
Title:

Soils Data over the SSA in NASA's Earth Observation System (BOREAS)

Authors:

H. Rostad

NASA Goddard Space Flight Center
Greenbelt, Maryland 20771

Publisher:

NASA

Publication Date:

September 1999
Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the lead center for NASA’s scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA’s institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA’s counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- TECHNICAL MEMORANDUM. Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees.

- CONFERENCE PUBLICATION. Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, projects, and mission, often concerned with subjects having substantial public interest.

- TECHNICAL TRANSLATION. English-language translations of foreign scientific and technical material pertinent to NASA’s mission.

Specialized services that complement the STI Program Office’s diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results... even providing videos.

For more information about the NASA STI Program Office, see the following:

- E-mail your question via the Internet to help@sti.nasa.gov

- Fax your question to the NASA Access Help Desk at (301) 621-0134

- Telephone the NASA Access Help Desk at (301) 621-0390

- Write to: NASA Access Help Desk NASA Center for AeroSpace Information 7121 Standard Drive Hanover, MD 21076-1320
Technical Report Series on the
Boreal Ecosystem-Atmosphere Study (BOREAS)

Forrest G. Hall, Editor

Volume 115
BOREAS Soils Data over the SSA in
Raster Format and AEAC Projection

David Knapp, Raytheon ITSS, NASA Goddard Space Flight Center,
Greenbelt, Maryland
Harold Rostad, Agriculture Canada, Ottawa, Ontario, Canada

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

September 2000
BOREAS Soils Data over the SSA in Raster Format and AEAC Projection

David Knapp, Harold Rostad

Summary

This data set consists of GIS layers that describe the soils of the BOREAS SSA. The original data were submitted as vector layers that were gridded by BOREAS staff to a 30-meter pixel size in the AEAC projection. These data layers include the soil code (which relates to the soil name), modifier (which also relates to the soil name), and extent (indicating the extent that this soil exists within the polygon). There are three sets of these layers representing the primary, secondary, and tertiary soil characteristics. Thus, there is a total of nine layers in this data set along with supporting files. The data are stored in binary, image format files.

Note that several files of this data set on the BOREAS CD-ROMs have been compressed using the Gzip program. See Section 8.2 for details.

Table of Contents

1) Data Set Overview
2) Investigator(s)
3) Theory of Measurements
4) Equipment
5) Data Acquisition Methods
6) Observations
7) Data Description
8) Data Organization
9) Data Manipulations
10) Errors
11) Notes
12) Application of the Data Set
13) Future Modifications and Plans
14) Software
15) Data Access
16) Output Products and Availability
17) References
18) Glossary of Terms
19) List of Acronyms
20) Document Information

1. Data Set Overview

1.1 Data Set Identification

BOREAS Soils Data over the SSA in Raster Format and AEAC Projection

1.2 Data Set Introduction

This data set consists of Geographic Information System (GIS) layers that describe the soils of the BOReal Ecosystem-Atmosphere Study (BOREAS) Southern Study Area (SSA). The original data were submitted as vector layers that were gridded by BOREAS staff to a 30-meter pixel size. The pixels contain integer values that link to data tables that indicate the soil name.
1.3 Objective/Purpose
These data are provided as part of the BOREAS Staff Science GIS Data Collection Program, which included the collection of pertinent map data, in both hardcopy and digital form. The objective of this data set is to provide BOREAS investigators with a map of soil types and other soil properties. Although this data set was received from Agriculture Canada, it does not cover agricultural areas of the BOREAS SSA, only forested areas.

1.4 Summary of Parameters
The parameters contained include:

SOIL CODE, MODIFIERS, EXTENT, and soil names for primary, secondary, and tertiary soil units.

1.5 Discussion
These data layers include the soil code (which relates to the soil name), modifier (which also relates to the soil name), and extent (indicating the extent that this soil exists within the polygon). There are three sets of these layers representing the primary, secondary, and tertiary soil characteristics. Thus, there is a total of nine layers in this data set along with supporting files. The data are stored in binary, image format files.

1.6 Related Data Sets
Agriculture Canada Central Saskatchewan Vector Soils Data
CanSIS Regional Soils Data in Vector Format
BOREAS Regional Soils Data in Raster Format and AEAC Projection

2. Investigator(s)

2.1 Investigator(s) Name and Title
BOREAS Staff Science

2.2 Title of Investigation
BOREAS Staff Science GIS Data Collection Program

2.3 Contact Information

Contact 1:
Dr. Harold Rostad
Agriculture Canada
Saskatoon, SK
CANADA S7N 0W0
(306) 975-6305
rostad@digger.usask.ca

Contact 2:
David Knapp
Raytheon ITSS
NASA GSFC
Code 923
Greenbelt, MD 20771
(301) 286-1424
David.Knapp@gsfc.nasa.gov
3. Theory of Measurements

Unknown.

4. Equipment

4.1 Sensor/Instrument Description
 Unknown.

4.1.1 Collection Environment
 Unknown.

4.1.2 Source/Platform
 Unknown.

4.1.3 Source/Platform Mission Objectives
 Unknown.

4.1.4 Key Variables
 Unknown.

4.1.5 Principles of Operation
 Unknown.

4.1.6 Sensor/Instrument Measurement Geometry
 Unknown.

4.1.7 Manufacturer of Sensor/Instrument
 Unknown.

4.2 Calibration
 Unknown.

4.2.1 Specifications
 Unknown.

4.2.1.1 Tolerance
 Unknown.

4.2.2 Frequency of Calibration
 Unknown.

4.2.3 Other Calibration Information
 Unknown.

5. Data Acquisition Methods

These data were acquired in ARC/INFO EXPORT format as vector coverages. The Soil Names file and Soil Layer file are standard files that provide soil attributes for the province of Saskatchewan. The soil code for each polygon can be linked to the corresponding soil number attribute in the Soil Names file.
6. Observations

