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Abstract 
Recently, an unstructured three-dimensional 
space-time conservation element and solution 
element (CE/SE) Euler solver [1] was devel
oped. Now it is also developed for paral
lel computation [2] using METIS [3] for do
main decomposition and MPI (message pass
ing interface)[4]. The method is employed 
here to numerically study the near-field of a 
typical 3-D rectangular under-expanded jet. 
For the computed case-a jet with Mach num
ber M j = 1.6, with a very modest grid of 1.7 
million tetrahedrons, the flow features such as 
the shock-cell structures and the axis switch
ing, are in good qualitative agreement with ex
perimental results [8] , [20), 

1 Introduction 
An under-expanded supersonic jet radiates mLXmg 

noise, broadband shock-associated noise, as well as 
screech tones under certain conditions. These compli
cated and technologically important physical phenomena 
have been the topic of many experimental and theoreti
cal investigations, see Tam 's review papers [10, 11] for a 
comprehensive list of references. Generally, the mixing 
noise is directly associated with large-scale structures, 
or instability waves, in the jet shear layer, whereas the 
broadband shock-associated noise and screech tones are 
associated with the interaction of these waves with the 
shock-cell structure in the jet core. The distinct screech 
tones arise due to a feedback loop, i.e., part of the acous
tic waves generated by the wave/shock-cell interaction 
propagate upstream and re-generate the instability waves 
at, or in the vicinity of, the nozzle lip. More details can 
be found in the review papers [9-11] and the references 
therein. 

"Member AlAA 
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Jet noise is a challenging topic in computational aeroa
coustics, in particular, near-field noise computation in the 
presence of shock cells in the jet core. In this situation, 
the computational scheme is required on one hand to re
solve the acoustic waves without introducing too much 
dispersion error and numerical dissipation, while on the 
other hand, it is required to capture shocks, or other non
linear phenomena, near or inside the jet correctly. In ad
dition , non-reflecting boundary conditions must be im
plemented, which is more difficult to accomplish in the 
near field than in the far field. 

The 'Space-Time Conservation Element and Solution 
Element Method' [5-7] , or the CE/SE method for short, 
is a scheme that meets the above requirements. The 
CE/SE scheme possesses attractive properties for aero a
coustics computations in that: (i) it possesses low dis
persion and dissipation errors; (ii ) its ' built-in ' shock
capturing nature makes the computation of shock-cell 
structures simple and accurate; (iii) the non-reflecting 
boundary conditions are simple and effective and can 
be applied in the near field of the jet without introduc
ing excessive errors; and (iv) the scheme accurately pre
dicts the vorticity, which plays an important role in the 
noise generating mechanism. A detailed description of 
the CE/SE method can be found in the reports of Chang 
et ai. [6,7), As demonstrated in our previous papers, the 
CE/SE scheme is well su ited for computing waves on 
compressible shear flows [12] as well as vorticity/shock 
interactions [12, 13] , both being comer stones of the jet
noise phenomena. Recently, the CE/SE Euler solver has 
been developed and used for 3-D compressible flow and 
aeroacoustics computations [1]. The solver is based on 
unstructured grids, and is robust for problems of general 
geometry. In order to increase the computational effi
ciency and to reduce the tum-around time, the 3-D Euler 
code has been parallelized [2] using METIS [3] for do
main decomposition and MPI [4] for message passing 
between processors. 

In this paper, the near-field of an under-expanded 3-
D rectangular supersonic jet is investigated numerically 
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by using a CE/SE Euler solver. The paper is arranged 
as follows: The unstructured CE/SE Euler scheme, and 
the parallel computation are briefly described in Section 
2. Section 3 illustrates the initial and boundary condi
tions for the 3-D rectangular jet problem, in particular, 
the novel non-reflecting boundary conditions, which are 
based on flux balance. The numerical results are pre
sented and compared to experimental findings [8] in Sec
tion 4. Conclusions are given in Section 5. 

2 The 3·0 CE/SE Euler Scheme 
The 3-D CE/SE method systematically solves a set of 

integral equations derived directly from the physical con
servation laws, with space and time treated ' on the same 
footing '. Because of its integral formulation, the scheme 
naturally captures shocks and other discontinuities in the 
flow. Both dependent variables and their derivatives are 
solved for simultaneously and, consequently, the flow 
vorticity can be obtained without reduction in accuracy. 
Non-reflective boundary conditions are also easily im
plemented because of the flu x-conservation formulation. 
Details on the 3-D CE/SE Euler method can be found in 
Wang et al.[l]. In the following subsections, the CE/SE 
method is briefly reviewed. 

