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ABSTRACT

Modern computational and experimental tools for acrodynamics and propulsion applications have
matured to a stage where they can provide substantial insight into engineering processes involving fluid
flows, and can be fruitfully utilized to help improve the design of practical devices. In particular, rapid and
continuous development in aerospace engineering demands that new design concepts be regularly proposed
to meet goals for increased performance, robustness and safety while concurrently decreasing cost. To date,
the majority of the effort in design optimization of fluid dynamics has relied on gradient-based search
algorithms. Global optimization methods can utilize the information collected from various sources and by
different tools. These methods offer multi-criterion optimization, handle the existence of multiple design
points and trade-offs via insight into the entire design space, can easily perform tasks in parallel, and are
often effective in filtering the noise intrinsic to numerical and experimental data. However, a successtul
application of the global optimization method needs to address issues related to data requirements with an
increase in the number of design variables, and methods for predicting the model performance. In this
article, we review recent progress made in establishing suitable global optimization techniques employing
neural network and polynomial-based response surface methodologies. Issues addressed include techniques
for construction of the response surface, design of experiment techniques for supplying information in an
cconomical manner, optimization procedures and multi-level technigues, and assessment of relative
pertormance between polynormals and neural networks. Examples drawn from wing aerodynamics,
turbulent diffuser flows, gas-gas injectors, and supersonic turbines are employed to help demonstrate the
issues involved in an engineering design context. Both the usefulness of the existing knowledge to aid

current design practices and the need for tuture research are identitied.

Keywords: Global Optimization, Response Surface Methodology, Design of Experiments, Neural
Networks.
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1. INTRODUCTION AND SCOPE

Modern computational and experimental fluid dynamics tools have matured to a stage where they
can provide substantial insight into engineering processes involving fluid flows. This can help analyze the
fluid physics as well as improve the design of practical devices. In particular, rapid and continuous
development in the technology of fluid machinery demands that new design concepts be regularly proposed
to meet goals for increased performance, robustness and safety while concurrently decreasing cost.

Most aerospace system and component designs are conducted as open loop. fteed-forward
orocesses. For example, for rocket engines, currently, cne design iteration for a given set of engine balance
conditions takes up to several weeks with the blade geometry design sub-iteration phase taking several days
each. The quest for an acceptable blade surface velocity distribution is accomplished with many ad hoc
rules in what is really a manual trial-and-error process. A systematic approach capable of identifying
optimum design and comparing possible trade-offs can significantly improve the productivity and shorten
the design cycle.

Objective and efficient evaluation of advanced designs can be facilitated by development and
implementation of systematic optimization methods. To date, the majority of the effort in design
optimization of fluid dynamics has relied on gradient-based search algorithms (Baysal and Eleshaky {1},
Lambert et al.[27], Reuther et al. [54]). These methods work iteratively through a sequence of local sub-
problems, which approximate objective and constraint functions for a sub-region of the design space, e.g.,
by linearization using computed sensitivities. Major challenges for these optimization approaches are the
robust and speedy computation of sensitivity coetficients (Elbanna and Carlson [10], Dadone et al.{6]).

Local optimization methods based on derivatives are commonly used in such engineering system

design optimization problems (Sobieszczanski-Sobieski and Haftka [39]). On the other hand, global



optimization techniques also have been commonly used for engineering design optimization problems
especially for multidisciplinary ones. In its current practice. the global design optimization method involves
three primary steps (Figure 1): (a) Generation of individual data sets within the design space; (b}
Interpolation among these data sets via some continuous functional representation; and (c¢) Optimization of
the objective function via a certain search strategy. Yet despite recent research advances, formal design
optimization has yet to see practical use in real design scenarios. The reasons are five-fold:
(1) Engineering design, even within a single discipline, typically involves many parameters (and
hence many degrees of freedom) rather than the handful demonstrated in most research papers. This
renders unrestricted “brute force” search schemes too resource-intensive.
2) The objective functions are likely to be multi-modal or discontinuous over the broad design space,
rendering gradient search methods insufficient by themselves. Furthermore, the usual practice to combine
multiple goals into a single quantitative objective function is too restrictive. Qualitative goals are often
required to correctly characterize a problem. (E.g.. maximizing a turbine blade’s aerodynamic efficiency
with a smooth, monotonic surface velocity distribution, while spreading heat load as uniformly as possible.)
Furthermore, these goals may have arisen from diverse disciplines and are usually treated sequentially by
different groups.
3 It is inadequate to think of the final product of a design process as a mere geometry. A “design”
really encompasses a whole set of operating, manufacturing and project level decisions.
(4) As the interaction between numerical simulation and physical test data becomes stronger, the
future engineering knowledge base is likely to consist of all sorts of heterogeneous data sources including
test data, experimental data, past product experiences, semi-empirical modeling, and high fidelity
simulations. Some data are anecdotal; others cover only small “patches” of the physical domain but are still
useful for “'reality checks”. A unified framework needs to be constructed for representation, capturing and
mining of all these data types so the response functions can be continuously improved.

With the above observations, global optimization methods are attractive because they have several
advantages when compared to local gradient-based methods (Shyy et al. [58]):
(1) They do not require calculation of the local sensitivity of each design variable,

(2) They can utilize the information collected from various sources and by different tools.
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(3) They offer multi-criterion optimization,

(4) They can handle the existence of multiple design points and trade-offs,

(3) They easily perform tasks in parallel, and

(6) They can often effectively filter the noise intrinsic to numerical and experimental data.

Among global approximation techniques. the Response Surface Methodology (RSM) has gained
the most attention since it consists of a simple way of connecting codes from various disciplines
(Sobieszczanski-Sobieski and Haftka {59]). The RSM is a collection of mathematical and statistical tools
used in investigative experimentation by scientists and engineers (Bauer Jr. et al. [2]). The RSM approach
replaces the objective and constraint functions by simple functions, often polynomials, which are fitted to
the carefully selected points. Since RSM can utilize information collected from various sources and by
different tools, it can also offer multi-criterion optimization, handle the existence of multipie design
selections and related trade-offs. and address the noises intrinsic to numerical and experimental data. A
main advantage of RSM is its robustness and intelligibility. Robustness and the smoothness of
approximations in noisy environments are achieved by performing extra analyses, compared to the number
of regression coefficients. This is a distinct advantage over derivative-based search algorithms, which may

encounter difficulties in the presence of spurious local optima (Madsen et al. [32]).

1.1 SCOPE

In this article, we first review the basic concepts and methodologies, then assess the current statue,
via case studies, of the global optimization techniques. Particular attention is paid to two different
techniques to generate information to construct the response surface (RS) namely; Neural Network (NN)
and polynomial-based Response Surface Methodology. Neural Networks are models that contain many
simple linear and non-linear elements operating in parallel and connected in patterns (Greenman [14]).
Polynomial-based RSM models the system with polynomials of assumed order and unknown coefficients.
The solution for the set of coefficients that best fits the training data is a linear least square problem,
making it trivial compared to the solution for NN. which involves a nonlinear training process. In this
article, two neural network types, namely, Back-Propagation NN (BPNN) and Radial Basis NN (RBNN),

are investigated.



The BPNN consists of multi-layer networks with differentiable activation function. The BPNN is
the most employed NN type in the optimization literature (Carpenter and Barthelemy [4]. Falier and
Schereck [11], Fan et al. [11], Greenman [14], Greenman, and Roth [15] & [16], Huang et al.[20], [lli et al.
{21], Kangas et al. [24], Lavretsky [28], Lawrence et al [29} & (30], Madavan et al.[31], Maghami and
Sparks [34] & [35], Nikolaidis et al. [39], Norgaard et al. [40], Rai and Madavan [51], [52] & [53], Ross et
al. [55], Sparks and Maghami [60], Stepniewski and Jorgenson [61], and Stepniewski et al. {62]).

RBNN is a more recently developed multi layer network with a linear regression process that
makes the mathematics simpler and computational costs lower (Orr [41], [42] & [43]). RBNN tends to have
many more neurons than BPNN but can be configured faster for the same training data. The basic reason
for this is that back-propagation neurons can have outputs over a large region of the input space, while
radial-basis neurons respond to relatively small regions of the input space. Thus, larger input spaces require
more radial-basis neurons for training. More detailed evaluation of RBNN and BPNN will be given in the
following sections.

Polynomial-based response surfaces and linear regression techniques have been originally
developed to filter noise from experimental data. Sophisticated statistical tools are available for these
purposes. One class of tools, design of experiments, is often used to select points for training that minimize
the effect of noise on the fitted polynomial. A second set of tools, analysis of variance, is routinely used to
identify polynomial coefficients that are not well characterized by the data. and are therefore overly
sensitive to noise. Analysis of variance helps avoid overfitting of the data, which otherwise would result in
the mapping of the noise. On the other hand, neural networks are much more flexible in functional form,
which means that they can be better suited to fit complex functions that are not easily approximated by
polynomials. For example, when the physical system changes from one regime to another due to the
presence of critical parameters, NN performs better than RSM. This advantage is particularly useful when
there is very little numerical noise, and it is possible to obtain very accurate approximations to the
underlying function (Papila et al.[49]). The relative strengths and weaknesses of NN and polvnomial-based
RSM are summarized in Table 1.

Table 2 summarizes the existing literature evaluating the relative pertormance of NN and

polynomial-based RSM approximation. For example, Carpenter and Barthelemy [4] used NN and



polynomial-based approximations to develop RS for several test problems. It is demonstrated that two
methods perform comparably based on the number of undetermined parameters. Rai and Madavan [51]
investigated the feasibility of applying neural networks to the design of turbomachinery airfoils. Neural
network approach is used for both function approximation and prediction. It is found that neural networks
are quite efficient in both tasks. An aerodynamic design procedure that employs a strategy called
parameter-based partitioning incorporating the advantages of both traditional RSM and NNs to create a
composite response surface is described by Rai and Madavan [52] & [53]. Itis shown that such method can
handle design problems with higher dimensional problems than would be possible using NN alone.
Nikolaidis et al. [39] used NNs and response surface polynomials to predict the performance characteristics
of automotive joints using geometrical parameters. It is shown that both methods performed comparably.
NN-based aerodynamic design procedure is applied to the redesign of a transonic turbine stage to improve
its unsteady aerodynamic performance by Madavan et al.[31]. It is illustrated that using an optimization
procedure combining the advantages of NN and polynornial-based RSM can be advantageous. Papila et al.
[49] investigated the relative merits of polynomial-based RSM, RBNN and BPNN in handling different
data characteristics. It is demonstrated that using RBNN rather than BPNN has certain advantages as data
size increases. Also, it is shown that RBNN gives more accurate results than potynomila-based RSM as the
nature of the experimental data becomes complex. Shyy et al. [57] have integrated neural network
techniques and polynomial-based RSM to obtain improved optimization tools. In Rai and Madavan [53], a
composite NN & polynomial-based RS methodology is applied for a transonic turbine and it is
demonstrated that a systematic application of such method can enhance the effectiveness of the overall
optimization process. In the study by Vaidyanathan et al.[71], the application of NN and polynomial-based
RSM in preliminary design of two rocket engine components, gas-gas injector and supersonic turbine, with
modest amounts of data are discussed and it is demonstrated that NN and polynomial-based approximations
can perform comparably for modest data sizes.

In this article, we focus on the recent efforts in developing, improving. and optimizing appropriate
techniques for design optimization of airfoils and rocket engine components capable of being used in

applications like Reusable Launch Vehicles. Some of the physical components used as case studies are low

()



Re aerodynamics, 2-D turbulent planar diffuser, the injector and the supersonic turbine for rocket
propulsion.
Specifically, the following issues are discussed:

(1) The capability of the NN and polynomial-based RSM for handling data with variable sizes and noise,
(2) The selection of NN configuration that is suitable for given design problems,
(3) The effect of the design parameters on the performance of the NN,
(4) The effect of distribution of the data over the design space in the construction of the global model,
(5) The merit of employing a multi-level optimization strategy to perform the task adaptively and

efficiently,

(6) Possible trade-offs between capacity design objectives and their impact on design selections.

2. REVIEW OF METHODOLOGIES
In response-surface-based global optimization, there are several key technical elements:
(1) Response surface with polynomials and statistical analysis
(2) Neural networks with BPNN and RBNN
(3) Design of experiments with face centered composite design (FCCD), orthogonal arrays (OA) and D-
Optimal designs
(4) Optimization procedure including the multilevel approach.

In the following, we review these elements in sequence.

2.1 RESPONSE SURFACE METHOD (RSM)

The approach of RSM is to perform a series of experiments, based on numerical analyses or
physical experiments, for a prescribed set of design points, and to construct a global approximation of the
measured quantity over the design space (Figure 1). The polynomial-based RSM, used in all the case
studies referred to, constructs polynomials of assumed order and unknown coefficients based on regression
analysis. The number of coefticients to be evaluated depends on the order of polynomial and the number of
design parameters involved. For instance, a second-order polynomial of N design variables has

(N+TYN+2)(2!) coefficients. A cubic model has (N+/}N+2)N+3)/(3!) coefficients. In this article, the



polynomial approximations are constructed by standard least square regression using JMP {23], a statistical
analysis software that provides a variety of statistical analysis functions in an interactive manner.

In the practical application of RSM, it is necessary to develop an approximate model for the true
response surface. The approximate model is based on observed data from the process or system and is an
empirical model. The second order (quadratic) response surface model for response variable y with &

regressors can be written as

y

k K k-l k
ﬁo"'Zﬂn\" +Zﬂ,,.t,1+zz,&j.tl,tj+€ (nH

i=l j=2

The above equation can be written in matrix notation as follows
y=Xpg+¢ )
where y: (nx1) vector of observations, X: (nxn,) matrix of the levels of the independent variables, B (n,xl)
vector of the regression coefficients, &: (nx/) vector of random error, n: the number of observations, and n,:

the number of terms in the model.

The purpose is to find the vector of least square estimators, b, that minimizes

L=Ye=cle=(3-XB (y-XP) 3)

i=t
which yields to the least squares estimator of 4
b=(X"X)'X"y 4
The global fit and prediction accuracies of the response surfaces are assessed through statistical
measures such as the t-statistic, or t-ratio, root mean square error (rms-error), variation (Myers and
Montgomogery [37]). The t-statistic is determined by

b
b &)

- se(b,)

where b, is the least squares estimators of /" regression coefficient and sefb,) is the standard error of b; and

it is given by

se(b}.)=0'“,/C”. (6)



where C, is the diagonal element of (X7 X)™' corresponding to 4, Here g, is the adjusted rms-error (or rms-

error predictor) incurred while mapping the surface over the data set. The quality of the fit of the different
surfaces can be evaluated by comparing the adjusted rms-error value that is defined as:

2o %

n—np

g, =

where e, is the error at i'" point of the training data.
The accuracy of the models in representing the design space is gauged by comparing the values of

the objective function at test design points, different from those used to generate the fit, with the empirical

solution. The prediction rms-error, o; for the test set is given by:
E.
o=\ ®)

In this equation & is the error at the i test point and m is the number of test points.
The coefficient of multiple determination R’ measures the proportion of the variation in the

response around the mean that can be attributed to terms in the model rather than to random error and it is

determined by
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SS; is the sum of squares of the residuals (=Z(’_v, - §,)") where ¥is the predicted value by the fitted
1=l

model. S is the sum of squares due to regression (= Z(Sx, ~¥)* ) where ¥ is the overall average of .

i=l

S5, is the total sum of squares about the mean given by
A
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where ¥ is overall average of y..

R’ is an R® value adjusted to account for the degrees of freedom in the model and is given by

u
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Since R® increases as terms are added to the model, the overall assessment of the model may be better
judged from R .

The polynomial-based response surface techniques are effective in representing the global
characteristics of the design space. It can filter the noise associated with design data. Since, the solution for
the set of coefficients that best fits the training data is a linear least square problem, it is trivial compared to
the solution for the NN coefficients, which is often a non-linear least square problem. The linearity of the
polynomial-based RSM also allows us to use statistical techniques known as design of experiments (DOE)
to find efficient training sets. On the other hand, depending on the order of polynomial employed and the
shape of the actual response surface, the RSM can introduce a substantial error in certain region of the
design space. An optimization scheme requiring large amounts of data and a large evaluation time to

generate meaningful results is hardly useful.

2.2 NEURAL NETWORKS (NN)

Neural networks are massively parallel computational systems comprised of simple nonlinear
processing elements with adjustable interconnections. Neural networks simulate human functions such as
learning trom experience, generalizing from previous to new data, and abstracting essential characteristics
from inputs containing irrelevant data (Greenman {14]). The processing ability of the network is stored in
the inter-unit connection strengths or weights obtained by a process of adaptation to, or learning from, a set
of training patterns. Training of a network requires repeated cycling through the data, each time adjusting
the values of the weights and biases to improve performance. Each pass through the training data is called
an epoch and the NN learns through the overall change in weights accumulating over many epochs.
Training continues until the error target is met or until the maximum number of neurons is reached. In
Figure 2, a neuron model with multiple inputs and bias ts shown.

Accordingly, the input is transmitted through a connection that multiplies it with the weight
related to that connection. The bias is similar to a weight except that it has a constant input of 1. The effect
of the product weight and input and the bias are added at the summing junction to form the net input for the
transfer (or activation) function. In Figure 3, a multi-layer network is shown. A layer of network includes

the combination of weights, the multiplication and summing operations, the biases and the transfer



functions. In a layered neural network, neurons in every layer are associated with neurons in the previous
layer in such a way that the outputs of an intermediate layer are the inputs to the following layer. The layer
that produces the network output is called an output layer. All other layers are known as hidden layers.
Even though research on neural network started in early 1940s, NN became quite popular around
1980s with the introduction of multi-layered NN (Rumelhart et al. [56]) in a wide range of disciplines,
including engineering. Over the last decade, NN approach has been used in the aerospace related industry.
It et al. [21] examined the application of NN technology to an automated diagnostic and prognostic
system for turbine engine maintenance. Preliminary results indicated that using NN to maintain diagnostics
saves time and improves performance. Kangas et al. {24] used Back-Propagation NNs (BPNN) to monitor
turbine engine performance and diagnose failures in real-time. The application of NN technology appears
to hold great promise for enhancing the effectiveness of army maintenance practices. Huang et al.[20]
developed and evaluated a multi-point inverse airfoil design method using NNs. It is shown that neural
network predictions are acceptable for lift and moment coefficient predictions. Time dependent models that
predict unsteady boundary layer development, separation, dynamic stall and reattachment are developed by
Faller and Schereck [11] using NNs. [t is demonstrated that NNs can be used to both predict and control
unsteady aerodynamics effectively. Fan et al. {12] introduced a new approach for active laminar flow
control that incorporates BPNN into a smart wall interactive flow control system. Convergence of the
BPNN is investigated with respect to the complexity of the required function approximation, the size of the
network in relation to the size of optimal solution and the degree of noise in the training data by Lawrence
et al. [29]. The techniques and principles for the implementation of neural network simulators are also
presented by Lawrence et al.[30]. Methods for ensuring the correctness of results avoiding duplication,
automating common tasks, using assertions liberally, implementing reverse algorithms, employing multiple
algorithms for the same task. and using extensive visualization are discussed. Efficiency concerns,
including using appropriate granularity object-oriented programming, and pre-computing information
whenever possible, are also studied. Norgaard et al. [40] used BPNN for more effective aerodynamic
designs during wind tunnel testing. Four different NNs are trained to predict coefticients of lift, drag,
moment of inertia, and lift drag ratio (Cr, Cp. Cy and L/D) from angle of attack and flap settings. Hybrid

neural network optimization method is successfully applied to produce fast and reliable predictions of



aerodynamic coefficients and to find optimal flap settings, and flap schedules. Ross et al. [55] applied
BPNN to minimize the amount of data required to completely define the aerodynamic performance of a
wind tunnel model. It is shown that the trained NN has a predictive accuracy equal to or better than the
accuracy of the experimental measurements using only 50% of the data acquired during the wind tunnel
test. BPNN is employed for rapid and efficient dynamics and control analysis of flexible systems by Sparks
and Maghami [60]. It is demonstrated that NN can give very good approximations to nonlinear dynamic
components, and by their judicious use in simulations, allow the analyst the potential to speed up the
analysis process considerably once properly trained. The high-lift performance of a multi-element airfoil is
optimized by using neural-net predictions by Greenman [14].

