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1 Introduction

This report describes the research work undertaken at the Massachusetts Institute of Technology,

under NASA Research Grant NAG4-157. The aim of this research is to identify effective algorithms

and methodologies for the efficient and routine solution of flow simulations about complete vehicle

configurations.

For over ten years we have received support from NASA to develop unstructured mesh methods

for Computational Fluid Dynamics. As a result of this effort a methodology based on the use of

unstructured adapted meshes of tetrahedra and finite volume flow solvers has been developed. A

number of gridding algorithms, flow solvers, and adaptive strategies have been proposed. The most

successful algorithms developed from the basis of the unstructured mesh system FELISA. The FE-

LISA system has been extensively for the analysis of transonic and hypersonic flows about complete

vehicle configurations. The system is highly automatic and allows for the rotine aerodynamic anal-

ysis of complex configurations starting from CAD data. The code has been parallelized and utilizes

efficient solugion algorithms. For hypersonic flows, a version of the code which incorporates real

gas effects, has been produced. The FELISA system is also a component of the STARS aeroservoe-

lastic system developed at NASA Dryden. One of the latest developments before the start of this

grant was to extend the system to include viscous effects. This required the development of viscous

generators, capable of generating the anisotropic grids required to represent boundary layers, and

viscous flow solvers. In figures 1 and 2, we show some sample hypersonic viscous computations

using the developed viscous generators and solvers.

Although this initial results were encouraging it became apparent that in order to develop a

fully functional capability for viscous flows, several advances in solution accuracy, robustness and

efficiency were required. In this grant we set out to investigate some novel methodologies that could

lead to the required improvements. In particular we focused on two fi'onts: finite element methods

[1], [26] and iterative algebraic multigrid solution techiques [30].

Finite element algorithms have been enormously successful in the fiehi of structural mechanics

and in that field, they are the method of choice. They have a solid mathematical foundation

and offer complete geometrical flexibility. Finite element methods utilize compact supports, which

substantially aid the implict solution procedure, and, when properly formulated, can be extended

to arbitrary orders of accuracy.

Multigrid techniques are well known for their efficiency in solving symmetric positive definite
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Inviscid

Figure 1: Mach 12 flow about a cone-sphere geometry. Meshes and computed inviscid and viscous

pressure contour solutions on the same mesh



Figure 2: Mach 10.6 flow about a re-entry configuration. Meshes and Mach number contours for

inviscid and viscous solutions on the same mesh
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problems. Unfortunately, the discretization of tile Navier-Stokes equations gen(_ratcs systems of

equations which are unsymmetric and much harder to solve.

The work reported below has been partially supported by this grant.

2 Finite Element Solution of the Compressible Flow equations

Our aim is to develop a robust and accurate finite element algorithm which is capable of solving flows

ranging from low subsonic to transonic and hypersonic regimes. We regard the possibility of using

higher order approximations as being highly attractive, specially for complex three dimensional

flows which requiring high levels of resolution.

Here we present some of the accomplishments carried out during this grant period and which

build upon existing finite element methods.

2.1 The solution of the Compressible Euler Equations at Low Mach Numbers

For low Mach numbers, the compressible Euler and Navier Stokes equations describe almost incom-

pressible flow. This singular limit of the compressible flow equations is reasonably well understood.

Indeed, under the assumption of isentropic flow, and some regularity conditions on the initial and

boundary data, the solution of the compressible equations, in the zero Mach number limit, can

be shown to satisfy the incompressible flow equations [16, 11]. From the computational point of

view, accurate solutions of nearly incompressible flows are difficult to obtain. This is due to the

very different magnitude of the wave speeds which are present in the system. Our interest is in

the development of a compressible flow algorithm which is capable of solving flows ranging from

ahnost incompressible to supersonic regimes. There are several reasons that justify the development

of such algorithm. The first and most important is that in many situations, such as high angle

of attack aerodynamics, large regions of very low Math number coexist in the flow domain with

regions where the flow is supersonic. Another more practical motivation is that an algorithm that

can successfully handle free stream Mach numbers as low as 10 .3 is well suited for a broad range

of applications typically handled with incoinpressible formulations.

Over the last few years, stabilized finite element algorithms for the solution of the Euler and

Navier-Stokes equations have gained increased popularity. Streamline-Upwind/Petrov-Galerkin

algorithms (SUPG), and some of its relatives, have been presented and analyzed in numerous papers

[14, 15, 20]. These algorithms, although not so widely used as their finite volume counterparts,



possessmanyattractive features. In particular, they havea compactsupport and canbe used

with elementsof arbitrary order,yieldingsolutionsof increasedaccuracywheneverthesolutionis

sufficientlysmooth. In addition, thereexistsa rather well developedtheory for linearproblems

whichcanbeusedto providedesigncriteriafor the developmentof successfulalgorithmsfor non-

linearequations.

Oneof thecriticalingredientsofSUPGalgorithmsis theconstructionofthestabilizationmatrix

r. Whilst the convergence analysis for the linear problem only dictates that this matrix has to

be symmetric positive definite, scale appropriately with the local grid size, and have dimensions of

time, much freedom is still available to fully determine it. Only under some very simplified cases

(e.g. one dimensional flow) is the optimal choice of r unambiguous.

Classical compressible flow formulations, including the existing SUPG algorithms, fail to give

adequate numerical solutions when the flow approaches incompressibility. Whenever the Mach

number is progressively reduced, keeping the grid size fixed, a degradation in the solution accuracy is

observed. This phenomenon has been studied extensively in the context of finite volume algorithms

[23, 18, 6], and several explanations have been proposed. The most common argument is based

on the mismatch which occurs, for low Math numbers, between magnitude of the fluxes in the

original equations and the corresponding terms in the numerically added artificial viscosity. Some

local preconditioning strategies, aimed at modifying the numerical artificial viscosity to avoid this

mismatch, have proven to be extremely successful [3, 24, 4, 25]. Accurate solutions for Maeh

numbers as low as 10-a have been reported using such preconditioned algorithms. One of the

main drawbacks of these preconditioners is their lack of robustness near stagnation points. The

reason for this can be traced [5] to a lack of stabilization caused by the eigenvectors of the artificial

dissipation matrix becoming nearly parallel.

The fornmlation of numerical algorithms for the compressible flow equations employing sym-

metrizing, or entropy, variables has been advocated by several authors e.g. [la, 2]. One of the claims

often made is that discrete schemes formulated in entropy variables inherit global entropy stability

properties of the original equations. Gustafsson [10] points out that, for a hyperbolic system of

equations, the higher the degree of unsymmetry, as measured by the condition number of the trans-

formation required to symmetrize the system, the lesser the well-posedness of the problem, in the

sense that perturbations of the initial data influence the solution more. As it turns out, the com-

pressible Euler equations formulated in terms of either primitive or conservative variables become

increasingly unsymnmtric when the reference Maeh number goes to zero. From our perspective,



oneof the mainattractivefeaturesderivedfromthe useof entropyvariablesis that the dissipation

operatorremainssymmetric.This meansthat a fllll setof orthogonaleigenvectorscanalwaysbe

foundandthereforethestabilizationtermsremaineffectivethroughoutthe computationaldoamin.

In thisrespect,thecombinationof thepreconditioningideaspresentedin tile finite vohnnecontext

to dealwith low Machnumberflowscombinedwith a formulationin entropyvariablesseemsvery

appealing.

Here,weproposea specificconstructionof thestabilizationmatrix r for a finite element SUPG

formulation of the steady state Euler equations. The development of such stabilization matrix

incorporates low Mach number preconditioning concepts, previously developed in the finite volume

context. The ideas presented here extend to the time dependent and the Navier-Stokes equations

in a straightforward manner. The equations are first transformed into a new set of variables which,

in the low Mach number limit, can be easily related to the incompressible velocity and pressure.

A necessary condition for stability, when the Mach number tends to zero, is obtained by requiring

that the asymptotic behavior of the stabilization terms matches that of the terms in the Euler

equations. This requirement results in some additional constraints on r which are not typically

satisfied by the classical choices of'r. The proposed algorithm combines the very attractive features

of the stabilized finite element formulations with the ability to produce accurate answers over a

very large range of Mach numbers.

We start with a brief description of the SUPG formulation for the Euler equations using entropy

variables. For simplicity of presentation we will consider the two dimensional case, but results

herein presented extend directly to three dimensions and are also applicable to the Navier-Stokes

equations. Next, we discuss the low Mach number scaling arguments which lead to the proposed

form of stabilization matrix r and outline our numerical implementation. Finally, numerical results

using linear elements are presented for the flow over isolated cylinders and airfoils with free stream

Mach numbers ranging from 10-a to moderate subsonic values. In the next section, we present

results for transonic flows using higher order elements.
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2.2 Compressible flow governing equations

2.2.1 Conservation variables

Westart from the time dependenttwo dimensionalcompressibleEuler equationsin conservation

form

U,t + Fl,1 + F2,2= 0, (1)

where

pul

U= I' FI=
pu2

pE

pUl

pu_ + p

pUl U2

u_ (pE + p)

, F2 =

pu2

pulu2

pu_ + p

u (pE + p)

In the above expressions, p is the density; u = [ul, U2] T is the velocity vector; E is the specific

total energy; p is the pressure; and the comma denotes partial differentiation (e.g. U,t = OU/Ot,

the partial derivative with respect to time, Fi, j = OFi/cOxj, the partial derivative with respect to

the j-th spatial coordinate). The system of equations is closed once the pressure is related to the

problem variables through the equation of state, p = (3' - 1)pe, where e = E - lul2/2, is the internal

energy. Here, "/is the ratio of specific heats which is assumed to be constant.

We will assume that all the above quantities have been non-dimensionalized using reference,

or free stream, values for density p,, velocity u,, and length L. Thus, the dimensional variables,

denoted with an overbar, are related to the non-dimensional variables introduced above as

= P--_ ui:--i=1,2, p-p,u_ * E-u2,, xi=--_, i=1,2, and t=--_--.P p, ' u, '

Finally, we introduce the reference speed of sound c,, and define, for later use, a reference Mach

number as e = u,/c,.

