green) diameter. On arrival in Edmonton, they were air-dried and remeasured. The disks were then reduced to sticks about 5 cm wide and 3 cm thick, passing through the pith and thus including two complete radii at 180° from each other.

The sticks were then further reduced to thin slivers about 6 mm wide and 1.5 mm thick. One of the two slivers from each disk included the pith; the other did not. In some cases, particularly for small-diameter disks or disks that had cracked extensively on drying, only one sliver was obtained. The thickness of each sliver was measured at several points using calipers. These slivers were then wrapped in cloth and subjected to extraction of volatiles by repeated soaking in water and in a mixture of cyclohexane and ethanol. After removal from the extraction, the slivers were pressed into a slight curve, to accommodate the parallax in the X-ray chamber.

The slivers were arranged in sets in the X-ray chamber; each set was accompanied by the same calibrated precision-cut plastic wedge. This wedge is of sufficient thickness at one end to intercept more X-rays than the densest 2-mm-thick wood samples, and tapers to a nearly perfect knife-edge. A thin wire is attached to the thin end to mark it on the X-ray images. See Section 4.2.1 for the specifications for this wedge. This method enables researchers to calculate density from the gray-value of the X-ray image at any point yielding the same gray-value as the point in the wood for which the density is desired. The thickness of the wedge at this point is determined by interpolation from the position of this point between the thick end of the wedge and the inside of the wire. If the wood is assumed to be completely dry, the thickness of the wedge at this point is multiplied by the calibration constant to obtain the mass of the wood per cm² at that point. This number is then divided by the thickness of the wood sample:

\[
\text{Wood density} = \frac{\text{wedge thickness} \times \text{calibration constant}}{\text{wood thickness}} \tag{1}
\]

In practice, most wood samples are believed to have been processed with about 6% moisture content; thus, a calibration constant corrected for humidity should be used. The corrected calibration constant used for 6% wood moisture content was 0.7069 g/cm³.

The images were photographically enlarged by a factor of 2x, and the prints were scanned using a 600-dpi (optical) gray-scale desktop scanner. DendroScan, the software written for the analysis of X-ray images of tree rings (Varem-Sanders and Campbell, 1996), was used to analyze the resulting digital files.

Each sliver was then cross-dated, first with the other sliver from the same disk, with other samples from the same tree, then with other samples from the same site, and ultimately with samples from other sites, to ensure the proper identification of ring boundaries. From the approximately 1,000 disks received at the Northern Forest Centre, an estimated 1,500 slivers were processed, representing 938 disks from 75 trees.

The images provided on the CFS CD-ROM were rescanned from the original negatives using a 2000-dpi (optical) desktop scanner. Due to space constraints, not all were scanned at 2000 dpi; samples with wide rings were often scanned at a lower resolution. The images are stored on the CD-ROM provided free of charge by CFS at this address:

Natural Resources Canada
Canadian Forest Service
Northern Forest Centre
5320 - 122 Street
Edmonton, Alberta
T6H 3S5
6. Observations

6.1 Data Notes
None given.

6.2 Field Notes
None given.

7. Data Description

7.1 Spatial Characteristics
None given.

7.1.1 Spatial Coverage
The measurement sites and associated North American Datum of 1983 (NAD83) coordinates are:
• OBS TE tower site, site id G8I4T, Lat/Long: 53.98717 N, 105.11779 W, UTM Zone: 13, N: 5982100.5, E: 492276.5.
• OJP TE tower site, site id G2L3T, Lat/Long: 53.91634 N, 104.69203 W, UTM Zone: 13, N: 5974257.5, E: 520227.7.
• BMH-9 site, site id G6K8S, Lat/Long: 53.94446 N, 104.759 W, UTM Zone: 13, N: 5977146.9, E: 515847.9.
• YJP TF tower site, site id F8L6T, Lat/Long: 53.87581 N, 104.64529 W, UTM Zone: 13, N: 5969762.5, E: 523320.2.
• OJP TE tower site, site id T7Q8T, Lat/Long: 55.92842 N, 98.62396 W, UTM Zone 14, N: 6198176.3, E: 523496.2.
• OBS TE tower site, site id T3R8T, Lat/Long: 55.88007 N, 98.48139 W, UTM Zone 14, N: 6192853.4, E: 532444.5.

