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1 Introduction

This report describes the research work undertaken at the Massachusetts Institute of Technology,
under NASA Research Grant NAG4-157. The aim of this research is to identify effective algorithms
and methodologies for the efficient and routine solution of flow simulations about complete vehicle
configurations.

For over ten years we have received support from NASA to develop unstructured mesh methods
for Computational Fluid Dynamics. As a result of this effort a methodology based on the use of
unstructured adapted meshes of tetrahedra and finite volume flow solvers has been developed. A
number of gridding algorithms, flow solvers, and adaptive strategies have been proposed. The most
successful algorithms developed from the basis of the unstructured mesh system FELISA. The FE-
LISA system has been extensively for the analysis of transonic and hypersonic flows about complete
vehicle configurations. The system is highly automatic and allows for the rotine aerodynamic anal-
ysis of complex configurations starting from CAD data. The code has been parallelized and utilizes
efficient solugion algorithms. For hypersonic flows, a version of the code which incorporates real
gas effects, has been produced. The FELISA system is also a component of the STARS aeroservoe-
lastic system developed at NASA Dryden. One of the latest developments before the start of this
grant was to extend the system to include viscous effects. This required the development of viscous
generators, capable of generating the anisotropic grids required to represent boundary layers, and
viscous flow solvers. In figures 1 and 2, we show some sample hypersonic viscous computations
using the developed viscous generators and solvers.

Although this initial results were encouraging it became apparent that in order to develop a
fully functional capability for viscous flows, several advances in solution accuracy, robustness and
efficiency were required. In this grant we set out to investigate some novel methodologies that could
lead to the required improvements. In particular we focused on two fronts: finite element methods
[1], [26] and iterative algebraic multigrid solution techiques [30].

Finite element algorithms have been enormously successful in the field of structural mechanics
and in that field, they are the method of choice. They have a solid mathematical foundation
and offer complete geometrical flexibility. Finite element methods utilize compact supports, which
substantially aid the implict solution procedure, and, when properly formulated, can be extended
to arbitrary orders of accuracy.

Multigrid techniques are well known for their efficiency in solving symmetric positive definite
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Figure 1: Mach 12 flow about a cone-sphere geometry. Meshes and computed inviscid and viscous
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Figure 2: Mach 10.6 flow about a re-entry configur

A2
VA P Ve o4
Vi Ve Vg V)
P
23

ey

A

AT
v%
Al
VAV
\VATS

XK
DOCKHNANK

EATAYATAY
ASG EAPAT

 VAVAVAVA VAV
va

(AT

T4 Y i V4 T
Lk

V4!
VaVa

VA V.4 VAVAVAVAYAVL
23

AT

A
w2
L

e

AV

¥ 4!

a4
4%
(VA VAVA!

AT AVARATAVAY
A ¥aVa!
Vs
sV
VAV

iy
7

gt
\2
\ZAVA

7
4!
7
71>
L5,
15
a"
ra
\PAVAEL VA VA

AAAN T,

FaYAVA'
AADE,

=z

;
I

A aava?a
A A TATATAPATA

G

Vavs

£

5
A
ey
R
v
/
i/
/
TAVAVA
V4 VA
\Z
VA
VaVa

AN
N
AN
o
¥}
74
LY
&2
'r“%u"
e

K
Y
ému
AYAY
Y
?
5 5 AVA'
\ 7\
(s
cars
ok
1737
VAT

.

¥
Ny i
il A

VATAY
N
Y
I

7
2
L
]
SES
IS
)
A,
X
N

u\“?‘u" o)
o B0
SRS

A

RN NOOCEN
R RAAA K
Y,
R AR,

SN S SN Sy,

RN SO o

Siiﬁse‘:‘:mﬁg“\‘ﬁﬂ'mﬂﬁ

NN SRRCRY

S At RO

SRR RS
KENNRRRNS NI R R ey

N

\LLEEAAE“ALLLKKAAK\AAL NS
. LNV
ORNRREKR

RERRRNG KK
sgem;;“ mnw:vsgsmwwsvgmn
Y Y Y, o
s ‘ynsgs:'mwm.:vgs.“ssgsg
N o N 3,
SRR R RRR SRR RS R
Ay, “EWEMSSSSW o
e .,; m;gmnsﬁg :
) A
R
1N i
N 1
AR 2\
\
T G
- \
2
M .
NS p
3
2
S
At
AYAYZ)
i ] ’
D
; \ 0 [) ) i I
2 A A% PUEER \:S\
’ 4 <\ AVAP
N7 /\1/\ : o
x Vv el 4 A A\} B
trrd VAN AT AV, G AV A Yy v A AT vyt
) P "y s >
k% \/\\*:\’\7\4‘27\7/\‘“

inviscid and viscous solutions on the same mesh

ation. Meshes and Mach number contours for



gy

1)

g

LAY e
N PSS A

ghkiie o N

T
b

m o




problems. Unfortunately, the discretization of the Navier-Stokes equations generates systems of
equations which are unsymmetric and much harder to solve.

The work reported below has been partially supported by this grant.

2 Finite Element Solution of the Compressible Flow equations

Our aim is to develop a robust and accurate finite element algorithm which is capable of solving flows
ranging from low subsonic to transonic and hypersonic regimes. We regard the possibility of using
higher order approximations as being highly attractive, specially for complex three dimensional
flows which requiring high levels of resolution.

Here we present some of the accomplishments carried out during this grant period and which

build upon existing finite element methods.

2.1 The solution of the Compressible Euler Equations at Low Mach Numbers

For low Mach numbers, the compressible Euler and Navier Stokes equations describe almost incom-
pressible flow. This singular limit of the compressible flow equations is reasonably well understood.
Indeed, under the assumption of isentropic flow, and some regularity conditions on the initial and
boundary data, the solution of the compressible equations, in the zero Mach number limit, can
be shown to satisfy the incompressible flow equations [16, 11]. From the computational point of
view, accurate solutions of nearly incompressible flows are difficult to obtain. This is due to the
very different magnitude of the wave speeds which are present in the system. Our interest is in
the development of a compressible flow algorithm which is capable of solving flows ranging from
almost incompressible to supersonic regimes. There are several reasons that justify the development
of such algorithm. The first and most important is that in many situations, such as high angle
of attack aerodynamics, large regions of very low Mach number coexist in the flow domain with
regions where the flow is supersonic. Another more practical motivation is that an algorithm that
can successfully handle free stream Mach numbers as low as 1073 is well suited for a broad range
of applications typically handled with incompressible formulations.

Over the last few years, stabilized finite element algorithms for the solution of the Euler and
Navier-Stokes equations have gained increased popularity. Streamline-Upwind /Petrov-Galerkin
algorithms (SUPG), and some of its relatives. have been presented and analyzed in numerous papers

[14, 15, 20]. These algorithms, although not so widely used as their finite volume counterparts,



possess many attractive features. In particular, they have a compact support and can be used
with elements of arbitrary order, yielding solutions of increased accuracy whenever the solution is
sufficiently smooth. In addition, there exists a rather well developed theory for linear problems
which can be used to provide design criteria for the development of successful algorithms for non-
linear equations.

One of the critical ingredients of SUPG algorithms is the construction of the stabilization matrix
7. Whilst the convergence analysis for the linear problem only dictates that this matrix has to
be symmetric positive definite, scale appropriately with the local grid size, and have dimensions of
time, much freedom is still available to fully determine it. Only under some very simplified cases
(e.g. one dimensional flow) is the optimal choice of 7 unambiguous.

Classical compressible flow formulations, including the existing SUPG algorithms, fail to give
adequate numerical solutions when the flow approaches incompressibility. Whenever the Mach
number is progressively reduced, keeping the grid size fixed, a degradation in the solution accuracy is
observed. This phenomenon has been studied extensively in the context of finite volume algorithms
[23, 18, 6], and several explanations have been proposed. The most common argument is based
on the mismatch which occurs, for low Mach numbers, between magnitude of the fluxes in the
original equations and the corresponding terms in the numerically added artificial viscosity. Some
local preconditioning strategies, aimed at modifying the numerical artificial viscosity to avoid this
mismatch, have proven to be extremely successful [3, 24, 4, 25]. Accurate solutions for Mach
numbers as low as 10~2 have been reported using such preconditioned algorithms. One of the
main drawbacks of these preconditioners is their lack of robustness near stagnation points. The
reason for this can be traced [5] to a lack of stabilization caused by the eigenvectors of the artificial
dissipation matrix becoming nearly parallel.

The formulation of numerical algorithms for the compressible flow equations employing sym-
metrizing, or entropy, variables has been advocated by several authors e.g. [13, 2]. One of the claims
often made is that discrete schemes formulated in entropy variables inherit global entropy stability
properties of the original equations. Gustafsson [10] points out that, for a hyperbolic system of
equations, the higher the degree of unsymmetry, as measured by the condition number of the trans-
formation required to symmetrize the system, the lesser the well-posedness of the problem, in the
sense that perturbations of the initial data influence the solution more. As it turns out, the com-
pressible Euler equations formulated in terms of either primitive or conservative variables become

increasingly unsymmetric when the reference Mach number goes to zero. From our perspective,



one of the main attractive features derived from the use of entropy variables is that the dissipation
operator remains symmetric. This means that a full set of orthogonal eigenvectors can always be
found and therefore the stabilization terms remain effective throughout the computational doamin.
In this respect, the combination of the preconditioning ideas presented in the finite volume context
to deal with low Mach number flows combined with a formulation in entropy variables seems very
appealing.