2.1 Conservation Form of the 3·0 Unsteady 
Euler Equations 

Consider a dimensionless conservation form of the un
steady 3-D Euler equations for a perfect gas. Let p, u, 
V,w, p, and "( be the density, velocity components in x, y 
and z directions , static pressure, and constant specific 
heat ratio, respectively. The Euler equations then can be 
written in the following vector form: 

(1) 

where x, y, z and t are the spatial coordinates and time, 
respectively, and the conservative flow variable vector U 
and the flux vectors, F , G and H , are given by: 

u = (ti ) , F = Gj) ,G= (~j ) ,H= m) 
with 

U5 = p/ b - 1) + p(u 2 + v2 + w2 )/2 

FI = U2 , 

F2 = b -1 )U5+ [(3 - "()Ui - b - l )(U; + Ui)) /2U1 , 

F3 = U2U3/UI, 

F4 = U2U4 /UI , 
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F5 = "(U2U5 /U1 - b - 1)U2 [ui + u; + Un / 2U~, 

G1 = U3, G2 = U2 U3 /U1 , 

G3 = b -1)U5+ [(3 - "()U; - b - l )(Ui + Ui)) /2U1 , 

G4 = U3 U4/UI , 

G5 = "(U3U5 /UI - b - 1)U3 [ui + u; + ui] /2U~, 

HI = U4, H2 = U2 U4 /U1 , 

H 3 = U3U4 /U1 , 

H4 = b -1 )U5+ [(3 - "()Ui- b - l )(Ui + Ui)] / 2U1 , 

H5 = "(U4U5 /U1 - b - 1)U4 [ui + ui + un /2Ur 

By considering (x, y , z, t) as coordinates of a four
dimensional Euclidean space, E4 , and using Gauss ' di
vergence theorem, it follows that Eq. (1) is equivalent to 
the following integral conservation law: 

j Q m · dS = 0 , 
} S(V) 

m=l, 2,3,4,5, (2) 

where S(V) denotes the surface around a volume V in 
E4 and Qm = (Fm, Gm , Hm , Um). 

2.2 CE/SE Structure 
In the 3-D CE/SE scheme, as in its I-D and 2-D coun
terparts, the flux conservation relation in space-time is 
the only mechanism that transfers information between 
nodes. The conservation element, GE, is the 4-D space
time finite volume to which the integral flux condition 
(2) is to be applied. Solution discontinuities are allowed 
to occur in the interior of a conservation element. A so
lution element, SE, associated with a grid node is here 
a set of seven interface hyperplanes in E4 that passes 
through this node. Note that these hyperplanes are ac
tually 3-D space volumes or space-time volumes. The 
so lution, i.e. U, U x, U y, and U z is calculated at this 
node. Within a given solution element SE(j , n), where 
j is the node index of the unstructured grid and n the 
number of the time step, the flow variables are not only 
considered continuous but are also approximated by lin
'ear Taylor expansions: 

U*(x,y,z, t;j ,n) = U'l + (U x)'l(x - Xj) + 

(U y)j(y - Yj) + (U z)j(z - Zj) + (U t)j(t - tn), (3) 

F *(x, y ,z, t jj ,n ) = F j + (F x)j(x - Xj) + 

(F y)j(y - yj) + (F z)j (z - Zj) + (F t)j(t - tn), (4) 

G*(x, y ,z, t jj ,n) = Gj + (G x)j(x - Xj)+ 

(G y)j(y - yj) + (G z)j(z - Zj) + (Gt)j(t - tn), (5) 

H *(x, y , z, t j j , n) = H j + (H x)j(x - Xj)+ 

(H y)j(y - yj) + (H z)j (z - Zj) + (H d](t - tn), (6) 
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where the partial derivatives of F , G and H can be re
lated to the corresponding ones of U by using the chain 
rule and U t can be directly obtained from (1 ). 

The discrete approximation of (2) is then 

1 Q;" . dS = 0 , 
J S(eE) 

(7) 

Each S(CE) is made up by "surface segments" belong
ing to two neighboring SE's. All the unknowns are 
solved for based on these relations. No extrapolations 
(interpolations) across a stencil of cells are needed or al
lowed. 