7.1.2 Spatial Coverage Map
Not available.

7.1.3 Spatial Resolution
Not applicable.

7.1.4 Projection
Not applicable.

7.1.5 Grid Description
Not applicable.

7.2 Temporal Characteristics

7.2.1 Temporal Coverage
These data include information about all of the tree rings present in the samples (collected during the summer of 1994). This encompasses all of the years that the trees lived until 1994.

7.2.2 Temporal Coverage Map
None given.
7.2.3 Temporal Resolution

Yearly data from tree ring analyses.

7.3 Data Characteristics

7.3.1 Parameter/Variable

The parameters contained in the inventory file on the BOREAS CD-ROM are:

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
<td>The identifier assigned to the site by BOREAS, in the format SSS-TTT-CCCCC, where SSS identifies the portion of the study area: NSA, SSA, REG, TRN, and TTT identifies the cover type for the site, 999 if unknown, and CCCCC is the identifier for site, exactly what it means will vary with site type.</td>
</tr>
<tr>
<td>SUB_SITE</td>
<td>The identifier assigned to the sub-site by BOREAS, in the format GGGGG-IIIi, where GGGGG is the group associated with the sub-site instrument, e.g. HYD06 or STAFF, and IIIi is the identifier for sub-site, often this will refer to an instrument.</td>
</tr>
<tr>
<td>MEASUREMENT_YEAR</td>
<td>The year in which the data were collected.</td>
</tr>
<tr>
<td>TREE_ID</td>
<td>Identifier of the mapped tree or plant stem.</td>
</tr>
<tr>
<td>PLOT_ID</td>
<td>The identifier for the plot from which the measurement came.</td>
</tr>
<tr>
<td>SPECIES</td>
<td>Botanical (Latin) name of the species (Genus species).</td>
</tr>
<tr>
<td>TREE_DIAMETER_BREAST_HT</td>
<td>The diameter of the tree at breast height (137 cm) above the ground.</td>
</tr>
<tr>
<td>HEIGHT_TO_CROWN_BASE</td>
<td>The height from the ground to the base of the tree.</td>
</tr>
</tbody>
</table>

The TIFF images on the CFS CD-ROM contain a series of X-ray images of a particular tree. The report files on the CFS CD-ROM are: Density and Width Summary includes year of the ring, fresh ring width, relative latewood width, maximum ring density, minimum ring density, average ring density. Raw Profile includes density of each pixel and the year of the ring.

7.3.2 Variable Description/Definition

The descriptions of the parameters contained in the inventory file on the BOREAS CD-ROM are:

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
<td>The identifier assigned to the site by BOREAS, in the format SSS-TTT-CCCCC, where SSS identifies the portion of the study area: NSA, SSA, REG, TRN, and TTT identifies the cover type for the site, 999 if unknown, and CCCCC is the identifier for site, exactly what it means will vary with site type.</td>
</tr>
<tr>
<td>SUB_SITE</td>
<td>The identifier assigned to the sub-site by BOREAS, in the format GGGGG-IIIi, where GGGGG is the group associated with the sub-site instrument, e.g. HYD06 or STAFF, and IIIi is the identifier for sub-site, often this will refer to an instrument.</td>
</tr>
<tr>
<td>MEASUREMENT_YEAR</td>
<td>The year in which the data were collected.</td>
</tr>
<tr>
<td>TREE_ID</td>
<td>Identifier of the mapped tree or plant stem.</td>
</tr>
<tr>
<td>PLOT_ID</td>
<td>The identifier for the plot from which the measurement came.</td>
</tr>
<tr>
<td>SPECIES</td>
<td>Botanical (Latin) name of the species (Genus species).</td>
</tr>
<tr>
<td>TREE_DIAMETER_BREAST_HT</td>
<td>The diameter of the tree at breast height (137 cm) above the ground.</td>
</tr>
<tr>
<td>HEIGHT_TO_CROWN_BASE</td>
<td>The height from the ground to the base of the tree.</td>
</tr>
</tbody>
</table>
7.3.3 Unit of Measurement