We note that the equation system (1) can be written as

U t A- AIU,1 + A2U,2 = 0, (2)

where the Jacobian matrices Ai = Fi,u, i = 1, 2, are unsymmetric but have real eigenvalues and a

complete set of eigenvectors.



2.2.2 Entropy variables

Weseeka newsetof variablesV, calledentropyvariables,suchthat thechangeU = U(V) applied

to (1) givethe transformedsystem

u(v),, + FI(V),I + F2(V),2 = 0, (3)

where Ao = U,v is symmetric positive definite, and Ai = AiA0 = Fi,v, i = 1, 2, are symmetric.

Following [121, we introduce a scalar entropy function H(U) = -pg(s), where s is the non-

dimensional entropy s = ln(p/p_'). The required change of variables is obtained by taking

V = H'T = e

e(7-g/g')- 1ul2/2

Ul

u2

-1

(4)

The conditions 9 r > 0 and gU/g_ < 7-1 ensure that H(U) is a convex function and therefore

Ao 1 = V,u = H, uu, and A0, are symmetric positive definite. We consider in [1] the variables

resulting from two particular choices of the function 9(8). The system (3), can thus be written in

symmetric quasi-linear form as

AoV,t + flklV,1 Jr_ _k2V,2 : 0. (5)

Barth [2] noted that it is always possible to construct matrices Ri, i = 1, 2 whose columns are

the scaled right eigenvectors of Ai, i = 1, 2 respectively, such that

A 0 = I_IK_" = I_21_ T, (6)

and

for i = 1, 2. (7)Ai -= I:_iAiI:Ui 1, Ai = RiAifi T,

An explicit expression for Ri, i = 1,2, is given in [1].
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2.3 Low Mach number limit

The low Machnumberlimit of the Eulerequationsis beststudiedby rewriting tile equationsin

termsof the variables(p,Ul, u2, s). This yields the following system

lO_2
ot

c9ul
Ot

Ot

Os
Ot

Ul

C

+
0

0

c 0 0

Ul 0 0

0 ul 0

0 0 ul

lO2_
pc Ox l

Ott l

Oxl

_)x l

Os
i)x l

+

u2 0 c 0

0 u2 0 0

c 0 u2 0

0 0 0 u2

In matrix form, this system can be written as

01pc Ox2

Ou___x 0Ox2 _ .

0_2 01

Ox2 jOs 0
Ox2

(s)

Z,t + CIZ,1 + C2Z,2 = 0, (9)

where the matrices C1 and C2 are symmetric and dZ = [d¢,dul, du2, ds] r with de = _. If we
pc

assume that the flow is isentropic, which is certainly satisfied for low Mach numbers when the free

stream is isentropic, we can express c and p as a function of p, i.e,

p'r p(.r-1) /2
= -- and c - -- ,

P 7e 2 e

to obtain [9],

2 1) - 2 1)
05 - (7 - 1)e(P('r-1)/2 _ "7 - 1 (c- 7 "

In terms of ¢, Ul and u2, the continuity and momentum isentropic compressible flow equations

become

(___1 1') (7@ 1)05'tnt-U105'l nt- 05q- 7_ Ul'l q-U205'2 d- 05-{-7 U2'2 =0'

ttl,tq- (----- -105 q- !) 05,1 q-_.tlUl,1--I-U2Ul,2=0,_ (10)

U2,t nt- ttlU2,1 q- (\ 05 05,2 q- U2'tt2,2
0.

Note that, in assuming isentropic flow, we have rcduced the number of dependent variables by

eliminating entropy from the system of governing equations. Equations (10), look now similar to

the incompressible flow equations

_tl,1 q-_,2,2 ---- 0

Ul,t q- P,1 -t- Ul_tl,1 q- {t2_1,2 ---- 0 (11)

_2,t -'}- _'lU2,1 q- P,2 q- _27-)'2,2 = 0,
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whereh = [ul, _2] T, denotes the velocity and /_ the pressure. When e --+ 0, tile equivalence

between (10) and (11), under some regularity assumptions on the initial and boundary data, can be

rigorously shown [11]. In particular, we have that for e --+ 0, ui --+ _ti and ((7 - 1)¢/2 + l/e) ¢,i

/_,i for i = 1, 2. To obtain bounded derivatives when e --+ 0, it follows that ¢,i and ul,1 + u2,2 must

be O(Q. We also note that the velocity components ui and its spatial derivatives ui,j, i, j = 1, 2 are

O(1). Finally, it can be shown that ¢ is O(e) and that ¢/e is well defined in the limit e --+ 0.

We now turn our attention to the steady state Euler equations for isentropic flow and derive

some asymptotic estimates which are valid in tile low Mach number limit. The equations for this

reduced problem are,

CIzI C I_I =0 (12)
1 ,1 q- 2_,2

where

Z I =

¢

_z I ,

U2

c f=
Ul c 0

C U 1 0

0 0 ul

Using the above estimates we have that, for e --+ 0,

Z I ... Z I
,1 ,2 _'_

o(d

o(1)

o(1)

O(1) O(e -1) 0

o(e o(1) 0

0 0 O(1)

u2 0 c

0 u2 0

c 0 u2

Thus, for the individual terms of the isentropic Euler equations,

0(£ -1 )

CIzI ('_lzI 0(1)1 ,1 "_ _'a2 ,2 "_

O(1)

O(1) 0 O(_ -1 )

0 O(1) 0

o(e 0 o(1)

(13)

as e --+ 0. (14)

2.4 Variational formulation for the steady state problem

We now consider the compressible steady problem in conservation form expressed in terms of

symmetrizing variables. The conservative form of the equations is taken to be the starting point

because we are ultimately interested in an algorithm that can be used over the whole range of

speed regimes, including situations were the solution may contain discontinuitites. Tile problem is
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definedin a domainf_with boundaryF by

FI(V),I + F2(V),2= 0 in f_, (15)

A_V=__2g on F\F_, (16)

u.n=0 on Fa. (17)

Forsimplicity,the domainboundaryis assumedto be madeup of an impermeablesolid wall Pa,

anda computationalfar fieldboundaryF\Fa. In (16,17),n = In1,n2] T is the outward unit normal

vector to F, and A_ = AnA0, A_ = Alnl + A2n2. Finally, A_ = AgA0, and A_- denotes the

negative definite part of An.

Let the spatial domain f_, be discretized into non-overlapping elements Te, such that f_ = U Te,

and T_ _ Te, = 0, e ¢ e'. We consider the space of functions Vh, defined over the discretization and

consisting of the continuous functions which are piecewise linear over each element

Vh = {WlW C (C°(f_)) 4, WIT e C (_l(Te)) 4, VTe • a}.

The SUPG algorithm can then be written as: Find Vh • 12h such that for all W • 12h,

B(Vh, W)g._ + B(Vh, W)_p_ + B(Vh, W)be = 0, (18)

where the forms B(., ")gal, B(., ")*uvv and B(-, ')be account for the Galerkin, SUPG stabilization,

and boundary condition terms respectively, and are defined as

U(V,W)gal = f(--W,1- FI(V ) - W2" F2(V)) da, (19)
J_

and

_(V,W)sup 9 : _(fiklW,1 -_- fik2W,2) • 7" (fiklV,1 -_-/_k2V,2 ) d_,
(20)

B(V,W)be = ; W • F,_(V;n) ds + fr W.Fll(V,g;n) ds. (21)

where -r is the stabilization matrix. The numerical flux function on the impermeable wall boundary

Fw, is simply [O,pnl,pn2,0] r while the numerical flux function on the far field boundary FI/, is

defined by

FN(V_,V+;n ) = _(Fn(V_)+ Fn(V+))- _IAn(VRoe(V-,V+))I(U(V+)- U(V_)).

Here, IA,_(V)I -- A+(V)- A-(V) is the absolute value of An evaluated at V, and VRoe(V+, V_),

is the Roe average [19], between the states V + and V-.
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Figure 3: Mapping between the master triangle Tc and a typical element Te.

2.4.1 Standard definitions for _-

In order to uniquely specify the SUPG algorithm (18), an appropriate expression for the stabilization

matrix _r needs to be given. We recall that an appropriate _r should be symmetric, positive definite,

have dimensions of time, and scale linearly with the element size [14].

For a triangle Te, we introduce the mapping x = x(_), between the master triangle To, in the

parametric space ( = [(1,_2] r, and Te _ ft in the mapped space x = [xl, x2] T, as illustrated in

figure 3. We define

B 1 = (x2,_2Jkl - Xl,_2Jk2)/J ,

B2 = (x1,_-_2 - x2,(1Jkl)/J,

B3 = ((x2,(1 - x2,(2)fikl -4- (Zl,_2 - Xl,(1)Tk2)/J,

and the Jacobian of the mapping, J = xl,(lx2,(2 - x2,(lxl,(2. The following definition for "I- can be

shown to satisfy all of the above requirements

r = Ao -1 (IB_I p + IB2I p + IB31P) -Up . (22)

The most common choice for p has been 2, which necessitates the evaluation of a matrix square

root. This choice has been advocated by Shakib et al. [20], whereas Barth [2], has shown that the

choice p = 1 is computationally advantageous and, in practice, gives very similar results.

These choices of stabilization matrix, work well provided that the flow Mach numberis not too

low. For problems involving significant regions of low Mach number flow the solution degrades

and becomes less and less accurate as the Mach number is decreased. In the following sections we

will address this issue by first, identifying the source of the problem, and second, devising a new
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formulation for v which does not suffer from this drawback and which leads to a formulation which

can handle very low Mach numbers accurately.

2.5 A stabilized formulation for isentropic flows

Turkel et al. [23] have employed a scaling analysis to determine the appropriate low Mach number

behavior of local preconditioners. In their application, the local preconditioner modifies the upwind

dissipation of the underlying finite volume or finite difference discretization. In this section, we will

consider a stabilized SUPG formulation applied direclty to the isentropic equations (12). We will

extend the analysis presented in [23] to our finite element formulation and, in particular, derive the

appropriate scaling for the stabilization matrix in the limit of vanishing Mach number.

