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ABSTRACT

The Advanced Land Imager (ALI) is one of three instruments to be flown on the first Earth Observing mission (EO-1) under
NASA’s New Millennium Program (NMP). ALI contains a number of innovative features, including a wide field of view
optical design, compact multispectral focal plane arrays, non-cryogenic HgCdTe detectors for the short wave infrared bands,
and silicon carbide optics. This document outlines the techniques adopted during ground calibration of the radiometric
response of the Advanced Land Imager. Results from system level measurements of the instrument response, signal-to-noise
ratio, saturation radiance, and dynamic range for all detectors of every spectral band are also presented.
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1. INTRODUCTION

The Advanced Land Imager (ALI) focal plane contains nine multispectrai bands and a single panchromatic band'”’. Although
the optical system supports a 15° wide field of view, only 3° (37 km cross-track) was populated with detector arrays, as
illustrated in Figures 1-3. The detector wavelength coverage (visible, near infrared, and short wave infrared) and ground
sampling distances (GSD) are summarized in Table 1 and Figures 4 and 5. Bands 1, 2, 3, 5, 7 and the combined 4 and 4p
bands are similar to those of the Enhanced Thermatic Mapper (ETM+) on Landsat 7°. This allows for direct quantitative
comparison of data taken on common scenes by the two sensors in these bands.

MS/Pan SCAs

Top View

MS/Pan Module ScA

HgCdTe Detector Array Spectral Filters

SWIR bands Silicon
Detectors
ROIC VNIR bands

MS : Muitispectral
Pan : Panchromatic
ROIC : Read-out Integrated Circuit
SCA : Sensor Chip Assembly
SWIR : Short Wave Infrared
MS/Pan VNIR : Visible Near ' afrared

Figure 1. ALI Focal Plane Assembly.

Each MS band contains 320 detectors and each pan band contains 960 detectors on each SCA in the cross-track direction.
The detectors for each band are arranged in two rows of even and odd detectors. The spacing between the two rows is 80um
while the band-to-band MS spacing is 800um. The detector outputs from each row of even and odd detectors are multiplexed
through common electrical circuitry on the SCAs. The MS/Pan arrays use silicon-diode VNIR detectors fabricated on the
silicon substrate of the Readout Integrated Circuit (ROIC). The SWIR detectors are mercury-cadmium-telluride (HgCdTe)
photo-diodes that are indium bump-bonded onto the ROIC that services the VNIR detectors. These SWIR detectors promise
high performance over the 0.9 to 2.5 um wavelength region at temperatures that can be reached by passive or thermoelectric
cooling. The nominal focal plane temperature is 220K, maintained by the use of a radiator and heater controls.



MAIN FOCAL PLANE ASSEMBLY, EO-1

Figure 2: Photograph of ALI Focal Plane Assembly.

Figure 3: Photograph of populated Sensor Chip Assembly.



Table 1. ALI Spectral Coverage and Ground Sample Distances.

Band Wavelength (um) GSD (m)
Pan 0.480-0.690 10
MS-1p 0.433-0.453 30
MS-1 0.450-0.515 30
MS-2 0.525-0.605 30
MS-3 0.630-0.690 30
MS-4 0.775-0.805 30
MS-4p 0.845-0.890 30
MS-5p 1.200-1.300 30
MS-5 1.550-1.750 30
MS-7 2.080-2.350 30
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Figure 4: Normalized visible and near infrared spectral response functions based on subsystem (evel measurements.
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Figure 5: Normalized short wave infrared spectral response functions based on subsystem level measurements.

Ground calibration of the Advanced Land Imager occurred from September 1998 through January 1999 at the Massachusetts
Institute of Technology Lincoln Laboratory”'°. Included in this characterization period was the radiometric calibration of
individual detectors at the system level. This report provides a review of the technique employed during radiometric
calibration and the results from the characterization of the radiometric response, signal-to-noise ratio, saturation radiance, and
dynamic range of each detector.