The CE/SE scheme is naturally adapted to the topol
ogy of an unstructured grid. In the current 3-D case, as 
shown in Figure I , the four vertices A, B , C, D of any 
tetrahedron in an unstructured mesh form a dodecahe
dron along with the cell centers N I , N2 , N 3 and N 4 
of its four neighboring tetrahedrons. The cell center of 
the current tetrahedron AB CD is O. The dodecahedron, 
being the projection of an E4 space-time volume V in 
(2) onto the 3-D space, is formed by four hexahedrons: 
0- ABD - N I , 0 - B CD - N 2, 0 - CD A - N 3 
and 0 - AB C - N4. These hexahedrons are the projec
tions of space-tin1e E4 CE's onto 3-D space. There are 
totally 20 scalar unknowns U , Ux , Uy , and U z at O. 
Each of the 4 neighboring cells provides 5 scalar equa
tions (2), totaling to 20 equations. At each marching time 
step, the conservative flow variables at any tetrahedron 
center is updated based on the flow variables at its four 
neighboring tetrahedron cell centers of the previous time 
step. Details of the procedure can be found in Wang and 
Chang [1] . 

2.3 Running the CEISE Euler Code on a 
Parallel Computer 

In aeroacoustic computations, due to the stringent re
quirement of acoustic wave resolution, a certain number 
of grid points (or cells) per wavelength must be main
tained. Generally, with the capability of the current com
puters , 2-D aeroacoustics problems can be properly han
dled by a single processor (CPU) without excessively 
long run times or memory problems. However, for 3-D 
aeroacoustics computations, from the viewpoint of com
putation turn-around time and memory sizes, parallel 
computation with multi-processors becomes necessary. 

Four steps are taken in the parallelization of the 3-D 
CE/SE Euler solver: 

1. an unstructured grid is generated for the entire do
main; 

2. the domain is decomposed into subdomains accord
ing to the assigned number of processors (CPU's), 
using the METIS code. METIS is a mesh partition
ing code in the public domain and available from the 
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University of Minnesota [3]. It can also be freely 
downloaded from the web. 

3. the flow is computed in each subdomain with the 
corresponding CPU using the CE/SE Euler solver. 
The CE/SE code is modified using the MPI library 
calls. CPU assigned to one subdomain may commu
nicate with other CPU's assigned to the neighboring 
subdomains and exchange their computed results. 
MPI (message passing interface) is an interproces
sor communication protocol standard. Public do
main implementations of MPI as a software library 
package are prepared by the Argonne National Lab
oratory. 

4. at the end of computation, the subdomain data is 
recombined. 

Figure 5 is an illustrative description of the above 
steps. Detailed implementation of the parallelization of 
the CE/SE method can be found in Himansu et al.[2] . 

3 The 3-~ Rectangular Jet Problem 
Consider a rectangu lar jet as sketched in Figure 2. The 

aspect ratio of the nozzle is 5. The nozzle lip is allowed 
to have a finite thickness (3 cells) to complete the feed
back loop for the possible self-sustaining screech tone. 
The jet Mach number, M j , is 1.6, representing an under
expanded off-design status. The ambient flow around the 
jet is stationary. These conditions correspond to the ex
perimental setup of Raman [8] . 

In this investigation, our attention is focussed on the 
near field of the jet nozzle since this is the source re
gion for aeroacoustic noise. The irmer short side width, 
D , of the jet nozzle is chosen as the length scale. The 
computational domain is a rectangular hexahedron with 
length, L , of 16D, width, W, 14D, and height, H , 5.6D 
as shown in Figure 2. The nozzle is located in the central 
area of the computational domain and protrudes into the 
domain with l =2D (Figure 2). The thickness of nozzle 
lip wall is 2 cells in order that a screech feedback loop 
can be formed. The unstructured tetrahedron grid cur
rently used is generated by cutting a hexahedron cell into 
six tetrahedrons as shown in Figure 3. Currently, includ
ing the nozzle interior, there are 80 x 60 x 60 such hex
ahrdron cells in the computational domain, which form 
about 1.7 million tetrahedrons. These hexahedron cells 
are non-uniform in size in order to have better resolution 
around the jet shear layers. The computational scheme is 
of the a- I: type [6,7] with a: = 0 and I: = 0.5 . 