6.1 Data Notes
Unknown.

6.2 Field Notes
Unknown.

7. Data Description

7.1 Spatial Characteristics

7.1.1 Spatial Coverage
These data cover the Southern Study Area (SSA) and a buffer area around it. The locations of the outside corners of the corner pixels are:

<table>
<thead>
<tr>
<th>Point</th>
<th>BOREAS X (km)</th>
<th>BOREAS Y (km)</th>
<th>Longitude</th>
<th>Latitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northwest</td>
<td>303.000</td>
<td>399.990</td>
<td>106.31380W</td>
<td>54.50245N</td>
</tr>
<tr>
<td>Northeast</td>
<td>464.610</td>
<td>399.990</td>
<td>103.82894W</td>
<td>54.37908N</td>
</tr>
<tr>
<td>Southeast</td>
<td>464.610</td>
<td>282.000</td>
<td>104.01113W</td>
<td>53.32543N</td>
</tr>
<tr>
<td>Southwest</td>
<td>303.000</td>
<td>282.000</td>
<td>106.43333W</td>
<td>53.44574N</td>
</tr>
</tbody>
</table>

7.1.2 Spatial Coverage Map
Not available.

7.1.3 Spatial Resolution
These data were gridded to a cell size of 30 meters in the X and Y directions.

7.1.4 Projection
The established BOREAS grid system is based on the ellipsoidal version of the Albers Equal-Area Conic (AEAC) projection as defined within the North American Datum of 1983 (NAD83). The origin of the grid is at 111° W, 51° N, and the standard parallels are set to 52.5° N and 58.5° N as prescribed in "Map Projections - A Working Manual," USGS Professional Paper 1395, John P. Snyder, 1987. All of the projection equations used to calculate the BOREAS grid coordinates were taken from this manual.

7.1.5 Grid Description
The gridded layers are projected into the AEAC projection described in Section 7.1.4 at a resolution of 30 meters per pixel (grid cell) in both the X and Y directions.

7.2 Temporal Characteristics

7.2.1 Temporal Coverage
The time at which these soils were mapped could not be determined. They may have originally been mapped in the early 1980s, but the data have been updated and edited by Agriculture Canada based on new information since that time.

7.2.2 Temporal Coverage Map
Not available.
7.2.3 Temporal Resolution
Unknown.

7.3 Data Characteristics

7.3.1 Parameter/Variable
SOIL CODE 1
SOIL CODE 2
SOIL CODE 3
MODIFIER SOIL 1
MODIFIER SOIL 2
MODIFIER SOIL 3
EXTENT OF SOIL 1
EXTENT OF SOIL 2
EXTENT OF SOIL 3

7.3.2 Variable Description/Definition

SOIL_CODE1 3-character code for the primary soil name. In this layer, the numerical value of each pixel corresponds to the SOIL_NUM attribute in the soil name and soil layer files. There is a unique SOIL_NUM for each SOIL_CODE.

SOIL_CODE2 3-character code for the secondary soil name. This layer is coded and can be used in the same way as the SOIL_CODE1 layer.

SOIL_CODE3 3-character code for the tertiary soil name. This layer is coded and can be used in the same way as the SOIL_CODE1 layer.

MODIFIER1 3-character code to show soil variations of the primary soil. The modifier applies to the soil name and the soil code. The numerical value of each pixel in this layer corresponds to the MOD_NUM attribute in the soil name and soil layer files. There is a unique MOD_NUM for each MODIFIER. Together with the SOIL_NUM, a unique record can be identified in the soil name and soil layer file that matches both the SOIL_NUM and MOD_NUM of the pixel.

MODIFIER2 3-character code to show soil variations. The modifier applies to the soil name and the soil code.

MODIFIER3 3-character code to show soil variations. The modifier applies to the soil name and the soil code.

EXTENT1 Percent of the map occupied by a specific soil. The numeric value of each pixel represents the percentage. Range = 34 to 100

EXTENT2 Percent of the map occupied by a specific soil. The numeric value of each pixel represents the percentage. Range = 0 to 50

EXTENT3 Percent of the map occupied by a specific soil. The numeric value of each pixel represents the percentage. Range = 0 to 33

The three SOIL_CODE and three MODIFIER layer attributes are associated with soil names. As explained above, they can be linked to the SOIL_NUM and MOD_NUM values in the soil name and soil layer files. Please refer to section 8.2.1 to decode this information in the soil names file. The items in the soil names file are listed in the following order:

UNKNOWN An unknown and undocumented attribute
PROVINCE Province name (here they will all be SK for Saskatchewan)
SOIL_NUM The number of the soil, which is directly related to the SOIL_CODE
MOD_NUM The number of the soil modifier, which is directly related to the MODIFIER
SOILNAME Name of soil
SOIL_CODE A 3-character code identifying a soil
MODIFIER Soil type modifier
LU Land use
KIND Kind of soil
WATER_TBL Water table characteristics
ROOT_RESTRI Soil layer that restricts root growth
RESTR_TYPE Type of root-restricting layer
DRAINAGE Soil drainage class
MDEP1 Mode of deposition for primary soil
MDEP2 Mode of deposition for secondary soil
MDEP3 Mode of deposition for tertiary soil
ORDER Soil order
S_GROUP Soil subgroup
G_GROUP Great group
PROFILE Header from Detail II file
DATE Date of last revision
A-THICK A horizon thickness
SOIL-THICK Soil thickness
SOIL-CHEM Soil chemistry
PM-MODIFY Parent material modification
PM-COMPLEX Parent material complex
PMDEP2 Mode of deposition of second parent material deposition
where a soil name is a complex of materials
PM_CHEM Parent material chemistry
PM_TEXCLASS Parent material textural class
TEXMODIFY Texture modification
PAMPARTSIZ Soil family particle size
PHYSIOG Physiography