2. RADIOMETRIC CALIBRATION TECHNIQUE

The technique we have adopted for the measurement of the radiometric response of each ALI detector consists of flooding
the entrance aperture with a diffuse source of stable, broadband emission at various radiance levels and recording the output
of the focal plane at each level. The source of diffuse emission is a (76.2 cm) diameter integrating sphere with a (25.4 ¢cm)
diameter output port manufactured by Labsphere Inc. (Figure 6). The sphere contains three internally mounted 150 watt and
one externally mounted 125 watt halogen lamps. These lamps provide a combined radiance equal to 100% Earth-equivalent
albedo for Bands 3, 4, 4p, Sp, 5, and 7 and the panchromatic band. Four additional externally mounted 300 watt xenon lamps
were used to provide 100% Earth-equivalent albedo for Bands 1p, 1, and 2. Eight intermediate radiance levels were obtained
through a combination of sequentially extinguishing lamps and de-rating one internal lamp current. Exercising a linear
attenuator mounted between the external halogen source and the integrating sphere provided an additional eight levels. This
GPIB commanded slide provided up to 256 aperture variations for an externally mounted source. A similar attenuator was
also located between one of the externally mounted xenon sources and the sphere to provide more flexibility in selecting
radiance levels for Bands 1p, 1 and 2.
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Mounted Flat Mirror
SN \ 30.48 cm
~. AR S g S—
. \ i
. ~ \ / ‘.\
Thermal \ / \

Vacuum Tank

[ e

‘;:\\ /

S
\—r'/‘
|
O {76.2 cm Diameter)

//' Ny integrating Sphere

A (1.27 em thick) Aluminum Plate

F9 Lens - |
Fdlens +-—p
/

i
iy

| n;
L £— < Filter Wheel
{

1
N~
w

€ (122 mx2.74 m) Optical Table

Figure 6: Integrating sphere and spectroradiometer used during radiometric calibration of the Advanced Land Imager.



NIST Traceability

In order to provide absolute radiometric traceability to other sensors, a radiometric transfer standard system was constructed
at Lincoln Laboratory (Figures 6 and 7). The principal components of the system are an irradiance source, traceable to the
National Institute of Standards and Technology (NIST), and an Orie/ MS257 monochromator used as a spectroradiometer.
The 250 watt irradiance source was mounted on a post with proper baffling to control stray light from the room and
reflections from the source off other surfaces. A standard radiance scene was generated by placing a Labsphere Spectralon
sheet SO cm from the irradiance source. The monochromator field-of-view was limited to a 6.45 cm’ region of the diffuse
scene to maintain the traceability of the radiance source. A (15.24 cm) flat mirror was placed between the Spectralon diffuser
and entrance slit of the monochromator for convenient location of the source. Alternately scanning the radiance scene
produced by the standard lamp and various radiance levels output by the large integrating sphere, radiometric NIST
traceability was established for the Advanced Land Imager. Additional near real-time monitoring of the sphere radiance level
was accomplished by mounting the (15.24 cm) flat mirror on a (30.48 cm) post between the vacuum tank window and the
integratine sphere. During radiometric calibration of the ALI, the mirror was removed and the response of the focal plane
recorded. Between ALI data collections, the mirror was kinematically mounted on the aluminum bar, redirecting a portion of
the sphere radiance into the ¢.itrance slit of the spectroradiometer. The radiance of the integrating sphere was measured from
300 to 2500 nm in 10 nm intervals with 5 nm full-width-half-maximum resolution. Finally, silicon and germanium detectors,
mechanically mounted to the sphere wall, provided continuous broadband monitoring of the sphere stability.

. ) 250 W NIST Traceable
Km.mncauy’ _.-L-- Irradiance Source
Mounted Flat Mirror ' @) -«
' Baffle ‘
(1.27 cm thick) Aluminum Plate \ % —_—
o 7q\1~
\ =~ Spectralon Sheet
F9 Lens
F4lLens —t—— ¢ ¥ Baftie
Filter Wheel

MS257

MS257

/HIJ PbS Detector

Silicon Detector (1.22m x 2.74 m)
Optical Table

Figure 7: Radiometric transfer standard system built at Lincoln Laboratory.



