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ABSTRACT 

The need to make manufacturing, operation, and SUpp0l1 of airborne vehicles safer and more efficient forces engineers and 
scientists to look for lighter, cheaper, more reliable technologies. Light weight, immunity to EM!, fIre safety, high bandwidth, 
and high signal fidelity have already made photonics in general and fiber optics in particular an extremely attractive medium 
for communication purposes. With the fiber optics serving as a central nervous system of the vehicle, generation, detection, 
and processing of the signal occurs at the peripherals that include smart structures and devices. 

Due to their interdisciplinary nature, photonic technologies cover such diverse areas as optical sensors and actuators, 
embedded and distributed sensors, sensing schemes and architectures, harnesses and connectors, signal processing and 
algorithms. The paper includes a brief description of work in the photonic area that is going on at NASA, especially at the 
Glenn Research Center (GRC) . 

Keywords: Fiber optics, photonics, sensing, actuation, smart systems, signal processing, vehicle health management 

1. INTRODUCTION 

Use of optical technology on aerospace vehicles has been attracting scientists and engineers for years. Many of them saw an 
advantage in the replacement of traditional electrical wires with optical fibers. The replacement, they argued, would result in 
lighter and safer systems. Lower weight, immunity to EM!, and high signal fidelity were the main arguments that 
accompanied the introduction of such NASA and DOD programs as Fiber Optic Control Sensors Integration (FOCSI), fly­
by-Light I Power-by-Wire (FBLlPBW), and others. 1-4 These programs ended with successful demonstrations of photonic 
technologies and showed the feasibility of the using optical cables, sensors and interfaces on military and commercial 
aircraft. However, the early successes revealed problems that formed a barrier to further implementation of photonic 
technologies. A high cost of individual components and harsh environment these components were subjected to are just 
some of them. 

Fiber optics has also found its way into aircraft avionics as a medium for high data rate communication bus. Security of 
communications, high signal fidelity, and its ability to move around large blocks of information with a significant speed 
helped the 20 Mbitlsec 1773 bus to become a backbone of modern aircraft communication system. The photonic technology 
developed in response to requirements from the telecommunication industry has produced a number of new components and 
system confIgurations such as fiber optic Bragg gratings, vertical cavity surface emitting diodes (VCSEL), and dense 
wavelength division multiplexing (DWDM). 

Meanwhile, a business pressure has forced the aerospace industry to look for new ways to increase productivity and reduce 
operational cost without sacrifIcing safety of the public on the ground, passengers, and the crew. The aircraft industry in an 
attempt to cut costs looked into new ways to reduce the downtime and to streamline the process of identifying and replacing 

N ASAITM-2000-210607 1 



faulty parts and components. As a result, there has been an increased advocacy for aircraft maintenance on demand rather 
than by schedule. In the reusable launch and space transportation vehicle areas, a battIe for each pound of useful payload has 
led to introduction of such technologies as MEMS, smart structures, nano-systems and photonics.S' 6 The safety issues related 
to possible sparking and short circuits also attracted attention to optical fibers as a possible replacement for electrical wires. 

Thus, a necessity to reduce weight and enhance safety of the vehicle coupled with recent advances of communication 
technology, allowed photonics to pose itself as a technology that could respond to requirements of the aerospace industry. 

This paper identifies and reviews photonic technologies that either are becoming part of or are competing with existing 
technologies to be used in smart systems and structures. A special emphasis is made on the challenges these technologies 
face. In describing photonic technologies a distinction will be made between those that are on a relatively high technology 
readiness level and emerging technologies. This paper also describes major vehicle systems that will benefit from using 
photonics. 

2. IMPLEMENTATION OF PHOTONIC TECHNOLOGIES 

Introduction of optical fibers as a principal medium for transmitting information on an aerospace vehicle has brought benefits 
oflower weight and enhanced safety. Also it brought a capability to communicate rapidly between various peripheral devices 
and move around large blocks of information at a high speed. Thus, benefits of using photonics are the most visible at a 
system level. The implementation of photonic technologies, however, may be introduced on every level including 
components, signal processing, interfacing, system integration, and testing. Each of the levels requires its own technology 
development. 