A subset of the Soil Layer file is also included with this data set. This subset includes the layer information for the soils that occur in the SSA. The information in the Soil Names file can be linked to the Soil Layer file with the SOIL_NUM and/or SOIL_CODE. The Soil Layer file provides information about the soil strata for a particular soil name. The attributes in the Soil Layer file include:

PROVINCE Province name (here they will all be SK for Saskatchewan)
SOIL_NUM The number of the soil, which is directly related to the SOIL_CODE
MOD_NUM The number of the soil modifier, which is directly related to the MODIFIER
SOIL_CODE A 3-character code identifying a soil
MODIFIER Soil type modifier
LU Land use
LAYER_NO Horizon number
HZN_LIT Horizon lithological discontinuity
HZN_MAS Master horizon (upper case)
HZN_SUF Master suffix (lower case)
HZN_MOD Horizon modifier
UDEPTH Upper horizon depth (cm)
LDEPTH Lower horizon depth (cm)
COFRAG Coarse fragments (% by volume)
DOMSAND Dominant sand fraction
VFSAND Very fine sand (% by weight)
TSAND Total sand (% by weight)
TSLT Total silt (% by weight)
TCLAY Total clay (% by weight)
ORGARB Organic carbon (% by weight)
PHCA pH in calcium chloride
PH2 pH as specified in project report
BASES Base saturation
CEC Cation exchange capacity (meq/100g)
KSAT Saturated hydraulic conductivity (cm/h)
KP0 Water retention at 0 kilopascals
KP10 Water retention at 10 kilopascals
KP33 Water retention at 33 kilopascals
KP1500 Water retention at 1,500 kilopascals

(Water retention units are % by volume corrected for coarse fragment content.)

BD Bulk density (g/cm³)
EC Electrical conductivity (dS/m)
CACO₃ Calcium carbonate equivalent (%)
VONPOST Von Post estimate of decomposition
WOOD Volume (%) of woody material
DATE Date of last revision

7.3.3 Unit of Measurement
SOIL_CODE1 - Coded but unitless value
SOIL_CODE2 - Coded but unitless value
SOIL_CODE3 - Coded but unitless value
MODIFIER1 - Coded but unitless value
MODIFIER2 - Coded but unitless value
MODIFIER3 - Coded but unitless value
EXTENT1 - Percent
EXTENT2 - Percent
EXTENT3 - Percent

7.3.4 Data Source
The data from which this data set was derived were acquired in ARC/INFO format from:

Dr. Harold P.W. Rostad, Unit Head
Agriculture Canada-Research-CLBRR/LRD
Saskatchewan Land Resource Unit
Room 5C26 Agriculture Building
c/o The Soil Science Department
University of Saskatchewan Campus

Saskatoon, SK CANADA S7N 0W0

7.3.5 Data Range
See Section 7.3.2.

7.4 Sample Data Record
The following are sample data records of the Saskatchewan Soil Names File:

T,SK,2,1,ARDILL O.B,ADA,,A,M,NO,0,,-,W,TILL,,-,-,CH,O,B,,19901213,L20,40,AN,CRET,
,-,-,VC,CL,,-,FL,,-T,SK,2,41,ARDILL O.B,ADA,R,A,M,NO,4,LI,W,TILL,RESD,,-,CH,O,B,,
19901213,L20,40,AN,CRET,,-,-,VC,CL,,-,FL,
The following are sample data records of the Saskatchewan Soil Layer File:

SK,2, I,ADA, ,A,1, ,A,p, , 0, 13,0, V F, 12, 38, 36, 26, 1, 7, 6, 8, 7, 0, 100, 22, 3.290, 47, -9, 34, 20, 1.40, 1, 0, -9, -9, 19910111

8. Data Organization

8.1 Data Granularity
The smallest unit of data for this data set is the entire data set on tape.

8.2 Data Format(s)

8.2.1 Uncompressed Data Files
This data set consists of the following files:

<table>
<thead>
<tr>
<th>File</th>
<th>Attribute Name</th>
<th>NP</th>
<th>NL</th>
<th>BYTES/PIXEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ASCII Header File</td>
<td>5387</td>
<td>3933</td>
<td>2 (low-order byte first)</td>
</tr>
<tr>
<td>2</td>
<td>SOIL CODE 1</td>
<td>5387</td>
<td>3933</td>
<td>2 (low-order byte first)</td>
</tr>
<tr>
<td>3</td>
<td>SOIL CODE 2</td>
<td>5387</td>
<td>3933</td>
<td>2 (low-order byte first)</td>
</tr>
<tr>
<td>4</td>
<td>SOIL CODE 3</td>
<td>5387</td>
<td>3933</td>
<td>2 (low-order byte first)</td>
</tr>
<tr>
<td>5</td>
<td>MODIFIER SOIL 1</td>
<td>5387</td>
<td>3933</td>
<td>2 (low-order byte first)</td>
</tr>
<tr>
<td>6</td>
<td>MODIFIER SOIL 2</td>
<td>5387</td>
<td>3933</td>
<td>2 (low-order byte first)</td>
</tr>
<tr>
<td>7</td>
<td>MODIFIER SOIL 3</td>
<td>5387</td>
<td>3933</td>
<td>2 (low-order byte first)</td>
</tr>
<tr>
<td>8</td>
<td>EXTENT OF SOIL 1</td>
<td>5387</td>
<td>3933</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>EXTENT OF SOIL 2</td>
<td>5387</td>
<td>3933</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>EXTENT OF SOIL 3</td>
<td>5387</td>
<td>3933</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>Tabular Data of Soil Names File</td>
<td>5387</td>
<td>3933</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>Tabular Data of Soil Layer File</td>
<td>5387</td>
<td>3933</td>
<td>1</td>
</tr>
</tbody>
</table>

