Technical Report Series on the Boreal Ecosystem-Atmosphere Study (BOREAS)

Forrest G. Hall and Andrea Papagno, Editors

Volume 165

BOREAS TE-11 Sap Flow Data

Bernard Saugier, Universite Paris-Sud, France

National Aeronautics and Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

October 2000
Summary

The BOREAS TE-11 team collected several data sets in support of its efforts to characterize and interpret information on the sap flow, gas exchange, and lichen photosynthesis of boreal vegetation and meteorological data of the area studied. This data set contains measurements of sap flow conducted at the SSA-OJP site in the growing seasons of 1993 and 1994. The data are stored in ASCII files.

Table of Contents

1) Data Set Overview
2) Investigator(s)
3) Theory of Measurements
4) Equipment
5) Data Acquisition Methods
6) Observations
7) Data Description
8) Data Organization
9) Data Manipulations
10) Errors
11) Notes
12) Application of the Data Set
13) Future Modifications and Plans
14) Software
15) Data Access
16) Output Products and Availability
17) References
18) Glossary of Terms
19) List of Acronyms
20) Document Information

1. Data Set Overview

1.1 Data Set Identification
BOREAS TE-11 Sap Flow Data

1.2 Data Set Introduction
The Terrestrial Ecology (TE)-11 team took measurements of sap flow at the BOREal Ecosystem-Atmosphere Study (BOREAS) Southern Study Area (SSA) Old Jack Pine (OJP) site during the growing seasons of 1993 and 1994 using hand-made probes.

1.3 Objective/Purpose
The purposes of the work were to:
- Measure the average sap flow velocity in six trees.
- Calculate the sap flow from the velocity and the sapwood area.
1.4 Summary of Parameters

Sap flow measurements were taken at the SSA-OJP site on Julian days 236 to 245 in 1993 and Julian days 118 to 259 in 1994. Stand transpiration is computed in mm/hour for each of the measured trees. Sapwood area on TE-11's site was taken as 12.3 m²/ha. This figure may change according to new biometric data.

1.5 Discussion

The TE-11 team's aim is to compare these data with a micrometeorological (micromet) estimate of tree transpiration (H₂O flux above the forest minus H₂O flux above the soil). If the comparison is good, these data will be used to fill out gaps that occurred when the micromet measurements were not operating.

1.6 Related Data Sets

BOREAS TE-11 Leaf Gas Exchange Measurements

2. Investigator(s)

2.1 Investigator(s) Name and Title

Bernard Saugier
Professor

2.2 Title of Investigation

Seasonal Variations of Net Photosynthesis and Transpiration at the Tree Level

2.3 Contact Information

Contact 1:
Bernard Saugier
Ecologie vegetale, bat. 362
Universite Paris-Sud
91405 Orsay cedex
France
33.1.69.41.71.36
33.1.69.41.72.38 (fax)
saugier@psisun.u-psud.fr

Contact 2:
Andrea Papagno
Raytheon ITSS
Code 923
NASA GSFC
Greenbelt, MD 20771
(301) 286-3134
(301) 286-0239 (fax)
Andrea.Papagno@gsfc.nasa.gov

Contact 3:
Shelaine Curd
Raytheon ITSS
Code 923
NASA GSFC
Greenbelt, MD 20771
(301) 286-2447
Shelaine.Curd@gsfc.nasa.gov
3. Theory of Measurements

Two cylindrical probes were inserted perpendicular to the tree trunk; one was continuously heated, while the other was not. Each probe contained a copper-constantan junction. The two constantan wires were connected together, and the voltage between the two copper wires was measured proportional to the temperature difference between the two probes. It was then transformed into an averaged sap velocity using a formula that was independent of the tree species. Then, sap flow was calculated as the product of sap velocity by the sapwood area.

From these measurements, stand sapwood area was 12.3 m²/ha for a basal area of 22.5 m²/ha. The diameter of the probes was 2 mm; the length of the probes was 20 mm (usually). Resistance of the constantan wire was about 10 ohms. The temperature difference between the probes was about 12 °C during the night, and it decreased during the day.

4. Equipment

4.1 Sensor/Instrument Description

The probes were made by Andre Granier, a coinvestigator, who went to the site in 1993 and in April 1994 to install the probes. They were connected to a CR10 data logger, downloaded to a portable PC.

4.1.1 Collection Environment

None given.

4.1.2 Source/Platform

None given.

4.1.3 Source/Platform Mission Objectives

None given.

4.1.4 Key Variables

Sap flow velocity, temperature difference, resistance, sap flow area.

4.1.5 Principles of Operation

Two cylindrical probes were inserted perpendicular to the tree trunk; one was continuously heated, while the other was not. Each probe contained a copper-constantan junction. The two constantan wires were connected together, and the voltage between the two copper wires was measured proportional to the temperature difference between the two probes. It was then transformed into an averaged sap velocity using a formula that was independent of the tree species. Finally, sap flow was calculated as the product of sap velocity by the sapwood area.

4.1.6 Sensor/Instrument Measurement Geometry

None given.