BPNN have been successtully integrated with a gradient-based optimizer to minimize the amount
of data required to completely define the design space of a three-element airfoil. It is shown that using NN
reduced the amount of computational time and resources nceded in high-lift rigging optimization.
Greenman and Roth [15] also applied BPNN for high-lift performance of a multi-element airfoil and it is
demonstrated that the trained NN predicted the aerodynamic coefficients within an acceptable accuracy
defined to be the experimental error. Stepniewski and Jorgenson [61] used a Singular Value Decomposition
based node elimination technique and enhanced implementation of the Optimal Brain Surgeon algorithm to
choose a proper NN architecture. It is demonstrated that combining both methods creates a powerful
pruning scheme that can be used for tuning feed-forward connectionist model’sA Maghami and Sparks [34]
& [35} also demonstrated that the methodology they developed based on statistical sampling theory
guarantees that the trained networks provide a designer-specitied degree of accuracy in mapping the
functional relationship. BPNN is used to fill in a design space of computational data in order to optimize
flap position for maximum lift for a multi element airfoil by Greenman and Roth [16]. A Genetic
Algorithm (GA) and gradient-based optimizer are used together with NN and it is found that the
demonstrated method has a higher fidelity and a reduction in CPU time when compared to an optimization
procedure that excludes GA. Approximation abilities of BPNN is addressed by Lavretsky [28]. A novel
matrix method for multi-input-multi-output NN is introduced and it is shown that by allowing inner layer
connections as well as connections between any layers, ordered NN has superior interpolation ability when

compared to conventional feed-torward NN. Stepniewsk: et al. [62] presented a new hybrid method that



combines a bootstrap technique and a collection of stochastic optimization method such as GA for
designing a NN. The method minimizes generalization error. It is demonstrated that the solutions produced
by this method improve the generalization ability on the average of five to six times when compared to
pruned methods.

All of the above listed references preferred to use BPNN among the other NN choices (Dernuth
and Beale[8], Kosko{25], and Jang et al.[22]). This is due to the fact that BPNN attempts to have small
number of neurons when compared to the other NNs. However, since BPNN is usually slower because at
each step the error is propagated back to all the weights in the system, other NNs could be more efficient
than BPNN for specific problems. This article reviews the works focusing on Radial-Basis NN (RBNN)
and BPNN models developed by using Matlab (Dernuth and Beale [8]). A comparative study for radial-
basis and back-propagation approaches is also included. Brief summaries of the two approaches are given

in the following sections.

2.2.1  Back-propagation Networks (BPNN)

Back-propagation networks are created by generalizing the Widrow-Hoft learning rule (Dernuth
and Beale [8] and Kosko[25]) to multiple-laver networks and nonlinear differentiable transfer functions.
These networks are multi-layer networks with hidden layers of sigmoid transter function and a linear output
layer. The transfer function in the hidden layers should be differentiable and thus, either log-sigmoid or tan-
sigmoid functions are commonly used. In this article, a single hidden layer with a tan-sigmoid transfer
function, tansig (Figure 4), given as tanh(n), it n is the input is considered. The maximum and minimum
outputs of the function are 1 and -1, respectively.

The output of the function is given by

a =tansig(wx X +b) (12)
where ransig is the transfer function, w is the weight vector, X is the input and b is the bias. For BPNN, the
initial weights and biases are randomly generated and then the optimum weights and biases are evaluated
through an iterative process. The weights and biases are updated by changing them in the direction of down
slope with respect to the sum-squared error of the network, which is to be minimized. The sum-squared

error is the sum of the squared error between the network prediction and the actual values of the output. In



BPNN (Figure 4a) the weights, w, and biases, ,, in the hidden ransig layer are not fixed as in the case of
RBNN. Hence, the weights have a nonlinear relationship in the expression between the inputs and the
outputs. This results in a nonlinear regression problem, which takes a longer time to solve than RBNN.
Depending upon the initial weights and biases, the convergence to an optimal network design may or may
not be achieved. Due to the randomness of the initial guesses, if one desires to mimic the process exactly
for some purpose, it is impossible to re-train the network with the same accuracy or convergence unless the
process is reinitiated exactly as before. The initial guess of the weights is a random process in Matlab.
Hence to re-train the network the initial guess has to be recorded.

The number of neurons in the hidden layer of a back-propagation network is a design parameter. It
should be large enough to allow the network to map the functional relationship, but not too large to cause
overfitting. As a rule of thumb to choose the number of neurons in the hidden layer, Greenman [14] used
25+1 where s is the summation of total number of inputs and total number of outputs and Carpenter and
Barthelemy [4] used m+1 where m is the number of nodes in the output layer. Once the number of neurons
in the hidden layer is decided, the network design is reduced to adjusting the weighting coefficient matrices
and the weighting bias vectors. These parameters for BPNN are usually adjusted using a gradient method
such as the Levenberg-Marquardt technique (Greenman [14], Norgaard et al. {40], Ross et al. [55], Sparks
and Maghami [60). Stepniewski et al. [62]). In Matlab, BPNN can be trained by using three different
training functions, trainbp, trainbpx and trainim. The first two are based on the steepest descent method.
Simple back-propagation with trainbp is usually slow since it requires small learning rates for stable
learning. Trainbpx, applying momentum or adaptive learning rate, can be considerably faster method than
trainbp but trainlm, applying Levenberg-Marquardt optimization, is the most effictent since it includes
improvement techniques o increase the speed and reliability of simple back-propagation networks. The
Levenberg-Marquardt update rule is

AW =(J S +uly S e (13)

where AW is the change in weight, J is the Jacobian matrix of the derivatives of each error with respect to

. Oe, o 4 . . . .
each weight, i.e., 5—’ I is the identity matrix, # is a scalar and e is the error vector. If the scalar u is
w

large, the above expression approximates the steepest descent, while if it is small then the method reduces

13



to the Gauss-Newton method. The Gauss-Newton method is faster and more accurate near an error

minimum, so the aim is to shift towards the Gauss-Newton method as quickly as possible. Therefore, x is

decreased after each successtul step and increased only when a step increases the error. The design
parameters for trainlm are the number of neurons in the hidden layer, §,, a user defined sum square error
goal, and the maximum number of epochs. The training continues until either the error goal is reached, the

minimum error gradient occurs, the maximum value of g occurs, or the maximum number of epochs has

been met.

2.2.2 Radial-Basis Neural Networks (RBNN)

Radial-basis neural networks are two-layer networks with a hidden layer of radial-basis transfer
function and a linear output layer. The main advantage of this approach is the ability of keeping the
mathematics simple and computational costs low due to linear nature of RBNN (Orr [41]). Outline of
supervised learning, main application area for RBNNs and the least squares method used together with
supervised learning with linear modets are explained in detail in Orr [41]. Optimum of the regularization
parameter of RBNN is also searched in this paper. A computational method for re-estimating the
regularization parameter of RBNN, based on generalized cross-validation, is explained by Orr [42]. RBNN
is designed in such a way that it can adapt the width of the basis function, and it is found that it can predict
better than a similar RBNN with the fixed width basis function. Orr [43] explains improvements made for
to forward selection and ridge regression methods. A methodology that is a cross between regression trees
and RBNN is described. The size of RBNN is also optimized based on regularization parameter in Orr [42].

The transfer function for radial-basis neuron is radbas, which is shown in Figure 5. Radbas, given

as e, where n is the input, has maximum and minimum outputs of I and O respectively. The output of

the tunction is given by

a = radbas(dist (w. X )xb) (14)
where radbas is the transter function. dist is the vector distance between the network’s weight matrix, w,
and the input vector, X and & is the bias. Radial-basis transfer function radbas calculates its output

"

according toa = ¢’



In a radial basis network (Figure 5a) each neuron in the radbas hidden layer is assigned weights,
w, which are equal to the values of one of the training input design points. Therefore, each neuron acts as a
detector for a different input. The bias for each neuron in that layer, b, is set to 0.8326/sc, where sc is the
spread constant, a value defined by the user. This defines the region of influence by each neuron. The
training process is then reduced to the evaluation of the weights, w;, and biases, b.. in the output linear
layer, which is a linear regression problem. If the input to a neuron is identical to the weight vector, the
output of that neuron is 1, since the effective input to the transfer function is zero. When a value of 0.8326
is passed through the transfer function the output is 0.5. For a vector distance equal to or less than 0.8326/5,
the output is 0.5 or more. The spread constant defines the radius of the design space over which a neuron
has a response of 0.5 or more. Small values of s¢ can result in poor response in a domain not closely
located to neuron positions, that is, for inputs that are far from the training data as compared to the defined
radius, the response from the neurons will be negligible. Large values will result in low sensitivity of
neurons. Since the radius of sensitivity is large. neurons whose weights are different from the input values
by a large amount will still have high output thereby resulting in a flat network. The best value of the
spread constant for some test data can be found by comparing o for networks with ditferent spread
constants.

In Matlab, radial-basis networks can be designed using two different design procedures, solverbe
and solverb. Both procedures require a spread constant. sc, as a design parameter; i.e., the radius of the
basis in the input space to which each neuron responds. Solverbe designs a network with zero error on the
training vectors by creating as many radial-basis neurons as there are input vectors. Therefore, solverbe
may result in a larger network than required and may fit the numerical noise. A more efficient design in
terms of network size is obtained from solverb, which creates one neuron at a time to minimize the number
of neurons required. At each epoch, neurons are added to the network until it satisties a user specified error
goal. The design parameters for solverb are the spread constant, error goal, and the maximum number of
epochs whereas it is only the spread constant tor solverbe.

Radial-basis networks may require more neurons than a comparable BPNN. However, RBNN can
be designed in a fraction of the time it takes to train the standard BPNN due to non-linear regression

process of back-propagation networks. Therefore. RBNN are more etficient to train when there 1s a large



amount of training data available. In Papila et al. [49], an effort is made to compare the accuracy and
computing requirements between the radial-basis and back-propagation approaches with different sizes of
training data. Vaidyanathan et al. {71] also investigated relative performances of RBNN and BPNN for gas-
gas injector and supersonic turbine. As will be discussed in the following sections, it is illustrated that
among all the NN configurations, RBNN designed with solverb seems to be more consistent in
performance for different data sets and RBNN, even when designed efficiently with solverb, tend to have
many more neurons than a comparable BPNN with tan-sigmoid or log-sigmoid neurons in the hidden layer.
The basic reason for this is the fact that the sigmoid neurons can have outputs over a large region of the
input space, while radial-basis neurons only respond to relatively small regions of the input space.
Configuring a RBNN often takes less time than that required for a BPNN because the training process of

RBNN is a linear in nature.

2.3 DESIGN OF EXPERIMENTS (DOE)

In RSM, selecting the representation of the design space is a critical step because it dictates the
distribution of the information available for constructing the response surface. It is well established that the
predictive capability of RSM is greatly influenced by the distribution of sampling points in design space
{Unal et al.[69] & [70]). In order 1o select design points for training that minimizes the effect of noise on
the fitted polynomial, design of experiment {DOE) techniques can be applied. There are ditferent types of
design of experiments techniques in the literature as reported by Haftka et al. [19]. For exampte, Unal et al.
[70] discussed the D-optimal design for the representation of the design space for a wing-body
configuration of a launch vehicle. They showed that D-oprimal design provides an efficient approach for
approximating model building and multidisciplinary optimization. Papila and Haftka (48] also applied face
centered composite design (FCCD) to select the experiment points in the design space when approximating
wing structural weight. Unal et al. [68] & [69] studied response surface modeling using orthogonal arrays
(OA) in computer experiments for reusatale launch vehicles and illustrated that using this technique can
minimize design, development, test and evaluation cost. Unal and Dean [67] studied the robust design
method based on the Taguchi method (Unal and Dean {66] and Dean {7]) to determine the optimum

configuration of design parameters for performance, quality and cost. They demonstrated that using such a
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robust design method for selection of design points is a systematic and efficient approach for determining

the optimum configuration. Brief summaries of FCCD, OA, and D-Optimal designs are given below.

2.3.1 Face Centered Cubic Design (FCCD)

Face centered cubic design (FCCD) creates a design space composed of eight corners of a cube,
centers of the six faces and the center of the cube. Figure 6 shows FCCD selections for three design
variables. The FCCD yields (2¥+2N+1) points, where N is the number of design variables. It is more
effective when the number of design variables is modest, say, not more than 5 or 6. The FCCD is used for

fitting second-order response surface.

2.3.2  Orthogonal Arrays (OA)

An orthogonal array (OA) is a fractional factorial matrix that assures a balanced comparison of

levels of any factor or interaction of factors. Consider A, a matrix with elements of a/ where j shows the
row (j = 1,2... n,) and i shows the column (i = 1.2...nc) that a4/ belongs to, supposing that each aeQ =
{0,1...g-1}. A is called an orthogonal array of strength ¢ <'n, if in each n,-row-by-r-column sub-matrix of
all ¢' possible distinct rows occur A times {Owen [44]). Such an array 1s denoted by OA(n,,n,.q.1) by Owen

(H4].
Since the points are not necessarily at the vertices, the OA can be more robust than the FCCD in
interior design space and are less likely to fail the analysis tool. Based on the design of experiment theory,

orthogonal arrays can significantly reduce the number of experimental configurations.

2.3.3  D-Optimal Design

A D-Optimal design minimizes the generalized variance of the estimates, which is equivalent to

maximizing the determinant of the moment matrix, M (Myers and Montgomery [37]).

[x"x]

n

|M|= (15)
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where n is the number of observations and n, is the number of terms in the model.
The D-Optimal Design approach makes use of the knowledge of the properties of polynomial
model in selecting the design points. This criterion tends to emphasize the parameters with the highest

sensitivity (Haftka et al. [19]).

2.4 OPTIMIZATION PROCESS

2.4.1  Search Procedure

The entire optimization process can be divided into two parts: (1) RS/NN phase for establishing an
approximation, and (2) Optimizer phase.

In the first phase, polynomials or NN models are generated with the available training data set. In
the second phase the optimizer uses the RS/NN during the search for the optimum until the final converged
solution is obtained. The initial set of design variables is randomly selected from within the design space.
The flowchart of the process is shown in Figure 7.

The optimization problem at hand can be formulated as min{f{x)}subject to b < x < ub, where [b
is the lower boundary vector and ub is the upper boundary vector of the design variables vector x. If the
goal is to maximize the objective function then fix} can be written as -g(x), where g(x) is the objective
function. Additional linear or nonlinear constraints can be incorporated it required. The optimization

toolbox in Matlab is used here employs a sequential quadratic-programming algorithm.

2.4.2  Objective Function

When attempting to optimize two or more different objective functions, conflicts between them
arise because of the difterent relationships they have with the independent parameters. An equation
expressing the relationship between opposing etfects of performance and weight can be employed as a
criterion to guide the optimization task. Both NN and polynomial-based RS techniques can handle such
multi-criteria optimization tasks in a straightforward manner by building a composite response surface
from individual response surfaces. Such a task would have been impossible without response surface. This

composite response surface is referred to as the desirability function. The maximization of the composite



function effectively provides a compromise between the individual functions. An average of some form is

normally used to represent the composite function. A geometric mean is a solution, which gives a

composite function of the form:

Y
D=U]¢) (16)
=1

where D is the composite objective function, d,’s are normalized values of the objective tunctions and / is
the number of objective functions. Each of the d, are weighted depending upon the importance of the
specific objective function. Figure 8 shows a typical trend for a desirability function with respect to the

weighting factors.
Another way of constructing a composite function is to use a weighted sum of the objective

functions. The composite function can then be expressed as:
i
D=Y af (17)
i=l

where D is the composite objective function and f,'s are the non-normalized objective functions. The &;’s

are dimensional parameters that control the importance of each objective function.

3. DESCRIPTION OF THE CASE STUDIES

3.1 GAS-GAS INJECTOR ELEMENT FOR ROCKET PROPULSION
Development of an optimization scheme for injector design called method i (Methodology for
Optimizing the Design of_Injectors) has been reported by Tucker et al. [64] & [65] Method i is used to
generate appropriate injector design data and then guide the designer toward an optimum design subject to
his specified constraints. As reported, method i uses the polynomial based RSM to facilitate the
optimization. The RSM approach is to conduct a series of well-chosen experiments (empirical, numerical,
physical or some combination of the three) and use the resulting information to construct a global
approximation (response surface) of the measured quantity (response) over the design space. A standard
constrained optimization algorithm is then used to interrogate the response surface for an optimum design.
Neural network was also used in the design of shear co-axial injector element by Shyy et al. [57], and

Tucker et al [64] & [65] along with the polynomial-based RSM.. Three different injector types are



considered, namely, shear co-axial injector element, impinging injector element, and swirl co-axial injector

element.

3.1.1  Shear Co-axial Injector Element

The initial demonstration of method i by Tucker et al. {64] focused on a simple optimization of a

shear co-axial injector element (Figure 9) with gaseous oxygen (GQ)) and gaseous hydrogen (GH )

propellants. The goal is to maximize the energy release efficiency, ERE while minimizing the chamber wall

heat flux, Q. This is achieved by maximizing a composite objective function given by:

1,
D = (dyued, ) (18)
where the normalized functions are defined as in Eqns (19) and (20). In the case where a response should

be maximized, such as ERE, the normalized function takes the form:

ERE-AY
dh.ﬁ_,_.:(._B__A_J for A < ERE< B (19)

where B is the target value and 4 is the lowest acceptable value. degg is set to / for any ERE > B and dggg: =
0 for ERE < A. The choice of s is made based on the subjective importance of this objective in the
composite desirability function. In the case where a response is to be minimized, such as Q, the normalized

function takes on the form:
E-QY .
d,=| —=| forC<Q<E (20
. [ £ C] 0 )

where C is the target value and E is the highest acceptable value. d, is set to / for any @ < Cand d,, = 0 for
Q> E. A, B, C, and E are chosen according to the designer’s priorities or, as in the present article, simply
as the boundary values of the domain of ERE and Q. The value of ¢ is again chosen to reflect the
importance of the objectives in the design. In the study carried out, A and B are equal to 95.0 and 99.9,
respectively. Values of C and £ are equal 10 0.48 and 1.1, respectively.

The design data was generated using an empirical design methodology developed by Calhoon et
al. [3]. These researchers conducted a large number of cold-flow and hot-fire tests over a range of

propellant mixture ratios, propellant velocity ratios and chamber pressure for shear co-axial, swirl co-axial,



impinging, and premixed elements. The data were correlated directly with injector/chamber design
parameters, which are recognized from both theoretical and empirical standpoints as the controlling
variables. For the shear co-axial element, performance, as measured by energy release efficiency, ERE, is
obtained using correlations taking into account combustor length, L., (length from injector to throat) and

the propellant velocity ratio, Vf/V . The nominal chamber wall heat flux at a point just downstream of the

injector, Qnam, is calculated using a modified Bartz equation and is correlated with propellant mixture ratio,

O/F, and propellant velocity ratio, V//V to yield the actual chamber wall heat flux, Q. The objective in the

initial demonstration of method i was to maximize injector performance while minimizing chamber wall
“heat flux (lower heat fluxes reduce cooling requirements and increase chamber life) and chamber length
(shorter chambers lower engine weight). The data used to generate the polynomials and train the network is
given in Table A3-AS. The quality of the response surface and neural networks are decided using 20

additional design points different from those used to generate the models (Table A6).