The following information, which is needed to decode the Soil Names file, was extracted (with modifications) from an information sheet from the Canadian Soil Information System (CanSIS):

LU Land Use

| N | Native Conditions |
| A | Agriculture |

KIND Kind of Soil

M	Mineral
O	Organic
N	Nonsoil
U	Unclassified

WATERTBL Water table characteristics

NO	Not present any time
YU	Present during unspecified time
YG	Present during the growing season
YN	Present during nongrowing season
YB	Present during both seasons
ROOTRESTR Soil Layer that restricts root growth

0 Not present
1-9 Restricting layer number

RESTR_TYPE Type of Root Restricting Layer

UN Undifferentiated
BN Solonetzic B
SA EC>4dS/m
CT Compact (Basal) Till
OR Ortstein
FP Fragipan
LI Lithic
CR Cryic
DU Duric
PL Placic

DRAINAGE Soil Drainage Class

VR Very Rapidly
R Rapidly
W Well
MW Moderately Well
I Imperfectly
P Poorly
VP Very Poorly

MDEP1 Mode of Deposition for primary soil
MDEP2 Mode of Deposition for secondary soil
MDEP3 Mode of Deposition for tertiary soil

ANTH Anthropogenic
COLL Colluvial
EOLI Eolian
FLEO Fluvioeolian
FLLC Fluviolacustrine
FLUV Fluvioglacial
FNPT Fen Peat
FOPT Forest Peat
GLFL Glaciofluval
GLLC Glaciolacustrine
GLMA Glaciomarine
LACU Lacustrine
LATL Lacustro-Till
MARI Marine
RESD Residual
SAPR Saprolite
SEPT Sedimentary Peat
SPPT Sphagnum Moss
TILL Till (Morainal)
UNDM Undifferentiated mineral
UNDO Undifferentiated organic
VOLC Volcanic

ORDER Soil Order

-- Not Applicable
BR Brunisolic
CH Chernozemic
CY Cryosolic
GL Gleysolic
LU Luvisolic
OR Organic
PZ Podzolic
RG Regosolic
SZ Solonetnic

Soil Subgroup and Great Group. Characters before the dot (.) go into the S_GROUP (soil subgroup) field. Characters after the dot go into the G_GROUP (soil great group) field.