Here, we propose a specific construction of the stabilization matrix 7 for a finite element SUPG
formulation of the steady state Euler equations. The development of such stabilization matrix
incorporates low Mach number preconditioning concepts, previously developed in the finite volume
context. The ideas presented here extend to the time dependent and the Navier-Stokes equations
in a straightforward manner. The equations are first transformed into a new set of variables which,
in the low Mach number limit, can be easily related to the incompressible velocity and pressure.
A necessary condition for stability, when the Mach number tends to zero, is obtained by requiring
that the asymptotic behavior of the stabilization terms matches that of the terms in the Euler
equations. This requirement results in some additional constraints on 7 which are not typically
satisfied by the classical choices of 7. The proposed algorithm combines the very attractive features
of the stabilized finite element formulations with the ability to produce accurate answers over a
very large range of Mach numbers.

We start with a brief description of the SUPG formulation for the Euler equations using entropy
variables. For simplicity of presentation we will consider the two dimensional case, but results
herein presented extend directly to three dimensions and are also applicable to the Navier-Stokes
equations. Next, we discuss the low Mach number scaling arguments which lead to the proposed
form of stabilization matrix 7 and outline our numerical implementation. Finally, numerical results
using linear elements are presented for the flow over isolated cylinders and airfoils with free stream
Mach numbers ranging from 1073 to moderate subsonic values. In the next section, we present

results for transonic flows using higher order elements.



2.2 Compressible flow governing equations
2.2.1 Conservation variables

We start from the time dependent two dimensional compressible Euler equations in conservation

form
U;+F1+Fy2=0, (1)

where ) ; ) ) A 3

P put pu2

2
(3 U] +p U U2
u= ", n=| ™ S
pu pu Uiy pus +p
| pE | | ui(pE +p) | | u2(pE +p) |

In the above expressions, p is the density; u = [ur,u2])T is the velocity vector; E is the specific
total energy; p is the pressure; and the comma denotes partial differentiation (e.g. U, = dU/0t,
the partial derivative with respect to time, F;; = OF;/0z;, the partial derivative with respect to
the j-th spatial coordinate). The system of equations is closed once the pressure is related to the
problem variables through the equation of state, p = (v— 1)pe, where e = B/ — |u|?/2, is the internal
energy. Here, « is the ratio of specific heats which is assumed to be constant.

We will assume that all the above quantities have been non-dimensionalized using reference,
or free stream, values for density p., velocity u, and length L. Thus, the dimensional variables,

denoted with an overbar, are related to the non-dimensional variables introduced above as

p:ﬁ, ui:ylvi:112a P= p27 E:—2, :L‘izﬂ’i=1,2, and t:u* .
P Uk Py uy L

Finally, we introduce the reference speed of sound c., and define, for later use, a reference Mach
number as € = u./cx.

We note that the equation system (1) can be written as
U’t + AlU,l + AQU’Q =0, (2)

where the Jacobian matrices A; = F; y, ¢ = 1,2, are unsymmetric but have real eigenvalues and a

complete set of eigenvectors.



2.2.2 Entropy variables

We seek a new set of variables V, called entropy variables, such that the change U = U(V) applied

to (1) give the transformed system
U(V) +Fi(V)1 +Fo(V) 2 =0, (3)

where Ay = Uy is symmetric positive definite, and A; = A;Ap = F;v, i =1,2, are symmetric.
Following [12], we introduce a scalar entropy function H(U) = —pg(s), where s is the non-

dimensional entropy s = In(p/p?). The required change of variables is obtained by taking

e(y—g9/g') — [ul*/2
g uj
uz

! = _

The conditions ¢’ > 0 and ¢”/¢ < v~', ensure that H(U) is a convex function and therefore
g g Y

Aal = Vy = Hyu. and Ay, are symmetric positive definite. We consider in [1] the variables
resulting from two particular choices of the function g(s). The system (3), can thus be written in

symmetric quasi-linear form as
AV, + AV +AV,=0. (5)

Barth [2] noted that it is always possible to construct matrices R;, i = 1,2 whose columns are

the scaled right eigenvectors of A;, i = 1,2 respectively, such that
Ay =RiRT = RyR], (6)
and
A =R,AR7Y A =RAR], for i=1,2. (7)

An explicit expression for R, i =1,2, is given in [1].

10



2.3 Low Mach number limit

The low Mach number limit of the Euler equations is best studied by rewriting the equations in

terms of the variables (p,u;,us,s). This yields the following system

J
1
]
)
]
1
J

- Q1 r

i%?j wpy ¢ 0 0 i%’% u, 0 ¢ 0 plc%f?— 0
o om0 L L0 w00 | _ |0 ®)
o 0 0 w 0 fu c 0 up 0 S 0
_%__oooul__%__ooan_L%__o_
In matrix form, this system can be written as
Z2,+CiZ,+CyZ, =0, 9)

where the matrices C; and Cg are symmetric and dZ = [d¢,du1,duQ,ds]T with d¢ = %‘g. If we
assume that the flow is isentropic, which is certainly satisfied for low Mach numbers when the free

stream is isentropic, we can express ¢ and p as a function of p, i.e,

Y (v—1)/2
p= _p_2 and c= p———,
ye €
to obtain (9],
2 2 1
— 2 002 _ 1y = _ 0y

In terms of ¢, u; and us, the continuity and momentum isentropic compressible flow equations
become

—1 1 -1 1
b +urp1 + (77¢ + ;) uyy + u2d 2 + <72—¢ + Z) ug2 =0,

1

-1
ULt + <l2—¢ + ;) 1+ wui +ugur2 =0, (10)

-1 1
Uy + UU2,1 (1—2—(}5 + g) @2+ uguzs = 0.

Note that, in assuming isentropic flow, we have reduced the number of dependent variables by
eliminating entropy from the system of governing equations. Equations (10), look now similar to

the incompressible flow equations
1,1 + g2 =0
U1+ P1 + 1l +detn 2 =0 (11)

Ug¢ + Urlg) + P2 + Galing =0,

11



where 01 = [ﬂl,ﬂg]T, denotes the velocity and p the pressure. When € — 0, the equivalence
between (10) and (11), under some regularity assumptions on the initial and boundary data, can be
rigorously shown [11]. In particular, we have that for € — 0, u; — 4; and ((y — ¢/2+1/e) ¢ —
p, for i = 1,2. To obtain bounded derivatives when € — 0, it follows that ¢ ; and u1 1 + u22 must
be O(e). We also note that the velocity components u; and its spatial derivatives u; ;,1,j = 1,2 are
O(1). Finally, it can be shown that ¢ is O(e) and that ¢/e is well defined in the limit € — 0.

We now turn our attention to the steady state Euler equations for isentropic flow and derive
some asymptotic estimates which are valid in the low Mach number limit. The equations for this

reduced problem are,

ciz +cizl,=0 (12)
where
¢ u; ¢ 0 up2 0 ¢
Zl=| o |, Cl=] ¢ w 0[], Cl=10 w 0
U9 0 0 wu c 0 wuo

Using the above estimates we have that, for ¢ — 0,

Of(e) o1y O hH 0 o(1) 0 O(eh
zi~2h~| o |.Cl~| oY o o [.Ci~| 0 o1 0
O(1) 0 0 O(1) Oy o0 0(1)
(13)
Thus, for the individual terms of the isentropic Euler equations,
O(e™ )
C{Zﬁ ~ CéZ’IQ ~ 0O(1) as € = 0. (14)
o(1)

2.4 Variational formulation for the steady state problem

We now consider the compressible steady problem in conservation form expressed in terms of
symmetrizing variables. The conservative form of the equations is taken to be the starting point
because we are ultimately interested in an algorithm that can be used over the whole range of

speed regimes, including situations were the solution may contain discontinuitites. The problem is

12



defined in a domain Q with boundary I' by

Fi(V)1+F2(V)2=0 in £, (15)
A;V=A g on T\[,, (16)
u-n=0 on [, (17)

For simplicity, the domain boundary is assumed to be made up of an impermeable solid wall T,
and a computational far field boundary T'\I'y. In (16, 17), n = [ny, no]T is the outward unit normal
vector to I', and A, = A Ao, A, = Ain; + Aong. Finally, A; = A Ay, and A; denotes the
negative definite part of A,.

Let the spatial domain €, be discretized into non-overlapping elements Te, such that Q = |J T,
and T, T = 0, e # €. We consider the space of functions Vj, defined over the discretization and

consisting of the continuous functions which are piecewise linear over each element
Vi = {W|W e (C°()", Wiz, € (P(Te)", VT € Q).
The SUPG algorithm can then be written as: Find Vj € Vh such that for all W € V*,
B(Vi, W)gat + B(Vi, W)supg + B(Vi, W)y =0, (18)

where the forms B(-,")gat, B(:,)supg and B(:, e account for the Galerkin, SUPG stabilization,

and boundary condition terms respectively, and are defined as

B(V, W)yt = / (—W 1 -Fi(V) - W Fo(V)) dO, (19)
Q
B(V,W)supg = / (AW 1 + AW ) -7 (AV1 + AV ) d€, (20)
0
and
B(V,W)e= | W -Fu(Vin)ds +/ W - Fy(V,g;n) ds. (21)
r. I'\Tq

where 7 is the stabilization matrix. The numerical flux function on the impermeable wall boundary
F,, is simply [O,pnl,png,O]T while the numerical flux function on the far field boundary Fyy, is

defined by
Fyy(V_,Viin) = L(Fa(V) + Fa(V4)) = 5An(Vioe(Vo, VEI(U(V4) = UV ).

Here, |A, (V)| = A (V) — A~ (V) is the absolute value of A,, evaluated at V, and V gee(V1,V_),
is the Roe average [19], between the states V*t and V™.

13
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Figure 3: Mapping between the master triangle T, and a typical element Tp.

2.4.1 Standard definitions for 7

In order to uniquely specify the SUPG algorithm (18), an appropriate expression for the stabilization
matrix 7 needs to be given. We recall that an appropriate T should be symmetric, positive definite,
have dimensions of time, and scale linearly with the element size [14].