3.1.2  Impinging Injector Element

The empirical design methodology of Calhoon et al.[3] uses the oxidizer pressure drop, AP,, fuel
pressure drop, AP, combustor length, L ,m. and the impingement half-angle, & as independent variables.
For this injector design, the pressure drop range is set to 10-20% of the chamber pressure due to stability
considerations. The combustor length, defined as the distance from the injector to the end of the barrel
portion of the chamber, ranges from 2-8 inches. The impingement half angle is allowed to vary trom 15-
50°. Dependent variables include ERE (a measure of element performance), wall heat flux, Q.. injector heat
flux, Qin, relative combustor weight, W,,,, and relative injector cost. C.,.

The conditions selected for this example are:

P. = 1000 psi

MR =6

m,, =0251b /sec
m,, =0042lb_sec

G

20

The gaseous propellants are injected at a temperature of 540R. As noted above. the empirical

design methodology used to characterize the ERE and @, was developed by Calhoon et al. [3]. This



methodology uses a quantity called the normalized injection momentum ratio to correlate the mixing at the
different design points for the triplet element. They define this quantity as

23mu

MR, =——>=5— (22)
mu, sinc

The maximum mixing, and thus maximum ERE, occurs at an MR,, of 2.0. Since the propellant
mass flow rates are fixed, only the propellant velocities and the impingement half-angle influence the
normalized injection momentum ratio. The velocities are proportional to the square root of the respective
pressure drops across the injector, AP, and AP,. For the flow conditions and variable ranges considered in
this problem, MR, ranges from 3.2 to 17.8. Accordingly, lowering 4P,, raising AP, increasing ¢, or some
combination of these actions will increase ERE. The wall heat flux is correlated with the propellant

momentum ratio as defined by

mu
MR = —=% (23)
m,u,

For the F-O-F triplet element, i.e. the impingement injector element, the maximum wall heat flux
occurs at a momentum ratio of approximately 0.4. High heat tlux is the result of over-penetration of the
fuel jet, which produces a high O/F in the wall region. For the flow conditions and variable ranges
considered in this effort, MR ranges from 1.06 to 2.11. Hence, increasing the value of this ratio by either
increasing AP, or decreasing AP, lowers the wall heat flux.

The heat flux seen by the injector face. Q... is qualitatively modeled by the impingement height,
H ppinge- The notion being that, as the impingement height decreases, the combustion occurs closer to the
injector face, causing a proportional increase in Q... Thus, for the purposes of this exercise, Q,,, is modeled
as the reciprocal of the H e Impingement height is a function of & and AP Reference to Figure 10
shows that as ¢, is increased, H,.nq. is shortened. The dependence of H . On the fuel orifice diameter,
d,. and thus, AP, results from making the freestream length of the fuel jet. L, a function of d,. For each
AP, Ly, was set to six times 4, for an impingement half-angle of 30°. So. as d, increases (corresponding to
decreasing AP)), L, increases, as does H,ypinge-

The models for W,.; and C,.; are simple but represent the correct trends. W,,, is a function only of

L...ms» the combustor length from injector face to the end of the chamber barrel section. The dimensions of
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the rest of the thrust chamber assembly are assumed to be fixed. So, as L..m; increases, W, increases
accordingly. The model for C..; is based on the notion that smaller orifices are more expensive to machine.
Therefore, C, is a function of both propellant pressure drops. As the AP increases, the propellant velocity
through the injector increases and the orifice area decreases. So, as either, or both, 4P, and AP, increase,
C, InCreases.

The system variables given above and independent variables (constrained to the previously noted
ranges) are used to generate the design data for element optimization studies. Since propellant momentum
ratio is an important variable in the empirical design methodology, a matrix of momentum ratios was
developed over the 100-200psi propellant pressure drop range. The matrix of 49 combinations of fuel and
oxidizer pressure drops is shown in Table A7 where momentum ratios range from 1.06 to 2.11. Nine
pressure drop combinations, eight around the border and one in the middle, were selected for use in
populating the design database. These nine points are highlighted in Table A7 in bold type.

Detailed design results for the case with both AP, and AP; at 200psi are shown in Table A8.
Similar data was generated for the other eight pressure drop combinations. There are 20 combinations of
L. and a for each AP combination, making a total of 180 design points selected. Seventeen of these were
outside the database embodied by the empirical design methodology, resulting in 163 design points actually
being evaluated. The data trends are as expected. ERE, for a given AP combination, increases with
increasing Lmp and a The increased L., provides more residence time for the propellants to mix and
burn. Increasing « increases the radial component of the injected fuel, thus providing better mixing. The
wall heat flux is constant for a given AP combination. Impingement height increases with increasing &

Relative combustor cost increases with increasing Le.ms and the relative injector cost is constant for a given

AP combination.

3.1.3  Swirl Co-axial Injector Element
The chamber pressure, mixture ratio, and propellant flow rates selected for this example are:

P = 1000 psi

MR =6

m,, =0.25b_/sec
m,, =00421b sec

]

(24)
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The gaseous propellants are injected at a temperature of 540 R. Reference to Figure 11 shows that
the GO,, flowing in the center post of the element, exits the element with both radial and axial velocity
components. This effect is achieved by introducing the GO, tangentially into the center post through small
slots. When the GO, under hydrostatic head, is forced through the tangential slots, part of the pressure
head is converted into a velocity head, causing a rotational velocity in the element. For a specified 4P, and
swirl angle, &, the number and size of tangential slots, the discharge coefficient, the GO: center post
diameter, d,, and the radial and axial GO, velocity components, V,, and V,, are calculated. These quantities
are then used to determine the dependent variables for each design condition.

The element ERE, calculated according to the empirical design methodology of Calhoon et al.[3],
is a function of all four independent variables noted above. A cold flow mixing efficiency, E,,w, for 6=90°,

is correlated by:

K,
E, o0 =100-5In T
’ LO[dd

The cold flow mixing length, L .., is correlated from a known chamber length, L;,m. The GO
post diameter, d,, is a function of 4P, and & Smaller values of ¢, correspond to large values of AP, and
smaller swirl angles. The empirical swirl factor, K.. is a function of the normalized differential injection
velocity, (V;-V,/V,. K, increases with increasing normalized ditferential injection velocity for the range of
propellant velocities considered in this effort. For fixed propellant mass tlow rates, the velocities V,, and V;
are functions of their pressure drops across the injector, AP, and APy, respectively. For a given 4P, V,, also
depends on the swirl angle. Lower V,'s are a product of higher swirl angles. Cold flow mixing is thereby
enhanced with higher values of V, (i.e. 4P,) and L..,. Lower values of V, (i.e. 4P)) and @ also tend to

enhance cold tlow mixing.

A fractional factor, f;, is applied to £, 4, to account for the lower levels of cold flow mixing found
with swirl angles less than 90°. The resultant measure ot cold flow mixing, E., o is a product of E,, s and
£, This factor, for a given design, is a function of the normalized ditterential irjection velocity and the ratio

of radial to axial GO, velocity, V,,/V,.. Increasing values of both quantities increase f,, with a value of f, =1



being found at V,/V,, =1 (6=90") for all values of (V; - V,)/ V,. Larger values of f; increase cold flow
mixing. These values are found at low 4P, and high 4P, and ©. There is no dependency of f; on chamber
length. These trends are opposite those noted above. Finally, ERE is proportional to £, &

The wall heat flux Q,, is correlated with the propetlant momentum ratio as defined by:

MR = Lot (26)
mfuf

The wall heat flux curve from the Calhoon et al. [3]) methodology is fairly flat, varying only about
10% from high to low for the range of pressure drops considered in this effort. Q. decreases with
increasing V, (high AP, and low @) and decreasing V; (low APy). That Q,, would decrease with increasing
V, is counter to intuition. It seems that high values of V,, for any &, would result in higher mixture ratios in
the wall region, as is the case for liquid O,. Calhoon et al.[3] do not discuss this effect.

The heat flux seen by the injector, Q,, is actually modeled by the distance from the injector at
which the propellant streams intersect. This axial distance is measured at the radial position corresponding
to the center of the co-axial fuel annulus, or gap. It is here that the streams begin to mix and burn. This
measure is qualitative, but captures the trend that higher injector heat fluxes occur the nearer the injector
that the combustion begins. The axial distance is affected directly by the swirl angle, and indirectly by the
propellant pressure drops. Q.. decreases with decreasing swirl angle, increasing GO, pressure drop and
decrecasing GH, pressure drop. Swirl angle has the largest effect, while AP, is the least significant factor.

The relative combustor weight, W,,, is simply a function of the combustor length, L., the
distance from the injector to the end of the barrel portion of the chamber. The longer the combustor, the
more it weighs.

The relative injector cost, C,,, is a function of the fuel gap width and the width of the tangential
slots used to induce the swirl in the GO, center post. Larger values of both variables result in lower
machining costs, and thus lead to lower injector cost. The fuel gap width increases with increasing AP, and
decreasing values of AP; and @. Swirl slot width increases with lower values of AP, and @. Overall, C,,
decreases with increasing AP, and decreasing 4P, and ©. Fuel pressure drop and swirl angle are the most

significant factors.
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A matrix of propellant pressure drop combinations was developed and nine combinations were
selected for use in populating the design database. There are 20 combinations of L., and @ for each 4P
combination, making a total of 180 design points selected.

In the work by Tucker et al. [64] & [65], method i uses the Response Surface Method (RSM) to
find optimal values of ERE, Qu, Qiny W, and C,,, for acceptable values of AP,, APy, Lims and @. The
approach of RSM is to perform a series of experiments, or numerical analyses, for a prescribed set of
design points, and to construct a response surface of the measured quantity over the design space. In the
present context, the five responses of interest are ERE, Q., Qin» W, and C,. The design space for each
element consists of the set of relevant design variables AP,, AP, L.,m and ©. The response surfaces are fit
by standard least-squares regression with a quadratic polynomial using JMP [23]. A backward elimination
procedure based on t-statistics is used to discard terms and improve the prediction accuracy. Five full
quadratic response surfaces are constructed by using JMP.

In the current case, it is desirable to maximize ERE and while simultaneously minimizing Qu. Q.n;,

Wrtl and Crelv

3.2 SUPERSONIC TURBINE FOR REUSABLE LAUNCH VEHICLES

Supersonic turbines that drive tuel or oxidizer turbopumps in rocket engines are of great interest to
the next generation space propulsion industry, including the Reusable Launch Vehicles (RLV). They are
complex, high-speed devices that produce shaft power by ducting the flow of hot gasses over specially
shaped blades on a wheel. For rocket engine applications, maximizing the vehicle payload for a given
turbine operating condition is the ultimate goal. The flow path should be designed in such a way that it
wastes less energy so that turbine temperatures or the mass flow rate can be reduced, or the turbine can be
made smaller, increasing the efficiency (or specific impulse) of the rocket engine. Any gain in turbine
efficiency will be reflected in reduced propellant consumption, resulting in an increase in the payload.
However, higher turbine performance usually entails multistage designs, which are heavier. The design of a
supersonic turbine often involves a considerable number of design variables with structural and
aerodynamic constraints. With the number of design parameters involved, the overall procedure of design

optimization of supersonic turbines becomes a challenging task.



Papila et al. [50] have conducted a global optimization investigation to perform the preliminary
design of the supersonic turbines, including the selection of the number of stages and design variables.
From 1- to 2- to 3-stage turbines, the number of design variables increases substantially. In shape design,
from vane to blade, from stage to stage, and from 2-D to 3-D, not only does the number of design variables
increase, but also the interactions among design variables become more complicated. Papila et al. [50]
intended to investigate the individual, as well as collective effects of design variables by varying the design
scope systematically. Vaidyanathan et al. [71] have used the data of the I-stage turbine to conduct a
comparative study between RSM and NN.

For preliminary design stage, single-, two- and three-stage turbines are considered. The design
variables can be separated into two categories, one related to geometry and the other to performance. They
are summarized as follows:

(1) Geometric inputs: The geomeltric inputs are needed to layout the turbine meridional geometry, e.g.,
mean diameter, last rotor annulus area, biade height ratio between the 1¥ vane and the last rotor blade
(linear distribution of blade heights is assumed between the 1¥ vane and the last rotor blade). vane and
blade axial chords.

(2) Performance inputs: The performance inputs are needed to calculate the turbine efficiency, e.g., speed
(RPM), number of stages, blade row reaction, and work split (if more than | stage is investigated).

For single-stage turbine. 6 design parameters (Table 3) are selected. These are (1) the mean
diameter, (2) speed (RPM), (3) exit blade annulus area, (4) vane axial chord, (5) blade axial chord, (6) stage
reaction.

For 2-stage turbine, there are 11 design parameters (Table 3), namely, (1) the mean diameter, (2)
RPM, (3) exit blade annulus area, (4) Ist blade height (% of exit blade), (5) 1* vane axial chord, (6) 1
blade axial chord, (7) 2™ vane axial chord. (8) 2" blade axial chord, (9) I* stage reaction, (10) 2™ stage
reaction, and (11) 1¥ stage work fraction. Note that 2°* stage work fraction is not a design parameter since it
can be calculated by using 1% stage work fractions, i.e., wp=1-wy,.

There are 15 (Table 3) design parameters for 3-stage turbine. These are (1) mean diameter, (2)
speed (RPM), (3) exit blade annulus area, (4) 1* blade height (% of exit blade), (5) 1 vane axial chord, (6)

[* blade axial chord, (7) 2" vane axial chord, (8) 2™ blade axial chord, (9) 3™ vane axial chord, (10) 3™
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blade axial chord, (11) 1* stage reaction, (12) 2™ stage reaction, (13) 3™ stage reaction, (14) I* stage work
fraction, (15) 2™ stage work fraction. Note that 3™ stage work fraction is not a design parameter since it can
be calculated by using 1% and 2" stage work fractions, i.e., wy=1-(wy;+wz).

The composite objective function chosen by Papila et al. [50] for design optimization corresponds
to the payload increment, Apay, versus turbopump efficiency and weight. The relation between dpay and
these two parameters can be developed as follows based on mission profile studies, engine balance
perturbation and some detailed turbopump layout and stress information gained from other proprietary
programs.

Apay =, X(N-Mp) X100-(W-Wy) (27)
where 1) is the baseline efficiency and W, is the baseline weight. The constant ¢, indicates that for every
point in efficiency gained, the amount of payload capacity of the RLV is increased ¢, per turbopump
Therefore, Apay function represents the amount of increase in payload capacity. The results of both payload
increment based and composite desirability function based optimization are illustrated for 1, 2, and 3-stage
designs. The results of both payload increment based- and composite desirability function-based
optimization are illustrated for 1, 2, and 3-stage designs in the following chapters.

Two structural constraints are considered by Papila et al. [50]. In axial turbines the product of the
blade exit annulus area and the RPM square, i.e.. AN is an indication of the blade centrifugal stress, which
should bind the speed of the turbine. In addition, the disk stresses are also a restriction. In turbomachinery
industry, the maximum stress value due to disk burst is often represented by a pitchline velocity limit, 1.e.,

V,uen The pitchline velocity can be calculated by muttiplying RPM and the mean radius.

3.3 TURBULENT PLANAR DIFFUSER

The goal was to accomplish maximum pressure recovery by optimizing the wall contours. The
flow is incompressible and fully turbulent with a Reynolds number of 10°, based on the inlet throat half-
width, D. The overall geometry is defined by the ratio of inlet and outlet areas, and the ditfuser length to
height ratio. In this study the length to height ratio is fixed at 3.0, and the area ratio at 2.0. The shape of the
diffuser wall is designed for optimum performance, with five design variables represented by B-splines.

The CFD model is based on the full Reynolds-averaged Navier-Stokes equations, with the £-£ two-equation
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turbulence model in closure form. At the inlet of the flow domain, a uniform flow distribution is specified.

Detailed discussion of this study can be found in Madsen et al. {33].

3.3.1 Objective
The dimensionless pressure recovery coefficient C, is introduced as the objective function to be
maximized

F=c =P (28)

Here Ap is the static pressure difference between channel cross sections up- and downstream of
the diffuser respectively, o is the fluid density, and u, is the inlet mean velocity. Inlet and outlet static
pressures are averaged. even though the pressure distribution is nearly uniform due to well-developed flow
at the considered cross sections. The CFD model uses a symmetry condition along the channel center axis,
and has a computational mesh consisting of /20x50 cells including a long outlet section to establish a fully
developed exit profile. The overall geometry of the two-dimensional planar diffuser, see Figure 12, is
defined by the ratio of inlet and outlet areas, AR, and the diffuser lengtn/height ratio, L=D, where Lis the
axial length of the diffuser. In this study the L=D-ratio fixed at 3.0, and the area ratio AR at 2.0. Expressed
in terms of the inlet half-width D, the horizontal position of the inlet is 1D, while the horizontal position of
the outlet is 10D. The shape of the diffuser wall is designed for optimum performance, and to this end two
separate cases of wall parameterizations are tried: (1) a two design variable case, where a polynomial
describes wall shapes, and (2) a five design variable case that uses B-splines. Even though two different
curve descriptions are used in the two cases, the most noteworthy ditference seen from the point of view of

the RSM lies in the problem size.

3.3.2  Geometric Representation
For shape parameterization in more variables, B-splines were preferred to natural splines

(piecewise polynomials), although the latter technique is closer to the polynomial representation. B-splines

excel in the predictable way that control points influence curve shape, and in the local control, which



prevents small changes in a control point position from propagating over the entire curve. Combined with
low computational cost, these advantages have contributed to B-spline curves becoming a standard
geometric modeling technique in computer-aided design.

A B-spline is given in a parametric form as pfu):

x(u).l n ’
: o 29
p(1) [_V(N)J ; N, 10 )

A set of blending functions N, combines the influence of n+/ control points P,, over the range of
the parametric variable «. The blending functions N, , are recursively determined polynomials with degree
k-1, where the parameter & dictates the order of continuity of the curve, and thus how many control points
influence a curve segment. In this work k is 8, which corresponds to C®-continuity. The number of control
points is 8 as well-two endpoints, five design variables and one point used for prescribing the inlet slope.

B-splines have an approximating nature, in that they do not necessarily pass through control
points, except for fixed curve endpoints. The slope at a curve endpoint is tangential to a straight line
connecting the endpoint and the first control point, and may be prescribed by placing an additional fixed
control point near the endpoint.

Experimental and numerical evidence indicates that maximum pressure recovery in diffusers
occurs at the border of appreciable flow separation. For this reason, strongly separated diffuser tlows
should be avoided, which makes it reasonable to restrict the design space to monotonic wall shapes. While
the approximation accuracy does of course benefit from the reasonable design space approach, it is equally
important in the present example that monotonicity constraints eliminate convergence problems associated
with CFD-analysis of odd, non-monotonic designs.

The parametric form in which B-splines are defined makes it non-trivial to derive monotonicity
constraints analytically, so instead a constraint approximation G was set up in the form of a response
surface tor the minimum wall slope G. Then, observing the inequality constraint G =0 implies a positive
wall slope and thus monotonicity throughout. Since B-splines are inexpensive to generate, 9° (59049) B-
splines were computed (this took just a few seconds) and used for fitting a quadratic response surface. The

approximation to the monotonicity constraint precludes some designs that satisfy the exact monotonicity
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requirement. However, the effect of these inaccuracies on the solution of the optimum design problem is
negligible.