-.- Not Applicable
O.MB Orthic Melanic Brunisolic
E.MB Eluviated Melanic Brunisol
GL.MB Gleyed Melanic Brunisol
GLE.MB Gleyed Eluviated Melanic Brunisol
O.EB Orthic Eutric Brunisolic
E.EB Eluviated Eutric Brunisol
GL.EB Gleyed Eutric Brunisol
GLE.EB Gleyed Eluviated Eutric Brunisol
O.SB Orthic Sombric Brunisol
E.SB Eluviated Sombric Brunisol
DU.SB Duric Sombric Brunisol
GL.SB Gleyed Sombric Brunisol
GLE.SB Gleyed Eluviated Sombric Brunisol
O.DYB Orthic Dystric Brunisol
E.DYB Eluviated Dystric Brunisol
DU.DYB Duric Dystric Brunisol
GL.DYB Gleyed Dystric Brunisol
GLE.DYB Gleyed Eluviated Dystric Brunisol
O.B Orthic Brown
R.B Rego Brown
CA.B Calcareous Brown
E.B Eluviated Brown
SZ.B Solonetnic Brown
GL.B Gleyed Brown
GLR.B Gleyed Rego Brown
GLCA.B Gleyed Calcareous Brown
GLE.B Gleyed Eluviated Brown
GLS2.B Gleyed Solonetnic Brown
O.DB Orthic Dark Brown
R.DB Rego Dark Brown
CA.DB Calcareous Dark Brown
E.DB Eluviated Dark Brown
SZ.DB Solonetnic Dark Brown
GL.DB Gleyed Dark Brown
GLR.DB Gleyed Rego Dark Brown
GLCA.DB Gleyed Calcareous Dark Brown
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLE.DB</td>
<td>Gleyed Eluviated Dark Brown</td>
</tr>
<tr>
<td>GLSZ.DB</td>
<td>Gleyed Solonetzic Dark Brown</td>
</tr>
<tr>
<td>O.BL</td>
<td>Orthic Black</td>
</tr>
<tr>
<td>R.BL</td>
<td>Rego Black</td>
</tr>
<tr>
<td>CA.BL</td>
<td>Calcareous Black</td>
</tr>
<tr>
<td>E.BL</td>
<td>Eluviated Black</td>
</tr>
<tr>
<td>SZ.BL</td>
<td>Solonetzic Black</td>
</tr>
<tr>
<td>GL.BL</td>
<td>Gleyed Black</td>
</tr>
<tr>
<td>GLR.BL</td>
<td>Gleyed Rego Black</td>
</tr>
<tr>
<td>GLEX.BL</td>
<td>Gleyed Eluviated Black</td>
</tr>
<tr>
<td>GLEZ.BL</td>
<td>Gleyed Solonetzic Black</td>
</tr>
<tr>
<td>O.DG</td>
<td>Orthic Dark Gray</td>
</tr>
<tr>
<td>R.DG</td>
<td>Rego Dark Gray</td>
</tr>
<tr>
<td>CA.DG</td>
<td>Calcareous Dark</td>
</tr>
<tr>
<td>SZ.DG</td>
<td>Solonetzic Dark Gray</td>
</tr>
<tr>
<td>GL.DG</td>
<td>Gleyed Dark Gray</td>
</tr>
<tr>
<td>GLR.DG</td>
<td>Gleyed Rego Dark Gray</td>
</tr>
<tr>
<td>GLEX.DG</td>
<td>Gleyed Eluviated Dark Gray</td>
</tr>
<tr>
<td>GLEZ.DG</td>
<td>Gleyed Solonetzic Dark Gray</td>
</tr>
<tr>
<td>O.TC</td>
<td>Orthic Turbic Cryosol</td>
</tr>
<tr>
<td>BR.TC</td>
<td>Brunisolic Turbic Cryosol</td>
</tr>
<tr>
<td>R.TC</td>
<td>Rego Turbic Cryosol</td>
</tr>
<tr>
<td>GL.TC</td>
<td>Gleysolic Turbic Cryosol</td>
</tr>
<tr>
<td>O.SC</td>
<td>Orthic Static Cryosol</td>
</tr>
<tr>
<td>BR.SC</td>
<td>Brunisolic Static Cryosol</td>
</tr>
<tr>
<td>R.SC</td>
<td>Regosolic Static Cryosol</td>
</tr>
<tr>
<td>GL.SC</td>
<td>Gleysolic Static Cryosol</td>
</tr>
<tr>
<td>FI.OC</td>
<td>Fibric Organic Cryosol</td>
</tr>
<tr>
<td>ME.OC</td>
<td>Mesic Organic Cryosol</td>
</tr>
<tr>
<td>HU.OC</td>
<td>Humic Organic Cryosol</td>
</tr>
<tr>
<td>TFIO.C</td>
<td>Terric Fibric Organic Cryosol</td>
</tr>
<tr>
<td>TME.OC</td>
<td>Terric Mesic Organic Cryosol</td>
</tr>
<tr>
<td>THU.OC</td>
<td>Terric Humic Organic Cryosol</td>
</tr>
<tr>
<td>GC.OC</td>
<td>Glacic Organic Cryosol</td>
</tr>
<tr>
<td>O.HG</td>
<td>Orthic Humic Gleysol</td>
</tr>
<tr>
<td>R.HG</td>
<td>Rego Humic Gleysol</td>
</tr>
<tr>
<td>FE.HG</td>
<td>Fera Humic Gleysol</td>
</tr>
<tr>
<td>SZ.HG</td>
<td>Solonetzic Humic Gleysol</td>
</tr>
<tr>
<td>O.G</td>
<td>Orthic Gleysol</td>
</tr>
<tr>
<td>R.G</td>
<td>Rego Gleysol</td>
</tr>
<tr>
<td>FE.G</td>
<td>Fera Gleysol</td>
</tr>
<tr>
<td>SZ.G</td>
<td>Solonetzic Gleysol</td>
</tr>
<tr>
<td>O.LG</td>
<td>Orthic Luvic Gleysol</td>
</tr>
<tr>
<td>HU.LG</td>
<td>Humic Luvic Gleysol</td>
</tr>
<tr>
<td>FE.LG</td>
<td>Fera Luvic Gleysol</td>
</tr>
<tr>
<td>FR.LG</td>
<td>Fragic Luvic Gleysol</td>
</tr>
<tr>
<td>SZ.LG</td>
<td>Solonetzic Luvic Gleysol</td>
</tr>
<tr>
<td>O.GBL</td>
<td>Orthic Gray Brown Luvisol</td>
</tr>
<tr>
<td>BR.GBL</td>
<td>Brunisolic Gray Brown Luvisol</td>
</tr>
<tr>
<td>PZ.GBL</td>
<td>Podzolic Gray Brown Luvisol</td>
</tr>
<tr>
<td>GL.GBL</td>
<td>Gleyed Gray Brown Luvisol</td>
</tr>
<tr>
<td>GLBR.GBL</td>
<td>Gleyed Brunisolic Gray Brown Luvisol</td>
</tr>
<tr>
<td>GLPZ.GBL</td>
<td>Gleyed Podzolic Gray Brown Luvisol</td>
</tr>
</tbody>
</table>
O.GL Orthic Gray Luvisol
D.GL Dark Gray Luvisol
BR.GL Brunisolic Gray Luvisol
PZ.GL Podzolic Gray Luvisol