The measurement units for the parameters contained in the inventory file on the BOREAS CD-ROM are:

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
<td>[none]</td>
</tr>
<tr>
<td>SUB_SITE</td>
<td>[none]</td>
</tr>
<tr>
<td>MEASUREMENT_YEAR</td>
<td>[unitless]</td>
</tr>
<tr>
<td>TREE_ID</td>
<td>[none]</td>
</tr>
<tr>
<td>PLOT_ID</td>
<td>[none]</td>
</tr>
<tr>
<td>SPECIES</td>
<td>[none]</td>
</tr>
<tr>
<td>TREE_DIAMETER_BREAST_HT</td>
<td>[meters]</td>
</tr>
<tr>
<td>HEIGHT_TO_CROWN_BASE</td>
<td>[meters]</td>
</tr>
<tr>
<td>TREE_HEIGHT</td>
<td>[meters]</td>
</tr>
<tr>
<td>BASIC_DENSITY_FACTOR</td>
<td>[unitless]</td>
</tr>
<tr>
<td>IMAGE_CONDITION</td>
<td>[none]</td>
</tr>
<tr>
<td>CRTFCN_CODE</td>
<td>[none]</td>
</tr>
<tr>
<td>REVISION_DATE</td>
<td>[DD-MON-YY]</td>
</tr>
</tbody>
</table>

7.3.4 Data Source

The sources of the parameter values contained in the inventory file on the BOREAS CD-ROM are:

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
<td>[BORIS Designation]</td>
</tr>
<tr>
<td>SUB_SITE</td>
<td>[BORIS Designation]</td>
</tr>
<tr>
<td>MEASUREMENT_YEAR</td>
<td>[Human Observer]</td>
</tr>
<tr>
<td>TREE_ID</td>
<td>[Human Observer]</td>
</tr>
<tr>
<td>PLOT_ID</td>
<td>[Human Observer]</td>
</tr>
<tr>
<td>SPECIES</td>
<td>[Human Observer]</td>
</tr>
<tr>
<td>TREE_DIAMETER_BREAST_HT</td>
<td>[Laboratory Equipment]</td>
</tr>
<tr>
<td>HEIGHT_TO_CROWN_BASE</td>
<td>[Laboratory Equipment]</td>
</tr>
<tr>
<td>TREE_HEIGHT</td>
<td>[Laboratory Equipment]</td>
</tr>
<tr>
<td>BASIC_DENSITY_FACTOR</td>
<td>[Laboratory Equipment]</td>
</tr>
<tr>
<td>IMAGE_CONDITION</td>
<td>[Human Observer]</td>
</tr>
<tr>
<td>CRTFCN_CODE</td>
<td>[BORIS Designation]</td>
</tr>
<tr>
<td>REVISION_DATE</td>
<td>[BORIS Designation]</td>
</tr>
</tbody>
</table>
7.3.5 Data Range