The regression analysis, to find 21 polynomial coefficients in five dimensions, is based on a 35-
point D-optimal design. The surplus of analyses is generally required for reducing the sensitivity to
numerical noise and to errors due to the simplified representation as a quadratic polynomial. Again, a pool
of candidate points was created, this time using nine levels for each variable, (values ranging from 0.0 to
1.0), and then checking the monotonicity of the B-splines for each of the 9% = 59049 designs. Observe that
limiting the y-coordinate of the control points to a variation in the range [0:0; 1:0] ts a somewhat artificial
requirement, as monotonic shapes exist with coordinates slightly outside this range. A total of 20864 points
are monotonic in wall shape. This relatively large percentage of acceptable cases reflects the smoother
nature of approximating curves. Had a non-segmented polynomial curve representation been used, the
condition of monotonicity in the control points would alone have reduced the number of feasible design
points to less than 1% of those inside a five dimensional box. As in the two-design-variable case, the subset

of D-optimal points was found using the JMP-software.

3.4 LOW REYNOLDS NUMBER WING MODEL

3.4.1  Training Data

The aerodynamic model, a rectangular wing with a NACA 5405 airfoil cross-section (Figure 13) is
designed for low Reynolds Number (Re=10"-10") flows. Since airfoil performance decreases at low
Reynolds Number flights, attempts to shrink the overall aircraft size while trying to keep sufficient lifting
areas, result in low aspect ratio wing planforms. As aspect ratio decreases, the percentage of the wing area
affected by the tip vortices increases, creating a 3-D flow field over most of the field. Therefore, the
analysis of such tlows should consider the effects on performance and the effects of both the airfoil
geometry (such as maximum camber) and the wing geometry (such as aspect ratio). In this study, the
aerodynamic analysis is based on a 3-D potential flow solver, PMARC, and a 2-D coupled inviscid-viscous
flow solver, XFOIL . The lift coefficients, C;, and drag coefficients, Cp, for various maximum camber, y,,
aspect ratios. AR, and angles-of-attack, &, at fixed Reynolds number, Re=2.xI10", and thickness ratio,

- . . . 372 :
v,=5%, are used to correlate the aerodynamic performance, measured by the power index, C,*/Cy, which
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appeéars explicitly in steady flight required-power equation. Aspect ratio and maximum camber form the

input vector, p and C,?” /C,, forms the target output vector, &, as shown below.

Y.
c

AR .
p{ } a=let?icy ) (30)
2x<R

where R is the number of input vectors of the training data.

For the 3-D wing case, the maximum camber varies between 0.0 and 0.1 and the aspect ratio
varies between one and five. Three different training data sets are used out of the available data as shown in
Table Al. Table A2 summarizes the test data sets used for prediction for this case. A simulation, referred in

these tables, consists of two input variables: AR and y. and the output variable: C%/Co.

4. ASSESSMENT OF DATA PROCESSING AND OPTIMIZATION CAPABILITIES

Of all the cases considered in this article, the impingement injector element, swirl co-axial injector

element, 2-stage supersonic turbine and turbulent flow diffuser help understand the effectiveness of using

polynomial based RSM. Shear co-axial injector element, 1-stage turbine and two-dimensional wing model

are used to carry out a comparative study between RSM and NN. The size of the data set used varies from
modest to large (from 9 to 2235 data).

In the following, we synthesize the studies of Papila et al. [49] & {50], Madsen et al.[33], Shyy et al.

[57]. Tucker et al. [64] & [65] and Vaidyanathan et al.[71]. We first review the data processing capabilities

then evaluate the performance of the optimization techniques. For both NN and polynomials, one needs to

first decide most appropriate constructions for a given data set. For the NN, the choices are usually (1) the

number of neurons, and (2) the error goals. Furthermore, the spread constant (for RBNN) and the number

of hidden layers (for BPNN) can be specified. In this article, the BPNN and RBNN wiil be limited to the 2-

layer form.
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4.1 SHEAR CO-AXIAL INJECTOR

4.1.1  Polynomial Fits

According to the injector model developed by Calhoon et al. {3], injector performance, as
measured by ERE depends only on the velocity ratio, V/V,, and combustion chamber length, L me-
Examination of the original data set in Table A3-A6 indicates 15 distinct design points for ERE. Since
chamber wall heat flux is dependent only on velocity ratio, V,/V,, and oxidizer to fuel ratio, O/F, there are 9
distinct design points for Q. The design space for this effort is depicted in Figure 14. For ERE, the 5 distinct
chamber lengths offer the potential for a fourth-order polynomial fit in Lems, while the three different
velocity ratios limit the fit in V//V,, to second order. Quadratic and cubic response surfaces for both ERE and
O have been generated for evaluation. These response surfaces represent reduced models accomplished by
term elimination from the full surface using t-statistics as described earlier. The above-noted limitations on
the data cause the cubic surfaces to be third order in L., only.

Based on the adjusted RMS error, Vaidyanathan et al.[71] have concluded that the cubic fit is
more accurate than the quadratic fit for ERE. The adjusted RMS error for the quadratic and cubic response
surfaces of ERE are 0.211 and 0.083, respectively. The cubic fit, by this measure, is superior for ERE.
However, the error is almost identical in the case of Q for both the quadratic (0.039) and cubic (0.040)
surfaces, perhaps due to the very small number of points available for the curve fit. The additional terms in

the cubic fit relative to the quadratic fit do not improve the mapping of the response surface for Q.

4.1.2  Construction of RBNN

In the case of the injector design there are two objectives, namely ERE and Q. Figure 15 gives the
variation of & for the network designed with solverbe for these objective functions. In case of solverb the
error goal during training also defines the accuracy of the network. An objective of fitting a numericat
model is to remove the noise associated with the data. A model, which maps exactly as sofverbe does, will
not eliminate the noise, whereas sofverb will. Figure 15 shows that for low values of spread constant, the
NN has a poor performance. As the spread constant increases ¢ asymptotically decreases. However, as

demonstrated by Figure 135a the performance of the network can deteriorate for higher values of the spread
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constant. The region with a large variation in ¢is highly unreliable because this indicates a high sensitivity
of the model to a smail variation of spread constant and possibly the test data, in this region. Hence the
desirable spread constant is selected from the region where the performance of the network is relatively
consistent.

Figure 16 gives the variation of o for the network design with solverb for the objective functions
of ERE and Q. It also shows the influence of error goal on the network. Generally if a network maps the
training data accurately it can be expected to perform efficiently with the test data. However, accurately
mapping noisy data may result in poor prediction capabilities for the network. The variation in the
performance is not significant except for the ERE and Q network (Figure 16), where the poor performance
of the network at high values of spread constant improves for a larger error goal. This may indicate the
presence of noise in the data for ERE, which solverb is able to eliminate with an appropriate error goal.
Figure 17 shows variations in number of epochs and o with the variation of error goal for a given spread
constant when RBNN is designed with solverb. The number of neurons in the network is one more than the
number of epochs. One expects that as the error goal increases the number of epochs becomes smaller and
the network performs less accurately as in Figure 17a and b.

When choosing an appropriate network the above-mentioned features have to be considered. The
performance of the constructed NN is best judged by comparing the prediction error as given in Eqn. (8) for
different networks. Using solverbe. networks are designed with varying spread constants and the one that
vields the smallest error is selected. When solverb is used, networks are designed for different spread
constants and error goals. The network that gives the smallest error for the test data is used. The details of

the networks selected are discussed in later sections.

4.1.3  Evaluation of Polynomial and NN for Data Processing

The polynomial and NN-based RSM are constructed using the training data. The test data is then
employed to select the best polynomial or NN. Specifically in polynomial-based RSM, the difference
between the polynomial and the training data, as given by g, is normally used to judge the performance of

the fit. The additional use of the test data helps to evaluate the performance of different polynomials over
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design points not used during the training phase. This gives a complementary insight into the quality of the
polynomial model over the design space. For both the rocket engine components, ditferent polynomials
were tried. Table 4 and 5 compare the performance of different polynomials used to represent the two
objective functions of the injector case, ERE and Q. Starting with all the possible cubic terms in the model,
revised models are generated by removing and adding terms. Similar kind of analysis is also done for the
turbine case. The best polynomial is selected based on a combined evaluation between ¢, and o

For the NN, the test data helps evaluate the accuracy of networks with varying neurons in BPNN
and varying spread constant in RBNN. Thus the test data are part of the evaluation process to help select
the final NN. Based on the RSM or NN model, a search for optimum design is carried out using a standard,
gradient-based optimization algorithm over the response surfaces represented by the polynomials and
trained neural networks.

A reduced quadratic and an incomplete cubic response surfaces are used for the two objective
functions. The first model in Table 4 and the sixth model in Table 5 are the selected cubic models for ERE
and Q, respectively. There is no noticeable improvement amongst the remaining cubic models for ERE. For
0. the selected model is the best in terms of o; although there are other models with identical values of &.

The radial basis networks designed with solverbe are the largest with 15 neurons in the hidden
layer for ERE network and nine neurons for the Q network. Solverb designs a network for ERE with 14
neurons in the hidden layer and a network for Q with eight neurons. Compared to RBNN, BPNN has fewer
neurons, the number of neurons in the hidden layer are eight and four for the ERE and @ networks,
respectively. Details of the networks used are listed in Table 6. The spread constant used for RBNN and
the error goal of the training data is also given in this table. The spread constant values are selected from
the region where the performance of the network is consistent with the variation of spread constant (Figure
15 and Figure 16). The error goal. in the case of solverb, is selected based on the network with the best
performance for the deal spread constant. (Figure 17).

The error in predicting the values of the objective function by different schemes is given in Table
7. Several observations can be readily made.

(1) Both NNs performs better than the RSM for this data set.

(2) Both solverbe and solverb are of comparable performance.



(3) The BPNN helps generate smaller networks and hence performs at par in comparison to RBNN.
(4) The cubic polynomial is more accurate than the quadratic one.

The various models generated are compared with test data shown in Figure 18 and Figure 19. The
curves representing the NN predictions are closer to the data obtained from the injector model than the RS
thereby demonstrating that NN models are able to predict better than the RS. BPNN performs as well as
RBNN but tends to be flat. Due to its lower order, the quadratic polynomial is flat. The cubic polynomial is

able to perform better than quadratic.

4.1.4  Polynomial-based RSM for Design Optimization

This case study is used to perform a complete comparative study between polynomial and NN-
based RSM. The comparison is carried out in three ways. Firstly, the predictive capabilities of the different
models are compared. Secondly, NN is used to 'mcrease. the population of the design space, which is then
used for mapping by polynomial-based RSM. Thirdly, polynomials and NN are used individually to
represent the design space and help in the optimization of the design.

An optimization was done for three different ranges of the independent variables using the
quadratic fit. The three cases analyzed differ only in the constraints implemented on the design parameters.
The constraints are

Case 1. 4 SO/F $6, 4 SV/V, <6, Looms 7.

Case2: 4 SO/F 6, 5 SVYV, <7, Leomp 57,

Case 3: 4 SO/F 56, 6 SV/V, 58, Lopmp 7.

The optimization is repeated using the cubic fits. The combinations of weighting factors for ERE,
s. and for Q, 1, are selected as (1,10), (L 1) and (10,1) for these three cases. The optimum has been
evaluated and tabulated for each case, as detailed in Table 8-Table 10. In this etfort, injector element
optimization means maximizing the performance, while minimizing heat flux and chamber length. The
optimum value for V/V, obtained on the cubic response surface is quite ditferent than that found on the
quadratic surtace for some cases (these particular cases are noted in bold in Table 8-10). Also, for selected

cases where there are discrepancies between the quadratic and cubic results, the exact values trom the
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injector model have been included in parentheses in the tables for comparison. In these cases, the cubic fit
more closely matches the exact data than does the quadratic fit. Sample results for ERE plotted in Figure
20a clearly show the data is better fit by the cubic surface for the case shown. Figure 20b shows that the
response surface predicted by cubic fit for Q has a noticeable dip that is completely missed by the quadratic
fit. This discrepancy results in the optimum for the cubic fit being considerably lower than that for the
quadratic surface. The prediction from cubic fit agrees well with the exact data, which also has a dip for
this specific case.

The injector model was also used to produce additional design points to assess the capability of
the different response surfaces to match the exact data. In Figure 21a and Figure 22a, the actual data
obtained from the injector model for all the design points has been shown. The cubic and quadratic
response surfaces obtained based on the original data is also shown. The RMS error for predicting the new
ERE data is 0.270 and 0.205 for the quadratic and cubic surfaces, respectively. For Q, itis 0.025 and 0.016
for the quadratic and cubic surfaces, respectively. Again, the performance of the cubic surface is superior to

that of the quadratic surface.

4.1.5  Radial Basis Neural Networks (RBNN)

Radial Basis Neural Networks are trained by both Sofverbe and Solverb tor each injector design
response, ERE and Q. using the original data set of 45 design points. Solverbe trained the network for ERE
with an error to the order of 10", The network trained by Solverbe tor Q has an error on the order of 10",
Both networks represent the respective design spaces essentially exactly. Solverb, with an error goal of
0.001, trained networks for both responses to represent the original data set adequately. Since the size of
the data set considered for training the network is fairly modest, the number of neurons generated by
solverbe is also small. Solverb would have been suited better for a larger data set where a reduction in the
number of neurons might have appreciably reduced the computation time. The networks trained using
Solverbe have been used for this article. The ability of the RBNN to fit the design data and to generate

additional data for constructing a more accurate response surtace is discussed in the following sections.
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(i) Comparison between Solverbe and Solverb

Since Solverbe trains with the same number of neurons (45 in this case) as data points, as seen
above, it fits the training data set with negligible error. However, it can also create erratic behavior since it
makes no attempt to filter noise generated by excess neurons in the network. Solverb, on the other hand,
tends to reduce the potential for noise by controlling the number of neurons in the network. Table 11 shows
that in the present article, for the spread constant value of 1.00, Solverb performs slightly better than
Solverbe based on the nominal error measure. However, when judged by the level of errors associated, both
RBNNs are satisfactory from a practical standpoint. As expected, Solverb uses fewer neurons than
Solverbe; in this case three less. It should be noted that, as investigated in detail by Papila et al. [49], the

relative performance between Solverb and Solverbe is case dependent.

{ii) Comparison of RBNN Predictions with Polynomial Based RSM

Figure 21b and Figure 22b show that the RBNN trained by Solverbe is able to more accurately
generate additional design data than either quadratic or cubic polynomial (shown for comparison in Figure
21a and Figure 22a). In Figure 21a, the ERE surface trained with the original data set is shown. The 10
extra design points calculated with the injector model for V/V, of 5.00 and 7.00 are shown. The ability of
the RBNN to accurately generate new design data can be seen by comparing the fit for ERE in Figure 21b
to that for the polynomials in Figure 2ta. RBNN trains the network with more flexibility and learns the data
trend, whereas polynomials provide only an approximate fit on the given data. Regarding the RMS error, 0.
for ERE. it is 0.152 for RBNN predictions as compared to the values of 0.270 and 0.205 for quadratic and
cubic surfaces, respectively. The four extra design points generated for 0, also at Vy/V,, of 5.00 and 7.00 are
shown compared to the polynomial surface in Figure 22b and compared to the RBNN surface in Figure
22b. The RMS error in the case of Q is 0.022 for RBNN as compared to 0.025 and 0.016 for quadratic and
cubic surfaces respectively. Here the performance of the RBNN is better than the quadratic but slightly
poorer than the cubic fit. Examination of Table 11 indicates it may be possible that using Solverb with a
spread constant of 1.05 could further reduce the RMS tor Q. However, the errors for  are low enough that

further reduction may not be practical.



4.1.6 RBNN-Enhanced Polynomial Based Response Surface

Additional design points generated by the RBNN are added to the original data set to form the
enhanced data set. This enhanced data set is used for further analysis to evaluate the performance of the
RSM with the larger number of design points. The enhanced data set for ERE has 15 points from the
injector model and 10 from the RBNN, for a total of 25 points. The enhanced data set for Q has 9 points
from the injector model and 4 from the RBNN, for a total of 13 points. The entire optimization analysis was
redone with the enhanced data set. On this enhanced data set, the full quadratic response surface seems
already appropriately constructed and invoking the statistical analysis generates no reduced model. With
the added data in the enhanced data set, it is now possible to obtain a fit for ERE that is 4™ order in Vv,
and 4™ order in Le,mp Q can now be fit with a cubic in V/V, and a quadratic in O/F. This is now possible
since a combination of 3 different values of O/F, 5 different values of V/V, and 5 different values of L,ms

are available.

(i) Comparison of Fits with the Original Response Surfaces

Comparison of the enhanced response surfaces with the original response surfaces indicates that
the extra data produced with the RBNN generally improves the quality of the curve fit. The adjusted RMS
error tor £RE on the original set is 0.211 and 0.083 for quadratic and cubic fits, respectively. On the
enhanced data set, it is 0.179 and 0.100 for the quadratic and cubic fits, respectively. The slight increase in
the error in the case of the cubic fit may be due to noise related to the over-sensitivity of the polynomial.
However, this phenomenon may reflect the fact that the level of the RMS is low enough in either case so
that no further improvement is accomplished. The adjusted RMS error for Q with the original set is 0.039
and 0.040 for the quadratic and cubic fits, respectively. On the enhanced set it was 0.027 and 0.026 for the
guadratic and cubic, respectively. With the exception of the cubic fit for ERE, the fits from the enhanced
surface are improved over those from the original surface. Also, when optimum design points are
examined, there is less difference between the quadratic and cubic fits on the enhanced surfaces than there

is on the original surfaces.



(ii) Comparison of Optimal Design Points

The analysis for the three cases of optimization over the same three ranges of independent
variables has been re-done. The results of the optimization on surfaces generated from the enhanced data
set are tabulated in Table 12-Table 14. The predicted optimal design points using cubic and quadratic fits
are generally close to each other. They are closer to each other on the enhanced data set than on the
surfaces generated using the original data set. One case where the cubic and quadratic optimum points are
somewhat different is analyzed further. The results shown in Figure 23 confirm the optimum value of
velocity ratio on the quadratic fit to be lower than the cubic fit in this case. Given the weightings of 1.0 for
ERE and 10.0 for Q, the optimizer has selects the minimum of Q for both fits. Since the curves exhibit
different minimum points, the weightings force the selection of different optimum points. As already
discussed, for the polynomial fits on the RBNN-enhanced data sets, the errors of both quadratic and cubic
polynomials are more comparable than in the original analysis. At the upper limit of the design space for
combustor length, the ERE curves tend to flatten out. This causes some ditficulty in locating the optimum
and may cause more noticeable differences between the different polynomials. However, different optimal
designs selected by different polynomials under such a circumstance are not important since these yield
very similar injector performance.

The optimum solution obtained from various schemes is shown in Table 15 and Figure 24 and
Figure 25. The aim is to maximize ERE and minimize Q. The trend of the vbjective functions 1n the design
space is monotonic and hence every model is able to select identical optimum design tor the given
constraints. The flainess of the quadratic polynomial results in less accurate values of the objective function
for the optimum design. The cubic polynomial, while more flexible than quadratic, is not consistently better
in predicting the optimal design point. For example, a V//V, constraint of 4, the quadratic polynomial is
more accurate but for higher values of V/V, the cubic polynomial is more accurate. [n contrast, the NN
models are able to perform well. Since the optimum design happens to be the same as one of the training
points, solverbe is able to predict the values of the objective function accurately. Soiverb performs equally
well, thereby showing the capability of performance with fewer neurons. Performance of BPNN is not as
satisfactory as suggested in Table 7. For lower constraints of V/V,,, it performs poorly but for higher values

of V/V, it is good. This may be due to the selection of fewer neurons in the hidden layers of the networks.
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Overall, it is still better than the polynomial-based RSM and demonstrates the flexibility of NN over
polynomials.