For a triangle T., we introduce the mapping x = x(¢), between the master triangle 7., in the
parametric space £ = [£1,&]7, and T, € Q in the mapped space x = [z1,12)7, as illustrated in

figure 3. We define

B1 = (1‘2,52.!11 - 1‘1,52.&2)/.],
BQ = (21,61;‘2 - IL'Q{IA})/J,

B3 = ((‘TQYEI —_ 562’52)1&1 + (xl,ﬁz - .’Ill’él)Az)/J,

and the Jacobian of the mapping, J = 21 ¢, Z2 ¢, — T2.¢,%1¢,- The following definition for 7 can be

shown to satisfy all of the above requirements
7 =A¢ ' (|Bif” + |Baff + |BsP) 7. (22)

The most common choice for p has been 2, which necessitates the evaluation of a matrix square
root. This choice has been advocated by Shakib et al. [20], whereas Barth [2], has shown that the
choice p = 1 is computationally advantageous and, in practice, gives very similar results.

These choices of stabilization matrix, work well provided that the flow Mach numberis not too
low. For problems involving significant regions of low Mach number flow the solution degrades
and becomes less and less accurate as the Mach number is decreased. In the following sections we

will address this issue by first, identifying the source of the problem, and second, devising a new

14



formulation for 7 which does not suffer from this drawback and which leads to a formulation which

can handle very low Mach numbers accurately.

2.5 A stabilized formulation for isentropic flows

Turkel et al. [23] have employed a scaling analysis to determine the appropriate low Mach number
behavior of local preconditioners. In their application, the local preconditioner modifies the upwind
dissipation of the underlying finite volume or finite difference discretization. In this section, we will
consider a stabilized SUPG formulation applied direclty to the isentropic equations (12). We will
extend the analysis presented in [23] to our finite element formulation and, in particular, derive the
appropriate scaling for the stabilization matrix in the limit of vanishing Mach number.

Introducing the finite element space,
Vi = (W W e (), W, € (P(Te))’, VT, € Q}.

we consider the following SUPG formulation : Find Z{l € V,Il such that for all W/ € V,{,

BU(Z], W) gar + B (Zf, W )gupg + B (Z], W) = 0, (23)
BN(Z!, W), = /Q (W!.(ciz!, + Ccjzl)) 4, (24)

where,
B2 W)y = [ (CIWh+ CIWh) - 7! (]2, + CL2}) de (25)

and B(-, )y is a term incorporating the desired boundary conditions. Note that here, the Galerkin
term (24) has been integrated by parts, thus, BI{(-, )sc also includes the additional boundary terms.

Our desire is to construct a stabilized finite element method which admits solutions, Z{l, with
the same low Mach number asymptotic behavior as the solutions of the isentropic Euler equations,
7!. In addition, we require that the stabilization operator (25) must scale like the Galerkin and
boundary operators (24) as the Mach number is reduced. Specifically, these requirements imply

that

CiZj,+CiZj,~ | 0(1) for e—0, (26)
(

15



and that,
cl.#1(ClZp, + ClZyy) ~ CiZ}, + ClZ},, for i=1,2, ¢—0. (27)

Expressions (26) and (27), provide an additional condition, on the asymptotic behavior of the
components of the stabilization matrix 71 that should be satisfied for ¢ — 0. This condition can

be written as,

0(1) O ) O TI1 T2 T3 O(e™h) O(e™)
0(6_1) 0(1) 0 T2 T22 793 O(l) ~ 0(1) . (28)
O(e™1) 0 O(1) TI3 T3 T33 O(1) O(1)

2.5.1 Asymptotic behavior of 7 using standard definitions

We consider now the standard definition of the stabilization matrix, given in (22), applied to
our simplified problem (23), and show that it fails to satisfy condition (28). Specifically, for one

dimensional problems, the standard stabilization (22) is, for p = 1,
—1 [ -1
T = £[|Clal ™,

where k, is a constant proportional to the element size. Based on the above assumed behavior of

the solution, it can be shown that for € — 0,

Ofe €2
Tid ™~ () 06 : (29)
O(e®)  Ofe)

It can easily be verified that this stabilization matrix, does not satisfy the condition (28), which in

the one dimensional case is

O(l) 0(6_1) 711 T12 O(E_l) N 0(641) (30)

O™l 0(1) Tl T2 0(1) 0(1)
Therefore, this form of 7/, will fail to provide adequate stabilization when € — 0. It can also be
shown that, in the multi-dimensional case, the standard choice of stabilization matrix (22), does
not have the appropriate asymptotic behavior for e — 0, either.
When working directly with entropy, or conservative variables, the analysis is more complicated
because the link between these variables and the incompressible velocity and pressure is less trans-
parent. It is observed in practice that the standard stabilization scheme (22), when used with the

equations written in terms of entropy variables, produce solutions which deteriorate severely when

16



the Mach number is reduced. In [8], the use of the standard finite volume upwind scheme, using
Roe’s dissipation, is shown to give in the incompressible limit, solutions in which the pressure vari-
ations do not scale like the Mach number squared. This first order finite volume upwind scheme,
can be thought of, at least in one dimension, as the result of using a stabilization matrix of the

form (22), directly with conservative variables.

2.6 Alternative definition of 7 for low Mach number flow

Our objective is to derive a stabilization matrix 7, for the variational formulation in entropy
variables (18). An approach which has been advocated in the design of low Mach preconditioners
for finite volume schemes [23, 6], has been to derive an appropriate stabilization matrix 7, for the
system (8), and then transform it to conservative variables.

It is apparent that, even with the additional constraint given by condition (28), the stabilization
matrix is not uniquely defined and some freedom is still available in constructing it. In addition
to the requirements placed on the construction of the standard forms of 7, i.e. (22), we place the

following three constraints:

i) the entropy equation, which decouples from the other equations, is stabilized as an indepen-

dent quantity convected with the velocity.

i1) the vorticity equation, which, in the incompressible limit, decouples from the other equations
after taking the curl of the velocity evolution equations, is stabilized as an independent

quantity convected with the velocity.

#ii) the resulting algorithm has the correct low Mach number scaling as discussed in the previous

section.

In order to incorporate the above conditions, we consider the Euler equation corresponding to the

variational formulation (23), augmented with the entropy equation,
CIZ,I + Cs Z’Q = (Cﬁ-(ClZ,l + CQZ’Q))J + (C;ﬁ—(ClZ,l + CQZ’Q)),2 . (31)

We shall further assume that, only for the purpose of deriving 7, the matrices C, and C; are locally
constant and therefore the above system of equations can be treated as if it was linear.
Requirement i) forces the last row and column of T to be zero, except for the diagonal entry

which corresponds to a velocity time scale. Requirement i1), implies that the rest of the matrix

17



must also be of diagonal form. The entries in the second and third rows must be equal and are also
associated with a velocity time scale. Therefore, we find that 7, for the complete system must be

of the form

Rl

il

poad

fv
oo O
o o o o
o o O O
o> O O O

where b = 1/|u| and h, is the size of the element. In order to satisfy the low Mach number scaling,
it is clear that b ~ O(1), and therefore a must be O(e?). The simplest choice, having the right
dimensions, is a = |u|/c?. For very high speed flows, the stabilization should transition to a pure

streamwise upwinding such that @ — 1/[ul. In practice, the specific definition of 7 which we use

is,
[~ 0 0 0]
0O . 0 0O
7= , (33)
0 0 7 O
| 0 0 0 7 |

where 7. is the convective timescale and 7, is the acoustic timescale. Specifically, for the convective

timescale, we employed a form proposed in [17] for scalar convection,

=L, - gl
-1 _ 1"
Te _Zli.l.’

i=1 ?

where i is the average velocity in the element, and 1; is the vector between the nodes of side ¢ of

(=1}

the element. We then define the acoustic timescale as,

2
-1 -1 c

=7, + he!ﬁl.

Using these definitions, the acoustic timescale, 7,, has the correct low Mach number behavior
required by the asymptotic analysis. Also, 7, behaves appropriately for large local Mach numbers
where it returns to the convective timescale 7.

Finally, the required form of 7 can be obtained by transforming the system (31) to entropy

variables. In principle, this could be accomplished by using the transformation matrix S =V,z.
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Inserting dZ = S™!'dV into (31) and multiplying through by S-7, gives,

S-TCiST 'V, +8TC8 1V, = (S77CS7!IS7ST(STICISTIV +87TC8TIV,)) o+
(S TC,87'57ST(STTCiS ™'V, +8 TC87'V ) .
(34)

Where, the transformed matrix 7, can be readily identified as
r=878T. (35)

We note that the transformed matrices S~7C;S™!,4i = 1,2, are not equal to A, i =1,2 and indeed
S—T8~1 is not be equal to Ag. This is due to the fact that the entropy equation in (8), completely
decouples from the rest of the system. Therefore, one can multiply the first three components of
dZ, i.e. dp/pc,duy,duy. by a scalar factor, and the fourth component of dZ, i.e. ds, by different
scalar factor without changing the jacobian matrices C;,7 = 1,2, or 7, in (31). It is not hard to
find the scalar factors that one should use to define modified dZ variables so that the resulting
S matrix would give S~TC;S™! = A;,7 = 1,2. An alternative procedure for evaluating S, which
avoids the use of modified variables is given in [1]. Once the appropriate transformation matrix

has been evaluated, 7 is found using expression (35).