4.1.7 Manufacturer of Sensor/Instrument

CR10 Data Logger
Campbell Scientific, Inc.
815 West 1800 North
Logan, UT 84321-1784
(435) 753-2342
(435) 750-9540 (fax)
support@campbellsci.com
The probes were made by Andre Granier, a coinvestigator.

4.2 Calibration
No calibration was required in principle. The test will be the comparison with the micromet measurements (see above).

4.2.1 Specifications
None given.

4.2.1.1 Tolerance
None given.

4.2.2 Frequency of Calibration
None given.

4.2.3 Other Calibration Information
None given.

5. Data Acquisition Methods
A Campbell Scientific, Inc., CR10 data logger was used for the acquisition and storage of data. Six channels were used in 1994.

6. Observations

6.1 Data Notes
None given.

6.2 Field Notes
The TE-11 team had fun and had no problems with this technique, which worked very well unattended for long periods. The only problem was with sensor 1, as mentioned in Section 10.1.

7. Data Description

7.1 Spatial Characteristics
The six trees were about 20 m away from the TE scaffolding towers, in the direction of the micromet tower. The following table gives, for each tree, its circumference (C) at breast height (h) in mm and its approximate height in m.

<table>
<thead>
<tr>
<th>Tree Number</th>
<th>Circumference (mm)</th>
<th>Height (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>256</td>
<td>10.50</td>
</tr>
<tr>
<td>2</td>
<td>331</td>
<td>11.25</td>
</tr>
<tr>
<td>3</td>
<td>362</td>
<td>13.25</td>
</tr>
<tr>
<td>4</td>
<td>368</td>
<td>12.75</td>
</tr>
<tr>
<td>5</td>
<td>435</td>
<td>13.50</td>
</tr>
<tr>
<td>6</td>
<td>521</td>
<td>14.70</td>
</tr>
</tbody>
</table>
7.1.1 Spatial Coverage
At SSA-OJP. The six trees were about 20 m away from the TE scaffolding towers, in the direction of the micromet tower.
The SSA measurement site and its associated North American Datum of 1983 (NAD83) coordinates are:

7.1.2 Spatial Coverage Map
Not available.

7.1.3 Spatial Resolution
None given.

7.1.4 Projection
None given.

7.1.5 Grid Description
None given.

7.2 Temporal Characteristics

7.2.1 Temporal Coverage
Measurements were taken every 15 minutes, from day 236 to day 245, in 1993, and measurements were taken every 30 minutes, from day 118 to day 259, in 1994.
In 1994, the first data were not reliable because the sensors took some time to reach equilibrium and because alternating freezing and thawing gave strange results. In 1994, data were taken from day 120 and may not be very good until day 125.

7.2.2 Temporal Coverage Map
None given.

7.2.3 Temporal Resolution
None given.

7.3 Data Characteristics

7.3.1 Parameter/Variable
The parameters contained in the data files on the CD-ROM are:

<table>
<thead>
<tr>
<th>Column Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
</tr>
<tr>
<td>SUB_SITE</td>
</tr>
<tr>
<td>DATE_OBS</td>
</tr>
<tr>
<td>TIME_OBS</td>
</tr>
<tr>
<td>TREE_ID</td>
</tr>
<tr>
<td>SPECIES</td>
</tr>
<tr>
<td>SAPFLOW_RATE</td>
</tr>
<tr>
<td>CRTFCN_CODE</td>
</tr>
<tr>
<td>REVISION_DATE</td>
</tr>
</tbody>
</table>
7.3.2 Variable Description/Definition
The descriptions of the parameters contained in the data files on the CD-ROM are:

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
<td>The identifier assigned to the site by BOREAS, in the format SSS-TTT-CCCCC, where SSS identifies the portion of the study area: NSA, SSA, REG, TRN, and TTT identifies the cover type for the site, 999 if unknown, and CCCCC is the identifier for site, exactly what it means will vary with site type.</td>
</tr>
<tr>
<td>SUB_SITE</td>
<td>The identifier assigned to the sub-site by BOREAS, in the format GGGGG-IIIII, where GGGGG is the group associated with the sub-site instrument, e.g. HYD06 or STAFF, and IIIII is the identifier for sub-site, often this will refer to an instrument.</td>
</tr>
<tr>
<td>DATE_OBS</td>
<td>The date on which the data were collected.</td>
</tr>
<tr>
<td>TIME_OBS</td>
<td>The Greenwich Mean Time (GMT) when the data were collected.</td>
</tr>
<tr>
<td>TREE_ID</td>
<td>Identifier of the mapped tree or plant stem.</td>
</tr>
<tr>
<td>SPECIES</td>
<td>Botanical (Latin) name of the species (Genus species).</td>
</tr>
<tr>
<td>SAPFLOW_RATE</td>
<td>The sap flow rate of the sample tree.</td>
</tr>
<tr>
<td>CRTFCN_CODE</td>
<td>The BOREAS certification level of the data. Examples are CPI (Checked by PI), CGR (Certified by Group), PRE (Preliminary), and CPI-?? (CPI but questionable).</td>
</tr>
<tr>
<td>REVISION_DATE</td>
<td>The most recent date when the information in the referenced data base table record was revised.</td>
</tr>
</tbody>
</table>