As stated by Papila et al.[49], when it comes to choosing between NN and polynomials,
polynomials are easy to compute. The number of coefficients might be numerous but the linearity of the
system expedites the process of coefficient evaluations. This is also the reason RBNN train fast. On the
other hand, the weights of BPNN are evaluated through a nonlinear optimization. which slows the training
process. Of all the NN presented here, the one designed with the help of solverbe is the fastest to train since
the values of the weights are set to values of the input dependent variables. Solverb trains with the addition

of one neuron at a time with weights similar to the input and hence is slower.

4.2 IMPINGEMENT INJECTOR ELEMENT

4.2.1  Polynomial Fits

In Tucker et al. [64], method i uses the polynomial based RSM to find optimal values of ERE, Q..
Qinp W, and C,, for acceptable values of AP,, AP Loms and & The approach of RSM is to perform a
series of experiments, or numerical analyses, for a prescribed set of design points, and to construct a
response surface of the measured quantity over the design space. In the present context, the five responses
of interest are ERE, Q. Qunp W and C.,;. The design space consists of the set of relevant design variables

AP,,. AP/' ermll) and .

(i) Individual Polynomial Models

When the JMP software is used to analyze the 163 design points, five individual full response surfaces for
the variables in the design space are approximated by quadratic polynomials that contain 15 terms each.
Using the t-statistics approach noted above and detailed in Tucker et al. [64], unnecessary terms in each
equation can be eliminated to give the reduced quadratic surfaces A survey of the reduced response

surfaces indicates that the equations reflect the functionality used to construct the models for the dependent

variables.
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(ii) Joint Response Surfaces

In the current article, it 1s desirable to attempt to maximize ERE and while simultaneously

minimizing Q.. Qin» W, and C,,,. Theretore composite response surface for the present case is given by:

ys .
D= (dmd& d, d, d., ) 31)

4.2.2 Optimization Results & Discussion

Three sets of results are presented below to demonstrate the capability of merhod i for the current
injector design. These three examples illustrate the effect of each variable on the optimum design, the
trade-offs between life and performance issues, and the effect on the design of extracting the last increment

of performance.

(i) Effect of Each Variable on the Design Using Original Constraints & Equal Weights

The results in this section were obtained by building the joint response surface with the addition of
one dependent variable at a time. The results are shown in Table 16. Since current non-optimizer based
design methods yield high-performing injector elements, simply maximizing the £RE is not a challenge.
Accordingly, the initial results (Case 1) are obtained with a joint ERE and Q, response surtace. The results
in Case 2 have the impingement height added. Case 3 adds the relative chamber weight and the relative cost
is added in Case 4. All results arc obtained using the original independent variable constraints and all
dependent variables have equal weights of one. The results for Case | show that ERE is at its maximum
and Q, is very near its minimum desirability limit. Minimizing Q,, requires a small AP, relative to AP, as
evidenced by the values of 100psi and 183psi, respectively. Maximum ERE values are found at the longest
chamber length, L,,.,=8inches. Even with the relatively high value ot [83psi tor 4P, and low value of 4P,
of 100psi. ERE is maximized to 99.9% with an impingement half-angle of 33.1°.

Addition of the impingement height to Case 2 to model the injector face heat flux, Q.. forces &
lower to increase H,ping. and decrease Q,,,. This decrease in the radial component of the fuel momentum

has an adverse affect on ERE. This etfect 1s mitigated to a degree by increasing the AP, by 32psi to 132psi.



ERE is still reduced by 1.6%. Also, the increase in .AP. causes increased penetration of the fuel jet. which
results in a slightly higher Q..

Case 3 adds the relative combustor weight to the list of dependent variables modeled. Since W, ts
only a function of L ,ms minimizing W,,, shortens the combustor length from 8 to 6.6 inches. The shorter
Leoms tends to lower ERE. This effect is offset to a large degree by increases in 4P, and & both of which
increase the radial component of the fuel momentum. The increase in AP, also causes a slight increase in
Q.. The increase in @ causes a significant decrease in H, ..., which increases the injector face heat flux.
Finally, the relative cost of the injector is added in Case 5. Since C,. is only a function of propellant
pressure drops, both AP, and AP; are driven to their respective minimum values. This and a slight increase
in o allow ERE to be maintained at 98%, even with a slight decrease in L,,.,. The largest effect of this
fairly dramatic decrease in propellant pressure drops is on Q.. Even though the values for 4P, and AP, fell,
AP, increased relative to AP, causing Q. to increase by almost 9%. Impingement height and relative
combustor weight are essentially unchanged.

Although several of the variables included in this exercise are qualitative, an important conclusion
can still be drawn. The sequential addition of dependent variables to an existing design results in changes to
both the independent and dependent variables in the existing design. The direction and magnitude of these
changes depends on the sensitivity of the variables, but the changes may well be significant. The design in
Case 4 is quite different that the one in Case 1. Consideration of a larger design space results in a different

design—the sooner the additional variables are considered. the more robust the final design will be.

(i) Emphasis on Life & Performance Issues Using Original Constraints & Unequal Weights

The purpose of this section is to illustrate the effect of emphasizing certain design criterion on the
optimization process. Method i allows this emphasis via the weights applied to the desirability functions in
the joint response surface. The results shown in Table 17 facilitate the illustrauon. The Case 1 (baseline)
results are repeated from Case 4 in this table where the entire design space is considered with the original
constraints and equal weights for the dependent variables. The results in the Case 2 column are obtained by
emphasizing the minimization of the wall and injector face heat fluxes. Desirability functions for both of

these variables are given a weight of five. Since lower heat tluxes tend to increase component life,
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weighting these two variables is equivalent to emphasizing a life-type issue in the design. As expected, @1s
decreased to increase Hipping.. thus decreasing Q... Since the fuel pressure drop is already at the minimum,
the oxidizer pressure drop is increased by 58% to decrease Q,. Both of these changes tend to decrease ERE.
While ERE does decrease, the effect is somewhat mitigated by an increase in L.omp. The increases in Leoms
and AP, cause increases in W,,, and C,,, respectivelv. The emphasis on life extracts the expected penalty on
performance. Additionally, for the current model. there are also weight and cost penalties.

The results for Case 3 are obtained by emphasizing maximization of ERE and minimization ot W,,;
with desirability weightings of five. Increased weighting for these two variables is equivalent to
emphasizing a thrust to weight goal for the injector/chamber. The relative chamber length is shortened to
lower W,,. ERE is maximized by increasing the radial momentum of the fuel jet. Both AP, and « are
increased to accomplish ERE maximization. As noted earlier, increasing AP, and a lead to increased wall
and injector heat fluxes, respectively. Table 17 indicates that to be the case here. For this case, emphasis on
thrust and weight tend to have an adverse affect on both Q.. and Q,,, Relative cost. for the current model. is

not significantly atfected.

(iii) Extraction of Last Performance & Weight Increments (Modified Constraints & Unequal
Weights)

Here, the high marginal cost of realizing the last increment of thrust to weight is shown. This
section illustrates the capability to modify the constraints on the independent variables and use unequal
weights on the dependent variables at the samne time. The results for Case 3 in Table 17 are carried over to
Case | in Table 18 as the baseline for this example. Here the original constraints are used but increased
weights have been applied to emphasize ERE and W, Cases 2 and 3 modify the constraints on the
propellant pressure drops, raising the minimum pressure drop from 100psi to 150psi. For Case 2, both 4P,
and AP, are now at the minimum level for the modified constraints. L, i$ increased slightly to maintain
ERE. The decrease of AP, relative to AP, causes a decrease in Q,. The slightly higher-pressure drops also
cause C,, to increase somewhat. Other variables are not changed appreciably.

For Case 3, ERE and W, are further emphasized by increasing their desirability weights to 10

while decreasing the other weights t0 0.1. L, 1s shortened to respond to the increased emphasis on weight



minimization. Maintaining the high level of ERE requires large increases in AP, and «rto increase the radial
component of the fuel jet momentum. The increase in AP causes over-penetration of the fuel jet, which
results in an increase in wall heat flux. The large increase in « yields the expected decrease in Hipmpinge.
which increases the injector face heat flux. The additional emphasis on ERE and C.,; yields essentially no
increase in ERE in this range of AP, although a small weight savings is seen. These marginal improvements

are offset by fairly large increases in Cr; and Q.

4.3 SWIRL CO-AXIAL INJECTOR ELEMENT
Two sets of results are presented below to demonstrate the capability and flexibility of method i
for the current injector design. These examples illustrate the effect of each variable on the optimum design

and the trade-offs between life and performance issues.

4.3.1 Effect Of Each Variable On Element Design

The results in this section were obtained by building the joint response surface with the addition of
one dependent variable at a time. The results are shown in Table 19. Case 1 seeks the maximum
performance without regard to the effect on the other dependent variables. ERE 1s a fairly strong function
of L,...,—longer chamber lengths allow more residence time for the propeltant to mix and burn. The effect
of @on ERE is strongest at low values of @ ERE increases with increasing @ until about ©=80° and then
fall off slightly due to the competing influences noted earlier. These competing influences also cause the
effect of both pressure drops on ERE to be somewhat flat, although since AP, affects more variables, its
influence is slightly stronger. Maximum performance is found at high values of 4P,, &, and Le,ms and at
low values of AP, This trend is consistent with other works for similar injector elements. The predicted

optimal value of 98.5 is indeed the highest predicted by this model.
The objective of Case 2 is to simultaneously maximize ERE and the minimize Q.. Table 19 shows
that the exact same design point was chosen as for Case 1. Usually, the design, which yields the maximum

ERE, also produces a high wall heat flux. That is not the case here; this issue has already been noted. The

minimum Q. is found in the region of high AP, and low AP.. In this area, Q, is almost independent of ©.
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Hence, the minimum Q,, can still be found for a high value of @ required to maximize ERE. It should be
noted that in the low 4P,, high 4P, region, Q. is a function of @. Here, as @ is increased, (), increases
since the larger swirl angle forces d, to increase and thus decrease V,,. In the Calhoon et al. [3] model, this
reduction in GO, momentum causes an increase in Q..

The requirement to minimize Q,,, is added in Case 3. [n order to minimize Q.np» the swirl angle is
decreased from 81° to 37°, thus reducing the injector face heat flux by approximately a factor ot 3. This
decrease in © also lowers ERE which forces use of a longer chamber to offset some of the loss. Still, ERE
is reduced by over one percent.

Case 4 considers the desire to minimize the chamber weight, W,,,, in addition to maximizing ERE
and minimizing Q. and Q,,, Since W,,, depends only on L, the chamber length is shortened by over half.
The weight is reduced, but so 1s ERE. To mitigate the adverse effect on ERE, @is increased by almost 10°,
simultaneously increasing Q... ERE drops again by over a percent, while {,, remains constant.

Finally, minimizing the injector cost. C... is added in Case 5. Decreasing each pressure drop
approximately a factor of 2 lowers the relative injector cost. Decreasing AP, results in a larger fuel gap and
decreasing AP, allows for a larger swirl slot. These factors combine to lower the cost by almost 10 %.

Although several of the variables included in this exercise are qualitative, an important conclusion
can still be drawn. The sequential addition of dependent variables to an existing design results in changes to
independent and dependent variables in the exisuing design. The direction and magnitude of these changes
depends on the sensitivity of the variables, but the changes may well be significant. The design in Case 5 is
quite different that the one in Case 1. Consideration of a larger design space results in a different design—

the sooner the additional variables are considered, the more robust the final design.

4.3.2  Emphasis on Life and Performance Issues

Method i allows this emphasis via the weights applied to the desirability functions in the joint
response surtace. The set of results shown in Table 20 facilitate the illustration. The baseline results Table
20 (repeated from Case 5 in Table 19) consider the entire design space using the original constraints and

equal weights for the dependent variables. The results are obtained by emphasizing the minimization of the
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wall and injector face heat fluxes for Case 1. Desirability functions for both of these variables are given
increased weights (5 and 10, respectively). Since lower heat fluxes tend to increase component life,
weighting these two variables is equivalent to emphasizing a life-type issue in the design. Since Q. is
already at its minimum value, it remains fixed. As expected, & 1is decreased, which decreases the value of
Q., by almost 35%. The lower value of @ also produces a lower ERE. Both propellant pressure drops and
the combustor length are increased to mitigate the drop in ERE. The increases in L, and AP, cause
increases in W,,; and C,.;, respectively. The emphasis on life extracts the expected penalty on performance.
Additionally, for the current model, there are also slight weight and cost penalties.

The results for Case 2 are obtained by emphasizing maximization of ERE and minimization of W,
with desirability weightings of 10 and 3, respectively. Increased weighting for these two variables is
equivalent to emphasizing a thrust to weight goal for the injector/chamber. The relative chamber length is
shortened to slightly lower W,,,. ERE is maximized by increasing the GO, swirl angle by a factor of almost
2.5 and also increasing AP, by over 35 %. The value of ERE rises by over one percent. As noted earlier.
increasing @ leads to increased injector heat flux. For this case, emphasis on thrust and weight tends to
have an adverse affect on Q. Relative cost, for the current model, is also increased significantly.
Performance and weight trends for the swirl and impinging injector elements are shown in Figure 26.

Figure 27 shows the heat flux and cost trends for the swirl and impinging injector elements.

4.4 SUPERSONIC TURBINE FOR REUSABLE LAUNCH VEHICLES

4.4.1 Polynomial-Based RSM Results for 1-, 2- and 3-Stage Turbines

There are 28-unknown coefficients needed for constructing the 2™-order response surface for the
single-stage case, 78 for the 2-stage and 136 for the 3-stage case. Different starting points are tried to avoid
local maximum and the optimum values of 7, W and Apay with the corresponding design parameters are
determined. The results shown are comparable with the corresponding Meanline runs with the highest error
of 5% for Apay for single-stage turbine. The percentage error is increased to 13.5% for Apay for 2-stage
turbine and to 14.6 % for the 3-stage turbine for Apay indicating that the accuracies of the response surfaces

constructed are poor for the 2- and 3-stage.
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Papila et al. [50] have reduced the size of the parameter space by 80% in each coordinates, based
on the optimal design selected in the original design space, to improve the accuracy of the response
surfaces for these cases. The intention is to improve the fidelity of the response surface. With these refined
designed spaces, substantial improvement of the response surface fit accuracy is observed for both cases by
Papila et al. [50].

Based on the results obtained, the following observations can be made:

(b To ascertain required predictive capability of the RSM, a two-level domain refinement strategy
has been adopted by Papila et al. [50]. The accuracy of the predicted optimal design points based on this

approach is shown to be satisfactory.

2) According to the results obtained for Apay-based optimization, the 2-stage turbine gives the best
Apay result.
(3) As the number of stages increases, it is observed that efficiency improves while the weight

increases also but the improvement in efficiency can’t compensate the penalty from higher weight.

(4) As shown in Figure 28, the mean diameter, speed, and the exit blade area exhibit distinct trends.
Specifically, the diameter decreases, speed increases, and annulus area decreases with increasing number of
stages. It is interesting to observe that none of these design parameters are toward the limiting values,
indicating that the optimal designs result from compromises between competing parametric trends. For

such cases, a formal optimizer such as the present response surface method is very useful.

Table 21 gives a summary of the optimuzation results for 1-, 2- and 3-stage turbines for Apay-

based optimization.

4.4.2  Higher Order Polynomials and NN-Based RSM for Single-Stage Turbine
The generation of polynomial-based RS model and the training of the NN are done with 76 design
points of the single-stage turbine. The analysis was initially done without the constraints and then with the

constraints on (AN)’ and Vouch
A quadratic polynomial model was initially generated. Then, cubic terms were included. Cubic terms that

are products of three different variables were included because of the number of data available and the
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number of levels being three. The trend of the design data also suggests the presence of some of these
terms. Therefore, the initial cubic equation has 435 terms. Reduced third order polynomial model for 7 and
W were selected based on the relative performances of different polynomials obtained by removing terms
from the initial cubic equation based on t-statistics. The cubic equation was selected based on the evaluated
value of o, and o Table 22 suggests that the reduced cubic polynomial is better than the quadratic
polynomial since &, is better for the former. The value of o 1s comparable.

When constructing the NN-based response surface, the design parameters of the NN should be
selected carefully since the selection of the design parameters determines the learning characteristics of the
NN. For the single-stage supersonic turbine case, the variation of & with respect to the only design
parameter of solverbe network, spread constant, is plotted in Figure 29 for both objective functions of 17
and W. Figure 30 shows that for low values of spread constant, the NN has a poor performance. As the
spread constant increases o asymptotically decreases. Therefore, the appropriate spread constant is
selected from the region where the performance of the network is relatively consistent. Figure 31 shows the
influence of error goal on the network performance. Unlike the case of injector (Figure 17), a more
stringent error goal for the training data does not necessarily result in better predictive capability against
the test data for the single-stage turbine.

The networks designed with solver have 37 and 75 neurons for 7 and W, respectively in the
hidden layer, while those designed with solverbe has 76 neurons each. The BPNN uses signiticantly less
number of neurons by generating networks with five and 60 neurons for 77 and W, respectively, in a single
hidden layer. The NN architectures chosen are listed in Table 23.

The accuracy of the various models is tested with the 18 additional available data and the error is
shown in Table 24. Solverbe has a poor prediction for 7, which might be due to over fitting, but performs
well for W. Solverb is most consistent among all methods evaluated.

The optimum solutions subjected to the constraints, of (AN) limited to less than 1.132
(normalized with baseline value) and V. is limited to less than 1.148 (normalized with baseline value),
are presented in Table 25. Since (AN} is proportional to the product of square of RPM and A, and Vea is
proportional to D times RPM. no NN or polynomial-based RSM is generated for them. By comparing the

predicted optimal design by the various methods, one observes that solverbe and BPNN yield noticeably
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larger error in 77and W, respectively. Solverb and the response surface are more consistent with both 7 and
W. Judged by the error in predicting Apay, it seems that the polynomial based RSM is most accurate.
However, since the real goal is to maximize dpay, it is important to note that the actual value of Apay for
the optimal design chosen by the RSM is the worst.

From a design perspective, it is interesting to understand the impact of the constraints from Aunn
and V. on the optimal turbine parameters. Such an assessment is offered in Figure 32 and 33. As D. RPM
and A, decrease, 17, W, Vyien, AN’ and Apay decrease. C,, and C, are almost constant over the design space
and they do not have any noticeable effect on the objective functions and constraints. In the case of Cv, the
BPNN shows a small perturbation for the analysis with the constraint. This might be due to the mapping of
some noise by BPNN. Otherwise it is unaffected by the inclusion of the constraints. The optimum stage

reaction, K. is zero implying that the optimum design should be an impulse turbine.

4.4.3  Orthogonal Arrays For 2-Stage Turbine

Although the majority of the work is based on the face centered composite design approach
(FCCD). orthogonal arrays (OA) are constructed by Papila et al. [50] to investigate the efficiency of
orthogonal array designs in representing the design space for 2-stage turbine. A set of 249 design points is
selected using orthogonal arrays. Table 26 shows the comparison of the quahty of the second-order
response surfaces generated for ), W and Apay by using 1990-data generated by face centered composite
design and 249-data selected by orthogonal array method.

The above table illustrates that the fidelity of the response surface generated for design space of
249 data, based on orthogonal arrays, are comparable with that of 1990 data based on the face centered
criterion. The response surface models are also assessed by using 78-test data to determine the predictive
accuracy of these models. Table 27 presents that the testing adjusted rms-errors of response surfaces
generated are 1.65% for 77 and 0.96% for W using 249-data. and 1.67% for 7 and 1.21% for Wusing 1990-
data.

When these results are compared with the results of 1990-data and it is observed that the optimum

7. W and dpay are largely consistent However, it is also observed from Figure 34 which shows the
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comparison of the design variables for optimization based on (dpay), some of the design variables are
different even though optimum 7, W and dpay are consistent. This shows that there are multiple points in
the design space, which yield comparable performance. Nevertheless, it remains true that the two-stage

turbine is most suitable from a payload point of view.