Introducing the finite element space,

V / _ (WI[W I E (C°(_)) 3, wllTe E (_I(Te)) 3, VT e E _}.

we consider the following SUPG formulation : Find Z/h E Vh/ such that for all W / E Vh/,

BI¢Z I wl_ I I I BI(Z I Wl)bc = 0, (23)h, /g_l + B (Zh,W)_p_ + t h,

where,

f_ [CIZI CIz I "_Bl(ZI,WI)gal = (wl't 1 ,1 + 2 ,2/) df_, (24)

F

BI(zI,Wl)supg [ I I I I 7.1 I I I I= (C1W,1 Jr- C2W,2 ) • (ClZ,1 + C2Z2) d_, (25)
Jn

and BI( ., ")b_ is a term incorporating the desired boundary conditions. Note that here, the Galerkin

term (24) has been integrated by parts, thus, BI( ., ')b_ also includes the additional boundary terms.

Our desire is to construct a stabilized finite element method which admits solutions, Z z withh'

the same low Math number asymptotic behavior as the solutions of the isentropic Euler equations,

Z I. In addition, we require that the stabilization operator (25) must scale like the Galerkin and

boundary operators (24) as the Maeh number is reduced. Specifically, these requirements imply

that

for e --+ O, (26)
I I I I

C1Zh, 1 -_- C2Zh, 2 ,_ o(1)

0(1)
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and that,

C_' _'(CiZh,,+C_Zh,2 ) ' ' ' ' (27)• _ClZhj+C1Zh,1, for i=1,2, _-+0.

Expressions (26) and (27), provide an additional condition, on the asymptotic behavior of the

components of the stabilization matrix _'! that should be satisfied for e --+ 0. This condition can

0(1) 0(£-1) 0(£ -1)

0(_-1) 0(1) 0

0@-1) 0 0(1)

be written as,

2.5.1

T11 T12 Tl3

7"12 7-22 T23

T13 7-23 7-33

0(_-1)

o(1)

0(_)

Asymptotic behavior of r using standard definitions

0(£-1)

0(1)

0(1)

(28)

We consider now the standard definition of the stabilization matrix, given in (22), applied to

our simplified problem (23), and show that it fails to satisfy condition (28). Specifically, for one

dimensional problems, the standard stabilization (22) is, for p = 1,

_Id = _ IC[dl-1

where n, is a constant proportional to the element size. Based on the above assumed behavior of

the solution, it can be shown that for c _ 0,

÷[d~ o(d) o(_)
(29)

It can easily be verified that this stabilization matrix, does not satisfy the condition (28), which in

the one dimensional case is

0(1)[
O(£ -1 ) O(1) _12 _22 O(1) O(1)

Therefore, this form of _.I, will fail to provide adequate stabilization when e --+ 0. It can also be

shown that, in the multi-dimensional ease, the standard choice of stabilization matrix (22), does

not have the appropriate asymptotic behavior for e --+ 0, either.

When working directly with entropy, or conservative variables, the analysis is more complicated

because the link between these variables and the incompressible velocity and pressure is less trans-

parent. It is observed in practice that the standard stabilization scheme (22), when used with the

equations written in terms of entropy variables, produce solutions which deteriorate severely when

16



the Mach number is reduced. In [8], the use of tile standard finite volume upwind scheme, using

Roe's dissipation, is shown to give in tile incomt)ressible limit, solutions in which the pressure vari-

ations do not scale like the Mach number squared. This first order finite volume upwind scheme,

can be thought of, at least in one dimension, as the result of using a stabilization matrix of the

form (22), directly with conservative variables.

2.6 Alternative definition of r for low Mach number flow

Our objective is to derive a stabilization matrix "r, for the variational formulation in entropy

variables (18). An approach which has been advocated in the design of low Math preconditioners

for finite volume schemes [23, 6], has been to derive an appropriate stabilization matrix _', for the

system (8), and then transform it to conservative variables.

It is apparent that, even with the additional constraint given by condition (28), the stabilization

matrix is not uniquely defined and some freedom is still available in constructing it. In addition

to the requirements placed on the construction of the standard forms of ?, i.e. (22), we place the

following three constraints:

i) the entropy equation, which decouples from the other equations, is stabilized as an indepen-

dent quantity convected with the velocity.

ii) the vorticity equation, which, in the incompressible limit, decouples from the other equations

after taking the curl of the velocity evolution equations, is stabilized as an independent

quantity convected with the velocity.

iii) the resulting algorithm has the correct low Mach number scaling as discussed in the previous

section.

In order to incorporate the above conditions, we consider the Euler equation corresponding to the

variational formulation (23), augmented with the entropy equation,

ClZ,1 + C2 Z,2 -- (C17"(ClZ,1 n t- C2Z,2)),1 + (C2"/'(CLZ,1 + C2Z,2)),2 • (31)

We shall further assmne that, only for the purpose of deriving T, the matrices C1 and C2 are locally

constant and therefore the above system of equations can bc treated as if it was linear.

Requirement i) forces the last row and column of _ to be zero, except fox" the diagonal entry

which corresponds to a velocity time scale. Requirement ii), implies that the rest of the matrix
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nmstalsobeof diagonMform. Theentriesin thesecondandthird rowsnmstt)eO(lualandarealso

associatedwith a velocitytime scale.Therefore,wefind that "_, for the complete system must be

of the form

"r=he

a 0 0

0 b 0

0 0 b

0 0 0

0

0

0

b

(32)

where b = 1/]u I and he is the size of the element. In order to satisfy the low Mach number scaling,

it is clear that b _ O(1), and therefore a must be O(e2). The simplest choice, having the right

dimensions, is a = ]u[/c 2. For very high speed flows, the stabilization should transition to a pure

streamwise upwinding such that a _ 1/[u I. In practice, the specific definition of q- which we use

is,

7-_ 0 0 0

0 _-_ 0 0

0 0 Z_ 0

0 0 0 "re

(33)

where _'c is the convective timescale and Ta is the acoustic timescale. Specifically, for the convective

timescale we employed a form proposed in [17] for scalar convection,

z lli. ul

i=l li li'

where fl is the average velocity in the element, and li is the vector between the nodes of side i of

the element. We then define the acoustic timescale as,

c 2

= + belaY"

Using these definitions, the acoustic timescale, _-_, has the correct low Mach number behavior

required by the asymptotic analysis. Also, -r, behaves appropriately for large local Mach numbers

where it returns to the convective timescale 7-c.

Finally, the required form of "r can be obtained by transforming the system (31) to entropy

variables. In principle, this could be accomplished by using the transformation matrix S = V,z.
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InsertingdZ = S-ldV into (31) and multiplying through by S -7', gives,

s-Tc1 s-1V,1 q- s-Tc2 s-1 V,2 -- (s-TcIS-IS'I"sT(s-TClS-1V,1 -]- s-Tc2s-Iv,2)),I -{-

(S-TC2S-aS ST(S-TC, S-'V + S-TC2S-'V,2)),2.

Where, the transformed matrix "r, can be readily identified as

(34)

= s T. (35)

We note that the transformed matrices s-Tcis -1, i = 1, 2, are not equal to -Ai, i = 1, 2 and indeed

s-Ts -1 is not be equal to A0. This is due to the fact that the entropy equation in (8), completely

decouples from the rest of the system. Therefore, one can multiply the first three components of

dZ, i.e. dp/pc, du_, du2, by a scalar factor, and the fourth component of dZ, i.e. ds, by different

scalar factor without changing the jacobian matrices Ci,i = 1, 2, or _, in (31). It is not hard to

find the scalar factors that one should use to define modified dZ variables so that the resulting

S matrix would give s-Tcis -1 = -Ai,i = 1, 2. An alternative procedure for evaluating S, which

avoids the use of modified variables is given in [1]. Once the appropriate transformation matrix

has been evaluated, -r is found using expression (35).

2.7 Numerical results

In this section we present some numerical results that illustrate the performance of the proposed

algorithm. For all the examples, we have solved problem (18), which is expressed in terms of

entropy variables. The non-linear set of equations resulting from the discretization of (18) is solved

by a Newton-Raphson iteration using exact linearization. For some of the simulations however, it

was necessary to damp the Newton-Raphson iteration during the first few iterations. The solution

of the non-symmetric non-linear system of equations required for each iteration was solved using

an enhanced BiCGstab(2) algorithm [7, 21] together with a block ILU(k) preconditioning, with k

either 0 or 1. For all the examples we have considered the two choices of entropy variables given in

[1], and we have not found any appreciable differences in the computed results. We have followed

[2], and employed a linear representation of the solution over each triangular element, but have

used a quadratic mapping to more accurately represent the geometry. We have found that using

quadratic interpolation of the geometry greatly improves the quality of the solution and only incurs

a minimal incremental cost.

19



2.7.1 Example 1: Flow over cylinder

In thisexample,weconsidertheflowabouta cylinderandperformseveralnumericaltests.Because

of thesymmetryof theproblemat the lowMachnmnl)ersconsideredhere,only half of the domain

is considered for the solution. We have used a sequence of three meshes of triangular elements

containing 1271, 4941, and 19481 nodes, respectively, to discretize to computational domain. The

medium and fine meshes are obtained by uniformly subdividing the coarse mesh. Figure 4 shows a

detail of the medium size inesh near the cylinder.

In the first test, we consider the SUPG algorithm (18), with the standard choice of "r given by

(22) for p = 1, and solve for tile flow about the cylinder on the coarse mesh for free stream Mach

numbers of 0.38, 0.1 and 0.01. Figure 5 shows the pressure contours for the three solutions. The

degradation in the solution accuracy when the Mach number is reduced is clearly apparent. We

could not obtain any numerical solutions below a free stream Mach number of 0.01, and for this

Mach number, the iteration would only converge if a damped Newton-Raphson iteration was used.