Error Budget

A listing of contributing errors to the radiometric calibration technique at three wavelengths is provided in Table 2. The
dominant factor in the VNIR spectral range is the NIST standard lamp. Near 1300 nm the repeatability of the lead sulfide
spectroradiometer detector dominates the uncertainty in the measurement, followed closely by the standard lamp. Finally, at
2000 nm, the standard lamp provides the largest degree of uncertainty in the measurement.

Table 2. Radiometric Calibration Error Budget.

Source 1o Error (%)
600 nm 1300 nm 2000 nm

NIST Standard Lamp 0.875 0.94 1.535
Spectralon Panel 0.67 0.67 0.67
Spectroradiometer Repeatability 0.67 0.67 0.67
Spectroradiometer Detectors 0.67 1.0 1.0
Integration Sphere Repeatability 0.33 0.33 0.33
Integrating Sphere Uniformity 0.67 0.67 0.67
Vacuum Window Transmission 0.33 0.67 0.67
ALI| repeatability 0.33 0.33 0.33

Total (sum in quadrature) 1.7% | 1.97% 2.32%




3. DATA COLLECTION

Radiometric data were collected in January 1999 in a class 1,000 clean room at Lincoln Laboratory. This calibration was
conducted with the ALI as a fully assembled instrument in a thermal vacuum chamber at operational temperatures.

Selection of the integrating sphere radiance level and monitoring of radiance stability was coordinated by the ALI Calibration
Control Node (ACCN), a LabVIEW-based personal computer operating on a2 Windows 95 platform. Commanding and
housekeeping monitoring of the ALI was also controlled by the ACCN via a Goddard Space Flight Center-provided RS2000
Advanced Spacecraft Integration and Systems Test (ASIST) computer. Data acquisition was performed by a Unix-based
Electrical Ground Support Equipment (EGSE1) computer. A Silicon Graphics Performance Assessment Machine (PAM)
stored and processed focal plane data in real time for quick look assessment.

For each radiance level selected, the sphere was allowed to stabilize for one hour. A spectroradiometric scan of the sphere
output from 300 - 2500 nm was then conducted after placing a (15.24 cm diameter) flat mirror between the sphere exit port
and vacuum tank windov: to redirect the beam into the monochromator. After the mirror was removed, the response of the
focal plane was recorded for several integration periods [0.81 (0.27), 1.35 (0.45), 1.89 (0.63), 2.97 (0.99), 3.51 (1.17), and
4.05 (1.35) milliseconds for MS (Pan) detectors]. Finally, the ALI aperture cover was closed and reference dark frames were
recorded for identical integration periods.

Data were collected with the ALI illuminated by a combination of halogen sources only, a combination xenon sources only,
and a combination of halogen and xenon sources. Additional data were coliected using the halogen sources only with the
focal plane operating at two other possible operating temperatures (215 K and 225 K) to assess the effects of temperature on
focal plane response.

9 Preceding Page Blank



4. ANALYSIS

Analysis of the radiometric response of the Advanced Land Imager has been divided into three categories: VNIR, /eaky, and
SWIR. The VNIR and SWIR analysis was separated due to the differing detectors used in these bands (silicon for VNIR,
HgCdTe for SWIR). The leaky detector category refers to Band 2 of SCA 4 and Band 3 of SCA 3. Odd detectors of Band 2,
SCA 4 exhibit substantial optical or electrical cross-talk when detector 1149 is illuminated. Similarly, even detectors of Band
3, SCA 3 exhibit substantial optical or electrical cross-talk when detector 864 is illuminated. An empirical correction
methodology has been developed to effectively remove all traces of the cross-talk and transfer detector responses of these
bands into units of radiance (see Earth Observing-1 Advanced Land Imager: Leaky Detector Calibration and Correction). As
a result, calibration results for odd detectors of SCA 4 Band 2 and even detectors of SCA 3 Band 3 will not be reviewed in
this paper.