4.4.4 NN-Based RSM for 2-Stage Turbine

In order to find the optimum RBNN design for the design of the two-stage turbine design, the
effect of the spread constant (sc) on the network training error is determined. Figure 35 and Figure 36 show
the variation of solverbe network error, G, with respect to spread constant for the NN designed for FCCD
and OA data. The optimum spread constant is determined as 3.2 for 1990-training data (FCCD) from
Figure 35 and +.3 for 249-data (OA) from Figure 36. In spite of the fact that, the spread constants larger
than 3 give reasonable training rms-errors (&), less than 0.1% for all networks designed for refined space
with 249-data as shown in Figure 37, sc=4.3 value is used for these cases for consistency.

After constructing the NN-based response surface, the NN model is tested by using 78-test data
selected along the main diagonal of the design space to determine the predictive accuracy of these models.
Table 28 presents that the prediction rms-errors (6) of response surfaces generated by for second order
polynomial are 1.65% for 17 and 0.96% for W using 249-data, and 1.67% for 7 and 1.21% for W using
1990-data. Table 28 also presents that the prediction rms-errors of response surfaces generated by solverbe
RBNN are 1.36% for 77 and 1.30% for W, and 2.26 % for n7and 1.56% for W using 249-data.

Figure 38 summarizes fitting/training and testing results of RBNN and polynomial-bavsed Apay
approximations for 2-stage turbine. The efficiency of the multi-level RSM approach can be observed by
comparing the original and refined design space plots. From these plots, it is also possible to observe that
more accurate training is possible with RBNN but testing or prediction accuracies of the RBNN and

polynomial-based approximations are quite comparable.
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4.5 TURBULENT PLANAR DIFFUSER

4.5.1 Polynomial Fits

Based on the D-optimal set of 35 design points selected, the 21 regressors of a full quadratic
polynomial were fitted resulting in a moderate R,’-value of 0:810.A backward elimination of regressor
terms subsequently led to the removal of five terms and an increase of R,% t0 0.848. The lower values of
R, in comparison to the two-design-variable case, reflect the increased difticulties in obtaining a good fit
when moving to higher-dimensional response surfaces. Data on the backward elimination steps are given in
Table 29, which apart from R? and R, holds the minimum t-statistic and the number of uncertain terms
with |to| < 2.0 remaining in the model. From the t-statistics information, it appears that the backward
elimination improved the accuracy of remaining terms.

The next step performed was to investigate whether the 35 applied observations included outliers.
A common (but not necessarily true) assumption, which enables the statistical treatment of observations, is
that errors are independently and identically distributed according to a normal distribution with mean zero
and variance. Thus, the distribution of response surface errors was plotted and compared to a normal
distribution, with which it is expected to correspond well. From the histogram plot of the error distribution,
see Figure 39, it did not seem that there are any outliers. Four arbitrary points away from sampling points
were picked to test the prediction accuracy of the polynomial-based RSM. Table 30 compares CFD-results
and polynomial approximations with and without backward elimination of terms.

Again, the predictions of the response surface appear reliable, apart from at the last control point.
This point is, however, well in the non-monotonic region, so that the approximation relies on an
extrapolation, which was never intended. The reduced approximation model comes closer to the CFD-

results for two out of the three meaningful test points.

4.5.2  Numerical Noise
While noisy data from laboratory experiments is a generally accepted fact, the presence of noise in
numerical simulations seems much less recognized. Due to the complex numerical modeling techniques of

CFD, the exact origins of noisy responses may be difficult to pinpoint. but factors such as turbulence



models, incomplete convergence, and the discretization itself are certainly influential. Here, the presence of
numerical noise has been investigated. The problem of non- smooth or noisy objective functions has
previously been addressed by Giunta et al. [17], who found RS approximations-based optimization to
perform very robustly under such circumstances, especially when point selection is based on design of
experiment techniques, such as D-optimal designs.

Limitations of the software used were telt during the application of a wall shape parameterization
in the investigation of noise. A B-spline curve with two free control points was used. Again, it was
observed that the objective function oscillated due to numerical noise, but the amplitude was small. To
make the noise more apparent, it was therefore necessary to refine the subdivision of the discretized line
and reduce its length to 20% of the initial, so that the line spans from (0.3,0.6) to (0.302,0.602). This
yielded the noisy response patterns shown in Figure 40. The two topmost curves in this figure were
determined using a relatively tight convergence criterion, and two difterent convection schemes - a
standard first-order upwind differencing scheme (UDS) and a second-order upwind differencing scheme
(SUDS). The use of different differencing schemes was carried out to estimate whether numerical diffusion
does significantly dampen the generation of noise. As discussed in Madsen et al. [33}, two different CFD
codes were adopted, and one seems less forgiving, in the sense that it predicts a stronger tendency for flow
separation. This could possibly be explained by factors such as numerical diffusion, boundary treatments,
and momentum interpolation methods adopted in the two codes.

As expected, switching to a more dissipating difterencing scheme (lower order accuracy) yields a
smoother response. To further illustrate this issue, one more design line curve is shown in Figure 40, which
arose from using a relatively loose, yet still reasonable, convergence criterion (using SUDS). The applied
convergence criterion considers summed and normalized (by inlet flux) residuals over the entire mesh, with
termination of computations once the maximum is below a certain small value & The loose convergence
criterion in Figure 40 was £= 107, whereas the tight tolerance was £= 10 For comparison, a convergence
limit of £ = 10* was applied in the CFD analyses used for response surface modeling. The overall
conclusion is that the presence of some numerical noise in CFD-results is practically inevitable, although
its magnitude depends on choice of code and modeling techniques. Here, a technique such as polynomial-

based RSM can be effective in smoothing out the undesirable fluctuations.

53



4.5.3  Optimum Diffuser Designs

In the optimum design using B-spline parameterization, both the monotonicity constraint and four
out of five side constraints are active. As already mentioned, the response surface constructed to guarantee
wall monotonicity becomes too restrictive. To compensate for this, a one-dimensional search in the

direction of the steepest gradient was conducted starting at the optimum design point estimated by RSM.

y=y +aVF (32)
This search is terminated as soon as designs turn non-monotonic, yielding a new optimum point at
the edge of the true feasible domain and an increase in the optimum pressure recovery coefficient from
0.7208 to 0.7235. Figure 41 compares the optimum wall contours determined by RSM using B-splines and
polynomial shapes. The optimum B-spline shape compares well to the optimum polynomial one, so it is not
surprising that there is no significant gain compared to this case. The largest differences in shape are found
in the later part of the expansion, where the shape has less impact on the overall performance, as separation
is small in either case. Thus, the close resemblance of optimum inlet shapes is reassuring in terms of the
credibility of the optimization algorithm. A CFD-analysis of the five-design-variable optimum design
yields a pressure recovery coefficient of 0.7193, a little below the predicted value, as in the two-design-
variable case. The improvement from the two design variable case (0.7185 to 0.7193) indicates that there is
not much potential for further gains. Furthermore, for comparison, Figure 41 also contains the
corresponding wall contour determined using search optimization techniques. The optimum wall shape
found by search optimization can be described as truly bell-shaped, without a "plateau” similar to the one
found in the results of RSM-optimization. There appears to be a distinct difference in optimum shapes from
the two different optimization approaches, which must be ascribed to the combination of optimization
accentuating modeling differences and a relatively small scatter in diffuser performances.
Figure 42 highlights the use of a response surface approximation for the optimum shape of a two-'
dimensional diffuser. As illustrated, within the fidelity of the analysis tool, there are often multiple design
points that meet the design objectives. It is interesting to note that different ditfuser shapes are found to

yield essentially the same performance. The response surface model is ideally suitable for such situations.
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4.6 LOW REYNOLDS NUMBER WING MODEL

4.6.1 Polynomial Fits
For the 3-D wing case, the response is the flight power index, C;”/C,, and the design space

consists of design variables maximum camber, v,, and wing aspect ratio, AR. Quadratic, cubic and quartic
order polynomials are tested for the best approximations for data sets containing 9, 15 and 25 simulated
data points (See Table Al). The predicted RMS errors are calculated for each of the model and are shown
in Table 31. As shown in this table, Model 4 gives the smallest predicted RMS for the cases involving 9
and |5 simulated data points, whereas, Model 12 allows the smallest predicted RMS error for the case

involving 25 simulated data points.

4.6.2  Comparison of Radial-Basis and Back-propagation Networks

The predictive accuracy of neural networks depends not only on the training data but also on the
parameters used to define the network. The best values for these parameters cannot be determined by using
only training data, because typically one can obtain very small errors for the training data with a wide range
of these parameters. However, the performance of NN can be examined using test data.

For the radial-basis network, one important issue is to investigate the magnitude of error in the test
data to help to select the spread constant. For the back-propagation network, where cost of computation is
an issue. the effect of number of neurons on the cost and accuracy should be checked. It was noticed that
for the back-propagation network, using four neurons gave a good compromise of accuracy and cost. For
the radial-basis network, it was found that the error and the number of iteration required for convergence
are extremely sensitive to the value of spread constant. After extensive experimentation, the spread
constant was chosen as 1.175.

For the 3-D wing case, both radial-basis NN and back-propagation networks are applied. [n order
to be able to make comparisons between these networks, the training time histories are summarized in
Table 32 and Table 33. These tables show that both are efficient in the training of 9-simulation, 15-

simulation and 25-simulation training data sets. However, as the data size increases, the back-propagation
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network exhibits a growth rate in terms of the number of epochs, indicating that it is more CPU time
intensive for larger data sizes. As far as accuracy is concerned, both networks perform well exhibiting
improved predictive capabilities as the number of training points increases from 9 to 25-simulation for y.
interpolations ( Figure 43). For this case, both methods reproduced the original 9-simulation accurately but
both failed to predict accurately the interpolation points at v.=0.0125,0.025, 0.075 and 0.0875 with the
RMS error of the test data of 1.68 for back-propagation network and 1.04 for radial-basis network ( Figure
43a). Figure 43b shows that adding 6 new points at AR=2 and 4 at =0, 0.05 and 0.1 (15-simulation
training data set) does not significantly improve the 6 interpolated values (RMS values of 1.369 for back-
propagation network and 1.029 for radial-basis network). However, with the addition of 10 new points at
v.=0.025 and 0 075 at AR=1,2,3,4 and 5, (25-simulation training data set) both the back-propagation
network and the radial-basis network can accurately capture the overall behavior of the aerodynamic data
as shown in Figure 43c. The RMS error now is 0.141 for back-propagation network and 0.106 for radial-
basis network. For AR interpolations, the back-propagation network resulted in lower RMS values when
compared to the RMS values of radial-basis networks (Figure 44). For the 9-point simulation training data,
the RMS of radial-basis network (RMS=11.12) is quite high when compared to the RMS of back-
propagation (RMS= 1.172) (Figure 44a). For this case, adding 6 new points at AR=2 and 4 at »,=0, 0.05 and
0.1 significantly improves the RMS value for radial-basis (RMS8=0.87) as shown in Figure 44b. With the
addition of 10 new points to 15-simulation data at v.=0.025 and 0.075 at AR=1,2,3,4 and 5, the RMS error
decreases further to 0.7 for radial-basis networks, and 0.026 for back-propagation (Figure 44c). The results
indicate that the back-propagation network is quite accurate for small to modest number of data for the
cases investigated and it is also more consistent than that of the radial-basis network. However, as indicated
in Table 32 and Table 33. in terms of computing time or epochs, back-propagation network scales
unfavorably with respect to the number of data used. In other words, the back-propagation network is
competitive for modest data size while the radial-basis network is more etfective for larger data size. More

information will be presented when the 2-D airfoil case that involves substantially larger data size 1s

discussed.
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4.63  Comparison of Radial-Basis Neural Network and Polynomial-Based Techniques

For the 3-D wing model, the outputs of the solverb radial-basis NN, along with the results of the
polynomial-based technique, are compared for different size of the data. It must be noted that the network
parameters used to obtain radial-basis network results are sc=1.175 and error goal=10". Figure 45
illustrates the comparison between the NN and polynomial-based outputs based on the 9-simulation
training data set. For this case, both methods reproduced the original 9-simulation accurately but both failed
to predict accurately the interpolation points at y.=0.025 and 0.075 with RMS errors at the test data of 1.04
for both the NN and polynomial-based methods. Furthermore, it is seen that the error estimate of 1.116 of
Table 31 is a gross underestimate. Note that by the time there are 25 data points, Table 31 predicts an error
of 0.659. The reason for this problem is that RMS error estimates are not reliable when the number of
coefficients is close to the number of points (7 vs. 9 for this case). In addition, these estimates assume
random noise and that underlying function is quadratic. Figure 45b shows that adding 6 new points AR =2
and 4 at v, = 0, 0.05 and 0.1 does not help noticeably to improve the 6 interpolated values (RMS values of
1.029 for both). However, with the addition of 10 new points at y=0.025 and 0.0075 at AR=1,2,3,4 and 5,
(25-simulation training data set) both the NN and polynomial-based techniques accurately capture the
overall behavior of the aerodynamic data as shown in Figure 45¢. The generalization of the NN with 25-
simulation is further assessed by comparing additional interpolated values at different y. and AR at
ye=0.0125 and 0.0875 at AR=1,2.3,4 and 5. The RMS errors now are 0.142 for the polynomial and 0.221
for the NN, which are more in the line with the prediction in Table 31.

These comparisons illustrate that both neural network and conventional polynomial fitting

methods do a good job as the number of points is increased.

5. CONCLUSION AND FUTURE DIRECTIONS
Recent experiences in utilizing the giobal optimization methodology, based on polynomial and
neural network techniques, for aerodynamics and rocket propulsion components are summarized. Global
optimization methods can utilize the information collected from various sources and by different tools.
These methods offer multi-criterion optimization, handle the existence of multiple design points and trade-

offs via insight into the entire design space, can easily perform tasks in parailel. and are often effective in
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filtering the noise intrinsic to numerical and experimental data. Another advantage is that these methods do
not need to calculate the sensitivity of each design variable locally. The global optimization method can be
particularly effective with either a polynomial-based response surface or a neural network when
information from different computational, experimental, and analytical sources needs to be assembled. In
this article, we present recent experiences in utilizing the global optimization methodology for tasks related
to the preliminary design of a supersonic turbine, multi-criterion design of three different types of injector
element (shear co-axial, impingement, and swirl co-axial), performance of a low Reynolds number wing,
and shape optimization of a turbulent flow diffuser. A successful optimal design often needs to address the
issues related to the selection of appropriate training data for constructing the global model, employment of
the statistical and testing tools to identify appropriate global models, existence of multiple design selections
and related trade-offs, and consideration of noises intrinsic to numerical and experimental data. These
issues are discussed. It is seen that the global optimization method can naturally take the confidence level
of the data into account, offers a number of designs with comparable performance, and allows designers to
make a more informed decision. We have reviewed direct evidences that demonstrate that appropriate
selection of design points can significantly reduce the number of data required for constructing the global
model. In particular, while the FCCD approach can be effective with modest number of design variables.
OA with D-optimal selection criterion seems to be effective when the number of design variables becornes
higher. Regarding the relative merits between polynomials and neural networks. based on the results
reviewed, we can make the following summary.

I Higher order polynomials usually perform better than lower order polynomials as they have more
flexibility. However, exceptions have been noticed which demands that appropriate statistical measures be

taken to determine the best terms to include in an expression.

2. Both NN and polynomial based RSM can perform comparably for modest data sizes.

3. Among all the NN configurations, RBNN designed with solverb seems to be more consistent in
performance.

4. Radial basis networks, even when designed efficiently with sofverb, tend to have many more

neurons than a comparable back-propagation with tan-sigmoid or log-sigmoid neurons in the hidden layer.

The basic reason for this is the fact that the sigmoid neurons can have outputs over a large region of the
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input space, while radial basis neurons only respond to relatively small regions of the input space. Thus,
larger input spaces require more radial basis neurons for training.

5. Configuring a radial basis network often takes less time than that for a back-propagation network
because the training process for the former is linear in nature.

6. While the transfer function employed by any neural network is nonlinear in general, RBNN, with
the combined feature of flexibility and linear regression is more accurate than BPNN, which requires
solution of nonlinear systems.

7. The comparisons demonstrate that for this case there are no significant differences between the
NN and polynomial based RSM. The results of polynomial-based methods, though, suggest that when the
error is mostly due to modeling rather than noise, the error estimates of the polynomial-based technique can
be substantially off.

8. The NN technigue has shown the potential of fitting the data much better than the polynomial-
based technique. However, this was achieved by using the test data to select the parameters like spread
constant of the NN which appear to greatly affect the predictive accuracy. That is, it was not possible to use
only the training data to select the best set of parameters. This indicates that because the NNs do not
provide the statistical information given by polynomial-based methods. using both test data and training
data is very important in designing the network.

9. With the large number of points. and the high order polynomial, the statistical predictions of the
polynomial-based results matched very well the error at the test data.

10. The neural networks, when trained appropriately, can be used to generate additional data to help
enhance the data set for constructing the polynomial. Such a combined approach has been demonstrated in
Shyy et al. [57] for injector design.

1. The criteria for selecting the data base exhibit significant impact on the efficiency and
effectiveness of the construction of the response surtace. For example, etfectiveness of using OA to select
the database is demonstrated by Papila et al. [50].

12. A multi-level approach can be applied to identify the optimal design points with substantially

higher accuracy.
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There are a number of outstanding issues that need to be addressed. In the following, we list

several topics that we consider important for future research.

1) Is it possible to develop a comprehensive technique by combining NN and polvnomial-based RS
techniques to help reduce the required data size for optimization?

Specifically, the work done by Rai and Madavan [51], {52} & [53], Madavan et al. [31], and Shyy
et al. [57] suggests that NN can be effectively used to supplement the existing training data to help
generating a more accurate polynomial. RBNN may lack satisfactory filtering properties in some cases
(Papila et al. [49], Vaidyanathan et al. [71]). However, once trained, RBNN can generate additional design
data to feed the polynomial-based RSM. Polynomials possess the intrinsic filtering capability. The
evaluation of the nature of the fluctuations from the data generated by RBNN, and the investigation into
whether polynomials can use the data effectively, is planned. These features have been addressed in this

article.

2) What are the kevs to develop a more robust and flexible NN configuration?

This has been a topic of research for a long time. In this article, an attempt has been made to study
the training parameters of the different networks used. There are other important issues, which needs to be
addressed in the future. For example, the possibility of using a more versatile RBNN in terms of a variable
design parameter. unlike the present situation where the variable has the same value all around the domain.
needs to be addressed. Ways to determine NN’s performance via statistical toois, especially for RBNN

since it employs a linear model to determine the weight associated with each neuron will be investigated.

3) What is the scaling rule between the number of neurons, and computing time. versus number of
input/output variables and the size of the design data?
There are several rules of thumb for BPNN in the literature (e.g.. Greenman [14], Carpenter and

Barthelemy (4], and Fujita [13]) but to our knowledge, no information is provided for RBNN.