2.7 Numerical results

In this section we present some numerical results that illustrate the performance of the proposed
algorithm. For all the examples, we have solved problem (18), which is expressed in terms of
entropy variables. The non-linear set of equations resulting from the discretization of (18) is solved
by a Newton-Raphson iteration using exact linearization. For some of the simulations however, it
was necessary to damp the Newton-Raphson iteration during the first few iterations. The solution
of the non-symmetric non-linear system of equations required for each iteration was solved using
an enhanced BiCGstab(2) algorithm [7, 21] together with a block ILU(k) preconditioning, with k
either 0 or 1. For all the examples we have considered the two choices of entropy variables given in
(1], and we have not found any appreciable differences in the computed results. We have followed
[2], and employed a linear representation of the solution over each triangular element, but have
used a quadratic mapping to more accurately represent the geometry. We have found that using
quadratic interpolation of the geometry greatly improves the quality of the solution and only incurs

a minimal incremental cost.
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2.7.1 Example 1: Flow over cylinder

In this example, we consider the flow about a cylinder and perform several numerical tests. Because
of the symmetry of the problem at the low Mach numbers considered here, only half of the domain
is considered for the solution. We have used a sequence of three meshes of triangular elements
containing 1271, 4941, and 19481 nodes, respectively, to discretize to computational domain. The
medium and fine meshes are obtained by uniformly subdividing the coarse mesh. Figure 4 shows a
detail of the medium size mesh near the cylinder.

In the first test, we consider the SUPG algorithm (18), with the standard choice of 7 given by
(22) for p = 1, and solve for the flow about the cylinder on the coarse mesh for free streamm Mach
numbers of 0.38, 0.1 and 0.01. Figure 5 shows the pressure contours for the three solutions. The
degradation in the solution accuracy when the Mach number is reduced is clearly apparent. We
could not obtain any numerical solutions below a free stream Mach number of 0.01, and for this
Mach number, the iteration would only converge if a damped Newton-Raphson iteration was used.
For comparison purposes, we show in figure 6 the pressure contours obtained, for the same flow
conditions and mesh, when the proposed form of 7, given in (35), is used. No qualitative degradation
of the solution is observed and in fact, we observe that, the solutions for Mach numbers of 0.1 and
0.01 look almost identical, as expected.

In the second test, we perform a mesh convergence analysis at various Mach numbers. Figure
(7) shows the Mach number contours computed on the coarse, medium and fine mesh for a free
stream Mach number of 0.38. Analogous results, but now for a Mach number of 0.001 are shown in
figure (8). The qualitative behavior of the solution, at both Mach numbers, does not present any
anomalies. In figure (9), a plot of the solution error norm versus grid size is shown. Here, solutions
at Mach numbers of 0.38, 0.01, and 0.001 are compared and second order convergence is observed
in all cases, showing no deterioration in the convergence rate as the Mach number is reduced. The
norm of the solution error considered was [ [, (V — VP A(V — V1)dQ] 1/2, where V, is a reference

solution computed using a quadratic approximation on a highly refined grid of 77361 nodes [26].

2.7.2 Example 2: Flow over an airfoil

In this example, the proposed scheme was used to simulate the flow over NACA 0012 airfoil at
Mach numbers of 0.01 and 0.6, and at an angle of attack of 2°. An unstructured triangular mesh

of 19948 nodes was used for the simulation. Figure 10 shows a coarser mesh from which the
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19948 node mesh can be obtained by uniformly subdividing each element into four elements. The
computed Mach number and pressure contours for the two flow conditions are shown in figures 11
and 12, respectively. The qualitative behavior of the solution looks excellent, and again, no solution

accuracy or numerical anomalies are observed when very low Mach number flows are considered.
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Figure 4: Detail of the medium size mesh used for computations

3 High Order Finite Element Discretization of the Compressible

Euler and Navier-Stokes Equations

This section centers upon a high-order accurate, stabilized, finite element method for the numerical
solution of the compressible Euler and Navier-Stokes equations. The SUPG finite element method
for compressible flow simulations was initially developed and analyzed by Hughes et al. [14, 15,
13, 20] and has since gained significant popularity. Its relation to multidimensional upwinding was
elucidated in [28, 29] and higher order implementations for inviscid flows were presented in [2].
In [1], the SUPG algorithm was extentded to cover the simulation of near-incompressible flows
by employing a stabilization matrix which exhibits proper scaling over the entire range of Mach
numbers. Here, we focus on the higher order implementation of the algorithm developed in [1] for

invicid and viscous flows.
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Figure 5: Static pressure contours computed on the coarse mesh using the SUPG algorithm with
the standard choice of stabilization matrix given by (22), for a free stream Mach number of a) 0.01,

b) 0.1, and ¢) 0.38.
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Figure 6: Static pressure contours computed on the coarse mesh using the SUPG algorithm with

the proposed choice of stabilization matrix given by (35), for a free stream Mach number of a) 0.01,

b) 0.1, and c) 0.38.
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Figure 7: Mach contours for a free stream Mach number of 0.38 computed on the : a) coarse, b)

medium, and ¢) fine meshes.
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Figure 8: Mach contours for a free stream Mach number of 0.001 computed on the : a) coarse, b)

medium, and c¢) fine meshes.
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Figure 11: Mach number contours for the solution of the flow over NACA 0012 at an angle of attack

of 2° for a free stream Mach number of : a) 0.01, and b) 0.6.
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Figure 12: Static pressure contours for the solution of the flow over NACA 0012 at an angle of

attack of 2° for a free stream Mach number of : a) 0.01, and b) 0.6.
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3.1

We start from the time dependent two dimensional compressible Euler equations in conservation

form

where

and

v
1

In the above expressions, p is the density; u = [ul,UQ]T is the velocity vector; E is the specific
total energy; p is the pressure; and the comma denotes partial differentiation (e.g. U, = 9U/0t,
the partial derivative with respect to time, F;; = OF;/0z;, the partial derivative with respect
to the j-th spatial coordinate). The system of equations is closed once the pressure is related to
the problem variables through the equation of state, p = (v — 1)pe, where e = E — lu|?/2, is the

internal energy. Here, 7 is the ratio of specific heats and p is the absolute viscosity, both of which

Compressible flow governing equations

U,g -+ (F — Fu)l’l -+ (F - Fv)Q’Q =0,

p pU1
2
U] uy +p
? s F, = P
pug puLU?
| pE | | u1(pE +p)
0
.
_ 11 Cw
T12
| w7+ ueTi2 T @1

B n
pu2
pUIU2
F, =

pus +p

| u2(pE +p) |

0
21
T22
| u1T21 t U222 + G2 |

are assumed to be constant. Following the usual assumptions:

and
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We will assume that all the above quantities have been non-dimensionalized using reference, or free
stream, values for density p,, velocity u., and length L. Thus, the dimensional variables, denoted

with an overbar, are related to the non-dimensional variables introduced above as

P o P _E iy . _u,t
p_E;’ ui_;t_*ul'_LQ* p—p*uz~, E—’l—l‘?’ /"—;;W J’l'_fa?'—]-vza and t= I
We note that the equation system (36) can be written as

U, + AU +A U, = KUy + (Ki2Up)n + (Ka1Ujp) 2 + (K22Up2) 2, (37)

where the Jacobian matrices A; = F; y, i = 1,2, are unsymmetric but have real eigenvalues and a
complete set of eigenvectors. K;; = FfUJ are the viscous flux jacobians. The above equation may

be symmetrized through a change of variables, for details, we refer the reader to (13, 12].

3.2 Variational formulation for the steady state problem

We now consider the compressible steady problem in conservation form expressed in terms of
symmetrizing variables. The conservative form of the equations is taken to be the starting point
because we are ultimately interested in an algorithm that can be used over the whole range of
speed regimes, including situations were the solution may contain discontinuitites. The problem is

defined in a domain 2 with boundary I' by

(F+F" ) (V)1 +(F+F)a(V)e =0 in € (38)
A V=A_g on T\, (39)
F'-n=f on [, (40)

For simplicity, the domain boundary is assumed to be made up of a solid wall I'y, and a computa-
tional far field boundary I'\I';. In (39, 40), n = [n1,n2)7 is the outward unit normal vector to T,
and A, = A,Aq, A, = Ain; + Aony. Finally, A; = A Ay, and A, denotes the negative definite
part of A,.

Let the spatial domain €, be discretized into non-overlapping elements T, such that Q=T
and T, Te = 0, e # ¢'. We consider the space of functions Vj, defined over the discretization and

consisting of the continuous functions which are piecewise linear over each element

Vi = {W|W e (CO0)4, Wlg, € (Pe(Te))*, VT, € Q}.
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The SUPG algorithin can then be written as: Find Vj € VP such that for all W € V"
B(Vh,W)ga[ + B(VhaW)Supg + B(Vh,W)bc = 01 (41)

where the forms B(:, )gats B()supg and B(-,-)pc account for the Galerkin, SUPG stabilization,

and boundary condition terms respectively, and are defined as

B(V.W)u = /Q(—W,1 (F = F) (V) = Wy - (F — FY)5(V)) d2, (42)

B(V,W)supg = /(AIW,1 + AW, T (A )V + AV — (KnV ) — (Ki2V2)1 —43)
9]

(K1 V 1) 2 — (K2V2)2) df2,
and

B(V,W)bc=/ W (B +F')(V,gn)ds.+ [ W F'(V,f;n)ds. (44)
INS N o

where T is the stabilization matrix. The numerical flux function on the far field boundary F gy, is

defined by
Fyr(V_,Vain) = S(Ba(V2) 4 Fa(V4)) = 2 An(V (Vo VIV~ Vo)

Here, |A, (V)| = A} (V) — A7 (V) is the absolute value of A, evaluated at V*, and V*(V,,V_),
is the an average between the states V1 and V~. The average state, V*, is chosen to ensure
the global stability of the algorithm [2]. The acquisition of V* requires iteration and in practice
an arithmetic average may be used. The Roe flux [19] was used in all the numerical simulations
presented herein. For inviscid compuations, the viscous terms in the expressions above would of
course, vanish. For viscous simulations, Dirichlet boundary conditions may replace portions of the

boundary integral.