For VNIR and SWIR data, a linear function was fitted to the response of each detector to incident radiance after subtraction
of the dark current. This fit may be expressed as

LA(B’I)=BP[}):'IIMM.I _Pdarlt]

Here, L3(B.1) is the incident band weighted spectral radiance for Band B and sphere level I, B, is the radiometric calibration

coefficient for detector P (mW/cm?/st/W/DN), Pijum is the illuminated detector digital response for sphere level I, and P, is
the dark detector digital offset.

L3(B,1) was calculated knowing the output radiance of the integrating sphere, the spectral response of each band, and the
spectral transmission of the vacuum tank window. This may be expressed analytically as
| Li.DT, (W)S(b, A)dA

L. (B.I)=
(8.1 [s5.2)da

Here, L3(A,1) is the spectroradiometrically measurcd output  “ance of the sphere for level I, Ty is the spectral transmission
of the vacuum tank window, and S is the normalized spectr = sponse for Band B. The spectral response of each band used
in this analysis was determined during the spectral calibrat.on of the ALI (see Earth Observing-1 Advanced Land Imager:
Spectral Response Calibration).

An example of a linear fit to the data for detector 100 of Band 3 is provided in Figure 8. In this figure, 20 radiance levels
were used to fit the detertor response. The top graphic is an overlay of the data points and best-fit linear function (the fit was
anchored at zero incident radiance by inserting a synthetic data point of zero digital number (dn) for all detectors). The
bottom graphic provides the errors to this fit for all radiometric levels. We find all VNIR, SWIR, and panchromatic
radiometric response fits to agree with measurements to within *+ 3.5% (peak to peak). This is within the error budget
specified in Table 2.

11 Preceding Page Blank



Radiance (mW/cm?/sr/p)

% Error

25
2.0
1.5
1.0

Co

\AARS RARAS RAALY RALL] AASM)

o
(=}

PEYTINTTTAITETE ITITIOTET)

o

1000

2000 3000
Digital Number

4000

o N & O

+++ +++

1
»

1
o

FETEETTI FUTY FUTY FUTY IO

1
N
o llrr¥lrv']11 L ALY LARS

Figure 8: Example of linear fit to Band 3 detector 100 data.

1000

2000 3000
Digital Number

12

4000



S. RESULTS

The radiometric response of each detector of every band was derived individually using the method defined above. From this
calibration, the response coefficient, signal-to-noise ratio, saturation radiance, and dynamic range of the ALI focal plane have
been determined. We report the results for a nominal integration time of 4.05 ms (1.35 msec for the Pan) and a focal plane
temperature of 220 K. Results for other integration times and focal plane temperatures are reported elsewhere (see Earth
Observing-1 Advanced Land Imager: Radiometric Response Calibration Addendum).

Response Coefficie: ¢
The response coefficient of each band is provided in Figures 9-18. Detectors 0 through 319 belong to SCA 1 (outboard),

detectors 320 through 639 to SCA2, detectors 640 through 959 to SCA3, and detectors 960 through 1279 to SCA 4. SCA-to-
SCA and detector-to-detector variability are evident in these figures.
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Figure 9: Radicmetric calibration coefficients for Band Ip.
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Figure 10: Radiometric calibration coefficients for Band 1.
Detector 989 of Band 1 has also been identified as having excessive dark current’.
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Figure 11: Radiometric calibration coefficients for Band 2.
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Figure 12: Radiomerric calibration coefficients for Band 3.
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Figure 13: Radiometric calibration coefficients for Band 4.
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Figure 14: Radiometric calibration coefficients for Band 4p.
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Figure 15: Radiometric calibration coefficients for Band 5p.

Detectors 374 and 638 of Band Sp have been classified as inoperable detectors that are saturated at all times . Detector 365
has a larger than average dark current value.
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Figure 16: Radiometric calibration coefficients for Band 5.