SZ.GL Solonetzic Gray Luvisol
FR.GL Fragic Gray Luvisol
GL.GL Gleyed Gray Luvisol
GLD.GL Gleyed Dark Gray Luvisol
GLBR.GL Gleyed Brunisolic Gray Luvisol
GLPZ.GL Gleyed Podzolic Gray Luvisol
GLSZ.GL Gleyed Solonetzic Gray Luvisol
GLFR.GL Gleyed Fragic Gray Luvisol
TY.F Typic Fibrisol
ME.F Mesic Fibrisol
HU.F Humic Fibrisol
LM.F Limno Fibrisol
CU.F Cumulo Fibrisol
T.F Terric Fibrisol
TME.F Terric Mesic Fibrisol
THU.F Terric Humic Fibrisol
HY.F Hydric Fibrisol
TY.M Typic Mesisol
FI.M Fibric Mesisol
HU.M Humic Mesisol
LM.M Limno Mesisol
CU.M Cumulo Mesisol
T.M Terric Mesisol
TFI.M Terric Fibric Mesisol
THU.M Terric Humic Mesisol
HY.M Hydric Mesisol
TY.H Typic Humisol
FI.H Fibric Humisol
ME.H Mesic Humisol
LM.H Limno Humisol
CU.H Cumulo Humisol
T.H Terric Humisol
TFI.H Terric Fibric Humisol
TME.H Terric Mesic Humisol
HY.H Hydric Humisol
HE.FO Hemic Folisol
HI.FO Histic Folisol
HU.FO Humic Folisol
LI.FO Lignic Folisol
O.HP Orthic Humic Podzol
OT.HP Orstein Humic Podzol
P.HP Placic Humic Podzol
DU.HP Duric Humic Podzol
FR.HP Fragic Humic Podzol
O.FHP Orthic Ferro-Humic Podzol
OT.FHP Orstein Ferro-Humic Podzol
P.FHP Placic Ferro-Humic Podzol
DU.FHP Duric Ferro-Humic Podzol
FR.FHP Fragic Ferro-Humic Podzol
LU.FHP Luvisolic Ferro-Humic Podzol
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM.FHP</td>
<td>Sombric Ferro-Humic Podzol</td>
</tr>
<tr>
<td>GL.FHP</td>
<td>Gleyed Ferro-Humic Podzol</td>
</tr>
<tr>
<td>GLSM.FHP</td>
<td>Gleyed Sombric Ferro-Humic Podzol</td>
</tr>
<tr>
<td>GLOT.FHP</td>
<td>Gleyed Ortstein Ferro-Humic Podzol</td>
</tr>
<tr>
<td>O.HFP</td>
<td>Orthic Humo-Ferric Podzol</td>
</tr>
<tr>
<td>OT.HFP</td>
<td>Ortstein Humo-Ferric Podzol</td>
</tr>
<tr>
<td>P.HFP</td>
<td>Placic Humo-Ferric Podzol</td>
</tr>
<tr>
<td>DU.HFP</td>
<td>Duric Humo-Ferric Podzol</td>
</tr>
<tr>
<td>FR.HFP</td>
<td>Fragic Humo-Ferric Podzol</td>
</tr>
<tr>
<td>LU.HFP</td>
<td>Luvisolic Humo-Ferric Podzol</td>
</tr>
<tr>
<td>GL.HFP</td>
<td>Gleyed Humo-Ferric Podzol</td>
</tr>
<tr>
<td>GLSM.HFP</td>
<td>Gleyed Sombric Humo-Ferric Podzol</td>
</tr>
<tr>
<td>SM.HFP</td>
<td>Sombric Humo-Ferric Podzol</td>
</tr>
<tr>
<td>GLOT.HFP</td>
<td>Gleyed Ortstein Humo-Ferric Podzol</td>
</tr>
<tr>
<td>O.R</td>
<td>Orthic Regosol</td>
</tr>
<tr>
<td>CU.R</td>
<td>Cumulic Regosol</td>
</tr>
<tr>
<td>GL.R</td>
<td>Gleyed Regosol</td>
</tr>
<tr>
<td>GLCU.R</td>
<td>Gleyed Cumulic Regosol</td>
</tr>
<tr>
<td>O.HR</td>
<td>Orthic Humic Regosol</td>
</tr>
<tr>
<td>CU.HR</td>
<td>Cumulic Humic Regosol</td>
</tr>
<tr>
<td>GL.HR</td>
<td>Gleyed Humic Regosol</td>
</tr>
<tr>
<td>GLCU.HR</td>
<td>Gleyed Cumulic Humic Regosol</td>
</tr>
<tr>
<td>B.SZ</td>
<td>Brown Solonetz</td>
</tr>
<tr>
<td>DB.SZ</td>
<td>Dark Brown Solonetz</td>
</tr>
<tr>
<td>BL.SZ</td>
<td>Black Solonetz</td>
</tr>
<tr>
<td>A.SZ</td>
<td>Alkaline Solonetz</td>
</tr>
<tr>
<td>GLB.SZ</td>
<td>Gleyed Brown Solonetz</td>
</tr>
<tr>
<td>GLDB.SZ</td>
<td>Gleyed Dark Brown Solonetz</td>
</tr>
<tr>
<td>GLBL.SZ</td>
<td>Gleyed Black Solonetz</td>
</tr>
<tr>
<td>B.SS</td>
<td>Brown Solodized Solonetz</td>
</tr>
<tr>
<td>DB.SS</td>
<td>Dark Brown Solodized Solonetz</td>
</tr>
<tr>
<td>BL.SS</td>
<td>Black Solodized Solonetz</td>
</tr>
<tr>
<td>DG.SS</td>
<td>Dark Gray Solodized Solonetz</td>
</tr>
<tr>
<td>G.SS</td>
<td>Gray Solodized Solonetz</td>
</tr>
<tr>
<td>GLB.SS</td>
<td>Gleyed Brown Solodized Solonetz</td>
</tr>
<tr>
<td>GLDB.SS</td>
<td>Gleyed Dark Brown Solodized Solonetz</td>
</tr>
<tr>
<td>GLBL.SS</td>
<td>Gleyed Black Solodized Solonetz</td>
</tr>
<tr>
<td>GLDG.SS</td>
<td>Gleyed Dark Gray Solodized Solonetz</td>
</tr>
<tr>
<td>GLG.SS</td>
<td>Gleyed Gray Solodized Solonetz</td>
</tr>
<tr>
<td>B.SO</td>
<td>Brown Solod</td>
</tr>
<tr>
<td>DB.SO</td>
<td>Dark Brown Solod</td>
</tr>
<tr>
<td>BL.SO</td>
<td>Black Solod</td>
</tr>
<tr>
<td>DG.SO</td>
<td>Dark Gray Solod</td>
</tr>
<tr>
<td>G.SO</td>
<td>Gray Solod</td>
</tr>
<tr>
<td>GLB.SO</td>
<td>Gleyed Brown Solod</td>
</tr>
<tr>
<td>GLDB.SO</td>
<td>Gleyed Dark Brown Solod</td>
</tr>
<tr>
<td>GLBL.SO</td>
<td>Gleyed Black Solod</td>
</tr>
<tr>
<td>GLDG.SO</td>
<td>Gleyed Dark Gray Solod</td>
</tr>
<tr>
<td>GLG.SO</td>
<td>Gleyed Gray Solod</td>
</tr>
</tbody>
</table>