3.3 Numerical results

In this section we present some numerical results that illustrate the performance of the proposed
algorithm. Test problems were solved employing both linear and quadratic element approximations.
For comparative purposes, the meshes used for all linear element approximations were obtained by
subdividing each element of the corresponding quadratic element mesh into four linear elements.
In this way, comparisons between P; and P, solutions involving the same number of nodes can
be made. h. thus represents the distance between two nodes in the meshes used in the numerical

simulations presented herein.
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3.3.1 Example 1: Rinleb flow

In this example, we consider a ringleb test case (an exact solution of the Euler equations, [27]).
The error is computed in the Ly entropy norm [1]. Both Py and P, element approximation achieved
their respective optimal convergence rate of O(h?) and O(h®) respectively, as can be seen in figure

13.

3.3.2 Example 2: Flow over an airfoil

In this example, the proposed scheme was used to simulate the flow over NACA 0012 airfoil at a
Mach number of 0.6, and at an angle of attack of 2°. In figure 14, the L entropy deviation for
both P; and P, simulations are presented. The quadratic element approximation results in a much
lower level of entropy error than its linear element counterpart. The geometric singularity at the
trailing edge of the airfoil requires a much finer discretization around that point relative to the
rest of the mesh for both the linear and quadratic element approximations to achieve their optimal
convegence rate. This is particularly important for the P, approximation since the error away from
the geometric singularity vanishes far quicker, rendering the trailing edge error as the dominant
source of error for the numerical approximation. Figure 15, shows the computed Mach contours

for the p; and P, simulations.

3.3.3 Example 3: Flow over flat plate

In this example, we consider flow over a flat plate of unit length. The computational domain is
[~1.5,1] x [0, 1], with the leading edge of the plate at (0,0). The free stream Mach number is 0.5.
The Reynolds number is raised from 8000 to 64000 in successive simulations while keeping the mesh
unchanged. The results in the form of boundary layer thickness, dog (z = L), are plotted in figure 16.
The quadratic element approximation yields results very close to that of the Blasius solution while
the linear element approximation shows increasing error with rising Reynolds number. Further
numerical tests have shown that it is possible to resolve the Blasius boundary layer with only two

elements when quadratic element approximation is used.

3.3.4 Example 4: Transonic computations

Here we show the application of the algorithm proposed using P interpolations to the inviscid

computation of the transonic flow over a NACA0012 airfoil at a mach number of 0.8 and and angle

32



of attack of 1.2° degrees 17. The shock capturing term employed is that reported in [2]. This
results are only preliminary but illustrate the ability of the high order finite element algorithm to

capture shocks.

4 An Algebraic Multigrid Method for Convection-Difsusion Flows

Rapid advances in unstructured mesh methods for computational fluid dynamics (CFD) have been
made in recent years and, for the computation of inviscid flows, have achieved a considerable level
of maturity. Viscous flow technology is also rapidly developing and the use of unstructured grids
has been indispensable. Unstructured meshes offer a practical means for computation and have
the advantages that they provide both flexible approximations of the domain geometry and easy
adaptation/refinement of the mesh.

Accurate and efficient solutions to the compressible Navier-Stokes equations, especially in the
turbulent high Reynolds number limit, remains one of the most challenging problems due to the
myriad of associated length scales required to properly resolve flow features. This is especially
true in the boundary layer regions where severe grid anisotropy is required. Discretization of the
partial differential equations on the mesh gives rise to a large linear system of equations. For 3D
problems, these large discrete problems often cannot be solved using direct solution methods. As
a result, iterative solution methods based on Krylov subspace methods and /or multilevel methods,
which include multigrid and domain decomposition methods, are attractive. Multilevel methods
can often provide mesh independent convergence rates [31] and offer good scaling of the compute
time as well as data storage requirements. In the typical context, multilevel methods are not used
as solvers but as preconditioners for Krylov subspace iterative solvers. This provides a powerful
and flexible framework for computation.

There are two major problems associated with AMG for the solution of convection diffusion
flows. The first is the definition of accurate coarse spaces in the multilevel construction. This
is required to properly capture the behaviour of the discretized equations on these coarse spaces.
The second problem is the behaviour of the smoothing operators with high Reynolds number
and anisotropic effects. These two effects are typically the leading causes of convergence rate
deterioration.

In this section, we present a multigrid methodology for the solution of convection-diffusion based

problems, especially in the finite element context. The target application for this algorithm is high
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Figure 13: Top: Ly entropy norm error of ringleb flow solution, Bottom: Computational mesh.
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Figure 15: Mach contour of flow over NACA 0012 airfoil, Moo = 0.6, a = 2°
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Reynolds number Navier-Stokes flows.

4.1 Model problem

The model problem considered is the linear convection diffusion problem

U-V¢ = vVp+f inQ (45)
¢ = ap on d{p, (46)
@ = ay on 0Qy, (47)
In

where  is a bounded domain in IR" (n = 1,2,3) with boundary 9Q, and U = (Uy,...,U,) is an
incompressible prescribed velocity field. The finite element discretization is based on the stabilized
SUPG formulation analogous to that described in the previous sections. Introducing the variational

form of Eq. 45, the problem reduces to finding ¢ € H} (€%; 99Qp) such that

a($,v) = F(v) (48)
where
ald,v) = /Q 3(U - V) dQ + /Q UV V5 dQ (49)
F(v) = /Q fodx (50)
b = v+7U-Vu (51)

H}(2;8Qp) is the Sobolev space which contains functions that vanish on Oflp with square
integrable first derivatives, ¥ is the stabilized SUPG test function and 7 is the SUPG stabilization
parameter. The discretization of the problem is done by covering {2 with non-overlapping finite
elements through a triangulation and defining standard linear basis functions over these elements.
The discrete problem now reduces to:

Find ¢, € V}, such that
a(pp,vp) = F(up) Yup, € Vj, (52)

where Vj, is the finite dimensional subspace of H}(§2; 9€p) consisting of continuous functions which

are linear over the elements. This results in a system of linear equations
Ap=D (53)
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which need to be solved for the discrete solution ¢p.

In order to obtain accurate results which provide detailed resolution of the flow field, a well
resolved mesh is required which gives rise to a large linear system. In general, iterative methods give
very good performance when the underlying matrix A is symmetric and positive definite (SPD).
However, the resulting matrices from the discretization of convection-diffusion problems are not
SPD. This is usually due to the anisotropic stiffness introduced in the system of equations through
the grid and the convective nature of the system.

Here, the development of a multilevel methodology based on algebraic multigrid is discussed.
Multigrid has shown great promise in the solution of linear algebraic systems and can be shown
to have mesh independent convergence for a wide range of problems. Iterative schemes remove
certain types of errors, typically high frequency (rough) errors but are unable to damp out the
low frequency (smooth) components. Multigrid may be used in conjunction with these iterative
schemes to form a powerful solver by removing these smooth error components. Representation of
these smooth errors on the multigrid coarse spaces means that they appear rough on these spaces
where they may be damped out effectively.

The construction of these coarse spaces may be done in several ways and the most obvious
one is to simply retriangulate the domain with a larger mesh spacing. This however is a very
expensive procedure especially for meshes required for Navier-Stokes simulations which can have
very complex geometries. These methods are termed Geometric Multigrid (GM) and they make full
use of geometry. Another way is by nodal decimation which involves selection of a vertex subset and
retriangulation. The selection process is typically based on fine grid geometry and depends on some
pattern in the fine grid [32]. Depending on the pattern, different coarsenings arise. Calculations in
the inviscid regions of the mesh use a full coarsening technique which gives a 4:1 reduction in 2D,
an example of which is given in Fig. 18(a). However, alleviation of the stiffness due to stretched
grids in viscous flow calculations requires semi-coarsening [33] which gives a smaller reduction. We
refer to [34] for other references on this.

In contrast to geometric multigrid, another promising avenue is Algebraic Multigrid (AMG)
which uses an algebraic definition for the coarse spaces by agglomeration of the finite element
subspace on the fine grid [35]. A purely algebraic definition allows for automatic construction of
the coarse spaces and does not require geometric information. However, the smoother and the
coarsening algorithms need to be carefully matched. The agglomeration technique is typically

nodal [36, 37, 38, 39] which results in the Additive Correction Multigrid (ACM) method. However,

40



(a) Vertex Agglomeration (b) Element Agglomeration

Figure 18: Agglomeration Types

another effective method is through elemental agglomeration which involves the agglomeration
of neighbouring elements into macroelements as shown in Fig. 18(b). Hence, the coarse space
elements are not standard elements and as such, the coarse space meshes are not proper meshes.
Appropriate basis functions as well as transfer operators need to defined. Perhaps the most recent
development in this area is by Chan et al [34, 31] and the results have been shown to be promising.
This coarsening technique is based on the underlying graph of the fine grid and does not involve
geometry. The technique produces a set of node-nested coarse spaces which can be retriangulated
based on fixed patterns in the agglomerated macroelement. This method offers great potential
since the proposed interpolation operators are based on integers and leads to savings in storage and
CPU time. Also, the algorithm recovers the natural structure of the coarse grids if the fine grid
is regular. However, since the algorithm is purely topology-based, it does not distinguish between
anisotropic and isotropic mesh regions which may lead to decreased convergence of the multigrid
procedure. We propose a new and simple technique for defining coarse spaces which are properly
nested in both the elemental and nodal sense. This method represents a hybrid between geometric

and algebraic multigrid.
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4.2 Multigrid Principles
4.2.1 Multigrid Requirements

In order to solve the linear system Eq. 53 using multigrid, the definition of the coarse spaces as
well as the representation of the error components on these coarse spaces must be defined. Let
{Tr: (k=0,...,m)} represent the hierarchy of finite dimensional coarse spaces along with the
associated coarse grids. Also, let {Ax : (k = 0,...,m)} be the approximations of A on these
subspaces such that Ag = A. In order to represent the error in one space on the next coarse space,

we require a transfer operator called the restriction
Ry : P — \Ilk+1 (54)

which acts as a mapping between these spaces through a reduction in the space dimension. Also,
error correction on the fine space from the coarse space requires the transfer operator called the

prolongation
Py U — Uy (55)

which acts as a reverse mapping. To complete the picture, we require a smoothing operator Sk
which acts to reduce the rough error components on each subspace V.. These smoothers may be
different on each grid but are typically chosen to be the same e.g GauB-Seidel . The generalized

multigrid cycle now reduces to

1. Perform v, pre-smoothing sweeps on the fine grid.
=+ Sk — Akl ) (p=1,...,1)
2. Restrict the equation residual from the fine grid to the coarse grid.