For comparison purposes, we show in figure 6 the pressure contours obtained, for the same flow

conditions and mesh, when the proposed form of'r, given in (35), is used. No qualitative degradation

of the solution is observed and in fact, we observe that, the solutions for Mach numbers of 0.1 and

0.01 look almost identical, as expected.

In the second test, we perform a mesh convergence analysis at various Mach numbers. Figure

(7) shows the Mach nmnber contours computed on the coarse, medium and fine mesh for a free

stream Math number of 0.38. Analogous results, but now for a Mach number of 0.001 are shown in

figure (8). The qualitative behavior of the solution, at both Mach numbers, does not present any

anomalies. In figure (9), a plot of the solution error norm versus grid size is shown. Here, solutions

at Mach numbers of 0.38, 0.01, and 0.001 are compared and second order convergence is observed

in all cases, showing no deterioration in tile convergence rate as the Math number is reduced. The

norm of the solution error considered was [ffl(V - Vh)A0(V -- Vh)df_] 1/2, where V, is a reference

solution computed using a quadratic approximation on a highly refined grid of 77361 nodes [26].

2.7.2 Example 2: Flow over an airfoil

In this example, the proposed scheme was used to simulate the flow over NACA 0012 airfoil at

Mach numbers of 0.01 and 0.6, and at an angle of attack of 2 °. An unstructured triangular mesh

of 19948 nodes was used for the simulation. Figure 10 shows a coarser mesh from which the
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19948nodemeshcanbeobtainedby tmiformlysubdividingeachelementinto fourelements.The

computedMachnumberandpressurecontoursfor the twoflowconditionsareshownin figures11

and12,respectively.Thequalitativebehaviorof thesolutionlooksexcellent,andagain,nosolution

accuracyor numericalanomaliesareobservedwhenvery low Machnumberflowsareconsidered.

Figure4: Detailof the mediumsizemeshusedfor computations

3 High Order Finite Element Discretization of the Compressible

Euler and Navier-Stokes Equations

This section centers upon a high-order accurate, stabilized, finite element method for the numerical

solution of the compressible Euler and Navier-Stokes equations. The SUPG finite element method

for compressible flow simulations was initially developed and analyzed by Hughes et al. [14, 15,

13, 20] and has since gained significant popularity. Its relation to multidimensional upwinding was

elucidated in [28, 29] and higher order implementations for inviscid flows were presented in [2].

In [1], the SUPG algorithm was extentded to cover the simulation of near-incompressible flows

by employing a stabilization matrix which exhibits proper scaling over the entire range of Mach

numbers. Here, we focus on the higher order implementation of the algorithm developed in [1] for

invicid and viscous flows.
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Figure 5: Static pressure contours computed on the coarse mesh using the SUPG algorithm with

the standard choice of stabilization matrix given by (22), for a free stream Mach number of a) 0.01,

b) 0.1, and c) 0.38.
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Figure 6: Static pressure contours computed on the coarse mesh using the SUPG algorithm with

the proposed choice of stabilization matrix given by (35), for a free stream Mach number of a) 0.01,

b) 0.1, and c) 0.38.
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Figure 7: Mach contours for a free stream Mach number of 0.38 computed on the : a) coarse, b)

medium, and c) fine meshes.
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Figure 8: Mach contours for a free stream Mach number of 0.001 computed on the : a) coarse, b)

medium, and c) fine meshes.
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Figure 9: Grid convergence plot showing the solution error norm versus the grid size parameter

using the proposed algorithm and for free stream Mach numbers of 0.001, 0.01 and 0.38.

Figure 10: Detail of the unstructured triangular the mesh used for the airfoil computations
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Figure 11: Mach number contours for the solution of the flow over NACA 0012 at an angle of attack

of 2° for a free stream Mach number of : a) 0.01, and b) 0.6.
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Figure 12: Static pressure contours for the solution of the flow over NACA 0012 at an angle of

attack of 2° for a free stream Mach number of : a) 0.01, and b) 0.6.
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3.1 Compressible flow governing equations

We start fi'om the time dependent two dimensional compressible Euler equations in conservation

form

U,t + (F - F')t,1 + (F - FV)2,2 = 0, (36)

where

and

g

P

pul

pu2

pE

, F1 =

pu 1

pu_ + p

pulu2

Ul (pE + p)

, F2 =

DU2

p't,_1_z2

pu_ + p

u2 (pE + p)

0

T11

T12

UlT11 -l- tt2T12 -t- ql

0

r21

_-22

_/,1T21 q_ lZ2T22 qt_ q2

In the above expressions, p is tile density; u = [Ul,U2] T is the velocity vector; E is the specific

total energy; p is the pressure; and the comma denotes partial differentiation (e.g. U t = OU/Ot,

the partial derivative with respect to time, Fi, j = OFi/Oxj, tile partial derivative with respect

to the j-th spatial coordinate). The system of equations is closed once the pressure is related to

the problem variables through the equation of state, p = (7 - 1)pc, where e = E -lul2/2, is the

internal energy. Here, 7 is the ratio of specific heats and # is the absolute viscosity, both of which

are assumed to be constant. Following the usual assumptions:

2 # OUl 2 # (OUl au2"_
rll = Re Oxl 3Re \ Oxl + Ox2 ]

r12 = 7"21 = Re \Ox2 + OXl,]

and

722=2ffebT .2 are \0Xl +

. i)7' . OT

ql - - RePr OXl ' q2 -- RePr Ox2"
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Wewill assumethat all theabovequantitieshavebeennon-dimensionalizedusingreference,or free

stream,valuesfor densityp,, velocity u,, and length L. Thus, the dimensional variables, denoted

with an overbar, are related to the non-dimensional variables introduced above as

= P--- ui=--i=1,2, p- 2' -u2,, #=_-,, xi=_, i=1,2, and t=_-.P p, ' u, ' p,u,

We note that the equation system (36) can be written as

U,t + A1U1 + A2U 2 = (KllU,1),I q- (K12U,2),l + (K21U,1),2 q- (K22U,2),2, (37)

where the Jacobian matrices Ai = Fi,u, i = 1, 2, are unsymmetric but have real eigenvalues and a

complete set of eigenvectors. Kij = F_,u j are the viscous flux jacobians. The above equation may

be symmetrized through a change of variables, for details, we refer the reader to [13, 12].

3.2 Variational formulation for the steady state problem

We now consider the compressible steady problem in conservation form expressed in terms of

symmetrizing variables. The conservative form of the equations is taken to be the starting point

because we are ultimately interested in an algorithm that can be used over the whole range of

speed regimes, including situations were the solution may contain discontinuitites. The problem is

defined in a domain f_ with boundary F by

(F + Fv)I(V),I + (F + Fv)2(V),2 = 0 in ft,

inV=h_g on F\Fa,

F _ • n = f on Pa

(38)

(39)

(40)

For simplicity, the domain boundary is assumed to be made up of a solid wall Fa, and a computa-

tional far field boundary r\r.. In (39, 40), n = [nl,n2] r is the outward unit normal vector to F,

and Jtn = A, A0, An = Alnl + A2n2. Finally, Jt_ = AnA0 , and A_ denotes the negative definite

part of A_.

Let the spatial domain f_, be discretized into non-overlapping elements Te, such that f_ = [.] T¢,

and T¢ _ T¢, = 0, e ¢ d. We consider the space of functions Yh, defined over the discretization and

consisting of the continuous functions which are piecewise linear over each element

vh : {WlW e 4, Wlr c 4, c a}.
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TheSUPGalgorithmcanthenbewritten as: Find Vh E Vh such that for all W E Yt',

/_(Vh, W)gal + B(Vh, W)sup9 + B(Vh, W)bc = 0, (41)

where the forms B(., )g_t, B(., )sum and B(.,.)bc account for the Galerkin, SUPG stabilization,

and boundary condition terms respectively, and are defined as

= f (-W,1" (F - fV)l(V) - W2" (F - Fv)2(V)) d_t,B(V,W)g_l

and

(42)

£

B(V, W)sup 9 = ]o(/_.lW,1 +/_2W,2) • 7- (JklV,1 +/_k2V,2 -- (KllV,1),I - (K12V,2)A -(43)

(K21V,1),2 - (K22V,2),2) d_,

B(V,W)bc = ; W.(Fz+Fv)(V,g;n)ds.+_ W.FV(V,f;n) ds. (44)
\I'a a

where r is the stabilization matrix. The numerical flux function on the far field boundary F f/, is

defined by

FIr(V_, V+; n) = _(Fn(V-)+ Fn(V+))- _IAn(V*(V-, V+))[(V+ - V_).

Here, IAn(V)] = A+(V) - A-(V) is the absohlte value of An evaluated at V*, and V*(V+, V_),

is the an average between the states V + and V-. The average state, V*, is chosen to ensure

the global stability of the algorithm [2]. The acquisition of V* requires iteration and in practice

an arithmetic average may be used. The Roe flux [19] was used in all the numerical simulations

presented herein. For inviscid compuations, the viscous terms in the expressions above would of

course, vanish. For viscous simulations, Dirichlet boundary conditions may replace portions of the

boundary integral.

3.3 Numerical results

In this section we present some numerical results that illustrate the performance of the proposed

algorithm. Test problems were solved employing both linear and quadratic element approximations.

For comparative purposes, the nleshes used for all linear element approximations were obtained by

subdividing each element of the corresponding quadratic element mesh into four linear elements.

In this way, comparisons between P1 and P2 solutions involving the same number of nodes can

be made. hc thus represents the distance between two nodes in the meshes used in the numerical

simulations presented herein.
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3.3.1 Example 1: Rinleb flow

In this example,weconsidera ringlebtest case(an exactsolutionof the Euler equations,[27]).

Theerror iscomputedin theL2 entropy norm [1]. Both P1 and P2 element approximation achieved

their respective optimal convergence rate of O(h 2) and O(h 3) respectively, as can be seen in figure

13.