PROFILE: Header from Detail II file (Unknown)
DATE: YY.MM.DD Date of last revision
A-THICK: Thickness of A horizon
L20: less than 20
G20 greater than 20

SOL-THICK Soil thickness in centimeters
99 Not applicable

SOL-CHEM Soil Chemistry
UD Undifferentiated
EA Extremely Acid
AN Medium Acid to Neutral
WC Weakly Calcareous
VC Very Calcareous
EC Extremely Calcareous
SA Saline
- Not applicable

PM-MODIFY Parent Material Modification
SHAL Shale
CRET Cretaceous
TERT Tertiary
STON Stony contact
LIME Limestone
TECR Tertiary-Cretaceous
NA Not applicable

PM-COMPLEX Parent Material Complex
COM Complex
NA Not applicable

PMDEP2 Parent Material Deposition for secondary soil
-- Not Applicable
ANTH Anthropogenic
COLL Colluvial
EOLI Eolian
FLEO Fluvioeolian
FLLC Fluvio-lacustrine
FLUV Fluvial
FNPT Fen Peat
FOPT Forest Peat
GLFL Glacio-fluvial
GLLC Glaciolacustrine
GLMA Glaciomarine
LACU Lacustrine
LATL Lacustro-Till
MARI Marine
RESD Residual
SAPR Saprolite
SEPT Sedimentary Peat
SPPT Sphagnum Moss
TILL Till (Morainal)
UNDM Undifferentiated mineral
UNDO Undifferentiated organic
VOLC Volcanic

PM-CHEM Parent Material Chemistry
UD Undifferentiated
EA Extremely Acid
AN Medium Acid to Neutral
WC Weakly Calcareous
VC Very Calcareous
EC Extremely Calcareous
PMTEXCLASS
Parent Material Textural Class

VCS very coarse sand
CS coarse sand
LCS loamy coarse sand
S sand
FS fine sand
LS loamy sand
LFS loamy fine sand
VFS very fine sand
LVFS loamy very fine sand
CSL coarse sandy loam
SL sandy loam
FSL fine sandy loam
VFSL very fine sandy loam
L loam
SIL silt loam
SCL sandy clay loam
SICL silty clay loam
CL clay loam
C clay
HC heavy clay
O organic
F fibric
M mesic
H humic
NA not applicable

TEXMODIFY
Texture Modifier

GR gravelly
VG very gravelly
WY woody
NA not applicable

FAMPARTSIZ
Family Particle Size

UD undifferentiated
FR fragmental
SK skeletal
SY sandy
CL coarse loamy
FL fine loamy
LY loamy
CY clayey
SM stratified mineral
SU stratified mineral and organic
SO stratified organic
OG organic
WY woody
FI fibric
ME mesic
HU humic
RU bedrock undifferentiated
RA bedrock acid
RB bedrock basic
RS bedrock soft
8.2.2 Compressed CD-ROM Files

On the BOREAS CD-ROMs, files 1, 11, and 12 listed above are stored as ASCII text files; however, files 2 - 10 have been compressed with the Gzip compression program (file name *.gz). These data have been compressed using gzip version 1.2.4 and the high compression (-9) option (Copyright (C) 1992-1993 Jean-loup Gailly). Gzip (GNU zip) uses the Lempel-Ziv algorithm (Welch, 1994) used in the zip and PKZIP programs. The compressed files may be uncompressed using gzip (-d option) or gunzip. Gzip is available from many Web sites (for example, ftp site prep.ai.mit.edu/pub/gnu/gzip-*.*) for a variety of operating systems in both executable and source code form. Versions of the decompression software for various systems are included on the CD-ROMs.

9. Data Manipulations

9.1 Formulae

9.1.1 Derivation Techniques and Algorithms

The GIS software package ARC/INFO (Version 6 and 7) was used to grid these data.

9.2 Data Processing Sequence

9.2.1 Processing Steps

- Seven separate vector ARC/INFO coverages were edgematched to make the edges of the various coverages match up as much as possible.
- The soil code or modifier (depending on what was being gridded) was linked to a table of numeric values to assign a number to each polygon based on the soil code or modifier of the polygon.
- These edgematched vector data were then gridded by assigning a numeric value to each pixel.
- BOREAS Information System (BORIS) staff copied the ASCII and compressed the binary files for release on CD-ROM.

9.2.2 Processing Changes

None.

9.3 Calculations

None.

9.3.1 Special Corrections/Adjustments

None.

9.3.2 Calculated Variables

None.

9.4 Graphs and Plots

None.
10. Errors

10.1 Sources of Error
A major source of error in the original data set could be digitizing error. There is also the possibility of coding errors in the attributes. The value of an attribute could have been keyed in incorrectly.

There is some question about the positional accuracy of the data. Although the data are mapped at a scale of 1:125,000, the source of the mapping is aerial photography that was not orthocorrected. Therefore, the soils mapping may contain distortions that exist in the air photos. This problem can be mitigated by "rubber sheeting" the data to an accurate map base, or acquiring the original air photos and compensating for their distortions. However, the minor benefits of improved positional accuracy would not be worth the time and effort of correcting all of these data.

The data that were gridded comprised seven vector layers that were edgematched. Although most of the attributes of polygons along the seams are the same, in some cases the soil attributes are different. This can cause some discontinuities in these layers.

10.2 Quality Assessment

10.2.1 Data Validation by Source
Unknown.

10.2.2 Confidence Level/Accuracy Judgment
Although the gridding procedure itself is highly accurate, there is some question as to the positional accuracy of the original data. Therefore, caution should be used when inferring information from this data set.

The source in Canada from whom these data were received has strong caveats about the use of the data. These data are constantly being updated as new data are collected and become available. These data represent broad generalizations about the soil characteristics of this area. Caution is to be used when inferring information from the data.