¢k,pre = ¢Z1

ber1 = Rilbx — Axdpre)
3. Solve on coarse grid and compute the coarse grid correction.
Pr+1 = A;—C—ilbkﬂ
4. Prolong the correction back to the fine grid from the coarse grid.
Pk corrected = Pk pre + PrPr+1
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5. Perform v, post-smoothing sweeps on the fine grid.

0
¢k = ¢k,corrected

(ﬁi = ¢271+Sk(bk—Ak¢£~1) (p———l,...,l/g)

Depending on the scheduling of operations between the spaces, we end up with different flavors
of multigrid cycles such as the V-cycle, W-cycle and F-cycle ([40]). In the algebraic multigrid

context, the coarse grid approximations Ay to A are defined using the formula
A = ReAyPy (56)

In our implementation of multigrid, the coarsening procedure terminates when the coarse grid

operator A; is small enough to solve exactly.

4.2.2 Galerkin Form for Transfer Operators

While the restriction and prolongation operators are independent, a Galerkin form of these opera-

tors requires that
R; = P}

Given the fact that a correction from the coarse space is required to remove the smooth error
components from the fine space, it is natural to seek the best possible correction. Let ¢k represent
the correction from the coarse grid and ¢y the current solution on the fine grid. The error in the

solution after correction is thus

er = ok + Propy1 — Ap 'be

Let us measure the error in the A-norm, || - || and minimize the error:
minF(¢es1) = min|(dx + Predrr1) — Ag bk la (57)
Fht1 Prt1
= min(gy + Pegers — A; 00T Ar(be + Pidinr = A y)
k41

Differentiation of the quadratic form with respect to ¢x41 gives
P (A + AL (¢ + Prdpsr — AL bk) =0 (58)
For a symmetric matrix Ay, we may easily solve for ¢x; and obtain
$rr1 = (PLAGPR) T Py(be — Axcy) (59)
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Further examination of the Hessian shows that this is a minimum. Comparing this formula to the

A, in Eq. 56, we find that

Ry = P} (60)
where the restriction is now defined as the formal adjoint of the prolongation:

R, =P (61)

The same argument cannot be made for a non-symmetric matrix since the use of symmetry in
the proof may not be used any longer. However, it can be seen that even in this case, Eq. 59
corresponds to a stationary point but no information may be gleaned from the Hessian. However,
if we measure the error in the residual in the L2-norm and follow a similar proof, we again come

to the same result as Eq. 60.

4.2.3 Fixed Point Iterative Methods
Let us consider a splitting of the matrix A in the following form:
Ay = M —-Ng (62)

where My is non-singular. The basic idea behind preconditioning is to obtain a matrix My such
that M =~ Ay and inversion of My is much less expensive than Ax. A basic iterative method is

defined as the following linear fixed-point iteration:
L= MNRdg + My ok (63)
= ¢ + M bk — Axdi)
The matrix My, is known as the preconditioning matrix and matrix S = M,:lN;C =1- M,;lA,c is

called the iteration matrix or smoother. Damping may also be taken into account by defining:

G P = Spdlh + M b (64)
. ;1 .
1= e 4 (1 - w)ek (65)
= S;l +wM; b (66)
where
S; =wSg + (1 —w)I (67)
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For a given coarse space, let the exact solution be ¢, and the error in the solution be
el = ¢k — bk (68)
This error is controlled by S in the following fashion:
el = @ gk
= Spgj + M by — Igy
= Skdi + My  Axdr — Iy

= Sidi — Skdk

= Siel, (69)
The convergence property of the iterative method (63) can be summed up in the well known result:

0

Theorem 1 Convergence of (63) for any initial guess u® is equivalent to

p(Sg) <1 (70)

4.2.4 Multigrid as a Fixed Point Method

Multigrid may also be thought of as a fixed point method and this can be shown fairly easily for
the V-cycle multigrid cycle. We consider the general V (v, 1) cycle for the two-level method but
simplify it by assuming that we have only one pre-smoothing and one post-smoothing i.e a V(1,1)
cycle. Let A represent the fine grid matrix and A represent the coarse grid matrix. For an initial

guess #0 =0:
1. Pre-smoothing: ¢) = 87b
2. Coarse grid correction:

(a) Restrict residual:
¢d9 =R(I - AST)b
(b) Coarse grid solve:

¢V =A"'R(I-AST)
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(¢) Fine grid correction:

o? = ¢(1)+RTq(1)

= ST+ RTATIR(I-AST)]b
3. Post-smoothing;:

M = ¢ +S(b- AHY)
— [S+ST-SAST +(I-SA)RTAT'R(I- AS)]b

The multigrid iteration matix Spyitigria now takes the form:

Smultigrid = I‘M_lA

= (I-SA)I-RTA'RA)(I-STA)

For the extension to multiple levels and variable number of pre- and post-smoothing sweeps, we

refer to [31].

4.2.5 Convergence Conditions

In order to obtain mesh independent convergence properties, certain conditions must be met by
the transfer operators. The definition of the subspace ¥y is obtained by interpolation in ¥ _1,
and according to the analysis in [31], these subspaces must satisfy stability and approximation

properties to ensure convergence of Eq. 63. These properties are:

IRculhie € Cllullin.  (stability) (71)

IRkt —ulloq < Chlullio (approximation) Vu € HY(Q) (72)

and as noted, special care must be taken in defining Ry. Another condition as outlined in [40] is
mp +mp > 2m (73)

where the orders mp, mg of Pi and Ry, are defined as the order (degree plus one) of the polynomials
that are interpolated exactly by Py and Ry, and 2m is the order of the governing partial differential
equation.

The use of nodal agglomeration in ACM to construct the subspaces results in the definition of
the restriction as an injection operator. This has several associated problems. T he first is that in
3D, this operator violates the stability property (71) ([31]). Secondly, both mp and mp are unity

and for the Laplacian operator (2m = 2), the accuracy condition (73) is violated ([40]).

46



4.3 Agglomerated Coarse Space

In this section, we now describe the construction of the coarse spaces as well as coarse space basis
functions and multigrid operators. Our goals in the agglomeration and associated construction of

the coarse space basis functions are:

1. The coarse grid matrix Ay defined on the coarse grid should be a good approximation to the

fine grid matrix Ayp.
2. The coarse grid should have a reduction of anisotropic effects from previous coarse spaces.

The proposed algorithm is based on the fusion of coarse space elements into macroelements with
subsequent definitions of the coarse grid topology and basis functions. This method is applied
recursively to generate the hierarchy of coarse spaces. One essential difference between this method
and that proposed by Chan et al is that the coarse mesh elements are not converted into stan-
dard elements by a retriangulation but are generalized polygons formed by the agglomerated fine
mesh elements. This is especially attractive in 3D because of the complicated rules which may be
involved for the retriangulation method described in [34]. Although the support for the basis func-
tions defined on these macroelements is larger than standard triangular elements, a well designed
agglomeration should relieve some of this. This algorithm also has the feature that the resulting

coarse grid topology is both node-nested and element-nested.

4.3.1 Coarse Space Topology

The coarse grid topology is constructed by partitioning of the elements into macroelement groups
as shown in Fig. 19. A macroedge is defined to be the ordered collection of fine grid edges which
are shared by two neighboring macroelements. To complete the definition of the coarse grid graph,
the coarse nodes are chosen to be the fine grid nodes where three or more macroedges meet. This
is the reverse of what is described by Chan et al where the coarse grid points are first defined and
then the macroelements are chosen.

Two different element partitioning algorithms have been developed and both are similar in the
sense that they are based on elemental accretion across edges using some measure of the coupling
strength of the vertices making up that edge. They however differ in that one tries to alleviate grid
anisotropy while the other typically introduces grid anisotropy in regions of stiff matrix coefficients.

The second algorithm is based on a semi-coarsening algorithm using the subspace matrix as the
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Figure 19: Coarse Space Topology

control parameter while the first is a reduced-geometry based algorithm which attempts to alleviate

stiffness in regions of highly stretched grids.

Matrix Based Agglomeration

The matrix based algorithm has its origins in the pure AMG implementation of the ACM
algorithm. However, modifications are required in order to apply this to element agglomeration
as opposed to vertex agglomeration which it is was originally designed for ([37]. The basic idea
is that strong matrix coupling between vertices in the graph of the mesh typically corresponds to
a weak coupling between the vertices in the dual graph. The strength of the coupling is typically
based on the stencil coefficients of the matrix. We will describe later, the implemented definition
of the vertex coupling strength in relation to the development of the implicit line solver. Since the
dual graph vertices correspond to the elements, agglomeration of elements across edges with weakly
coupled vertices is equivalent to directional agglomeration of strongly coupled vertices.