2.1. Sensors and Actuators 

Smart systems incorporate sensors, actuators, power converters, interfaces, signal processing elements, and other components 
that together provide functions necessary for assessing the flight and safety environment and generating the most favorable 
response to meet the mission objectives. Various types of sensors and sensing schemes have been developed over the past 
decade. Descriptions of their specific configurations and principles of operations may be found elsewhere.7• 8 Among a great 
variety of sensors, those that operate in the wavelength domain are especially attractive because of their inherent multiplexing 
capabilities. The feasibility of using fiber optic Bragg gratings and Fabry-Perot interferometers in aerospace applications has 
been demonstrated.9• 10 

Actuation plays a special role in any active system as a power conversion element. In aerospace applications the incoming 
electrical or hydraulic power is, in most cases, converted to mechanical power. Piezo-electric elements are examples of 
conversion of applied electrical power to vibrational energy. I I In a smart system the end result or reaction of the system to the 
environment would be to change shape, position, or material properties of the corresponding component. Piezoelectrically 
driven actuators for aircraft applications have already been demonstrated and reported. 12 

Similarly, the profile of a surface may also be altered photonically .13-16 One of mechanisms to photonically induce surface 
deformation is based on stresses and strains generated in photosensitive materials by an interferometric pattern. The 
mechanism is described in Fig 1. Two beams interfere and form a periodic change in the refractive index in a film of a 
photorefractive material. The changes in the refractive index are accompanied by periodic changes in material strain and 
result in periodic deformations on the surface of the material (See Fig. 1 a). A probe beam was used to detect these optically 
generated surface corrugations. The periodic corrugations with amplitude of 6nm were observed and detected (Figs. Ib and 
Ic). Proper selection of material would permit design and construction of a component with surface deformations 
controllable by the optical interferometric pattern. 

2.2. Signal Processing 

In photonic sensing systems the journey of an optical signal ends at the surface of a photodetector, where the optical signal is 
converted to an electrical one. Most photodetectors are square law detectors and are sensitive to a total amount of power that 
falls on their surfaces. Thus, it is important in sensing systems operating in the wavelength domain to have a device capable 
of reading the wavelength. Two wavelength reading techniques are being developed at the NASA Glenn Research Center. 
Both techniques are interferometric in nature. The first one is based on a wavelength to RF conversion. It employs an equal 
path interferometer, projector, and a focal plane array (CCD). The schematic of the experimental setup is shown in Fig. 2a. 
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Two optical sources are used simultaneously, a light emitting diode (LED) with the central wavelength of 820 nm and a 
HeNe laser. Figures 2b and 2c show signals from the CCD. The signals overlap in the time domain (Fig. 2b) and a less 
coherent light source, the LED, produces a more narrow wavelet. In the frequency domain the signals are separated. The 
separation of signals in the frequency domain is clearly seen on a screen of an ele~tronic spectrum analyzer (Fig. 2c). The 
signal belonging to a light source with a shorter wavelength, the HeNe laser, is represented in the frequency domain by a 
peak at a higher frequency. Because of a longer coherence length of the light emitted from the HeNe laser this peak has a 
significantly narrower bandwidth than the other one that belongs to the LED. 

The second wavelength demodulation technique involves a conventional unbalanced interferometer. The unbalance permits 
processing rapid changes in the wavelength light. To achieve the best performance the intelferometer should be properly 
designed and have an appropriate unbalance. The principle of operation of the signal processing unit used is shown in 
Fig. 3a. For the wavelength of 1300 nm and the full-width at half-power bandwidth (FWHP) of 0.3 nm the optimum optical 
path length unbalance was computed to be about 2.1 mm. Fig. 3b shows dependence of the interferometer sensitivity on the 
interferometer optical path difference (unbalance). The curve has a maximum value that is due to the fini te coherence length 
of the optical signal reflected back by the grating. 