Detector 982 is an inoperable detector that exhibits no variation in response with input signal. Detectors 1202, 1204, and
1206 are inoperable detectors that are saturated at all times'. Coefficient variations near detectors 200, 700, and 800 are not
associated with any unusual noise or dark current characteristics for this band. Detectors 911 and 913 have larger than
average dark current values.
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Figure 17: Radiometric calibration coefficients for Band 7.

The large differences present between odd and even detector calibration coefficients for SCA 3 detectors 800-960 are not
associated with any unusual noise or dark current characteristics of Band 7.
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Figure 18: Radiometric calibration coefficients for the Panchromatic Band.

Detector 1631 of the panchromatic band has also been identified as having excessive noise®.

Signal-to-Noise Ratio

The detector signal-to-noise ratios have been derived from data collected during radiometric calibration. Using the
radiometric calibration in-band radiance (mW/cm?/sr/pt) and the detector response and standard deviation data, an individual
detector’s signal-to-noise ratio as a function of radiance may be derived. Figure 19 provides an example of the signal-to-noise
ratio as a function of radiance for Band 3 detector 100. Below 0.2 mW/cm?/sr/p, the focal plane noise dominates and results
in a linear increase in the signal-to-noise ratio. Above 0.2 mW/cm?/sr/, shot nc ise begins to dominate and the signal-to-noise

ratio begins to follow a square root function. The dashed curve in this figure represents a linearly dependent signal-to-noise
ratio.
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Figure 19: Example of signal-to-noise ratio data for Band 3 detector 100.

Fitting the data, a predicted sigial-to-noise ratio for any detector may be calculated for any radiance level. Figures 20-29
provide the signal-to-noise ratio for a mid-latitude summer atmosphere, solar zenith angle of 23.50°, 5% surface reflectance,
and nadir viewing MODTRAN model. These values are in good agreement with the signal-to-noise ratios calculated from
subsystem measurements. Additionally, the increase in signal-to-noise ratio levels for SCA 4 may be attributed to a lower
noise for all bands of this SCA.
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Figure 20: Signal-to-noise ratio for Band Ip.
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Figure 21: Signal-to-noise ratio for Band .

Detector 989 of Band 1 has a lower response than other detectors, resulting in a lower signal-to-noise ratio compared to its
neighbors.
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Figure 22: Signal-to-noise ratio for Band 2.
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Figure 23: Signal-to-noise ratio for Band 3.
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Figure 24: Signai-to-noise ratio for Band 4.
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Figure 25: Signal-to-noise ratio for Band 4p.
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Figure 26: Signal-to-noise ratio for Band 5p.

Detectors 374 and 638 are inoperable detectors. Detectors 2, 82, 83, 92, and 99 have been identified as having higher noise
values than other detectors, resulting in lower signal-to-noise levels.
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Figure 27: Signal-to-noise ratio for Band 5.

Detectors 982, 1202, 1204, and 1206 are inoperable. The detectors near 200 and 750 DN have lower responses than
surrounding detectors. Detector 119 has been identified as having a higher noise value that its neighbors.
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Figure 28: Signal-to-noise ratio for Band 7.
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Odd and even detectors of SCA 3 exhibit large differences in calibration coefficient values. Detectors 4, 11, 17, 126, and 370
have been previously associated with higher noise values than surrounding detectors.
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Figure 29: Signal-to-noise ratio for the Panchromatic Band.

Detector 1631 of the Panchromatic Band exhibits a low radiometric response and high noise value, resulting in a low signal-
to-noise ratio.
Saturation Radiance

The saturation radiance has been estimated as the product of the radiometric response coefficients and the dark current
subtracted maximum attainable value (DN). This may be expressed as

SR, = B,(4095- P, ).

Here, for detector P, SR, is the saturation radiance, Pp, is the dark offset, and B, is the radiometric response coefficient

(mW/cm?/st/wDN). Adopting this method, the calculated saturation radiance for the ALI focal plane is provided in Figures
30-39.
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Figure 30: Saturation radiance for Band Ip.
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Figure 31: Saturation radiance for Band 1.