Using this principle, we may now develop an algorithm which directionally clusters elements
in order to relieve stiffness in the next coarse space. The accretion is performed with a Breadth
First Search (BFS)/ Greedy algorithm which maintains a queue of elements sorted according to the
relative coupling strengths of the vertices on their bounding edges. We now present the algorithm

in detail:

Algorithm 1 (Matriz Based Macroelement Construction)
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Figure 20: Matrix Based Agglomeration in Boundary Layer

Step 0: Consider the graph of the mesh: G = (V,E) and calculate the coupling strengths for the

edges F in the graph.

Step 1: Seed element procurement. Obtain a seed element to initialize the BFS algorithm. If
there is no seed element in the queue, choose any suitable element which does not belong to a

macroelement group.

Step 2: Perform accretion around the seed element by recursively considering the neighbouring

elements.

Step 3: Repeat Step 2 until the macroelement has desired number of elements or heap contains

no more elements.

Step 4: If the number of elements agglomerated is less than a specified fraction of the desired
number of elements (usually %), these agglomerated elements are ungrouped and the original

seed element is marked.

Step 5: Repeat Step 1 until all elements either belong a macroelement or has been marked as an

invalid seed.

In Step 2 above, a heap is maintained whose members contains a key pair consisting of element
and face identifiers. Initially, seed element is placed on the heap. The head of the sced is then

popped for the current seed element and added to the macroelement list. For every neighbor
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of the popped element which does not belong to a macroelement, the connection strength of the
separating edge is checked. If the edge is considered to be weak, the neighboring element is inserted
into the macroelement. For every newly inserted clement, the neighbors which do belong to any
macroelement are considered and the corresponding element /edge key identifier pair is inserted into
the the heap according to the edge connection strength.

After the algorithm terminates, post-processing is necessary to deal with exceptions which may

arise. These are described below:

(1) Elements not in any macroelement: Elements which are marked as invalid seeds and have
not been absorbed into a macroelement will end up as lone elements. These elements are
merged with the neighboring element /macroelement that shares the edge with the weakest

connectivity.

(2) Insufficient number of elements: After exception 1 above, a macroelement may end up
with an insufficient number of agglomerated elements. The macroelement is divided up
amongst neighboring macroelements by erosion of the boundary elements until there are
no more elements. The decision as to where an element goes is also based on the edge

connectivity.

(3) Insufficient number of coarse nodes: A macroelement may also end up with two or less
coarse grid nodes which presents a problem in the construction of the transfer operators.

These macroelements are also divided up amongst neighboring macroelements.

This algorithm is closely tied to the line solver and can be particularly effective for equations
with strongly preferential directions. Extension to 3D would be straightforward if a suitable “face”
connectivity can be defined. If the connection strength for all edges is defined to be a constant, then
an isotropic agglomeration algorithm is recovered. Unfortunately, since there will be no preferential
direction, there is no real control in the regularity of the coarse grid and self similar meshes cannot

be obtained for structured, topologically rectangular meshes.

Geometry Based Agglomeration

The geometry based algorithm is based on the idea of removing grid anisotropy as well as
maintaining isotropy in the isotropic regions of the mesh. This is related to the work done by
Mavriplis [33, 41] except that it is applied to elements as opposed to vertices. The proposed

algorithm makes use of the edge lengths only and this represents a reduced geometry method. The
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reduced geometry for the lower level coarse spaces is defined entirely in terms of the fine grid i.e
the macroedge lengths are simply the sum of the edge lengths of the constituting fine grid edges.
The decision to agglomerate two neighboring elements is based on a geometry based connectivity

concept which we term macroelement skew.

Definition 1 For a general polygon, the polygon skew is a measure of anisotropy and is defined as

the area of the n-gon divided by the area of a perfect n-gon with the same perimeter.

In the extreme cases, this is zero for colinear polygon vertices and unity for a perfect n-gon. It can
be seen that this readily extends to 3D. The macroelemental arcas for the coarse spaces are also
easy to compute as they are simply sums of the agglomerated element areas. This makes it easy to
apply the algorithm recursively once the required geometry variables have been computed on the
finest mesh. In order to complete the operators required for this algorithm, we need to define the

edge connection strength which we term edge skew.

Definition 2 For an element which borders a macroelement/element on a given edge, edge skew
is defined as the macroelement skew of the macroelement which would be created if the element is

merged with the macroelement/element across that edge.
We now present the algorithm in detail:

Algorithm 2 (Geometry Based Macroelement Construction)

Step 0: Consider the graph of the mesh: G = (V,E) and calculate the edge length for the edges E

in the graph.
Step 1: Initialize seed queue.

Step 2: Seed element procurement. Obtain a seed element to initialize the algorithm. If there
is no seed element in the queue, choose any suitable element which does not belong to a

macroelement group.

Step 3: Perform accretion around the seed element. Place seed element in macroelement and for
every neighboring element, compute the edge skew. Every neighboring element which has an
edge skew larger than some specified fraction (typically 0.75) of the average edge skew and not

in a macroelement is placed in the macroelement.
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Step 4: Enqueue seed elements. New seed elements are placed in the queue to continuc the algo-
rithm. These are chosen to be elements which share a vertez but no edges with the macroele-
ment. In 3D, this would extend to elements which share a vertex and/or an edge but no faces

with the macroelement.

Step 5: Repeat Step 1 until all elements either belong a macroelement or there are no more seed

elements.

A queue of seed elements needs to be maintained and hence in Step 1 above, this is initialized
with one element. This initial choice can be very important especially in cases of unstructured
meshes generated from structured data. In such a case, the agglomeration pattern may radically
depart from a 4:1 agglomeration in 2D since the accretion algorithm will not properly identify
potential elements. In this case, simply pick an element with no domain boundary edges.

After the algorithm terminates, post-processing is necessary to deal with “sliver” elements which
may not have been picked up by the algorithm. A determination of which macroelement to merge
these elements with is made a-priori based on edge skew. In the case where the lengths and areas
are equal, the algorithm degenerates to a 4:1 isotropic agglomeration in 2D and fully recovers the

natural coarse structure for a regular grid.
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(a) Matrix Based Agglomeration (b) Geometry Based Agglomeration

Figure 21: Resultant Agglomerations Based on Different Agglomeration Algorithms
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Fig. 21 shows the difference between the two algorithms in the case of a cosine Ni Bump with
9600 elements and 4961 vertices. The underlying geometry is generated from structured data and

the geometry based algorithm nicely recovers the natural coarse grid.

4.3.2 Coarse Space Basis Functions

The transfer operators may now be defined based on the constructed macroelements. The GCA
formulation is in effect so it is sufficient to construct the prolongation operator only. We would like
the basis functions to at least satisfy the stability (71) and approximation (72) conditions, preserve
the constant function, and behave like standard interpolants i.e
1 ifi=j
Di(x;) = (74)
0 ifi#)

The construction of the proposed basis functions makes use of topology and reduced geometry
if provided. If the geometry is not given, then the clements are assumed to be isotropic. We now
define the basis functions using graph distance interpolation on both the boundary and interior. If
the geometry is available, this is used in combination to form a more accurate interpolant. This is
an improvement over the interpolation proposed by Chan et al which makes use of graph distance
interpolation on the boundary and constant interpolation over the interior. This algorithm leads

to a quasi-linear interpolant as shown in Fig. 22. The detailed algorithm is given below:

d=1 ®=1/2 o =0

Coarse
—

Nede d=0 ®=0 =0

0

Figure 22: Coarse Space Basis Function Based on Graph Distance

Algorithm 3 (Basis Function Construction)
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Step 1: For each macroelement, create a local subgraph. In the process, create an ordering of the

boundary edges such that the boundary can be traversed.

Step 2: Eztract the list of interior vertices. Extract the ordered list of coarse grid vertices by

traversing the boundary edges.

Step 3: For all fine grid edge vertices which lie between consecutive coarse grid nodes, construct

length weighted interpolation data. The macroedge length is also computed simultaneously.

Step 4: Interior vertez interpolation. For each coarse grid node in the macroelement, a BFS
iteration on the local subgraph is performed with the coarse grid node as a seed. Both the
level set as well the distance from the coarse node is recorded for all interior nodes in the
subgraph during the process. The graph distance of each macroelement fine grid node from
the macroelement coarse grid nodes is then set. For each fine grid node, these distances are

then weighted to sum to unity.

4.3.3 Scaling Issues

The success of the multigrid methods depends heavily on how good of an approximation the coarse
space matrices Ay are to A. In the GCA formulation, special care must be taken to ensure that
that these approximations are accurate enough. The construction of the prolongation operator is
typically not a problem. However, the definition of the restriction operator needs to be modified

slightly. Let us choose the restriction operator to be
Ry = oPj (75)

where P} is the formal adjoint of the prolongation and o is a suitable scaling factor. The scaling of
R, is determined by the role of Ry. If R is to be used to construct coarse grid representations of ¢
(i.e Rgy), then >, Ri (4, j) = 1. However, if R is to be used to transfer residuals to the coarse grid,
then the correct value of the scaling depends on the scaling of the fine grid and coarse grid problems.
This implies that the coarse grid problem should be consistent with the differential problem in the
same way as the fine grid problem. This is the basic problem with vertex agglomeration. Let H
represent a characteristic mesh size on the coarse grid and h represent a characteristic length on
the fine grid. Finite volume and finite element schemes in 2D lead to a scaling rule which says that
Zj Ry (i,7) = ()% which can be viewed as a ratio of the area associated with a coarse grid node

h

to the area associated with the counterpart fine grid node.
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The basis function construction algorithm thus needs to be modified to take this into account.
The associated area for the nodes on both the fine and coarse grids is computed by looping through
the elements on a grid and sending elemental area contributions (element area divided by the
number of element vertices) to these vertices. The diagonal scaling matrix o is now computed.

However, we would like to maintain the GCA formulation, so the system is symmetrized by defining

P = PO’% (76)
R = g:P7 (77)
- p’ (78)

This formulation has the nice feature that the eigenstructure is preserved for an SPD matrix.
The coarse grid equations are now constructed using the GCA approximation and the multigrid

operation continues with this new definition for the transfer operators.