2.3. Interfaces 

Interfacing of photonic components has several forms. One of the best known forms of interfacing is an electro-optic 
interface which permits coupling of light from a laser or LED into optical fiber. Another form of interfacing is an optical 
connector. To minimize the number of fiber-to-fiber connectors a connectorless junction technology is being developed by 
the Glenn Research Center. The technology is based on an optical beam self-trapping in photosensitive polymers with light 
induced modifications of the refractive index. 17 

- 19 The principle is demonstrated in Fig. 4. A small amount of photosensitive 
polymer gel is placed between two ends of optical fibers that have to be connected. Light is sent into the other two ends. The 
wavelength of the entering light is within the spectral absorption band of the gel. The light helps the gel to solidify or to cure. 
At the same time some light is being absorbed by the gel and in the process of absorption the refracti ve index of the gel 
changes. If the refractive index decreases with absorption a channel would be formed similar to a waveguide. The 
waveguide would also become an optical concentrator preventing the light from dispersing. Thus, by sending light from 
opposite ends of fibers two waveguide like channels are formed that act as a bridge between two fibers. After a curing 
process is complete a permanent channel is formed connecting the two fibers. The channel is then used to propagate optical 
signals between the two fibers at operating wavelengths. 

3. SYSTEMS WITH PHOTONIC ELEMENTS 

Integration is one of the biggest issues that photonic technologies face.20
•

21 With a rapid technological progress in MEMS and 
wireless communication technologies, significant benefits may be obtained by combining these technologies with photonics. 
Optical and optically powered MEMS, wirelessly excited and powered components, and other hybrid systems may provide 
the maximum benefits. 

3.1. Embedding of Sensors in High Temperature Polymer Matrix Composites 

Packaging and embedding techniques represent another issue. At the GRC commercially available high temperature Bragg 
gratings have been embedded in about 3 mm thick plates made of polymer matrix composite (PMC) materials. Information 
about some high temperature polymer matrix composites developed at the Center may be found in Ref. 22. 

The process used to embed fiber optic Bragg gratings in PMC involves several steps. During the firs t step a mold is prepared 
using a commercially supplied prepreg consisting of graphite fiber fabric and polyimide thermoset resin cut and placed 
together into a steel tool. In the mold, the prepreg is symmetrically placed between the following processing aids: non-porous 
Teflon® peel ply, 2 layers of E-glass, and porous Teflon® peel ply. The non-porous plies are placed on the outside (mold-side) 
of the ply lay-up. The porous peel plies sandwich the prepreg. Finally, an about 6 mm thick steel plate is placed on top of the 
nonporous peel ply and the 8 plies of prepreg. 

All plies of the prepreg are warped aligned in the mold, on top of a vacuum plate, with the fiber optic placed in the center of 
the 8-ply stack. The fiber optic is protected from the steel mold closures so that a signal is continuously monitored throughout 
the processing trial. The mold is covered in a large sheet 2 mil Kapton® and secured with a metal frame to ensure a vacuum 
during processing. 
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The steel mold containing the 8 plies of prepreg and the fiber optic are placed in a hydraulic press at room temperature. Stops 
are inserted between the press platens to prevent excessive resin flow during the initial heating stages of the processing cycle. 
Vacuum (6" Hg) is applied to the mold and the Kapton® quickly conforms to the 6 mm thick tool containing the prepreg. The 
press is heated at 5°F/minute until the molcJ.temperature reaches 300°F (about 149°C), then the vacuum is increased to 25" 
Hg. After that the press is heated up more at the ramp rate of 2°F/minute until the mold temperature reaches 450°F (about 
232°C) and maintained at that temperature for 60 minutes. After the 60-minute hold at 450°F, pressure of 200 psi is applied 
to the mold and the mold temperature is ramped up again to 600°F (about 310°C) at the same ramp rate of 2°F/minute. The 
mold is than held at 600°F for 120 minutes and then cooled to 400°F (about 204°C) over three hours. The process is 
described in Fig. 5. During this molding cycle, data from the embedded fiber optic Bragg grating was recorded using a 
optical spectrum analyzer. A picture of the PMC panel with an embedded fiber optic Bragg grating is shown in the lower 
right comer of the Figure. Fiber optic pigtails are clearly visible. The upper part of the Figure displays also recorded images 
of an optical spectrum analyzer' s screen. The images depict positions of spectrally encoded signals reflected by the 
embedded grating at two temperatures, room temperature and 600°F. 