Detector 989 of Band 1 has a lower radiometric response than other detectors, resulting in a higher saturation radiance
compared to its neighbors.
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Figure 32: Saturation radiance for Band 2.
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Figure 33: Saturation radiance for Band 3.
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Figure 36: Saturation radiance for Band 5p.

Detectors 374 and 638 of Band 5p are inoperable detectors. The dip in saturation radiance, centered at detector 1200, is the
result of an increase in dark current in this region of this band™. Detector 365 also has a larger than average dark current
value.
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Figure 37: Saturation radiance for Band 5.
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Detectors 982, 1202, 1204, and 1206 are inoperable detectors. The dip in saturation radiance, centered at detector 1200, is
the result of an increase in dark current in this region of this band". Detectors 911 and 913 have larger than average dark
current values. Other variations are the result of increases or decreases in detector radiometric response coefficients.
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Figure 38: Saturation radiance for Band 7.

The large differences in saturation radiance between even and odd detectors of SCA 3 for Band 7 are the result of radiometric
response differences of these detectors. The dip in saturation radiance, centered at detector 1200, is the result of an increase in
dark current in this region of this band"*.
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Figure 39: Saturation radiance for the Panchromatic Band.
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Detector 1631 of the Panchromatic Band has a lower radiometric response relative to its neighbors, resulting in the observed
saturation radiance increase.
Dynamic Range

The dynamic range of the ALI focal plane has been calculated as the ratio of the maximuin dark current subtracted signal to
the dark current noise

DR, =(4095-P,,)/S,.

Here, for detector P, DRp is the dynamic range, Pp,, is the dark offset, and Sp is the noise for a dark scene (for these
calculations, detector noises were assumed to be 1 DN)". Adopting this method, the calculated dynamic range for the ALI
focal plane is provided in Figures 40-49.
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Figure 40: Dynamic range for Band Ip.
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Figure 41: Dynamic range for Band 1.
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Figure 42: Dynamic range for Band 2.
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Figure 43: Dynamic range for Band 3.
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Figure 44: Dynamic range for Band 4.
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Figure 45: Dynamic range for Band 4p.
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Figure 46: Dynamic range for Band 5p.

Detectors 374 and 638 of Band 5p are inoperable detectors. The dip in dynamic range, centered at detector 1200, is the result
of an increase in dark current in this region of this band". Detector 365 also has a larger than average dark current value.
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Figure 47: Dynamic range for Band 5.

Detectors 1202, 1204, and 1206 are inoperable detectors. The dip in saturation radiance, centered at detector 1200, is the
result of an increase in dark current in this region of this band"’. Detectors 911 and 913 also have larger than average dark
current values.
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Figure 48: Dynamic range for Band 7.

The dip in saturation radiance, centered at detector 1200, is the result of an increase in dark current in this region of band 7.
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Figure 49: Dynamic range for the Panchromatic Band.
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6. INTERNAL REFERENCE LAMPS

An internal reference source, located within the instrument telescope cavity, will act as a radiometric calibration transfer
mechanism between ground and flight operations. This source consists of three Welch Allyn 997418-7 (modified) gas-filled
lamps mounted on a small (2.03 cm) diameter integrating sphere (Figures 50, 51). Light emerging from the exit slit of the
sphere passes through a BK 7 lens and infrared filter, is reflected off the ALI flat mirror, and floods the focal plane. The
response of the ALI focal plane to these sources has been correlated to ground radiometric calibration. Additionally,
extensive stability and lifetime testing for spaceflight operation was conducted at Lincoln Laboratory, and these sources have
also been shown to be stable to within 1-2% over the two-year period between ground calibration and launch of the

spacecraft.

Welch Allyn Lamp

Infrared Filter Integrating Sphere

Figure 50: EO-1 ALI internal reference source.