3.3.2 Example 2: Flow over an airfoil

In this example, the proposed scheme was used to simulate the flow over NACA 0012 airfoil at a

Mach number of 0.6, and at an angle of attack of 2°. In figure 14, the L2 entropy deviation for

both P1 and P2 simulations are presented. The quadratic element approximation results in a much

lower level of entropy error than its linear element counterpart. The geometric singularity at the

trailing edge of the airfoil requires a much finer discretization around that point relative to the

rest of the mesh for both the linear and quadratic element approximations to achieve their optimal

convegence rate. This is particularly important for the P2 approximation since the error away from

the geometric singularity vanishes far quicker, rendering the trailing edge error as the dominant

source of error for the numerical approximation. Figure 15, shows the computed Mach contours

for the Pl and P'2 simulations.

3.3.3 Example 3: Flow over flat plate

In this example, we consider flow over a flat plate of unit length. The computational domain is

[-1.5, 1] x [0, 1], with the leading edge of the plate at (0,0). The free stream Mach number is 0.5.

The Reynolds number is raised from 8000 to 64000 in successive simulations while keeping the mesh

unchanged. The results in the form of boundary layer thickness, (_99 (X = L), are plotted in figure 16.

The quadratic element approximation yields results very close to that of the Blasius solution while

the linear element approximation shows increasing error with rising Reynolds number. Further

numerical tests have shown that it is possible to resolve the Blasius boundary layer with only two

elements when quadratic element approximation is used.

3.3.4 Example 4: Transonic computations

Here we show the application of the algorithm proposed using P2 interpolations to the inviscid

computation of the transonic flow over a NACA0012 airfoil at a mach number of 0.8 and and angle
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of attack of 1.2° degrees 17. The shock capturing term employed is that reported in [2]. This

results are only prelinfinary but illustrate the ability of the high order finite element algoritlun to

capture shocks.

4 An Algebraic Multigrid Method for Convection-Difsusion Flows

Rapid advances in unstructured mesh methods for computational fluid dynamics (CFD) have been

made in recent years and, for the computation of inviscid flows, have achieved a considerable level

of maturity. Viscous flow technology is also rapidly developing and the use of unstructured grids

has been indispensable. Unstructured meshes offer a practical means for computation and have

the advantages that they provide both flexible approximations of the domain geometry and easy

adaptation/refinement of the mesh.

Accurate and efficient solutions to tile compressible Navier-Stokes equations, especially in the

turbulent high Reynolds number limit, remains one of the most challenging problems due to the

myriad of associated length scales required to properly resolve flow features. This is especially

true in the boundary layer regions where severe grid anisotropy is required. Discretization of the

partial differential equations on the mesh gives rise to a large linear system of equations. For 3D

problems, these large discrete problems often cannot be solved using direct solution methods. As

a result, iterative solution methods based on Krylov subspace methods and/or multilevel methods,

which include multigrid and domain decomposition methods, are attractive. Multilevel methods

can often provide mesh independent convergence rates [31] and offer good scaling of the compute

time as well as data storage requirements. In the typical context, multilevel methods are not used

as solvers but as preconditioners for Krylov subspace iterative solvers. This provides a powerful

and flexible framework for computation.

There are two major problems associated with AMG for the solution of convection diffusion

flows. The first is the definition of accurate coarse spaces in the nmltilevel construction. This

is required to properly capture the behaviour of the discretized equations on these coarse spaces.

The second problem is the behaviour of the smoothing operators with high Reynolds number

and anisotropic effects. These two effects are typically the leading causes of convergence rate

deterioration.

In this section, we present a multigrid nmthodology for the solution of convection-diffusion based

problems, especially in the finite element context. The target application for this algorithm is high
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Figure 13: Top: L2 entropy norm error of ringleb flow solution, Bottom: Computational mesh.
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Figure15:Machcontourof flowover NACA 0012 airfoil, M_ = 0.6, c_ = 2°
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Figure 17: Computed Mach contours for the flow about a NACA0012 airfoil at M -- 0.8 and

a = 1.25 ° value of boundary layer thickness at z = 1, .

38



ReynoldsnumberNavier-Stokesflows.

4.1 Model problem

The modelproblemconsideredis the linearconvectiondiffusionproblem

U- V¢ = L,V2¢+ f in f_, (45)

d? = aD on 0_D, (46)

0¢
- aN on 0fiN, (47)

where ft is a bounded domain in _n (n = 1, 2, 3) with boundary cgf_, and U = (U1,..., U_) is an

incompressible prescribed velocity field. The finite element discretization is based on the stabilized

SUPG formulation analogous to that described in the previous sections. Introducing the variational

form of Eq. 45, the problem reduces to finding ¢ C H01(f_; cOf_O) such that

a(¢, v) = F(v) (48)

where

£ f

a(¢_ v) /_ _(U. V¢) da + ]o vvCV_ dQ (49)

= fn f_ dx (50)F(v)

_? = v + rU. Vv (51)

Hl(ft; 0_'_D) is the Sobolev space which contains functions that vanish on O_D with square

integrable first derivatives, _ is the stabilized SUPG test function and T is the SUPG stabilization

parameter. The discretization of the problem is done by covering ft with non-overlapping finite

elements through a triangulation and defining standard linear basis functions over these elements.

The discrete problem now reduces to:

Find Ch E Vh such that

a(¢h, Vh) = F(vh) VVh C Vh (52)

where Vh is the finite dimensional subspace of H_ (ft; 0ftU) consisting of continuous flmctions which

are linear over the elements. This results in a system of linear equations

A¢ = b (53)
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whichneedto be solvedfor the discretesolutionCh.

In orderto obtain accurateresultswhichprovidedetailedresolutionof the flow field, a well

resolvedmeshisrequiredwhichgivesriseto a largelinearsystem.In general,iterativemethodsgive

verygoodperformancewhentile underlyingmatrix A is symmetric and positive definite (SPD).

However, the resulting matrices from the discretization of convection-diffusion problems are not

SPD. This is usually due to the anisotropic stiffness introduced in the system of equations through

the grid and the convective nature of tile system.

Here, the development of a multilevel methodology based on algebraic multigrid is discussed.

Multigrid has shown great promise in the solution of linear algebraic systems and can be shown

to have mesh independent convergence for a wide range of problems. Iterative schemes remove

certain types of errors, typically high frequency (ro_,gh) errors but are unable to damp out the

low frequency (smooth) components. Multigrid may be used in conjunction with these iterative

schemes to form a powerful solver by removing these smooth error components. Representation of

these smooth errors on the multigrid coarse spaces means that they appear rough on these spaces

where they may be damped out effectively.

The construction of these coarse spaces may be done in several ways and the most obvious

one is to simply retriangulate the domain with a larger mesh spacing. This however is a very

expensive procedure especially for meshes required for Navier-Stokes simulations which can have

very complex geometries. These methods are termed Geometric Multigrid (GM) and they make flfll

use of geometry. Another way is by nodal decimation which involves selection of a vertex subset and

retriangulation. The selection process is typically based on fine grid geometry and depends on some

pattern in the fine grid [32]. Depending on tile pattern, different coarsenings arise. Calculations in

the inviscid regions of the mesh use a full coarsening technique which gives a 4:1 reduction in 2D,

an example of which is given in Fig. 18(a). However, alleviation of the stiffness due to stretched

grids in viscous flow calculations requires semi-coarsening [33] which gives a smaller reduction. We

refer to [34] for other references on this.

In contrast to geometric multigrid, another promising avenue is Algebraic Multigrid (AMG)

which uses an algebraic definition for the coarse spaces by agglomeration of the finite element

subspace on the fine grid [35]. A purely algebraic definition allows for automatic construction of

the coarse spaces and does not require geometric information. However, the smoother and the

coarsening algorithms need to be carefully matched. The agglomeration technique is typically

nodal [36, 37, 38, 39] which results in the Additive Correction Multigrid (ACM) method. However,
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(a) Vertex Agglomeration (b) Element Agglomeration

Figure 18: Agglomeration Types

another effective method is through elemental agglomeration which involves the agglomeration

of neighbouring elements into macroelements as shown in Fig. 18(b). Hence, the coarse space

elements are not standard elements and as such, the coarse space meshes are not proper meshes.

Appropriate basis functions as well as transfer operators need to defined. Perhaps the most recent

development in this area is by Chan et al [34, 31] and the results have been shown to be promising.

This coarsening technique is based on the underlying graph of the fine grid and does not involve

geometry. The technique produces a set of node-nested coarse spaces which can be retriangulated

based on fixed patterns in the agglomerated macroelement. This method offers great potential

since the proposed interpolation operators are based on integers and leads to savings in storage and

CPU time. Also, the algorithm recovers the natural structure of the coarse grids if the fine grid

is regular. However, since the algorithm is purely topology-based, it does not distinguish between

anisotropic and isotropic mesh regions which may lead to decreased convergence of the multigrid

procedure. We propose a new and simple technique for defining coarse spaces which are properly

nested in both the elemental and nodal sense. This method represents a hybrid between geometric

and algebraic multigrid.
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4.2 Multigrid Principles

4.2.1 Multigrid Requirements

In order to solve the linear system Eq. 53 using multigrid, the definition of the coarse spaces as

well as the representation of the error components on these coarse spaces must be defined. Let

{q2k : (k = 0,..., m)} represent the hierarchy of finite dimensional coarse spaces along with the

associated coarse grids. Also, let {Ak : (k = 0,...,m)} be the approximations of A on these

subspaces such that Ao = A. In order to represent the error in one space on the next coarse space,

we require a transfer operator called the restriction

Rk : _k --_ _I/k÷l (54)

which acts as a mapping between these spaces through a reduction in the space dimension. Also,

error correction oil the fine space from the coarse space requires the transfer operator called the

prolongation

Pk : _k _ _k-1 (55)

which acts as a reverse mapping. To complete the picture, we require a smoothing operator Sa

which acts to reduce the rough error components on each subspace _k. These smoothers may be

different on each grid but are typically chosen to be the same e.g Gaufl-Seidel . The generalized

multigrid cycle now reduces to

1. Perform ul pre-smoothing sweeps on the fine grid.

= + Sk(b - (p = 1,... ,,,)

2. Restrict the equation residual from the fine grid to the coarse grid.

Ck,pre = ¢_1

bk+l = Rk(bk -- AkCk,pre)

3. Solve on coarse grid and compute the coarse grid correction.

¢k+l -1: Ak+lbk+l

4. Prolong the correction back to the fine grid from the coarse grid.

Ck,corrected : Ck,pre "_- PkCk+l
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5. Performu2 post-smoothing sweeps oil the fine grid.