The gratings survived the embedding process as well as numerous subsequent thermal cyclings from room temperature to 
300°C. However, during the process of thermal cycling a hysteresis was observed. It presence was attributed to the fact that 
the commercially available fiber was initially annealed at 300°C. An additional annealing and holding the fiber with the 
grating at 420°C for 24 hours resulted in a somewhat smaller hysteresis. Fig. 6 shows results of thermal tests of a stand alone 
fiber with a grating. 

3.2. Fiber Interfacing and Connectorization 

Components or panels with embedded fiber optic sensors would have fiber optic pigtails. A presence of the pigtails would 
make manufacturing, transportation, and integration of components or panels very difficult. In addition to the fiber pigtails 
being fragile, the real challenge would be to interconnect two panels, for instance, with fibers sticking out. Introduction of 
novel photonic interfacing teclmiques shown in Fig. 7 may minimize these problems. Free space optical connectors (Fig. 7a) 
are based on a simple concept of transmission of optical signals using bulk optics devices. A free space optical connector 
consists of a set of two micro-optical assemblies. Each assembly is connected to a mating end of an optical fiber and buried 
into components of a structure along with the fibers. When the components are assembled the two micro-optical assemblies 
form one unit with a continuous transmission of signal from one fiber to another. This approach may be applicable in a 
relatively clean environment in systems that can tolerate significant variations in the signal levels. 

Fig. 7c describes a hybrid interfacing teclmique that permits communicating through a wall . The teclmique may be applicable 
for both embedded and surface mounted photonic systems. It is based on converting optical signals into electromagnetic 
signals at, for instance, radio frequencies. The electromagnetic signals propagate through the wall and are converted to the 
optical ones on the other side of it. 

The last two techniques use a phenomenon of forming waveguide like channels in photorefractive materials as described 
above in Section 2.3. The first of them (Fig. 7b) permits across the seam interfacing of several embedded fibers. The other 
one (Fig. 7d) enables splicing of a single fiber or ribbon cable without using mechanical connectors. 

3.3. Vehicle Health Management 

Integrated vehicle health management (lVHM) is a complex of measures that gives the piloting crew and repair crew on the 
ground the advance knowledge about the health conditions of various components, subsystems, and structures of the vehicle. 
Also, IVHM provides information to control units about environmental and flight conditions necessary for accomplishing 
safety and mission goals. 

Photonic vehicle health management techniques that are being developed could be either passive or active. One passive 
teclmique consists of a web of optical fibers that covers a structure of interest or a portion of it. Optical strain sensors 
attached to the fibers detect slow varying changes in strain distribution in the structure. A signal processing algorithm 
determines if these changes are associated with structural changes. 

In an active approach, the web of fibers is replaced by a fewer number of fibers with sensors. An actuation unit is added to 
provide an acoustical excitation of a structure. The active approach does not have to have a separate actuation unit. In some 

N ASAITM-2000-210607 4 

/ 
--~ 



applications the acoustical excitation may be generated by a component itself. For instance, conditions of a pump may be 
evaluated by monitoring the acoustic emission from the pump. Some techniques to detect acoustic emission using fiber optic 
sensors have been described in the literature?3 

Figure 8 shows schematically all three cases described above. The first case depicted in Fig. 8a has a curved panel 
instrumented with a web of embedded fibers with passive Bragg gratings. In Fig 8b the web of fibers is replaced by a fewer 
number of sensors and an actuator is added. The actuator generates an acoustical signal that propagates through the structure 
and reaches the sensors. Any changes in the structure would change the signature of the signal picked up by the sensors. 

The last figme, Fig 8c, shows a fiber optic Bragg grating attached to the casing of a pump. A set of acoustical signatures of a 
pump properly operating at different flight and environmental regimes is stored in a computer memory bank. During the 
flight, the acoustical signal emitted by the pump is detected by an optical sensor, then compared with the corresponding one 
from the bank, and discrepancies are recorded. In case the discrepancies exceed tolerances an advanced warning would be 
given to the flight control unit, flight crew, or the ground maintenance crew. 