Internal Reference
Source

Figure 51: Photograph of internal referesce source.
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Daily in-flight radiometric checks of the instrument will be conducted by observing these internal reference sources.
Following each observation, after the aperture cover has been closed, the three internal reference lamps are powered by the
ALI Control Electronics. After an eight-second stabilization period the lamps are sequentially powered down in a staircase
fashion, with two-second exposures between each step. In this manner, the focal plane will receive a three point radiometric
reference after each observation.
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7. DISCUSSION

The radiometric response of the Earth Observing-1 Advanced Land Imager has been calibrated during ground testing at MIT

Lincoln Laboratory. This calibration includes the investigation of the response, signal-to-noise ratio, saturation radiance, and
dynamic range of each detector of every spectral band.

The results obtained in the analysis outlined in this report, along with results from the leaky detector analysis, have been
incorporated into the calibration pipeline and will be used to radiometrically calibrate initial ALI flight data. As an example
of this calibration, Figure 52 depicts a Band 4 image of Lincoln Laboratory before and after radiometric calibration is
applied. Detector-to-detector and SCA-to-SCA variations, a result of dark current and response coefficient variations, are
clearly evident in the data prior to calibration.

Figure 52: Band 4 image of Lincoln Laboratory. The image on the left is prior to radiometric calibration.
The image on the right is after radiometric calibration.

Finally, results presented here will also be compared against data collected during on-orbit internal reference lamp
monitoring and solar, lunar, and vicarious calibrations to track changes in ALI radiometric response over the lifetime of the
mission.
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4. ANALYSIS

Analysis of the radiometric response of the Advanced Land Imager has been divided into three categories: VNIR, leaky, and
SWIR. The VNIR and SWIR analysis was separated due to the differing detectors used in these bands (silicon for VNIR,
HgCdTe for SWIR). The leaky detector category refers to Band 2 of SCA 4 and Band 3 of SCA 3. Odd detectors of Band 2,
SCA 4 exhibit substantial optical or electrical cross-talk when detector 1149 is illuminated. Similarly, even detectors of Band
3, SCA 3 exhibit substantial optical or electrical cross-talk when detector 864 is illuminated. An empirical correction
methodology has been developed to effectively remove 2ll traces of the cross-talk and transfer detector responses of these
bands into units of radiance (see Earth Observing-1 Advanced Land Imager: Leaky Detector Calibration and Correction). As
a result, calibration results for odd detectors of SCA 4 Band 2 and even detectors of SCA 3 Band 3 will not be reviewed in
this paper.

For VNIR and SWIR data, a linear function was fitted to the response of each detector to incident radiance after subtraction
of the dark current. This fit may be expressed as

L, (B,I)= BP[PiIIumJ =i J

Here, L(B.1) is the incident band weighted spectral radiance for Band B and sphere level I, B, is the radiometric calibration

coefficient for detector P (mW/cmz/sr/p/DN), Piyumy 1s the illuminated detector digital response for sphere level 1, and Py, is
the dark detector digital offset.

Li(B,]) was calculated knowing the output radiance of the integrating sphere, the spectral response of each band, and the
spectral transmission of the vacuum tank window. This may be expressed analytically as

j L, (A, DT, (A)S(b, A)dA
j S(b,\)dA

L,(B,I)=

Here, L;(A,1) is the spectroradiometrically measurcd output radiance of the sphere for level I, Ty is the spectral transmission
of the vacuum tank window, and S is the normalized spectral response for Band B. The spectral response of each band used
in this analysis was determined during the spectral calibration of the ALI (see Earth Observing-1 Advanced Land Imager:
Spectral Response Calibration).

An example of a linear fit to the data for detector 100 of Band 3 is provided in Figure 8. In this figure, 20 radiance levels
were used to fit the detector response. The top graphic is an overlay of the data points and best-fit linear function (the fit was
anchored at zero incident radiance by inserting a synthetic data point of zero digital number (dn) for all detectors). The
bottom graphic provides the errors to this fit for all radiometric levels. We find all VNIR, SWIR, and panchromatic
radiometric response fits to agree with measurements to within + 3.5% (peak to peak). This is within the error budget
specified in Table 2.
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