4) How can one address the need for generating training and testing data most economically and
effectively?
The effect of the selection of the design points on accuracy, scaling and performance of

polynomial-based RSM has been addressed. The same has yet to be done for NN.
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7. APPENDIX
TRAINING DATA
Table Al. Training Data Sets for 3-D wing model
Training Data Set #1 Training Data Set # 2 Training Data Set # 3
(9-Simulation) (15-Simulation) (25-Simulation)

AR ¥e C."/Cp AR Ye C.*ICp AR Ve C."ICp
1 0 2.0011 1 0 2.0011 1 0.0 2.0011
1 0.05 4.1224 1 0.05 4.1224 1 0.025 4
1 0.1 3.6865 1 0.1 3.6866 1 0.05 4.1224
3 0 5.6398 2 0 4.03 l 0.075 3.99
3 .05 9.6873 2 .05 7.12 I 0.1 3.6866
3 0.1 8.6806 2 0.1 6.34 2 0.0 4.03
5 0 7.9413 3 0 5.6398 2 0.025 7.07
5 0.05 14.0942 3 0.05 9.6873 2 0.05 7.12
5 0.1 12.8951 3 0.1 8.6806 2 0.075 6.89

4 0 6.92 2 0.1 6.34
4 .05 11.99 3 0.0 5.6398
4 0.1 10.87 3 0.025 9.64
5 0 7.9414 3 0.05 9.6873
5 0.05 14.0942 3 0.075 9.39
5 0.1 12.8951 3 0.1 8.6806
4 0.0 6.92
4 0.025 11.86
4 0.05 11.99
4 0.075 11.66
4 0.1 10.87
5 0.0 7.9414
5 0.025 13.83
5 0.05 14.0942
5 0.075 13.73

61



Table A2. Test Data Sets for 3-D wing model based on AR and y,

Test Set#1 for y. | Test Set#2 for y, Test Seti#3 for y, Test Set#1 for AR Test Set#2 for AR

AR Ye AR Ye AR Ve AR Ye AR Ve
1 0.025 1 0.025 1 0.0125 2 0 2.5 0

1 0.075 1 0.075 1 0.0875 2 0.025 2.5 0.025

3 0.025 2 0.025 2 0.0125 2 0.05 2.5 0.05

3 0.075 2 0.075 2 0.0875 2 0.075 2.5 0.075
5 0.025 3 0.025 3 0.0125 2 0.1 2.5 0.1
5 0.075 3 0.075 3 0.0875 4 0 4.5 0

4 0.025 4 0.0125 4 0.025 4.5 0.025

4 0.075 4 0.0875 4 0.05 4.5 0.05

5 0.025 5 0.0125 4 0.075 4.5 0.075
5 0.075 5 0.0875 4 0.1 4.5 0.1

Table A3. Performance and heat flux responses for O/F = 4 for the shear co-axial injector element. (Table

A3-5 together contain 45 data points used as the training set)

O/F Vv, Leomp, in. ERE, % Q, Btw/in’-sec
4.0 4.0 4.0 929 0.753
4.0 4.0 5.0 96.0 0.753
4.0 4.0 6.0 97.6 0.753
4.0 4.0 7.0 98.6 0.753
4.0 4.0 8.0 99.0 0.753
4.0 6.0 4.0 95.0 0.928
4.0 6.0 5.0 97.1 0.928
4.0 6.0 6.0 98.5 0.928
4.0 6.0 7.0 99.2 0.928
4.0 6.0 8.0 99.4 0.928
4.0 8.0 4.0 96.6 1.10
4.0 8.0 5.0 98.2 1.10
4.0 8.0 6.0 99.1 1.10
4.0 8.0 7.0 99 4 1.10
4.0 8.0 8.0 99.6 1.10
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Table A4. Performance and heat flux responses for O/F = 6 for the shear co-axial injector element.

O/F ViV, L omps iDL ERE, % 0, Btwin’-sec
6.0 4.0 4.0 929 0.691
6.0 4.0 5.0 96.0 0.691
6.0 4.0 6.0 97.6 0.691
6.0 4.0 7.0 98.6 0.691
6.0 4.0 8.0 99.0 0.691
6.0 6.0 40 95.0 0.642
6.0 6.0 5.0 97.1 0.642
6.0 6.0 6.0 98.5 0.642
6.0 6.0 7.0 99.2 0.642
6.0 6.0 8.0 99.4 0.642
6.0 8.0 4.0 96.6 0.741
6.0 8.0 5.0 98.2 0.741
6.0 8.0 6.0 99.1 0.741
6.0 8.0 7.0 99.4 0.741
6.0 8.0 8.0 99.6 0.741

Table AS. Performance and heat flux responses for O/F = 8 for the shear co-axial injector element.

O/F V/V, L omps iDL ERE, % 0, Btw/in’-sec
8.0 4.0 1.0 92.9 0.588
8.0 4.0 5.0 96.0 0.588
8.0 4.0 6.0 97.6 0.588
8.0 4.0 7.0 98.6 0.588
8.0 4.0 8.0 99.0 0.588
8.0 6.0 4.0 95.0 0.512
8.0 6.0 5.0 97.1 0.512
8.0 6.0 6.0 98.3 0512
8.0 6.0 70 992 0512
8.0 6.0 8.0 99 4 0512
8.0 8.0 1.0 96.6 0.493
8.0 8.0 5.0 98.2 0.493
8.0 8.0 6.0 99.1 0.493
8.0 8.0 7.0 99.4 0.493
8.0 8.0 8.0 99.6 0.493
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Table A6. Data used to test the polynomials and NN for the shear co-axial injector element. (The table

contains 20 data points used as the testing set)

O/F V/V, Lomps iNL- ERE, % 0, Btu/in’-sec
4.0 5.0 4.0 94.4 0.812
4.0 5.0 5.0 96.9 0.812
4.0 5.0 6.0 98.1 0.812
4.0 5.0 7.0 99.1 0.812
4.0 5.0 8.0 99.4 0.812
4.0 7.0 4.0 96.0 1.014
4.0 7.0 5.0 97.9 1.014
4.0 7.0 6.0 98.8 1.014
4.0 7.0 7.0 99.4 1.014
4.0 7.0 8.0 99.6 1.014
6.0 5.0 4.0 94.4 0.642
6.0 5.0 5.0 96.9 0.642
6.0 5.0 6.0 98.1 0.642
6.0 5.0 7.0 99.1 0.642
6.0 5.0 8.0 99.4 0.642
6.0 7.0 4.0 96.0 0.691
6.0 7.0 5.0 97.9 0.691
6.0 7.0 6.0 98.8 0.691
6.0 7.0 7.0 99.4 0.691
6.0 7.0 8.0 99.6 0.691

Table A7. Propeliant momentum ratio as a function of propellant pressure drops: shear co-axial
injector element.

4pP,
AP, 200 180 160 150 140 120 100
200 1.49 1.42 1.33 1.30 1.25 1.16 1.06
180 1.57 1.50 1.41 1.37 1.32 1.22 1.11
160 1.67 1.59 1.50 1.45 1.40 1.30 1.18
150 1.73 1.64 1.54 1.49 1.44 1.34 1.22
140 1.79 1.70 1.60 1.55 1.50 1.39 1.27
120 1.93 1.83 1.72 1.67 1.61 1.50 1.37
100 2.1 2.00 1.89 1.83 1.77 1.64 1.49




Table A8. Design data for a shear co-axial injector element with 4P, and AP, = 200ps1.

4P, AP, Leomb o ERE Q. Himpinge Wi Cra
200 200 2 15 NA 0.85 0.84 0.923 1.083
200 200 2 20 85 0.85 0.62 0.923 1.083
200 200 2 30 92.8 0.85 0.39 0.923 1.083
200 200 2 45 95.4 0.85 0.23 0.923 1.083
200 200 2 50 95.8 0.85 0.19 0.923 1.083
200 200 4 15 91 0.85 0.84 1 1.083
200 200 4 20 95.2 0.85 0.62 1 1.083
200 200 4 30 96.8 0.85 0.39 1 1.083
200 200 4 45 98.1 0.85 0.23 1 1.083
200 200 4 50 98.4 0.85 0.19 1 1.083
200 200 6 15 95.6 0.85 0.84 1.077 1.083
200 200 6 20 97.8 0.85 0.62 1.077 1.083
200 200 6 30 98.5 0.85 0.39 1.077 1.083
200 200 6 45 99.2 0.85 0.23 1.077 1.083
200 200 6 50 99.4 0.85 0.19 1.077 1.083
200 200 8 15 983 0.85 0.84 1.154 1.083
200 200 8 20 99.1 0.85 0.62 1.154 1.083
200 200 8 30 99 4 0.85 0.39 1.154 1.083
200 200 8 45 99.6 0.85 0.23 1.154 1.083
200 200 8 50 99.7 0.85 0.19 1.154 1.083
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Figure 12. Two-dimensional symmetric diffuser subjected to shape optimization in terms of pressure
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Figure 32. Effect due to presence (case 1) or lack of constraints (case 2) on design variables. (a) optimum
diameter. D (in.), (b) optimum RPM, (c) optimum annulus Area, Az, (in.l), {d) optimum vane axial chord,

Cy (in.), (e) optimum blade axial chord, C;, (in.), (f) optimum stage reaction, K (%).
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Figure 33. Effect due to presence (case 1) or lack of constraints (case 2) on objective functions. (a)

Optimum Efficiency, 7, (b) Optimum Weight, W (ibs). (¢) Optimum pitch speed, Vpuen (in. /sec), (d)

Optimum (A, X RPM), AN (inl*rpml). (e) Optimum Incremental Payload. dpay (lbs).
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Figure 34. Comparison of the design variables for optimization based on payload increment (dpay) using

1990-data (FCCD) and 249-data (OA) for both original design space and refined design Space (DV#!I: D,

DV#2: RPM. DVE3: A, DV#4: hy, DVES: ¢ DV#G: ¢.., DV#T: ¢, DVES: i, DV#9: sr;, DV#10: sr.,

and DV#11: wy;). Both designs are satisfactory, demonstrating that there exist multiple optimum designs.
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Figure 35. Effect of spread constant (sc) on training rms-error { o) of () 77 and (b) W for preliminary

design of 2-stage turbine for original design space using 1990-training data for solverbe RBNN
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Figure 36. Effect of spread constant (sc) on training rms-error (ay) of (a) n and (b) W for preliminary

design of 2-stage turbine for original design space using 249-training data for solverbe RBNN

i
sc vs rms error for eta f or 249-trainng data (ar hogonal sc vs rms arror for Wlor 249-tranng daa (orthogoral
arrays) (ref ned desgn space for dpay) with 78-testdata arrays) (refned desxgn space tar dpay) wth 78-test data
16 a8 —
14 ! a7
12 | as i
g1 1 gas
g 5
£ 08 ! 2 04
£ 06 \ 3
g | g a3 |
04 } Q2 :
02 : a1 ;
0 0 v ]
0 1 2 3 4 5 0 p 2 3 4 5
spread constant { C) ¢ spread constant (sc}
(a) for n (Apay optimization) (b) for W {Apay optimization)

Figure 37. Effect of spread constant (sc) on training rms-error (G,) of for preliminary design of 2-stage

turbine for refined design space using 249-training data (OA) for solverbe, RBNN.

93



Trsning oats, Poynomas Ongnal Desgn Speos
Dpay normiea 3 dassine wue

Trawurg Jata BN, Ongaal Desgn Spce
|Dmy ~x i Een ty Gaseine Alis)

ER 544
r B s s i 3_‘3 s os
H 1|2
B maamoe20 S ‘ i ¢rre-amar=0 85%
E 03 | [t 04
i
k3 ! 5
a 00 -8
o8 ‘ -aB
0 | -10
Oats from T gnai Analy3e Tod | Cata ‘rom Onginal Analysia Tool
]
Testrg daia Poimomal Srgirel Deegn Smce ! Tatrg daia FBNN. Ongna Demgh Space
{Dpmy namimza Ty DA dire ue iCpay wrdazed by Damine @)
i
34 : na
i
02 1 o2
8 i g
E-\o 05 25 1 180 as do o5
y | 1%
02 . 027 msanomitzmn
&£ meemore17 28% l 8
g‘ 04 ! g 0.4
i
-} i £
] -08 ; 08
3 i
|
08 ! 08
10 10
Data trom Cngrer Analysia Tool Datatrom Cogna Anatysis Tool
Tanng dda P oknama. eined Damgrpae : Tianng ata SBNN. Aeined s agrSpam
019 Cpay romMlaIed Ly basene vaus 930 Dpay 2~y &2 by Dmetna valisi
2254 0254
g 326G 39220
] H
? 2
Q154 ?'J 15
T
i
00s § a0
2 N e =0 1925
! s emare0 BS%
3054 005
307 00
2% 905 a2 s 020 328 39 zos 205 1¢ Qs 20 u2s °m
Onta 17 Zrgrmi Anay 38 Tou Oata "o Ongoa Araiyacs Tool
oo Testing thia Poiynoea, Batred Dosgniba s fesing mia ABNN, Aaina DampSpas
| (Cpay namiesen Dy baseine alie) EE iOpay Iz 6 Dy DU (e waka
1% . 025
g |
LR
" 020
T . H
g R
b, |3,
K Ll os
5 3
fow ‘ FER
i mesrom0 3% | im-amor=t TP
o ‘ aas
000 + ‘ 200
) sos 3 2 0z azs EE 390 aos 30 os o 025 30

Data torm Zngna Armlyva ool

Catavom Ongirmi Analy s o

Figure 38. Comparison of NN and polynomial-based representations for 2-stage supersonic turbine. Plotted
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Figure 41. Comparison of optimum wall shapes using polynomial and B-spline representations,

respectively.
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Figure 42. Contour plot of response surface for diffuser design. Solid circle indicates the optimal region.
The hatched part of the feasible space comprises designs with performance within 1% of the optimal.
Corresponding shapes are indicated to the right. The results indicate that multiple design points meet the

goal.
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10. TABLES

Table 1. Comparison of NN and polynomial-based response surface (RS) techniques

NN-based Polynomial- Comments
RSM based RSM

Computational Effort | Disadvantage Advantage Finding the weights associated with the neurons is a

and Cost non-linear regression process for all of the NN
types other than RBNN. Whereas, finding the
polynomial coefticients requires solution of a linear
set of equations.

The cost increases if the regression process is non-
linear which makes NN's other than RBNN more
expensive than polynomials.

Noise Disadvantage Advantage Ability of filtering noise from experimental data is
possible with polynomial-based RSM. However, if
the number of neurons used to design the NN is not
the same as the data, then, by definition, filtering is
also possible for NN-based RSM.

Handling  complex | Advantage Disadvantage NN's are more suitable for multi-dimensional

functions interpolation of data that lack structure since they
are much more ftlexible in functional form
especially when dealing with design in the context
of unsteady flows, partial and/or complete data sets.

Table 2. Literature review on NN and polynomial-based RS techniques comparison
Authors Noof | Noof | Noof | NNType | Actuvation Noof Polynomial
Data | Input | Output | (2-laver) Function Neurons Degree
Carpenter & {36 2 1 BPNN Sigmoid (2.4 Mo 4"
Barthelemy 961 2 1 3,57 2710 5™
(4] 81 4 1 1.2.3 1¥102™
300 |15 1 2,4,6.8, 10 1¥t0 2™
Madavan et al. | - 13 1 BPNN Sigmoid 15&7 1% to 2™
[31] (3-layer)
Nikolaidis et | 400 50 1 BPNN Sigmoid o of NN is insensitive | 2™
al.[39] to no of neurons
Papila et al. 9 2 1 RBNN radbas 8.9 4 205"
(49] 15 2 1 & & 12, 15 4 205"
25 2 1 BPNN Sigmoid 20,25 4 205"
255 |2 ! 253,255 - 2710 47
765 2 1 765 - -
Rai and Madavan | 3&5 | 1 1 BPNN Sigmoid 1&2 1" to 2™
(52} 27 3 1 (3- layer) 7&3 X0 2™
- 15 1 - -
Shyy et al.[57] 45 3 2 RBNN radbas 42 and 45 2% 1037
Vaidyanathan et |{ 45 3 2 RBNN radbas 42 and 45 203"
al. (71] 76 6 2
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Table 3. Design variables and design space for single-, 2- and 3-Stage turbines

(All geometric design variables are normalized by the baseline values)

SINGLE-STAGE 2-STAGE 3.STAGE
Variable Lower | Upper | Variable Lower | Upper | Variable Lower | Upper
Limit Limit Limit Limit Limit Limit
Mean 0.50 1.50 Mean 0.50 1.50 | Mean 0.50 1.50
Diameter, D Diameter, D Diameter, D
Speed, RPM 0.70 1.30 Speed, RPM 0.70 1.30 | Speed, RPM 0.70 1.30
Blade 0.70 1.30 Blade 0.70 1.30 Blade 0.70 1.30
Annulus Annulus Annulus
Area, A,y Area, A,y Area, A
Vane Axial 0.39 1.71 1** Blade 0.90 1.50 1* Blade 0.90 1.50
Chord, ¢, Height (% of Height (%
Exit Blade), of Exit
h, Blade), h;
Blade Axial 0.26 1.14 1* Vane 0.39 1.71 1* Vane 0.39 1.71
Chord, ¢y Axial Chord, Axial
Cui Chord, ¢,
Stage 0.0% 50% 1¥ Blade 0.26 1.14 | 1" Blade 0.26 1.14
Reaction, sr Axial Chord, Axial
Cp Chord, Ch1
2" Vane 0.21 1.41 | 2° Vane 0.21 1.41
Axial Chord, Axial
Cy ChOl'd, Cyw
2" Blade 0.17 1.13 2" Blade 0.17 1.13
Axial Chord, Axial
Ch2 Chord, Cp2
1* Stage 0.0 50% | 3 Vane 0.21 1.41
Reaction, sr; Axial
Chord, ¢z
2" Stage 0.0% 50% | 3" Blade 017 1.13
Reaction, sr» Axial
Chord, cp;
1" Work 50% 85% 1¥ Stage 0.0% 50%
Fraction, wt) Reaction, sr;
2" Stage 0.0% 50%
Reaction, sr»
37 Stage 0.0% 50%
Reaction, sr;
1¥ Work 40% 80%
Fraction, wt)
2" Work 30% 10%
Fraction, wt;
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Table 4. Different cubic polynomials for ERE. (Dependent variables: V/V, and L, 15 training points, 10

test points).

Model Coefficient = 0 Terms Terms Included o, (%) o(%)

# Removed

1 V/Vo' 0.09 0.21
2 V/Vo' V,/Vo' L oms 0.08 0.21
3 VAV0' Leoms. V/VO' 0.08 0.21
4 V/V0 Legms V/VO' Leoms 0.09 0.21
5 V/V0' Leymo V/VO Lepmi ViV, Loy 0.09 0.21
6 V/VO'Looms. V/VO Leoms» ViV Leoms'» 0.10 0.21

V/VOL,omy'

Table 5. Different cubic polynomials for Q. (Dependent variables: O/F and Vy/V,, 9 training points, 4 test

points).
Model Coefficient = 0 Terms Terms Included o, (%) o (%)

# Removed
1 V/Vo', O/F 5.58 2.23
2 O/F V/Vo’ 5.58 2.09
3 V/Vo', O/F 5.58 2.09
4 V/Vo', O/F 5.58 2.23
5 V/Vo', O/F, V/Vo’ 3.96 2.09
6 V/Vo', O/F", V/Vo' V/Vo O/F 5.58 2.09

Table 6. Neural Network architectures used to design the model for shear co-axial injector element. {sc =

spread constan! }

Scheme # of | # of neurons in | # of neurons in | Error goal aimed for during training
Layers the hidden | the output layer

layer i

ERE Q . ERE Q ERE o
RBNN 2 15 9 o1 1 0.0 {sc =32 0.0 {sc =1.20}
(Solverbe)
RBNN (Solverb) | 2 14 8 B 1 0.001 {sc = 1.05} | 0.001 {sc = 1.05}
BPNN 2 8 4 Pl 1 0.01 0.01
Table 7. RMS error in predicting the values of the objective function by various schemes for the shear co-

axial injector element.