¢o = Ck,cor ect d

@k = (PPkk-1 q- Sk(bk -- Akqg_k-1) (P = 1,... ,u2)

Depending on the scheduling of operations between the spaces, we end up with different flavors

of multigrid cycles such as the V-cycle, W-cycle and F-cycle ([40]). In the algebraic multigrid

context, the coarse grid approximations Ak to A are defined using the fornmla

Ak+l = RkAkPk (56)

In our implementation of multigrid, the coarsening procedure terminates when the coarse grid

operator Aa is small enough to solve exactly.

4.2.2 Galerkin Form for Transfer Operators

While the restriction and prolongation operators are independent, a Galerkin form of these opera-

tors requires that

Rk = pT

Given the fact that a correction from the coarse space is required to remove the smooth error

components from the fine space, it is natural to seek the best possible correction. Let Ck+l represent

the correction from the coarse grid and Ck the current solution on the fine grid. The error in the

solution after correction is thus

ek = Ck + PkqSk+l -- Aklbk

Let us measure the error in the A-norm, H-HA and minimize the error:

minF(¢k+l) = minll(¢k +PaCk+l) - A-klbk IIA
¢k+1 _k+t

= min(¢k + PkqSk+l -- Aklbk)TAk((Ok + PkCk+l -- Aklbk)

Differentiation of the quadratic form with respect to Ck+l gives

T TPk (Ak + Ak)(¢k + PkCk+l -- Aklbk) = 0

For a symmetric matrix Ak, we may easily solve for ¢k+1 and obtain

Ck+l = (PkTAkpk)-lPkT(bk -- AkCk)

(57)

(58)

(59)
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Furtherexaminationof the Hessianshowsthat this is a minimum.Comparingthis fi)rmulato the

Ak in Eq. 56,wefind that

Rk = pT (60)

wherethe restrictionis nowdefinedastheformaladjointof the prolongation:

Rk = P_ (61)

The sameargumentcannotbe madefor a non-symmetricmatrix sincetile useof symmetryin

the proof may not be usedany longer. However,it canbe seenthat evenin this case,Eq. 59

correspondsto a stationarypoint but no informationmaybegleanedfrom the Hessian.However,

if wemeasurethe error in the residualin the L2-normandfollowa similarproof,weagaincome

to the sameresult asEq. 60.

4.2.3 Fixed Point Iterative Methods

Let usconsidera splitting of thematrix A in the followingform:

Ak = Mk -- Nk (62)

where Mk is non-singular. The basic idea behind preconditioning is to obtain a matrix Mk such

that Mk _ Ak and inversion of Mk is much less expensive than Ak. A basic iterative method is

defined as the following linear fixed-point iteration:

¢_+1 -1 i Mklbk (63)= M k Nkq_k +

= + M;I(b - A 4)

The matrix M} is known as the preconditioning matrix and matrix Sk = MklNk = I - MklAk is

called the iteration matrix or smoother. Damping may also be taken into account by defining:

¢i+½ = Sk¢_ + M_lbk (64)
k

,i+½
q_l ---- 03q} k -t- (1 - w)¢_ (65)

• i
: SkCk + WMklbk (66)

where

S_ = coSk + (1 - co)I (67)
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For a given coarse space, let the exact solution be Ck and tile error in tile solution be

ei0h= ¢; - ¢_

This error is controlled by Sk in the following fashion:

ei+l = ¢_+1_¢kG

= S ikqSk + Mk-lbk - ICk

= Sk¢_ + M_-lAkCk - ICk

= skG- sk¢_

= SkeW01,,

(68)

(69)

The convergence property of the iterative method (63) can be summed up in the well known result:

Theorem 1 Convergence of (63) for any initial guess u ° is equivalent to

p(s_) < 1 (70)

4.2.4 Multigrid as a Fixed Point Method

Multigrid may also be thought of as a fixed point method and this can be shown fairly easily for

the V-cycle multigrid cycle. We consider the general V(vl, v2) cycle for the two-level method but

simplify it by assuming that we have only one pre-smoothing and one post-smoothing i.e a V(1,1)

cycle. Let A represent the fine grid matrix and .& represent the coarse grid matrix. For an initial

guess ¢(0) = 0:

1. Pre-smoothing: ¢(1) = STb

2. Coarse grid correction:

(a) Restrict residual:

(b) Coarse grid solve:

q(0) = R(I - AST)b

q(1) = it-lR(i _ AST)b
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(c) Fine grid correction:

3. Post-smoothing:

M-lb =

¢(2) = ¢(1) +RTq(1)

= [ST+ RT/_llR(I- AsT)]b

¢(2) + S(b - A¢ (2))

IS + S T - SAS T + (I- SA)RT/_-IR(I- AsT)Ib

The multigrid iteration matix Srnultigrid now takes the form:

Smultigrid _- I - M-1A

= (I - SA)(I - RT._.-1RA)(I - STA)

For the extension to multiple levels and variable number of pre- and post-smoothing sweeps, we

refer to [31].

4.2.5 Convergence Conditions

In order to obtain mesh independent convergence properties, certain conditions must be met by

the transfer operators. The definition of the subspace _k is obtained by interpolation in _Pk-1,

and according to the analysis in [31], these subspaces must satisfy stability and approximation

properties to ensure convergence of Eq. 63. These properties are:

IlRkulll,_ <_ CIlulll,_, (stability) (71)

IlRku-ull0,_ <_ Chllull_,n (approximation) VucHI(f_) (72)

and as noted, special care must be taken in defining Rk. Another condition as outlined in [40] is

mR + rnR > 2rn (73)

where the orders mR, mR of Pk and Rk are defined as the order (degree pIus one) of the polynomials

that are interpolated exactly by Pk and Rk, and 2m is the order of the governing partial differential

equation.

The use of nodal agglomeration in ACM to construct the subspaces results in the definition of

the restriction as an injection operator. This has several associated problems. The first is that in

3D, this operator violates the stability property (71) (I311). Secondly, both mp and mR are unity

and for the Laplacian operator (2m = 2), the accuracy condition (73) is violated ([40]).
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4.3 Agglomerated Coarse Space

In this section,wenowdescribetheconstructionof thecoarsespacesaswellascoarsespacebasis

functionsandmultigrid operators.Our goalsin tile agglomerationand associatedconstructionof

thecoarsespacebasisfunctionsare:

1. Thecoarsegrid matrix Ak definedon the coarsegrid shouldbea goodapproximationto tile

finegrid matrix A0.

2. Thecoarsegrid shouldhavea reductionof anisotropiceffectsfrom previouscoarsespaces.

The proposedalgorithm is basedoil the fusionof coarsespacedementsinto macroelementswith

subsequentdefinitionsof the coarsegrid topologyand basisfunctions. This methodis applied

recursivelyto generatethehierarchyof coarsespaces.Oneessentialdifferencebetweenthis method

and that proposedby Chan et al is that the coarse mesh elements are not converted into stan-

dard elements by a retriangulation but are generalized polygons formed by tile agglomerated fine

mesh elements. This is especially attractive in 3D because of the complicated rules which may be

involved for the retriangulation method described in [34]. Although tile support for the basis func-

tions defined on these macroelements is larger than standard triangular elements, a well designed

agglomeration should relieve some of this. This algorithm also has the feature that the resulting

coarse grid topology is both node-nested and element-nested.

4.3.1 Coarse Space Topology

The coarse grid topology is constructed by partitioning of the elements into macroelement groups

as shown in Fig. 19. A macroedge is defined to be the ordered collection of fine grid edges which

are shared by two neighboring macroelements. To complete the definition of tile coarse grid graph,

the coarse nodes are chosen to be the fine grid nodes where three or more macroedges meet. This

is the reverse of what is described by Chan et al where the coarse grid points are first defined and

then the macroelements are chosen.

Two different element partitioning algorithms have been developed and both are similar in the

sense that they are based on elemental accretion across edges using some measure of the coupling

strength of the vertices making up that edge. They however differ in that one tries to alleviate grid

anisotropy while the other typically introduces grid anisotropy in regions of stiff matrix coefficients.

The second algorithm is based on a semi-coarsening algorithm using the subspace matrix as tile
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Figure 19: Coarse Space Topology

control parameter while the first is a reduced-geometry based algorithm which attempts to alleviate

stiffness in regions of highly stretched grids.

Matrix Based Agglomeration

The matrix based algorithm has its origins in the pure AMG implementation of the ACM

algorithm. However, modifications are required in order to apply this to element agglomeration

as opposed to vertex agglomeration which it is was originally designed for ([37]. The basic idea

is that strong matrix coupling between vertices in the graph of the mesh typically corresponds to

a weak coupling between the vertices in the dual graph. The strength of the coupling is typically

based on the stencil coefficients of the matrix. We will describe later, the implemented definition

of the vertex coupling strength in relation to the development of the implicit line solver. Since the

dual graph vertices correspond to the elements, agglomeration of elements across edges with weakly

coupled vertices is equivalent to directional agglomeration of strongly coupled vertices.

Using this principle, we may now develop an algorithm which directionally clusters elements

in order to relieve stiffness in the next coarse space. The accretion is performed with a Breadth

First Search (BFS)/Greedy algorithm which maintains a queue of elements sorted according to the

relative coupling strengths of the vertices on their bounding edges. We now present the algorithm

in detail:

Algorithm 1 (Matrix Based Macroelement Construction)

48



'i' 'I

i;

ii

!'i ' i:

i I
; I p

_rnent Accl etlon ,DIrect on

/
Weak Matrix Coupling Strong Matrix Coupling

Figure 20: Matrix Based Agglomeration in Boundary Layer

Step O: Consider the graph of the mesh: G = (V,E) and calculate the coupling strengths for the

edges E in the graph.