7.3.3 Unit of Measurement
The measurement units for the parameters contained in the data files on the CD-ROM are:

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
<td>[none]</td>
</tr>
<tr>
<td>SUB_SITE</td>
<td>[none]</td>
</tr>
<tr>
<td>DATE_OBS</td>
<td>[DD-MON-YY]</td>
</tr>
<tr>
<td>TIME_OBS</td>
<td>[HHMM GMT]</td>
</tr>
<tr>
<td>TREE_ID</td>
<td>[none]</td>
</tr>
<tr>
<td>SPECIES</td>
<td>[none]</td>
</tr>
<tr>
<td>SAPFLOW_RATE</td>
<td>[millimeters][hour^-1]</td>
</tr>
<tr>
<td>CRTFCN_CODE</td>
<td>[none]</td>
</tr>
<tr>
<td>REVISION_DATE</td>
<td>[DD-MON-YY]</td>
</tr>
</tbody>
</table>
7.3.4 Data Source
The sources of the parameter values contained in the data files on the CD-ROM are:

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
<td>[BORIS Designation]</td>
</tr>
<tr>
<td>SUB_SITE</td>
<td>[BORIS Designation]</td>
</tr>
<tr>
<td>DATE_OBS</td>
<td>[Human Observer]</td>
</tr>
<tr>
<td>TIME_OBS</td>
<td>[Human Observer]</td>
</tr>
<tr>
<td>TREE_ID</td>
<td>[Human Observer]</td>
</tr>
<tr>
<td>SPECIES</td>
<td>[Human Observer]</td>
</tr>
<tr>
<td>SAPFLOW RATE</td>
<td>[Laboratory Equipment]</td>
</tr>
<tr>
<td>CRTFCN_CODE</td>
<td>[BORIS Designation]</td>
</tr>
<tr>
<td>REVISION_DATE</td>
<td>[BORIS Designation]</td>
</tr>
</tbody>
</table>

7.3.5 Data Range
The following table gives information about the parameter values found in the data files on the CD-ROM.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Minimum Data Value</th>
<th>Maximum Data Value</th>
<th>Missng Data Value</th>
<th>Unrel Data Value</th>
<th>Below Detect Limit</th>
<th>Data Not Coded</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
<td>SSA-OJP-FLXTR</td>
<td>SSA-OJP-FLXTR</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>SUB_SITE</td>
<td>9TE11-SAP01</td>
<td>9TE11-SAP01</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>DATE_OBS</td>
<td>25-AUG-93</td>
<td>16-SEP-94</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>TIME_OBS</td>
<td>0</td>
<td>2345</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>TREE_ID</td>
<td>1</td>
<td>6</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>SPECIES</td>
<td>N/A</td>
<td>N/A</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>SAPFLOW RATE</td>
<td>0</td>
<td>1.228</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>CRTFCN_CODE</td>
<td>CPI</td>
<td>CPI</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>REVISION_DATE</td>
<td>14-SEP-98</td>
<td>14-SEP-98</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

Minimum Data Value -- The minimum value found in the column.
Maximum Data Value -- The maximum value found in the column.
Missng Data Value -- The value that indicates missing data. This is used to indicate that an attempt was made to determine the parameter value, but the attempt was unsuccessful.
Unrel Data Value -- The value that indicates unreliable data. This is used to indicate an attempt was made to determine the parameter value, but the value was deemed to be unreliable by the analysis personnel.
Below Detect Limit -- The value that indicates parameter values below the instruments detection limits. This is used to indicate that an attempt was made to determine the parameter value, but the analysis personnel determined that the parameter value was below the detection limit of the instrumentation.
Data Not Coded -- This value indicates that no attempt was made to determine the parameter value. This usually indicates that BORIS combined several similar but not identical data sets into the same data base table but this particular science team did not measure that parameter.
7.4 Sample Data Record
The following are wrapped versions of data record from a sample data file on the CD-ROM.

```
SITE_NAME, SUB_SITE, DATE_OBS, TIME_OBS, TREE_ID, SPECIES, SAPFLOW_RATE, CRTFCN_CODE, REVISION_DATE
```

10. Errors

10.1 Sources of Error

15.2 Data Center Identification
Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory

20. Document Information

20.1 Document Revision Date
Date written: 06-Jan-1994
Last updated: 04-Aug-1999

20.2 Document Review Date(s)
Science Review: 12-Aug-1998

20.3 Document ID

20.4 Citation
When using these data, please contact B. Saugier (see Section 2.3) as well as citing relevant papers in Section 17.2.

If using data from the BOREAS CD-ROM series, also reference the data as:


Also, cite the BOREAS CD-ROM set as:


20.5 Document Curator

20.6 Document URL
The BOREAS TE-11 team collected several data sets in support of its efforts to characterize and interpret information on the sap flow, gas exchange, and lichen photosynthesis of boreal vegetation and meteorological data of the area studied. This data set contains measurements of sap flow conducted at the SSA-OJP site in the growing seasons of 1993 and 1994. The data are stored in ASCII files.