To demonstrate performance of an active health monitoring system a piezo-electric actuator is mounted on a surface of a 
panel made of polymer matrix composite material with fiber optic Bragg grating imbedded in it. The grating responds to 
acoustical waves in the plate generated by the vibrating piezo-electric actuator and modulates the wavelength of light that 
reflects from it. The optical signal is sent to a wavelength detection unit that employs an unbalanced interferometer described 
in section 2.2. of this paper. The schematic of the experimental system is shown in Fig. 9. The figure also displays the 
signals associated with actuation and detection of periodic perturbations at 1 KHz. 

4.SUM:MARY 

Introduction of photonic elements into smart systems offers numerous benefits. In addition to reducing weight and enhancing 
safety it also opens new technological opportunities. Availability of components that change their shape in response to light 
of a certain wavelength and have ability to generate and control corrugations on the surface of components using photons 
would permit development of optically based smart structures and systems. Devices built on these phenomena could be 
employed in such applications as, for instance, fuel and air injectors whose nozzle geometry is controlled by light. Boundary 
layer controllers that use interactions of the air flow with optically driven and controlled surface corrugations represent 
another application of photonic technology to smart aerospace systems. 

Advanced signal processing devices and schemes that possess simultaneously high sensitivity and broad bandwidth would 
detect transients and therefore be used for damage detection and evaluation. Their applications could also be extended into 
such areas as detection of pulsed pressmes. In compressors, circmnferential pressure waves are indicators of a stall . They 
occm at frequencies characteristic for a given compressor.24 Early detection of these waves at given frequencies using fiber 
optic sensors located along the inner circumference of the compressor casing would give an early warning about stall 
conditions. 

Optical fibers coated with photorefractive materials capable of forming light guiding channels in themselves open new 
opportunities in how fiber optic cables are repaired. The material would penetrate into areas where cracks in the fiber occm 
and after exposme to light at a certain wavelength form a permanent channel. Such a smart self-repairing optical fiber would 
require a minimal human interference and increase significantly safety and reliability of airborne photonic systems. 
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Fig. 1. Optical actuation: 
a) Schematic of the two beam mixing with the probe beam; 
b) Picture taken with a WYKO 2000 interferometer showing periodic surface corrugations with 

about 6 nm peak-to-peak amplitude; 
c) The data after Fast Fourier Transform of the raw data. 
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Fig. 2. Signal processing scheme involving wavelength-to-RF conversion: 
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a) Schematic of experimental setup with two simultaneous light sources, ReNe laser (wavelength A = 632 nm) and 
light emitting diode LED (central wavelength A = 820 nm); 

b) Signals from the CCD array displayed in the time domain on the screen of oscilloscope (a more narrow wavelet 
belongs to a less coherent light source, the LED); 

c) Signals from the CCD array displayed in the frequency domain on the screen of a spectrum analyzer (a peak at a 
higher frequency belongs to a light source with a shorter wavelength A, the ReNe laser). 
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Fig. 3. Processing of dynamic signals using unbalanced interferometer: 
a) Schematic drawing of the interferometer; 

0 .005 

b) Dependence of sensitivity to dynamic changes in wavelength on optical path difference of the interferometer. 
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Fig. 4. Schematic explanation of a connectorization process of two fibers using a phenomenon of a laser beam self trapping 
in photosensitive polymers. 
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Fig. 5. Fiber optic Bragg grating embedded in high temperature polyamide matrix composite plate. 
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Fig. 6. Results of thermal tests of a high temperature fiber with FOBG (averaged over 3 runs): 
a) Commercial fiber with FOBG annealed at 300°C; 
b) Fiber with FOBG re-annealed at 420°C for 24 hours. 
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Fig. 7. Examples of novel photorllc interfacing technologies: 
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A) Free space optical connections; B) Across the seam interfaces; 
C) Wireless interface; D) Connectorless fiber joint. 
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Fig. 8. Vehicle health management schemes: 
a) Passive health management system; b) Active health management system; 
c) Dynamic health management system (TERFENOL-D® is a trademark of ETREMA Products, Inc.). 
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Fig_ 9. Bragg grating based fiber optic sensing system for measurements of periodic perturbations. 
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