Step 1: Seed element procurement. Obtain a seed element to initialize the BFS algorithm. If

there is no seed element in the queue, choose any suitable element which does not belong to a

macroelement group.

Step 2: Perform accretion around the seed element by recurs@ely considering the neighbouring

elements.

Step 3: Repeat Step 2 until the macroelement has desired number of elements or heap contains

no more elements.

Step 4: If the number of elements agglomerated is less than a specified fraction of the desired

number of elements (usually 1), these agglomerated elements are ungrouped and the original2

seed element is marked.

Step 5: Repeat Step 1 until all elements either belong a macroelement or has been. marked as art

invalid seed.

In Step 2 above, a heap is maintained whose members contains a key pair consisting of element

and face identifiers. Initially, seed element is placed on the heap. The head of the seed is then

popped for the current seed element and added to the maeroelement list. For every neighbor
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of the poppedelementwhichdoesnot belongto a macroelement,tile connectionst,rcngthof the

separatingedgeis checked.If theedgeis consideredto beweak,theneighboringelementis inserted

into the macroelement.For everynewly insertedelement,the neighborswhichdo belongto any

macroelementareconsideredandthecorrespondingelement/edgekeyidentifierpairis insertedinto

the the heapaccordingto the edgeconnectionstrength.

After thealgorithmterminates,post-processingisnecessaryto dealwith exceptionswhichmay

arise.Thesearedescribedbelow:

(1) Elements not in any macroelement: Elements which are marked as invalid seeds and have

not been absorbed into a macroelement will end up as lone elements. These elements are

merged with the neighboring element/macroelement that shares the edge with the weakest

connectivity.

(2) Insufficient number of elements: After exception 1 above, a macroelement may end up

with an insufficient number of agglomerated elements. The macroelement is divided up

amongst neighboring macroelements by erosion of the boundary elements until there are

no more elements. The decision as to where an element goes is also based on the edge

connectivity.

(3) Insufficient number of coarse nodes: A macroelement ,nay also end up with two or less

coarse grid nodes which presents a problem in the construction of the transfer operators.

These macroelements are also divided up amongst neighboring macroelements.

This algorithm is closely tied to the line solver and can be particularly effective for equations

with strongly preferential directions. Extension to 3D would be straightforward if a suitable "face"

connectivity can be defined. If the connection strength for all edges is defined to be a constant, then

an isotropic agglomeration algorithm is recovered. Unfortunately, since there will be no preferential

direction, there is no real control in the regularity of the coarse grid and self similar meshes cannot

be obtained for structured, topologically rectangular meshes.

Geometry Based Agglomeration

The geometry based algorithm is based on the idea of removing grid anisotropy as well as

maintaining isotropy in the isotropic regions of the mesh. This is related to the work done by

Mavriplis[aa, 41] except that it is applied to elements as opposed to vertices. The proposed

algorithm makes use of the edge lengths only and this represents a reduced geometry method. The
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reducedgeometryfor the lowerlevelcoarsespacesis definedentirely in termsof tile finegrid i.e

the macroedgelengthsaresimplythe stunof theedgelengthsof the constitutingfinegrid edges.

The decisionto agglomeratetwo neighboringelenmntsis basedona geometrybasedconnectivity

conceptwhichwe term macroelementskew.

Definition 1 For a general polygon, the polygon skew is a measure of anisotropy and is defined as

the area of the n-gon divided by the area of a perfect n-gon with the same perimeter.

In the extreme cases, this is zero for colinear polygon vertices and unity for a perfect n-gon. It can

be seen that this readily extends to aD. The macroelemental areas for the coarse spaces are also

easy to compute as they are simply sums of the agglomerated element areas. This makes it easy to

apply the algorithm recursively once the required geometry variables have been computed on the

finest mesh. In order to complete the operators required for this algorithm, we need to define the

edge connection strength which we term edge skew.

Definition 2 For an element which borders a macroelement/element on a given edge, edge skew

is defined as the macroelement skew of the macroelement which would be created if the element is

merged with the macroelement/element across that edge.

We now present the algorithm in detail:

Algorithm 2 (Geometry Based Macroelement Construction)

Step 0: Consider the graph of the mesh: G = (V,E) and calculate the edge length for the edges E

in the graph.

Step 1: Initialize seed queue.

Step 2: Seed element procurement. Obtain a seed element to initialize the algorithm. If there

is no seed element in the queue, choose any suitable element which does not belong to a

macroelement group.

Step 3: Perform accretion around the seed element. Place seed element in macroelement and for

every neighboring element, compute the edge skew. Every neighboring element which has an

edge skew larger than some ,specified fraction (typically 0. 75) of the average edge skew and not

in a macroelement is placed in the macroelement.
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Step 4: Enqueue seed elements. New seed elements are placed in the queue to c.ontiT_.uc the algo-

rithm. These are chosen to be elements which share a vertex but no edges with the macroele-

meat. In 3D, this would extend to elements which share a vertex and/or an edge but no faces

with the macroelement.

Step 5: Repeat Step 1 until all elements either belong a macroelement or there are no more seed

elements.

A queue of seed elements needs to be maintained and hence in Step 1 above, this is initialized

with one element. This initial choice can be very important especially in cases of unstructured

meshes generated from structured data. In such a case, the agglomeration pattern may radically

depart from a 4:1 agglomeration in 2D since the accretion algorithm will not properly identify

potential elements. In this case, simply pick an element with no domain boundary edges.

After the algorithm terminates, post-processing is necessary to deal with "sliver" elements which

may not have been picked up by the algorithm. A determination of which macroelement to merge

these elements with is made a-priori based on edge skew. Ill the case where the lengths and areas

are equal, the algorithm degenerates to a 4:1 isotropic agglomeration in 2D and fully recovers the

natural coarse structure for a regular grid.

(a) Matrix Based Agglomeration (b) Geometry Based Agglomeration

Figure 21: Resultant Agglomerations Based on Different Agglomeration Algorithms
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Fig. 21 shows the difference between the two algoritlnns in the case of a cosine Ni Bmnp with

9600 elements and 4961 vertices. The underlying geometry is generated from structured data and

the geometry based algorithm nicely recovers the natural coarse grid.

4.3.2 Coarse Space Basis Functions

The transfer operators may now be defined based oil the constructed macroelements. The GCA

formulation is in effect so it is sufficient to construct the prolongation operator only. We would like

the basis functions to at least satisfy the stability (71) and approximation (72) conditions, preserve

the constant function, and behave like standard interpolants i.e

ifi = j

1
= (74)

0 ifi#j

The construction of the proposed basis functions makes use of topology and reduced geometry

if provided. If the geometry is not given, then the elements are assumed to be isotropic. We now

define the basis flmctions using graph distance interpolation on both the boundary and interior. If

the geometry is available, this is used in combination to form a more accurate interpolant. This is

an improvement over the interpolation proposed by Chan et al which makes use of graph distance

interpolation on the boundary and constant interpolation over the interior. This algorithm leads

to a quasi-linear interpolant as shown in Fig. 22. The detailed algorithm is given below:

Oo=1 Oo=1/2 Oo=O

Oo=O Oo=O

Coarse w

Node O0=O O0__O 00__ 0

Figure 22: Coarse Space Basis Function Based on Graph Distance

Algorithm 3 (Basis Function Construction)
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Step 1: For each macroelernent, create a local subgraph, b_ the process, create an ordering of the

boundary edges such that the boundary can be traversed.

Step 2: Extract the list of interior vertices. Extract the ordered list of coarse grid vertices by

traversing the boundary edges.

Step 3: For all fine grid edge vertices which lie between consecutive coarse grid nodes, construct

length weighted interpolation data. The macroedge length is also computed simultaneously.

Step 4: Interior vertex interpolation. For each coarse grid node in the macroelement, a BFS

iteration on the local subgraph is performed with the coarse grid node as a seed. Both the

level set as well the distance from the coarse node is recorded for all interior nodes in the

subgraph during the process. The graph distance of each macroelement fine grid node from

the macroelement coarse grid nodes is then set. For each fine grid node, these distances are

then weighted to sum to unity.

4.3.3 Scaling Issues

The success of the multigrid methods depends heavily oll how good of an approximation the coarse

space matrices Ak are to A. In the GCA formulation, special care must be taken to ensure that

that these approximations are accurate enough. The construction of the prolongation operator is

typically not a problem. However, the definition of the restriction operator needs to be modified

slightly. Let us choose the restriction operator to be

Rk = aP_ (75)

where P_ is the formal adjoint of the prolongation and a is a suitable scaling factor. The scaling of

Rk is determined by the role of Rk. If Rk is to be used to construct coarse grid representations of Ck

(i.e RkCk), then _j Rk(i,j) = 1. However, if R is to be used to transfer residuals to the coarse grid,

then the correct value of the scaling depends on the scaling of the fine grid and coarse grid problems.

This implies that the coarse grid problem should be consistent with the differential problem in the

same way as the fine grid problem. This is the basic problem with vertex agglomeration. Let H

represent a characteristic mesh size on the coarse grid and h represent a characteristic length oi1

the fine grid. Finite volume and finite element schemes in 2D lead to a scaling rule which says that

Ej Rk(i,j) = (H)2 which can be viewed as a ratio of the area associated with a coarse grid node

to the area associated with the counterpart fine grid node.
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Thebasisflmctionconstructionalgorittunthusneedsto bemodifiedto takethis intoaccount.

Theassociatedareafor the nodes on both the fine and coarse grids is computed by looping through

the elements on a grid and sending elemental area contributions (element area divided by the

number of element vertices) to these vertices. The diagonal scaling matrix a is now computed.

However, we would like to maintain the GCA formulation, so the system is symmetrized by defining

P : Pa½

1

: a_-p T

(76)

(77)

(78)

This forInulation has the nice feature that the eigenstructure is preserved for an SPD matrix.