The following table gives information about the parameter values found in the inventory file on the BOREAS CD-ROM.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Minimum Data Value</th>
<th>Maximum Data Value</th>
<th>Missng Data Value</th>
<th>Unrel Data Value</th>
<th>Below Detect Limit</th>
<th>Data Not Cllctd</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
<td>NSA-OBS-FLXTR</td>
<td>SSA-YJP-FLXTR</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>SUB_SITE</td>
<td>9TE07-TRE01</td>
<td>9TE07-TRE01</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>MEASUREMENT_YEAR</td>
<td>94</td>
<td>94</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>TREE_ID</td>
<td>1</td>
<td>80</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>PLOT_ID</td>
<td>N/A</td>
<td>N/A</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>SPECIES</td>
<td>N/A</td>
<td>N/A</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>TREE_DIAMETER_BREAST m</td>
<td>0.008</td>
<td>0.206</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>HT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEIGHT_TO_CROWN_BASE</td>
<td>0</td>
<td>12.7</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>TREE_HEIGHT</td>
<td>1.85</td>
<td>19.09</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>BASIC_DENSITY_FACTOR</td>
<td>.822</td>
<td>.951</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>IMAGE_CONDITION N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>CRTFCN_CODE</td>
<td>CPI</td>
<td>CPI</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>REVISION_DATE</td>
<td>09-FEB-99</td>
<td>09-FEB-99</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

Minimum Data Value -- The minimum value found in the column.

Maximum Data Value -- The maximum value found in the column.

Missng Data Value -- The value that indicates missing data. This is used to indicate that an attempt was made to determine the parameter value, but the attempt was unsuccessful.

Unrel Data Value -- The value that indicates unreliable data. This is used to indicate an attempt was made to determine the parameter value, but the value was deemed to be unreliable by the analysis personnel.

Below Detect Limit -- The value that indicates parameter values below the instruments detection limits. This is used to indicate that an attempt was made to determine the parameter value, but the analysis personnel determined that the parameter value was below the detection limit of the instrumentation.

Data Not Cllctd -- This value indicates that no attempt was made to determine the parameter value. This usually indicates that BORIS combined several similar but not identical data sets into the same data base table but this particular science team did not measure that parameter.

Blank -- Indicates that blank spaces are used to denote that type of value.

N/A -- Indicates that the value is not applicable to the respective column.

None -- Indicates that no values of that sort were found in the column.
7.4 Sample Data Record

The following are wrapped versions of data record from a sample data file on the BOREAS CD-ROM.

SITE_NAME, SUB_SITE, MEASUREMENT_YEAR, TREE_ID, PLOT_ID, SPECIES, TREE_DIAMETER_BREAST_HT, HEIGHT_TO_CROWN_BASE, TREE_HEIGHT, BASIC_DENSITY_FACTOR, IMAGE_CONDITION, CRTFCN_CODE, REVISION_DATE

'NSA-OJP-FLXTR', '9TE07-TRE01', 94, 1, 'NSA-OJP-TF', 'Pinus banksiana', 0.104, 3.35, 9.53, 0.9, 'High confidence in the width and density numbers reported.', 'CPI', 9-Feb-99

'NSA-OJP-FLXTR', '9TE07-TRE01', 94, 2, 'NSA-OJP-TF', 'Pinus banksiana', 0.121, 2.5, 10.12, 0.916, 'High confidence in the width and density numbers reported.', 'CPI', 9-Feb-99

8. Data Organization

8.1 Data Granularity

The smallest unit of overall summary data tracked by the BOREAS Information System (BORIS) was the data collected at a given site on a given date.

The images and report files stored on the CFS CD-ROM can be obtained free of charge at this address:

Natural Resources Canada
Canadian Forest Service
Northern Forest Centre
5320 - 122 Street
Edmonton, Alberta
T6H 3S5

8.2 Data Format(s)

The CD-ROM inventory listing file consists of numerical and character fields of varying length separated by commas. The character fields are enclosed with single apostrophe marks. There are no spaces between the fields.

TIFF Images: The CFS CD-ROM contains compressed TIFF images of tree ring scans that can be decompressed using PKUNZIP, WINZIP, or other ZIP software. This software is not provided on the CD-ROM, but it can be obtained as shareware from many sites on the internet.

Report files: The CFS CD-ROM contains report files which are extracted using a menu driven utility provided on the CD-ROM. There are two types of report files: Density and Width Summary and Raw Profile. These files are stored on the CD-ROM in DendroScan format, which is a special binary format. After running the extraction utility provided, the files can be opened using spreadsheet software.