3.1 Initial Conditions 
As shown in Figure 2, the convergent nozzle protrudes 
into the computational domain so there is some room to 
capture any waves that propagate upstream from the noz
zle exit. A conceivable initial condition is to assume that 
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the pressure is uniform in the entire computational do
main and equal to the ambient pressure, except at the jet 
nozzle exit where a higher pressure Pe is imposed as the 
boundary condition since the jet is under-expanded. We 
will also make the reasonable assumption that the tem
perature in the plenum equals the ambient one for this 
cold jet. 

Let the density, axial velocity, and temperature in the 
jet core, be used to scale density, velocity and tempera
ture respectively. Hence, the initial conditions in the jet 
core are given by 

1 
Pj = 1, Uj = 1, Vj = 0, Pj = 'YM]' 

where T denotes the temperature. The initial conditions 
in the ambient region are given by 

1 
Pa = M2 ' 

'Y j 
U a = 0, VQ, = 0, 

where the result for the temperature fo llows from the as
sumptions of constant total enthalpy in the jet flow, and 
the plenum and ambient temperatures are equal. 

By using the assumption of constant total enthalpy and 
the condition for isentropic flow, it follows that the pres
sure Pe at the nozzle exit can be related to the pressure 
Pj in the jet core by 

-"'-
Pe _ [1 + H'Y - I)MJ j ",-l 
Pj - 1 + ~b - I )M; 

Here, lVle = 1 is the Mach number at nozzle exit when 
the flow is choked. 

3.2 The jet shear Layer 
In the present numerical computations, no jet shear layer 
exists initially in the field. Since the pressure at the noz
zle exit is always higher than the ambient one, the flow 
pushes its way in the ambient atmosphere and forms the 
jet and jet shear layers. The spreading of the jet shear 
layer is caused by the mixing and momentum exchange 
in the shear layer and is very important for the noise gen
eration (e.g. [11]). 

3.3 Boundary Conditions 
3.3.1 Inflow Boundary Condition At the in

let boundary, the dependent variables and their spatial 
derivatives are specified to be those of the ambient flow, 
while at the nozzle exit, the elevated pressure P = Pe is 
imposed, i.e. the jet is under-expanded, as in the physical 
experiment. 

No artificial forcing of the shear layer is imposed at the 
nozzle. At the surrounding and outflow boundaries, the 
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Type I and Type II CE/SE non-reflecting boundary con
ditions as described in the next subsection are imposed 
respectively. 

3.3.2 Non-Reflecting Boundary Conditions 
In the CE/SE scheme, non-reflecting boundary condi
tions (NRBC) are constructed so as to allow fl uxes from 
the interior domain of a boundary CE to smoothly exit 
the domain [18]. There are various versions of the non
reflecting boundary condition, and in genera l they have 
proven to be well suited for aeroacoustic problems [12-
17]. The fo llowing are the ones employed for the 3-D 
problem: 

1. Type I: For a ghost grid node (- j, n) lying outside 
the domain boundary and being a mirror image of 
an interior node (j, n), where j is the node index 
number and n the number of the time step, the non
reflecting boundary condition (type I) requires that 

while U~j is kept fixed at the initially given steady 
boundary value. 

2. Type II: At the downstream boundary, where there 
are substantial gradients in the y , z directions, the 
non-reflective boundary condition (type II) requires 
that 

(u x)~j = 0, 

while U~j' (U y),'2. j and (U zr:j are now defined 
by simple extrapolation from the interior, i.e. , 

U n, = U~-l 
-J J' 

These non-refl ecting boundary conditions (NRBC) are 
consistent with their counterparts in lower dimensions 
(l-D and 2-D). They are simple to implement and effec
tive as well. 

4 Numerical Results 
In this section, the numerical results for the 3-D under

expanded rectangular jet are presented and compared to 
experimental results [8]. At the moderate supersonic jet 
Mach number M j = 1.6, the overall motion in the ex
periment [8] is in truly 3-D mode. For imperfectly ex
panded jets such as this one, a quasi-periodic shock-cell 
structure is formed in the jet plume. The stream wise
growing instability waves naturally occurring in the jet 
shear layer interact with this shock-cell structure and 
generate broadband shock-associated noise and under 
certain conditions screech tones develop through a feed
back loop. 
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It is important to realize that even if no harmonic forc
ing is intentionally imposed on or introduced in the nu
merical simulation, the jet shear layer is in actuality con
tinuously stimulated at a very low level as a result of trun
cation, round-off, and discretization errors (all of which 
can be characterized as numerical noise-and, in a sense, 
are analogous to environmental background noise in ex
periments). These growing perturbations interact with 
the shock-cell structure ofthe jet plume and thereby gen
erate acoustic waves. 