10.2.3 Measurement Error for Parameters
Unknown.

10.2.4 Additional Quality Assessments
Unknown.

10.2.5 Data Verification by Data Center
Each gridded image was spot-checked to ensure that the gridding procedure assigned a digital number (DN) to each attribute value.

11. Notes

11.1 Limitations of the Data
The original data were received in seven parts. These seven parts were edgematched so that the polygon boundaries were aligned with each other. The gridded data represent a merging of these two data sets. Unfortunately, some of the attributes of polygons along the border have different values. Therefore, a sharp discontinuity may exist along a map edge in the images.

11.2 Known Problems with the Data
The original vector data apparently were digitized from aerial photography that was not orthometrically corrected. Therefore, the locational accuracy of the soil polygons may not be very accurate.
11.3 Usage Guidance

Users of these data should be cautious about inferring information from this data set and extending those inferences over a larger area. The polygons from the original data set are large and may have small inclusions of various soil types that are not mapped in these data layers.

Before uncompressing the Gzip files on CD-ROM, be sure that you have enough disk space to hold the uncompressed data files. Then use the appropriate decompression program provided on the CD-ROM for your specific system.

11.4 Other Relevant Information

None.

12. Application of the Data Set

The original intended use of these data is unknown. Users from the BOREAS project might use these data for hydrological modeling or some other ecosystem modeling activity.

13. Future Modifications and Plans

None.

14. Software

14.1 Software Description

The GIS software package ARC/INFO (Version 6 and 7) was used to grid these data. Gzip (GNU zip) uses the Lempel-Ziv algorithm (Welch, 1994) used in the zip and PKZIP commands.

14.2 Software Access

ARC/INFO is a proprietary software package produced by Environmental Systems Research Institute, Inc. (ESRI), Redlands, CA.

Gzip is available from many Web sites across the Internet (for example) ftp site prep.ai.mit.edu/pub/gnu/gzip-*.*) for a variety of operating systems in both executable and source code form. Versions of the decompression software for various systems are included on the CD-ROMs.

15. Data Access

The BOREAS soils data over the SSA in raster format and AEAC projection are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).
15.1 Contact Information
For BOREAS data and documentation please contact:

ORNL DAAC User Services
Oak Ridge National Laboratory
P.O. Box 2008 MS-6407
Oak Ridge, TN 37831-6407
Phone: (423) 241-3952
Fax: (423) 574-4665
E-mail: ornldaac@ornl.gov or ornl@eos.nasa.gov

15.2 Data Center Identification
Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC) for Biogeochemical Dynamics

15.3 Procedures for Obtaining Data
Users may obtain data directly through the ORNL DAAC online search and order system [http://www-eosdis.ornl.gov/] and the anonymous FTP site [ftp://www-eosdis.ornl.gov/data/] or by contacting User Services by electronic mail, telephone, fax, letter, or personal visit using the contact information in Section 15.1.

15.4 Data Center Status/Plans
The ORNL DAAC is the primary source for BOREAS field measurement, image, GIS, and hardcopy data products. The BOREAS CD-ROM and data referenced or listed in inventories on the CD-ROM are available from the ORNL DAAC.

16. Output Products and Availability

16.1 Tape Products
These data can be made available on 8-mm, Digital Archive Tape (DAT), or 9-track tapes at 1600 or 6250 Bytes Per Inch (BPI).

16.2 Film Products
None.

16.3 Other Products
These data are available on the BOREAS CD-ROM series.

17. References

17.1 Platform/Sensor/Instrument/Data Processing Documentation

17.2 Journal Articles and Study Reports

17.3 Archive/DBMS Usage Documentation
None.

18. Glossary of Terms
None.

19. List of Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEAC</td>
<td>Albers Equal-Area Conic</td>
</tr>
<tr>
<td>ASCII</td>
<td>American Standard Code for Information Interchange</td>
</tr>
<tr>
<td>BOREAS</td>
<td>BOReal Ecosystem-Atmosphere Study</td>
</tr>
<tr>
<td>BORIS</td>
<td>BOREAS Information System</td>
</tr>
<tr>
<td>BPI</td>
<td>Bytes Per Inch</td>
</tr>
<tr>
<td>CANnis</td>
<td>Canadian Soil Information System</td>
</tr>
<tr>
<td>DAAC</td>
<td>Distributed Active Archive Center</td>
</tr>
<tr>
<td>DN</td>
<td>Digital Number</td>
</tr>
<tr>
<td>EOS</td>
<td>Earth Observing System</td>
</tr>
<tr>
<td>EOSDIS</td>
<td>EOS Data and Information System</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographic Information System</td>
</tr>
<tr>
<td>GSFC</td>
<td>Goddard Space Flight Center</td>
</tr>
</tbody>
</table>
20. Document Information

20.1 Document Revision Dates
Written: 02-Dec-1994
Last Updated: 29-Nov-1999

20.2 Document Review Dates
Science Review:

20.3 Document ID

20.4 Citation
When using these data, please include the following acknowledgment as well as citations of relevant papers in Section 17.2:

The author(s) express their thanks to Dr. Harold Rostad (Agriculture Canada) for providing the original vector data to the BOREAS Information System (BORIS) and to the BORIS staff for creating and documenting the raster product.

If using data from the BOREAS CD-ROM series, also reference the data as:

Also, cite the BOREAS CD-ROM set as:

20.5 Document Curator

20.6 Document URL
This data set consists of GIS layers that describe the soils of the BOREAS SSA. The original data were submitted as vector layers that were gridded by BOREAS staff to a 30-meter pixel size in the AEAC projection. These data layers include the soil code (which relates to the soil name), modifier (which also relates to the soil name), and extent (indicating the extent that this soil exists within the polygon). There are three sets of these layers representing the primary, secondary, and tertiary soil characteristics. Thus, there is a total of nine layers in this data set along with supporting files. The data are stored in binary, image format files.