Scheme o for ERE (%) o for O (%)
RBNN (Solverbe) 0.20 1.40
RBNN (Solverb) 0.13 1.53
BPNN 0.18 0.83
Partial Cubic RS 0.21 223
Quadratic RS 0.28 349




Table 8. Optimum values obtained with cubic and quadratic for case 1. (C

onstraints: 4 SO/F<6,4 <

V/V, <6, and Leomy £ 7) {Values in the parenthesis are the exact response of the injector model}

Cubic Quadratic
Were | Wo OF | V¢V, | Lom | ERE Q OF | ViV, | Leoms | ERE Q
(s) ©)
1 10 6.0 5.41 7.0 99.02 | 0.664 |60 6.00 |70 99.17 0.669
(99.00) | (0.654) (99.20) | (0.642)
1 1 6.0 600 |70 99.15 0.669 | 6.0 600 |7.0 99.17 0.669
10 1 6.0 600 |70 99.15 {0669 |60 600 | 7.0 99.17 0.669

Table 9. Optimum values obtained with cubic and quadratic for ¢

ase 2. (Constraints: 4 <O/F<6,5 <

ViV, <7, and Leomy £ 7) {Values in the parenthesis are the exact response of the injector model}

Cubic Quadratic

Were | Wo O/F ViV, | Lom | ERE Q O/F | V¢V, | Leoms | ERE Q

(s) ()

1 10 6.0 541 7.0 99.02 | 0.664 | 6.0 652 |70 99.31 0.684
(99.00) | (0.654) (99.10) | (0.716)

1 1 6.0 634 |70 99.21 0.674 [ 6.0 7.00 | 7.0 99.42 | 0.702
{99.20) | (0.691) (99.30) | (0.728)

10 1 6.0 700 |70 99.32 0690 |6.0 700 | 7.0 99.42 ]0.702

Table 10. Optimum values obtained with cubic and quadratic for case 3. (Constraints: 4 < O/F<6,6<
Vi#V,<8. and Leomp £ 7)
o Cubic Quadratic

Were | Wo OF [VdV, |Lem |ERE |Q O/F ViV, | Leamn | ERE | Q

(s} (9)

1 10 6.0 6.00 7.0 99.15 | 0.669 | 6.0 6.52 7.0 99.31 | 0.684

1 1 6.0 6.34 7.0 9921 | 0.674 | 6.0 8.00 7.0 99.67 | 0.753

10 1 6.0 8.00 7.0 99 42 0.728 | 60 8.00 7.0 99.67 | 0.753
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Table 11. The RMS error in the prediction of ERE and Q for different values of spread constant. The error

goal used for Solverb is 0.001.

Solverbe Solverbe Solverb Solverb Solverb
sc RMS error RMS error RMS error RMS error No of neurons
(ERE) (Q) (ERE) (Q)
0.50 1.493 0.179 1.733 0.287 44
0.75 0.745 0.135 0.675 0.135 44
1.00 0.152 0.022 0.153 0.017 42
1.05 0.190 0.011 0.128 0.012 44
1.25 0.316 0.010 0.267 0.022 44
1.50 0.336 0.022 0.309 0.030 44
1.75 0.369 0.022 0.310 0.021 44
2.00 0.308 0.016 0.296 0.019 41
2.25 0.279 0.020 1.846 0.045 43
2.50 0.325 0.017 0.744 0.025 43

Table 12. Optimum values obtained with cubic and quadratic for case 1 (enhanced data set). (Constraints:

4<O/F<6,4<V/IV.<6, and Legm € 7) {Compare with Table 8}

Cubic Quadratic
Were | Wo O/F | V¢V, | Lecomm | ERE Q O/F ViéVe | Leomn | ERE Q
(s) (t)
1 10 6.0 5.54 7.0 99.02 0.654 6.0 501 {70 98.96 0.644
(98.90) | (0.658) (98.70) | (0.664)
1 1 6.0 6.00 7.0 99.12 0.658 6.0 6.00 |70 99.25 0.658
10 1 6.0 6.00 7.0 99.12 0.658 6.0 600 |70 99.25 0.658

Table 13. Optimum values obtained with cubic and guadratic for case 2 (enhanced data set). (Constraints:

1<O/F<6,5€V{V,<7, and Leow £ 7) {Compare with Table 9}
Cubic Quadratic

Weke | Wo O/F ViV, | Leown | ERE Q O/F ViV, | Leoww | ERE Q

(s) (t)

1 10 6.0 5.54 7.0 99.02 0.654 6.0 5.01 7.0 98.96 0.644
(98.90) | (0.658) (98.70) | (0.664)

1 1 6.0 6.33 7.0 99.18 0.663 6.0 604 |70 99.26 0.659
(99.10) | (0.666) (99.20) | (0.642)

10 1 6.0 7.00 7.0 99.30 0.681 6.0 7.00 | 7.0 99.46 0.693




Table 14. Optimum values obtained with cubic and quadratic for case 3 (enhanced data set). {Constraints:
4<O/F<6,6<ViV.<8, and Ly < 7) {Compare with Table 10}

Cubic Quadratic
Were | Wo O/F VéVo | Lo | ERE | Q O/F V#V, | Lem | ERE | Q
(s) t)
1 10 6.0 6.00 7.0 99.12 | 0.638 | 6.0 6.00 7.0 99.25 | 0.658
1 1 6.0 6.33 7.0 99.19 | 0.663 | 6.0 6.04 7.0 99.26 | 0.659
10 1 6.0 8.00 7.0 99.42 | 0.725 | 6.0 7.95 7.0 99.57 | 0.746

Table 15. Optimal Solutions for fixed values of V/V, and given range of O/F and L ,m»

obtained with NN

and RSM schemes for the shear co-axial injector element. (Constraints: 4 < O/F <8,4< L, <7) (error
given in parenthesis for each prediction is in %)

V/V, Scheme O/F L ompy iDL ERE, % 0, Btw/in’-sec

4 RBNN (Solverbe) 8.0 7.0 98.60 (0.00) 0.588 (0.00)
RBNN (Solverb) 8.0 7.0 98.60 (0.00) 0.588 (0.00)
BPNN 8.0 6.9 98.64 (0.14) 0.578 (1.70)
Partial Cubic RS 8.0 7.0 98.61 (0.01) 0.595 (1.19)
Quadratic RS 8.0 7.0 98.67 (0.07) 0.591 (0.51)
Model 8.0 70 98.60 0.588
Model 8.0 69 98.50 0.588

6 RBNN (Solverbe) 8.0 7.0 99.20 (0.00) 0.512 (0.00)
RBNN (Solverb) 8.0 70 99.20 (0.00) 0.512 (0.00)
BPNN 8.0 7.0 99.18 (0.02) 0.513 (0.20)
Partial Cubic RS 3.0 70 99.15 (0.03) 0.499 (2.54)
Quadratic RS 8.0 70 99.17 (0.03) 0.531 (3.71)
Model 8.0 7.0 99.20 0.512

8 RBNN (Solverbe) 8.0 7.0 99.40 (0.00) 0.493 (0.00)
RBNN (Solverb) 8.0 7.0 99.40 (0.00) 0.493 (0.00)
BPNN 3.0 7.0 99.41 (0.01) 0.500 (1.42)
Partial Cubic RS 8.0 7.0 99.42 (0.02) 0.500 (1.42)
Quadratic RS 80 7.0 99.67 (0.27) 0.471 (4.46)
Model 30 7.0 99.40 0.493
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Table 16. Effect of each variable on the optimization of impingement co-axial injector element --optimal
designs for original constraints & equal weights

Independent Constraints | Results Case 1 | Results Case 2 | Results Case 3 | Results Case 4
Variable
AP, 100-200 183 183 179 100
AP; 100-200 100 132 149 100
L comb 2-8 8.0 8.0 6.6 6.5
o 15-50 33.1 18.9 22.3 24.0
Dependent Desirability ERE & Q. ERE, Q., ERE, Q., ERE, Q.,
Variable Limits H'unpinge H'unpinge; wrel H'unpinge) wrclv
Crel
ERE 95.0-99.9 99.9 98.3 98.0 98.0
Q. 0.7-1.3 0.74 0.76 0.79 0.86
Himpin 0.2-1.0 — 0.75 0.61 0.63
Wee 0.9-1.2 —_ — 1.1 1.1
Cra 0.7-11 — — — 0.93

Table 17. Effect of emphasizing & life & performance issues on the optimization of impingement co-axial

injector element —optimal designs for original constraints and moditied weights

ln:l/z[::l;:llinl Constraints l::e:;:? Constraints lé';ss:u; Constraints I({;s;;lt;
AP, 100-200 100 100-200 158 100-200 100
AP, 100-200 100 100-200 100 100-200 137
Lcomb 2-8 6.5 2-8 7.7 2-8 52
o 15-50 24.0 15-50 15.0 15-50 36.0
Baseline Life Thrust/Weight
Dé: :;:::;21 Vari'able Vari.able Vari_able
Weight Weight Weight
ERE 1 98.0 1 96.7 5 99.1
Q. 1 0.86 5 0.75 1 0.95
Hiupinge 1 0.63 5 0.94 1 0.32
Wea 1 1.10 1 1.14 5 1.05
Cre 1 0.93 1 0.97 1 0.95
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Table 18. Effects of realizing the last increments of performance & weight on the optimization of
impingement co-axial injector element —optimum designs for modified constraints and unequal weights

Independent Original Results Moz;ﬁed Results Mog;:'led Results
Variable Constraints Casel . Case 2 . Case 3
Constraints Constraints
AP, 100-200 100 150-200 150 150-200 150
AP, 100-200 137 150-200 150 150-200 200
L comb 2-8 52 2-8 5.4 2-8 44
a 15-50 36.0 15-50 35.6 15-50 44.8
Dependent Vari_able Vari.able Vari_able
Variable Weight Weight Weight
(5:1) (5:1) (100:1)
ERE 5 99.1 5 99.0 10 99.1
Q. 1 0.95 1 0.84 0.1 0.95
Himpinge 1 0.32 1 0.31 0.1 0.21
W 5 1.05 5 1.05 10 1.01
Cra 1 0.95 1 1.00 0.1 1.07

Table 19. Effect of each variable on the optimization of swirl co-axial injector element —optimal designs
for original constraints and equal weights.

Independent | Constraints Results Results Results Results Results
Variable Case 1 Case 2 Case 3 Case 4 Case 5
AP, 100-200 200 200 200 200 104
AP, 20-200 41 41 42 47 20
L comb 2-8 7.2 7.2 7.6 3.2 3.4
(<] 30-90 81 81 37 47 44
Dependent | Desirability ERE ERE & Q. ERE, Q., ERE, Q.. ERE, Q.,
Variable Limits Qinj Qinj1 wrel Qinj’ Wrelv
Crel
ERE 92.3-99.0 98.5 98.5 97.2 96.0 95.7
0.596-
Q. 0.647 0.596 0.596 0.596 0.596 0.596
Qinj 6.95-36.59 26.8 26.8 9.1 12.0 10.5
0.900-
W 1.154 1.13 1.13 1.14 0.97 0.98
Cra 0.73-1.42 0.98 0.98 0.81 0.84 0.76
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Table 20. Effect of emphasizing life and performance issues on the optimization of swirl co-axial injector

element.
Independent . Results . Results . Results
Va‘l)'ieable Constraints Baseline Constraints Case 1 Constraints Case 2
AP, 100-200 104 100-200 200 100-200 200
AP 20-200 20 20-200 32 20-200 44
Lcomb 2-8 3.4 2-8 3.6 2-8 2.9
5] 30-90 44.0 30-90 30.0 30-90 72.0
Dependent Basc'zline Lt;fe Thrust{Weight
Variable Van-able Variable Variable
Weight Weight Weight
ERE 1 95.7 1 95.3 10 96.7
Qu 1 0.596 5 0.596 1 0.596
Q. 1 10.5 10 6.9 1 22.6
W:a 1 0.98 1 0.99 2 0.96
Cre 1 0.76 1 0.79 1 0.94

Table 21. Optimization summary for 1, 2 and 3-stage turbine with response surface in original design
space (All output parameters are normalized by the baseline values)

Original Design Space Refined Design Space
TNopt Wop ApaYop Nopt Wopt Apayop
1-stage 0.77 0.73 -0.21 0.77 0.73 -0.21
Apay 2-stage 1.10 1.05 0.11 1.13 1.04 0.15
3-stage 1.24 1.62 0.14 1.20 1.54 0.11

Table 22. Values of o, and o for different response surfaces of 7 and W for the supersonic turbine.

Scheme o, for (%) ofor (%) o, for W (%) ofor W (%)
Quadratic RS 2.51 0.90 0.82 1.27
Reduced Cubic RS 1.95 1.03 0.40 1.22

Table 23. Neural Network architectures used to design the models for 7 and W of the supersonic turbine.
(sc = spread constant)

Scheme # of | # of neurons in the | # of neurons in the | Error goal aimed for during
Layers hidden layer output layer training
n W n w n W

RBNN (Solverbe) 2 76 76 1 1 0.0 0.0

{sc =9.50} {sc =9.45}
RBNN (Solverb) 2 37 75 1 1 0.001 0.001

{sc = 6.50} {sc = 8.35}
BPNN 2 5 60 1 1 0.001 0.001
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Table 24. RMS error in predicting the values of 77 and W by various schemes for the supers

onic turbine.

Scheme ofor n(%) ofor W (%)
RBNN (Solverbe) 1.25 1.10

RBNN (Solverb) 0.29 1.10

BPNN 0.78 2.56
Reduced Cubic RS 1.03 1.22

Table 25. Optimal solutions with constraints on V. and AN’ for a supersonic turbine. (error given in

parenthesis for each prediction is in %) (V,

qcn = 1.148 and AN? = 1.132 in all the cases) (All the variables
are normalized by their respective baseline values).

Scheme D,in. |RPM | Awmin’ | Cpin. | Cpin. |Kn% | 7 W,1bs | Apay, lbs
RBNN 0.972 1.181 0.811 1.443 0.836 0.0 0.810 0.636 -0.139
(Solverbe) (5.80) (0.74) (29.80)
Meanline | 0.972 1.181 0.811 1.443 0.836 0.0 0.766 0.641 -0.197
RBNN 0.999 1.149 0.857 1.483 0.792 0.0 0.785 0.653 -0.177
(Solverb) (1.75) 1017 | (9.16)
Meanline | 0.999 1.149 0.857 1.483 0.792 0.0 0.772 0.654 -0.194
BPNN 1.024 1.121 0.901 1.168 1.143 0.0 0.793 0.608 -0.153
2.49) | (8.63) | (21.49)
Meanline | 1.024 1.121 0.901 1.168 1.143 0.0 0.772 0.666 .0.195
Reduced 0.903 272 0.700 1.706 0.871 0.0 0.758 0.591 0.194 !
Cubic RS (1.50) | 2.10) (8.40) i
Meanline | 0.903 1.272 0.700 1.706 0.871 0.0 0.746 0.604 0211 |

Table 26. The quality of the second-order response surface obtained for

for 1990-data (face cen

7 W and Apay of 2-stage turbine

tered criterion) and 249-data (orthogonal arrays) (Mean values of 7, Wand Adpay are
normalized by the baseline values)

n hd Apay
R’ 0.995 0.996 0.995
Ra’ 0.994 0.996 0.9935
1990-data Rms- error 1.31% 2.56% 9.58%
Mean 0.78 0.86 -0.24
R’ 0.995 0.998 0.994
Ra’ 0.992 0.997 0.992
249-data Rms- error 2.128% 0.826%) 20.68%
Mean 0.89 0.92 -0.11
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Table 27. Testing of the second-order response surface obtained for nand W ol

f 2-stage turbine for 1990-
data (FCCD criterion) and 249-data (OA) with 78- test data

# of design points # of test data o tor n (%) o for W(%)
249 78 1.65 0.96
1990 78 1.67 1.21

Table 28. Testing the RBNN and second-order polynomial response surface obtained for 77and W for
preliminary design of 2-stage turbine (original design space)

Number of Number of o for n (%) o for (%) using o for W(%) o for W(%) using

training test data sC using RBNN Polynomial-based  using RBNN  Polynomial-based
data (Solverbe) RSM (Solverbe) RSM
249 78 43 1.365 1.648 1.305 0.959
1990 78 32 2.263 1.672 1.557 1.214

Table 29. Backward elimination procedure for polynomial-based RSM in five variables.

Terms Min |to] No. |ty < 2.0 R RS Comments

2] 0.05 15 0.922 0.811

20 0.23 14 0.922 0.823 Removed vy
19 0.45 12 0.922 0.834 Removed v,°
18 0.53 9 0.921 0.841 Removed y; vy
17 0.97 8 0.919 0.848 Removed yVvs
*16 1.22 6 0.915 0.848 Removed v,
15 1.57 S 0.909 0.844 Removed v;y;

Table 30. Comparison between CFD-solutions and polynomial-based RSM-predictions.

r Y Y2 v Y s £ F (fulh) F (reduced)
0.5 0.5 0.5 0.5 0.5 0.7171 0.7148 0.7126
1.0 0.5 0.0 0.5 1.0 0.7174 0.7210 0.7174
0.25 0.75 0.25 0.75 0.25 0.7148 0.7185 0.7162
0.0 0.5 1.0 0.5 0.0 0.6943 0.7333 0.7283
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Table 31. Predicted RMS error, &, for different polynomial models for 3-D wing model: 9-simulation.
15-simulation, and 25-simulation data sets. (The shaded models indicate the best fit)

Model MODEL o for o for o for
No 9 data 15 data 25 data
1 ClAR +CzAR+C3ARyC +Cq¥c +Csyc +Cq 0.8047 0.5172 0.7800
2 CiA R +CzAR+C3ARyC +C4¥Yc +Cs¥Yc™ +C6+ C7AR 0.8047 0.5475 0.8007
3 ClAR +CzAR+C_;A R)’c +Ca¥YC +Csyc7+C6+ C7yc 0.8047 0.5172 0.5524
4 C;AR +CﬂAR+C3AR)’C +C4¥YC +C5yC +C6+ C7AR)’C 0.1162 0.0738 0.6590
5 ClAR +C2AR+C3AR)’C +C4¥Yc +C5)’C +C6 +C7Y¢ +C3AR)’C - - 0.3207
6 ClAR +C2AR+C3AR)’C +C4yc +CsYc +C6 - - 0.3262
+C7)’C +C3AR)’C +C9ycAR
7 ClAR +CzAR+C3AR)’C +C4yc +CsYc +C6 - - 0.6961
+ ¢y yc +c3ARyc + cAR’
8 c;AR” +c2AR+c3ARyC +c4yc +c,yc +C6 - - 0.3350
+C7¥c +csARyC +c9yCAR + c0AR’
9 ¢;AR+¢CARyc +Caye +C4YC +€s +C6YC +c7ARyc - - 0.4248
10 C]AR‘*‘C;AR)’C +CiYc +C4}’C7+C5 +C6AR Yc - - 0.8044
11 ¢ AR’ +c2AR+c3ARyC +CaYc +CsyC +Cs - - 0.2383
+C7yc +C8AR)’C +C9)/C
12 cAR? +c;AR+c3ARyC +CyYc +c5yc +Cg - - 0.1073
+C1¥c +C3AR)’C +CoYc +C10ARyC
Table 32. Training history of radial-basis networks with Solverb for 3-D wing model
NN # of # of Neurons # of Epochs Steady State Spread Error Goal
No. Simulations Error Constant
1 9 8 7 10 1.175 10~
2 15 12 11 107 1.175 10~
3 25 20 19 10° 1.175 10”7
Table 33. Training history of back-propagation networks with Trainlm for 3-D wing model
NN #of # of Neurons # of Epochs Steady State Error Goal
No. Simulations Error
1 9 4 23 4.5x10* 10°°
2 15 4 12 8.5x10° 10¢
3 25 4 105 9.96x10° 10”
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