The coarse grid equations are now constructed using the GCA approximation and the multigrid

operation continues with this new definition for the transfer operators.

4.4 Implicit Line Smoother

In the context of our multigrid formulation, we would like to be able to solve the high Reynolds

number Navier-Stokes equations which is a parabolic system characterized by both advective and

acoustic modes. We would like to decouple the two modes in the following way. Multigrid methods

are very effective at damping out elliptic error modes such that the choice for the smoother must

be that it can handle the advective error components. Following this reasoning, we have opted

to use an implicit GauB-Seidel line relaxation scheme where the lines are constructed to follow

characteristic directions. The use of a line relaxation scheme leads to a natural splitting of the

matrix into tridiagonal submatrices which may be solved by any of the myriad tridiagonal matrix

solvers. The general rule behind the line relaxation is that points which are strongly coupled should

be updated simultaneously. This leads to the description of how the implicit lines are constructed.

4.5 Implicit Line Construction

The implicit line construction process is based on the philosophy of linking strongly coupled nodes.

In order to reduce the amount of work in the line smoother, minimal overlap between the lines is

allowed. To properly describe the algorithm, we need to define two terms:

1. Coupling measure: The coupling measure between two nodes gives a local quantification

of the connectivity between these nodes. Typically, this is based on the matrix stencil con-

necting these points. Ideally, the measure of the coupling between the nodes should be based
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on a discretizationof a scalarconvection-diffusionequationbut othermcasur{_ssuchasan

approximationto the flow velocityor streamlinesmay be used. This becomesevenmore

complicatedin the caseof blocksystemsof equationssuchasarisein discretizationsof the

Navier-Stokesequations. It may howeverbe possibleto useentropyvariablesto form an

approximationof the scalarconvectionequation.

2. Coupling degree: The coupling degree between two nodes gives a quantification of the

connectivity between these nodes as compared to other connected nodes. This is based on

the coupling measure earlier defined. In the current framework, the degree of coupling between

two nodes V1 and V2 is determined by first computing the coupling measure of the nodes to

all surrounding nodes and this measure may be freely defined. For each node, the maximum

value is taken to be the reference value for that node. From the point of view of V1, the

coupling between nodes V1 and V2 will be considered strong if the connectivity measure

between these nodes is larger than a threshold value. This threshold value is defined to be

a fraction of the V1 reference value. Two nodes are linked up in the line if the degree of

coupling between them is stonger than any other connection. In advection dominated flows,

strong coupling tends to be one-sided which is why a two way consideration (i.e from both

points of view of V1 and V2) is necessary.

Line construction is done in a two pass process. The first pass involves the construction of

individual lines while the second pass involves merging lines to reduce the line count and improve

convergence. The construction of a single line begins by choosing a seed node. All nodes which

do not exist in a line are placed in a queue in no particular order and the seed node is chosen

from this queue. The chosen seed is usually not an extremety of the line based on a straightforward

implementation of the algorithm. Hence, we need to introduce the concept of forward and backward

mode line construction.

4.5.1 Forward Mode Line Construction

Forward mode line construction involves stepping through a line by starting at a given node and

simply choosing the next node with the best strong connection which is not in the current line.

The best connection, however, may be a node which already exists in another line. Hence, in an

effort to ininimize overlap, the next best node which has a strong connection and has not been

assigned to a line is chosen. If no such node exists, then the originally selected node is chosen.
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If the nmnberof timesa nodewhichhasalreadybeenassignedto a line is chosenreachessome

predeterminedlimit, then tile line is terminatedandthe overlapnodesare removed.Also, if tile

next chosennodeis an extremetyof anotherexistingline, then tile currentline is simplymerged

with that line. Flowswith recirculationregionsor circular flowsgiverise to cycliccouplings,so

this caseis speciallyhandledif the chosennodeturnsout to be the headof the currentline.

4.5.2 Backward Mode Line Construction

Backward mode line construction is akin to the reverse of the forward mode. For a given node, all

the adjoining nodes are scanned and a single step of the forward mode algorithm is performed on

these connected nodes. If any of these connected nodes would have chosen the starting node as the

next node in the line, then this node is chosen as the next node. In the event that nmltiple nodes

would have chosen this node, then the one with the strongest coupling is chosen. As in the forward

mode, if the chosen node is an extremety of an existing line, then the current line is merged with

that line.

4.5.3 Line Processing

The line is constructed by performing backward and forward mode construction from the seed

point. After the two halves of the line have been constructed, they are merged together into a

single line. The post-processing pass is performed once all the nodes have been assigned to reduce

the line count. This is done by checking the extremeties of every line and testing to see if the

node on the extremety has a strong connection to a node on the extremety of another line. The

connection threshold for each node is reduced by a factor (typically between 0.5 and 0.75) to allow

more lines to be considered.

Fig. 23 shows a 2-level example of the implicit line construction on the grids. The agglomeration

shown is the geometry based algorithm.
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(a) Level 0 Agglomeration (b) Level 0 Implicit Lines

(c) Level 1 Agglomeration (d) Level 1 Implicit Lines

Figure 23: Multilevel Agglomeration and hnplicit Lines
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4.6 Results

The performanceof the algorithmfor differentflow regimesand characteristicsis nowpresented.

As mentionedby Chan([31]),the performanceof manynumericaltechniquesfor elliptic problems

arenot robust for convectiondominatedflows.Two particularkindsof flowswhichareknownto

causedivergencefor manytechniquesareboundarylayerflowsandrecirculationflows.

4.6.1 Boundary Layer Flow

Weconsiderthe linearconvectiondiffusionequation(Eq.45)overa squaredomain_t=]0, 1[2 and

prescribed velocity field U = (-y,x). The forcing function f is set to zero and the dirichlet boundary

on the inflow and left wall (x = 0) is

5.0(x-0.2), for 0.2 < x < 0.4, y = 0

1, for 0.4 < x < 0.6, y = 0
Ot D z

1-5(x-0.6), for 0.6 < x < 0.8, y = 0

0, otherwise

This particular set of conditions is chosen to simulate a boundary layer flow with the nominal

Reynolds number

Re
Uh " lh

I.)

1
z --

l/
(79)

The discretized domain is adapted on the dirichlet boundary to capture the boundary layer as

shown in Fig. 23(a). All presented results are based on a V(1,1) multigrid cycle with no FMG.

The agglomeration technique is the geometry based algorithm and the solver is terminated when

the RMS absolute error in the residual is less than 10 -13. The relaxation factor w chosen for all

the test cases was 0.95. The behaviour of the algorithms for a variety of parameter states is now

presented:

Multigrid Level Dependency:

The dependence of the convergence rate on the number of coarse spaces is shown in Fig. 24. The

fine mesh has 60399 vertices and 119714 elements and a total of 6 coarse spaces were constructed.

In the asymptotic limit, the convergence rate is the same for all the curves and beyond the two-grid

case, the curves fall unto the same line.
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Reynold Number Dependency:

The dependence of the convergence rate on the Reynolds number is shown in Fig. 25, Fig. 26

and Fig. 27 for a range of Reynolds numbers from 102 to 107. Figures 25 to 27 were generated

on a sequence of fine meshes with 3849, 15763 and 60399 vertices respectively which represents an

approximate halving of the mesh spacing. In all cases, we find a similar asymptotic convergence

rate. Even more important is the fact that the algorithm works well for such a wide range of

Reynolds numbers while maintaining a fairly constant bound on the number of iterations required

for convergence.

A noticeable trend can be observed with the Re = 100 case, which is the increasingly pronounced

stall in the residual after a few iterations followed by convergence. The problem is fairly elliptic

such that well defined characteristic lines are not easily identifiable. As a result, the line solver

does not facilitate proper propagation of information in the characteristic directions. For such a

low Re problem, the use of a point implicit Gaug-Seidel smoother would be a better choice.
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Figure 28: Timing Information: Re=l.0e6

Fig. 28(a) shows timing information for the algorithm on the boundary layer problem. The

Reynolds number is 1 million and the fine mesh has 60399 points. The plot shows the CPU time

62



requiredfor thesolutionversusthenumberof multigrid levelswith andwithout tim preproccssing

time included.This preprocessingtime includesthe time requiredto constructthe coarsespaces

andimplicit linesaswell asfactorizationof the coarsestgrid matrix. Fig. 28(b) showsthe CPU

timerequiredfor thesolutionversusthenumberof finegridverticesfor thethreemeshesmentioned

abovewith the numberof coarsemeshesfixedat 4.

4.6.2 Reeirculation Flow

We also consider the linear convection diffusion equation (Eq. 45) over a square domain ft =] - 1, 1[2

(Fig. 29) and prescribed velocity field U = (-y,x). Neumann boundary conditions o°-_v= 0 are

imposed on the domain boundaries and the flow field is initialized with random values ranging

from -1 to 1 with a mean of zero. The nominal Reynolds number is also defined as

Uh " lh
Re --

l]

1

II

The discretized fine mesh has 1990 points and an example of a solution converged to an RMS

residual tolerance of 10 -la is shown in Fig. 30 for a Reynolds number of 1 million. The range of ¢

shown is between -1.17 x 10 -7 and 7.94 x 10 -9.

The results in Fig. 31 show the dependence of the convergence rate for a number of Reynolds

numbers. There is significant deviation of the convergence rate as the Reynolds number increases.

It can be seen that for the higher Reynolds number cases, the algorithm has increasing trouble in

damping out certain modes. This is due to the nature of the implicit lines in the context of an

unstructured grid. Due to the unstructured nature of the grid, these lines do not wrap around

on themselves (Fig. 32) and as such, the system of equations for the lines are not periodic. This

means that information cannot be propagated properly along the characteristic lines with resulting

deterioration in convergence rate. However, there is a reduction of six orders of magnitude in the

residual before this effect becomes noticeable, so it is still possible to use the algorithm in the role

of a preeonditioner to Krylov subspace solvers.
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