4.4 Implicit Line Smoother

In the context of our multigrid formulation, we would like to be able to solve the high Reynolds
number Navier-Stokes equations which is a parabolic system characterized by both advective and
acoustic modes. We would like to decouple the two modes in the following way. Multigrid methods
are very effective at damping out elliptic error modes such that the choice for the smoother must
be that it can handle the advective error components. Following this reasoning, we have opted
to use an implicit GauB-Seidel line relaxation scheme where the lines are constructed to follow
characteristic directions. The use of a line relaxation scheme leads to a natural splitting of the
matrix into tridiagonal submatrices which may be solved by any of the myriad tridiagonal matrix
solvers. The general rule behind the line relaxation is that points which are strongly coupled should

be updated simultaneously. This leads to the description of how the implicit lines are constructed.

4.5 Implicit Line Construction

The implicit line construction process is based on the philosophy of linking strongly coupled nodes.
In order to reduce the amount of work in the line smoother, minimal overlap between the lines is

allowed. To properly describe the algorithm, we need to define two terms:

1. Coupling measure: The coupling measure between two nodes gives a local quantification
of the connectivity between these nodes. Typically, this is based on the matrix stencil con-

necting these points. Ideally, the measure of the coupling between the nodes should be based
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on a discretization of a scalar convection-diffusion equation but other measures such as an
approximation to the flow velocity or streamlines may be used. This becomes even more
complicated in the case of block systems of equations such as arise in discretizations of the
Navier-Stokes equations. It may however be possible to use entropy variables to form an

approximation of the scalar convection equation.

2. Coupling degree: The coupling degree between two nodes gives a quantification of the
connectivity between these nodes as compared to other connected nodes. This is based on
the coupling measure earlier defined. In the current framework, the degree of coupling between
two nodes V1 and V2 is determined by first computing the coupling measure of the nodes to
all surrounding nodes and this measure may be freely defined. For each node, the maximum
value is taken to be the reference value for that node. From the point of view of V1, the
coupling between nodes V1 and V2 will be considered strong if the connectivity measure
between these nodes is larger than a threshold value. This threshold value is defined to be
a fraction of the V1 reference value. Two nodes are linked up in the line if the degree of
coupling between them is stonger than any other connection. In advection dominated flows,
strong coupling tends to be one-sided which is why a two way consideration (i.e from both

points of view of V1 and V2) is necessary.

Line construction is done in a two pass process. The first pass involves the construction of
individual lines while the second pass involves merging lines to reduce the line count and improve
convergence. The construction of a single line begins by choosing a seed node. All nodes which
do not exist in a line are placed in a queue in no particular order and the seed node is chosen
from this queue. The chosen seed is usually not an extremety of the line based on a straightforward
implementation of the algorithm. Hence, we need to introduce the concept of forward and backward

mode line construction.

4.5.1 Forward Mode Line Construction

Forward mode line construction involves stepping through a line by starting at a given node and
simply choosing the next node with the best strong connection which is not in the current line.
The best connection, however, may be a node which already exists in another line. Hence, in an
effort to minimize overlap, the next best node which has a strong connection and has not been

assigned to a line is chosen. If no such node exists, then the originally selected node is chosen.
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If the number of times a node which has already been assigned to a line is chosen reaches some
predetermined limit, then the line is terminated and the overlap nodes are removed. Also, if the
next chosen node is an extremety of another existing line, then the current line is simply merged
with that line. Flows with recirculation regions or circular flows give rise to cyclic couplings, so

this case is specially handled if the chosen node turns out to be the head of the current line.

4.5.2 Backward Mode Line Construction

Backward mode line construction is akin to the reverse of the forward mode. For a given node, all
the adjoining nodes are scanned and a single step of the forward mode algorithm is performed on
these connected nodes. If any of these connected nodes would have chosen the starting node as the
next node in the line, then this node is chosen as the next node. In the event that multiple nodes
would have chosen this node, then the one with the strongest coupling is chosen. As in the forward
mode, if the chosen node is an extremety of an existing line, then the current line is merged with

that line.

4.5.3 Line Processing

The line is constructed by performing backward and forward mode construction from the seed
point. After the two halves of the line have been constructed, they are merged together into a
single line. The post-processing pass is performed once all the nodes have been assigned to reduce
the line count. This is done by checking the extremeties of every line and testing to see if the
node on the extremety has a strong connection to a node on the extremety of another line. The
connection threshold for each node is reduced by a factor (typically between 0.5 and 0.75) to allow
more lines to be considered.

Fig. 23 shows a 2-level example of the implicit line construction on the grids. The agglomeration

shown is the geometry based algorithm.
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Figure 23: Multilevel Agglomeration and Implicit Lines




4.6 Results

The performance of the algorithm for different flow regimes and characteristics is now presented.
As mentioned by Chan ([31]), the performance of many numerical techniques for elliptic problems
are not robust for convection dominated flows. Two particular kinds of flows which are known to

cause divergence for many techniques are boundary layer flows and recirculation flows.

4.6.1 Boundary Layer Flow

We consider the linear convection diffusion equation (Eq. 45) over a square domain 2 =)0, 1[> and
prescribed velocity field U = (-y,x). The forcing function f is set to zero and the dirichlet boundary

on the inflow and left wall (x = 0) is

([ 5.0(z —0.2), for 0.2 <z < 04, y = 0
1, for 0.4 < z < 0.6, y = 0
ap =
1 —5(z — 0.6), for 0.6 < z < 0.8, y = 0
L 0, otherwise

This particular set of conditions is chosen to simulate a boundary layer flow with the nominal

Reynolds number

Up - Iy

v

Re =

= (79)

The discretized domain is adapted on the dirichlet boundary to capture the boundary layer as
shown in Fig. 23(a). All presented results are based on a V(1,1) multigrid cycle with no FMG.
The agglomeration technique is the geometry based algorithm and the solver is terminated when
the RMS absolute error in the residual is less than 107!3. The relaxation factor w chosen for all

the test cases was 0.95. The behaviour of the algorithms for a variety of parameter states is now

presented:

Multigrid Level Dependency:

The dependence of the convergence rate on the number of coarse spaces is shown in Fig. 24. The
fine mesh has 60399 vertices and 119714 elements and a total of 6 coarse spaces were constructed.
In the asymptotic limit, the convergence rate is the same for all the curves and beyond the two-grid

case, the curves fall unto the same line.
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Figure 24: Multigrid Level Dependency for Boundary Layer Problem: 60399 points; Re = 1.0e6
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Figure 25: Reynolds Number Dependency for Boundary Layer Problem: # of points = 3849
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Figure 26: Reynolds Number Dependency for Boundary Layer Problem: # of points = 15763
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Figure 27: Reynolds Number Dependency for Boundary Layer Problem: # of points = 60399

61



Reynold Number Dependency:

The dependence of the convergence ratc on the Reynolds number is shown in Fig. 25, Fig. 26
and Fig. 27 for a range of Reynolds numbers from 10? to 107. Figures 25 to 27 were generated
on a sequence of fine meshes with 3849, 15763 and 60399 vertices respectively which represents an
approximate halving of the mesh spacing. In all cases, we find a similar asymptotic convergence
rate. BEven more important is the fact that the algorithm works well for such a wide range of
Reynolds numbers while maintaining a fairly constant bound on the number of iterations required
for convergence.

A noticeable trend can be observed with the Re = 100 case, which is the increasingly pronounced
stall in the residual after a few iterations followed by convergence. The problem is fairly elliptic
such that well defined characteristic lines are not easily identifiable. As a result, the line solver
does not facilitate proper propagation of information in the characteristic directions. For such a

low Re problem, the use of a point implicit GauB-Seidel smoother would be a better choice.
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Figure 28: Timing Information: Re=1.0e6

Fig. 28(a) shows timing information for the algorithm on the boundary layer problem. The

Reynolds number is 1 million and the fine mesh has 60399 points. The plot shows the CPU time

62



required for the solution versus the number of multigrid levels with and without the preprocessing
time included. This preprocessing time includes the time required to construct the coarse spaces
and implicit lines as well as factorization of the coarsest grid matrix. Fig. 28(b) shows the CPU
time required for the solution versus the number of fine grid vertices for the three meshes mentioned

above with the number of coarse meshes fixed at 4.

4.6.2 Recirculation Flow

We also consider the linear convection diffusion equation (Eq. 45) over a square domain =] -1, 1[?
(Fig. 29) and prescribed velocity field U = (-y,x). Neumann boundary conditions %‘g = 0 are
imposed on the domain boundaries and the flow field is initialized with random values ranging
from -1 to 1 with a mean of zero. The nominal Reynolds number is also defined as

Up -l
14

Re =
v

The discretized fine mesh has 1990 points and an example of a solution converged to an RMS
residual tolerance of 10713 is shown in Fig. 30 for a Reynolds number of 1 million. The range of ¢
shown is between —1.17 x 1077 and 7.94 x 1077,

The results in Fig. 31 show the dependence of the convergence rate for a number of Reynolds
numbers. There is significant deviation of the convergence rate as the Reynolds number increases.
It can be seen that for the higher Reynolds number cases, the algorithm has increasing trouble in
damping out certain modes. This is due to the nature of the implicit lines in the context of an
unstructured grid. Due to the unstructured nature of the grid, these lines do not wrap around
on themselves (Fig. 32) and as such, the system of equations for the lines are not periodic. This
means that information cannot be propagated properly along the characteristic lines with resulting
deterioration in convergence rate. However, there is a reduction of six orders of magnitude in the
residual before this effect becomes noticeable, so it is still possible to use the algorithm in the role

of a preconditioner to Krylov subspace solvers.
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