4.1 Test Run of Parallel Computation 
Before commencing parallel computation of the rectan
gular jet problem, the numerical procedure is first tested 
on a simple jet problem with fewer grid nodes, so that it 
can also be run serially on a single CPU with reasonable 
tum-around time. 

Figure 4 depicts a sketch of the simpliiied jet problem. 
The computational domain is a rectangular hexahedron. 
At the inlet plane, boundary conditions are set to the val
ues of the stationary ambient flow except at the center 
square jet nozzle, a jet flow M j = 1.2 is imposed. The 
stationary ambient flow is also used as the initial condi
tions. Type I and II NRBC's are applied accordingly. A 
modest grid of 30 x 30 x 30 rectangular hexhedron blocks 
is used to generate the unstructured grid. The problem 
is then run first in parallel mode on an SGI workstation 
cluster using 8 processors of 195 MHz, and second, seri
ally on a PC with Pentium III 600MHz CPU for 20,000 
time steps. In both cases, only single precision arith
metic is used. Figure 5 illustrates the schematic diagram 
of the parallel computation. The computed results are 
practically identical, as demonstrated in Figure 6. While 
the computation on the serial machine takes about 9 sec
onds CPU time per time step, it only takes about 1 second 
(CPU time) per time step in the parallel mode on the SGI 
workstation cluster. The advantage of parallel computa
tion is thus clearly demonstrated. 

4.2 The Rectangular Jet Problem 
The grid, initial and boundary conditions for the cur
rent rectangular jet problem are already described in the 
previous section. The actual computation was run for 
60,000 time steps in order to ensure that all transients are 
convected out of the computational domain. 

In the preprocessing stage, domain decomposition 
with METIS and the data setup for each processor only 
takes a few minutes to complete. Sixteen processors on 
an SGI workstation cluster are employed for the com
putation. These CPU's are RIOOOO chips ranging from 
195MHz to 250 MHz in speed. With these 16 processors, 
the average CPU time consumption is about 5.1 second 
per time step. However, depending on the load of the SGI 
cluster, it takes about 5-6 days tum-around time to run 
60,000 time steps, which is still acceptable in our view. 
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In the following, snapshots of flow variables are plot
ted and compared to available experimental results or ob
servations. It should be emphasized that no buffer zone 
at the domain boundaries is used in these computations. 
The CE/SE NRBC is robust enough to yield a solution 
free of noticeable spurious reflections. 

4.3 Jet Shock-Cell Structure 
Experin1ental results for supersonic jets are often doc
umented in terms of Schlieren pictures. It is straight
forward to construct Schlieren graphs from the numeri
cal results without loss of accuracy in view of the nature 
of the C E / S E method, since density derivatives are di
rectly solved for as unknowns. Figure 7 shows a compar
ison of numerical Schlieren (density gradient modulus) 
contours from the current computations and the experi
mental Schlieren photograph in [8]. The numerical result 
is a snapshot of the instantaneous density gradient con
tour plot on the mid sectional plane of the narrow side 
at the end of the computation (60,000 time steps). The 
shock cells that have developed so far in the simulation 
agree quite well with the experimental ones. In the same 
Figure 7, numerical Schlieren on the mid sectional plane 
of the wide side is also shown. Shock-cell structures in 
the jet plume are clearly demonstrated. 

Similar shock-cell structures are also observed from 
the pressure, u- velocity. and Mach number contours in 
Figures 8,10, and 11. 

4.4 Near-Field Jet Flow 
In the computation, no artificial forcing is imposed at the 
nozzle exit at all, yet the shock-cell structure and insta
bility waves seem to be sustainable (at least to the stage 
of 60,000 time steps). This implies a feedback loop is 
likely formed around the shear layer between the noz
zle lip wall and the shock-cell structure, although more 
refined grid and much more time steps are required to 
verify this. (Based on our experiences with 2-D under
expanded axisymmetric sonic jet computation, screech 
wave takes place when the grid is fine enough. ) 