9. Data Manipulations

9.1 Formulae

9.1.1 Derivation Techniques and Algorithms

If the wood is assumed to be completely dry, the thickness of the wedge at this point can be multiplied by the calibration constant to obtain the mass of the wood per cm² at that point. This number is then divided by the thickness of the wood sample:
wedge thickness * calibration constant
Wood density = --- (1)
 wood thickness

In practice, most wood samples are believed to have been processed with about 6% moisture content; thus, a calibration constant corrected for humidity should be used (See Section 5).

9.2 Data Processing Sequence

9.2.1 Processing Steps
• Sample collection
• Thin slicing
• Extraction
• X-ray
• Scanning and marking
• DendroScan
• Reports and graphs

9.2.2 Processing Changes
None given.

9.3 Calculations

9.3.1 Special Corrections/Adjustments
None given.

9.3.2 Calculated Variables
None given.

9.4 Graphs and Plots
None given.

10. Errors

10.1 Sources of Error
Several trees were sampled in a way that was not conducive to X-ray densitometry analysis. As the X-rays pass through the sample, it is important that the parallax be minimized to avoid blurring of the final image. This is accomplished by cutting the disk at a right angle to the stem, ensuring that the structure of the tree rings is perpendicular to the plane of the disk. Of the 80 trees sampled, several were found to have been cut at a distinct angle to this ideal orientation. Although in many cases it was possible to correct this in the laboratory using the thickness of the disk to adjust the angle, there were five trees for which the disks were too thin to make this correction.

The X-ray densitometry laboratory and our techniques were under continual development during the processing of these samples. Although many samples have been at least partly reprocessed to compensate for this evolution, it should be noted that the relative humidity control in the X-ray laboratory was not adequate during the time most of these samples were processed. Although this does not affect the relative densities within the samples on the individual X-ray images, the absolute density values may have as much as a 5% error due to humidity variations in the laboratory between X-ray sessions. This does not affect the density of the calibration wedge, which is a nonhygroscopic plastic.

10.2 Quality Assessment
10.2.1 **Data Validation by Source**
Not all samples used by Gower have been included, due to the magnitude of the project; some samples were lost in transit, destroyed in processing, or received with illegible or incorrect labels. Every effort has been made to ensure the accuracy of the data included in this data set and on the CD-ROM provided by CFS.

10.2.2 **Confidence Level/Accuracy Judgment**
See Section 10.1.

10.2.3 **Measurement Error for Parameters**
See Section 10.1.

10.2.4 **Additional Quality Assessments**
None given.

10.2.5 **Data Verification by Data Center**
Data were examined for general consistency and clarity.

11. **Notes**

11.1 **Limitations of the Data**
None given.

11.2 **Known Problems with the Data**
None given.

11.3 **Usage Guidance**
The data are provided freely for general use. Researchers intending to make extensive use of the data or encountering difficulties with the material on the CFS CD-ROM are asked to contact the authors.

11.4 **Other Relevant Information**
The images and report files are stored on the CD-ROM provided free of charge by CFS at this address:

Natural Resources Canada
Canadian Forest Service
Northern Forest Centre
5320 - 122 Street
Edmonton, Alberta
T6H 3S5

12. **Application of the Data Set**
This data set can be used to study the dendrology of the boreal forest.

13. **Future Modifications and Plans**
None given.
14. Software

14.1 Software Description
DendroScan, the software written for the analysis of X-ray images of tree rings (Varem-Sanders and Campbell, 1996), was used to analyze the resulting digital files.

14.2 Software Access
None given.

15. Data Access

The dendrology data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

15.1 Contact Information
For BOREAS data and documentation please contact:

ORNL DAAC User Services
Oak Ridge National Laboratory
P.O. Box 2008 MS-6407
Oak Ridge, TN 37831-6407
Phone: (423) 241-3952
Fax: (423) 574-4665
E-mail: orndaac@ornl.gov or ornl@eos.nasa.gov

15.2 Data Center Identification
Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC) for Biogeochemical Dynamics

15.3 Procedures for Obtaining Data
Users may obtain data directly through the ORNL DAAC online search and order system [http://www-eosdis.ornl.gov/] and the anonymous FTP site [ftp://www-eosdis.ornl.gov/data/] or by contacting User Services by electronic mail, telephone, fax, letter, or personal visit using the contact information in Section 15.1.

The images and report files stored on the CFS CD-ROM are provided free of charge by CFS at this address:

Natural Resources Canada
Canadian Forest Service
Northern Forest Centre
5320 - 122 Street
Edmonton, Alberta T6H 3S5

15.4 Data Center Status/Plans
The ORNL DAAC is the primary source for BOREAS field measurement, image, GIS, and hardcopy data products. The BOREAS CD-ROM and data referenced or listed in inventories on the CD-ROM are available from the ORNL DAAC.
16. Output Products and Availability

16.1 Tape Products
None.

16.2 Film Products
None.

16.3 Other Products
TIFF images and DendroScan files containing the report files.
Although the inventory is contained on the BOREAS CD-ROM set, the actual dendrology data are not. See Section 15 for information about how to obtain the data.

17. References

17.1 Platform/Sensor/Instrument/Data Processing Documentation
None given.

17.2 Journal Articles and Study Reports

17.3 Archive/DBMS Usage Documentation
None.

18. Glossary of Terms
None given.

19. List of Acronyms

AIX - Aspen Immature Medium
ASCII - American Standard Code for Information Interchange
BFTCS - Boreal Forest Transect Case Study
BMH - Black Spruce Mature High
BOREAS - BOReal Ecosystem-Atmosphere Study
BORIS - BOREAS Information System
CD-ROM - Compact Disk-Read Only memory
CFS - Canadian Forest Service
DAAC - Distributed Active Archive Center
DOY - Julian Day of Year
DPI - Dots Per Inch
EOS - Earth Observing System
EOSDIS - EOS Data and Information System
GIS - Geographic Information System
GMT - Greenwich Mean Time
GSFC - Goddard Space Flight Center
HTML - HyperText Markup Language
IFC - Intensive Field Campaign
MIX - Mixed Wood

Page 15
20. Document Information

20.1 Document Revision Date
Written: 07-Dec-1998
Last Updated: 30-Aug-1999

20.2 Document Review Date(s)
BORIS Review: 22-Dec-1998
Science Review:

20.3 Document ID

20.4 Citation
When using these data, please include the following acknowledgment as well as citations of relevant papers in Section 17.2:

T.M.L. Varem-Sanders and I.D. Campbell, both of the Canadian Forest Service at the Northern Forestry Centre.

Also, cite the BOREAS CD-ROM set as:

20.5 Document Curator

20.6 Document URL
Report Title: Technical Report Series on the Boreal Ecosystem-Atmosphere Study (BOREAS)
BOREAS TE-7 Dendrology Data

Authors:
T.M.L. Varem-Sanders and I.D. Campbell
Forrest G. Hall and Andrea Papagno, Editors

Performing Organization:
Goddard Space Flight Center
Greenbelt, Maryland 20771

Sponsoring Agency:
National Aeronautics and Space Administration
Washington, DC 20546-0001

Supplementary Notes:
T.M.L. Varem-Sanders and I.D. Campbell: Canadian Forest Service, Edmonton, Alberta, Canada;
A. Papagno: Raytheon ITSS, NASA Goddard Space Flight Center, Greenbelt, Maryland

Abstract:
The BOREAS TE-7 team collected data sets in support of its efforts to characterize and interpret information on the sapflow and dendrology of boreal vegetation. This data set contains dendrology measurements, consisting of tree ring width and density taken at several points within each ring. Measurements were taken near the TE towers at the OJP and OBS sites in NSA. In the SSA, measurements were taken near the TE towers at the MIX, OBS, and OJP sites; at the AIM-13 and BMH-9 sites; and near the TF-YJP site. All data were collected during the summer of 1994.