Figure 8 shows the isobars on the mid sectional planes 
of both the narrow and the wide sides. Similar shock
cell structures as in Figure 7 are found. Pressure iso
surfaces at two close but different levels are plotted in 
Figure 9. It is clearly demonstrated that these pressure 
waves at the two edges of the wide side jet plume form a 
helical pattern. Qualitatively, this pattern agrees with the 
observation of Quinn [20] and with the observation of 
Westley and Woolley [19] on screech of spinning mode. 
Although these waves look like Mach radiation, at the 
present stage, with a very coarse grid of about 1.7 mil
lion cells, it is not sure if these pressure waves are truly 
radiating Mach waves. Investigation with a finer grid is 
needed. 
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Figure 10 illustrates the u velocity contours at the mid
sectional planes of the narrow and wide sides. The out
skirts of the jet plume on the narrow side form barrel-like 
shapes according to the shock-cell structure and spread 
out due to mixing. This is in contrast to the axisymmet
ric mode, where the outskirts of the jet plume form only 
smooth lines. Another interesting observation from the 
numerical results is the "axis switching" phenomenon, 
the jet core seems to keep reducing its width on the wide 
ide and increasing its width on the narrow side due to 

shear layer spreading. Therefore, a few diameters CD) 
downstream from the nozzle exit, the jet core appears to 
be roundish, although at the nozzle exit it is rectangular 
with an aspect ratio of about 5. The same observation 
can also be found in Figure 11 . 

5 Concluding Remarks 
In this paper, the recent unstructured CE/SE Euler 

scheme is extended to 3-D computation for a super
sonic under-expanded rectangular jet. The state-of-the
art techniques of METIS and MPI are applied in the par
alIelization of the unstructured CE/SE Euler code, and 
proved to be effective and efficient. 

The advantages of the CE/SE scheme found previ
ously in 2-D computations are confirmed again for 3-D 
simulations: 

1. The method is robust and the implementation is 'ef
fortless ' in that no special treatment and paran1eter 
selections are needed; 

2. The NRBC is simple and effective, no buffer zone 
is used; 

3. The method handles both linear and nonlinear prob
lems and is particularly advantageous for near field 
jet-noise computation; 

4. Unstructured grid and parallelization help to handle 
large scale problems with complicated geometry. 

With a very modest unstructured grid of about 1.7 mil
lion elements (cells) and single precision computation, 
many aspects of the computed results are in good qualita
tive agreement with experin1ental findings [8], [20]. With 
16 processors in an SGI workstaion cluster, the CPU time 
consumed per time step is about 4 seconds. However, a 
self-sustained oscillation, i.e. the screech tone, is yet to 
be achieved in our simulation. At the nozzle lip, a finite 
lip wall is already added to facilitate the forming of the 
feedback loop. Based on current encouraging results of 
2-D axisymmetric jet screech tone computation, we are 
sure the screech can be computed with refined grid. Also, 
in order to achieve a more physically relevant sinmla
tion, a Navier-Stokes CE/SE code with LES (large eddy 
simulation) or turbulence modeling capability is need to 
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account for the strong momentum exchange in the shear 
layer. The results will be reported in the future. 
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Figure 1: Tetrahedron and dodecahedron in an unstruc
tured grid. 

American Institute of Aeronautics and Astronautics 



J ... .,.......... Computational 
... I ........ Domain w...... I ....... 

~
;;; : ................. /... 

"" I .......... 
,,"" I .......... 

.... rectangular ........ 

\

"1 ......... nozzle .............. ... .... .... 
I .... ~ 
I ... I 
I ...... I 

HI ~ ...... I 
I...... .... ...... I 

l' ,.' nozzle........ ....,.....,,"" I 
I ...... lip wall ............;<. I 
I,. ......... .; ............ I 
<. r .... I 

5 

~
............. I ............. , 

........ I ..... ~ 
............ I ... ... 

L ........ I ...... 
............... I .,," 

rectangular ............ I ...... 
nozzle inner ................:,," 
narrow side = D, .............. I .,,; 
wide side =5D. .... ... 

Figure 2: Sketch of the rectangular jet problem. 
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Figure 4: Sketch of the test problem. 
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Figure 5: Schematic diagram of parallel computation 
(showing 5 processors). 

American Institute of Aeronautics and Astronautics 

I 

I 
J 



z serial computation 

~1Dt~~,.z .............. ~parallel computation 
~ (8 processors) 

Figure 6: Comparison of numerical results by parallel and serial computations. 
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Figure 7: Comparison of numerical Schlieren graph (instantaneous snapshot) and the experimental time averaged 
Schlieren graph ; showing good agreement of the first few shock cells. 
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Figure 10: u- velocity contours 
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showing the shock-cells, the helical Mach radiations. Figure 11: Mach number contours. 
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