MAVRIC Flutter Model Transonic Limit Cycle Oscillation Test

John W. Edwards, David M. Schuster, Charles V. Spain, Donald F. Keller, and Robert W. Moses
NASA Langley Research Center
Hampton, VA

AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
April 16-19, 2001 / Seattle, WA
MAVRIC FLUTTER MODEL TRANSONIC LIMIT CYCLE OSCILLATION TEST

John W. Edwards*, David M. Schuster+, Charles V. Spain*,
Donald F. Keller*, and Robert W. Moses
NASA Langley Research Center, Hampton, VA 23681-2199

Abstract
The Models for Aeroelastic Validation Research Involving Computation semi-span wind-tunnel model (MAVRIC-I), a business jet wing-fuselage flutter model, was tested in NASA Langley's Transonic Dynamics Tunnel with the goal of obtaining experimental data suitable for Computational Aeroelasticity code validation at transonic separation onset conditions. This research model is notable for its inexpensive construction and instrumentation installation procedures. Unsteady pressures and wing responses were obtained for three wingtip configurations: clean, tipstore, and winglet. Traditional flutter boundaries were measured over the range of M = 0.6 to 0.9 and maps of Limit Cycle Oscillation (LCO) behavior were made in the range of M = 0.85 to 0.95. Effects of dynamic pressure and angle-of-attack were measured. Testing in both R134a heavy gas and air provided unique data on Reynolds number, transition effects, and the effect of speed of sound on LCO behavior. The data set provides excellent code validation test cases for the important class of flow conditions involving shock-induced transonic flow separation onset at low wing angles, including Limit Cycle Oscillation behavior.

INTRODUCTION
The Models for Aeroelastic Validation Research Involving Computation (MAVRIC) project was undertaken by NASA Langley Research Center's Aeroelasticity Branch with the goal of obtaining experimental wind-tunnel data suitable for Computational Aeroelasticity (CAE) code validation at transonic separation onset conditions. The aeroelastic response behavior referred to as "Limit Cycle Oscillation" (LCO) is the primary target. LCO behavior is characterized by rather constant amplitude, periodic structural response at selective frequencies which are usually recognizable as being those of the aeroelastically loaded structure. Bunton and Denegri discuss LCO characteristics of fighter aircraft and Denegri provides test cases from flight tests of the F-16 aircraft for three classes of response: Classical Flutter, Typical LCO, and Nontypical LCO, which are very well suited for use as computational test cases. Cunningham and Meijer also describe LCO experience on the F-16 aircraft and present results of semi-empirical modeling of the LCO phenomenon. While their formulation is general, the focus of the applications has been upon LCOs encountered between angles-of-attack of 5-10 degrees and involving interaction of leading-edge vortex flows, tip flows, and normal wing shocks. In contrast, the test cases of Ref. 2 are all for '1-g' level flight at transonic speeds where there are no leading-edge vortex flows. This brings into focus a key feature of LCO behavior: incidents of (aerodynamically induced) LCO are found for flow fields featuring transitions or boundaries between differing flow states. A prime example is the onset of separated flow over some portion of an aircraft's lifting surfaces. Furthermore, the LCO is typically

Copyright © 2001 by the American Institute of Aeronautics and Astronautics, Inc. No copyright is asserted in the United States under Title 17, U.S. Code. The U.S. Government has a royalty-free license to exercise all rights under the copyright claimed herein for Governmental Purposes. All other rights are reserved by the copyright owner.
limited to a narrow region in Mach number and/or angle-of-attack signaling the change in flow state, such as separation onset. LCO occurrences are common on fighter aircraft; Norton described incidents on F-5 and F/A-18 aircraft. LCOs induced by structural nonlinearities have been widely reported in the literature and are not considered in this paper.

Incidents of LCO are not limited to fighter aircraft. LCOs are reported by Jacobson, et al. and Dreim, et al. involving wing-bending interaction with rigid-body pitching on the B-2 bomber, and Edwards reports LCO behavior on a generic business jet wind-tunnel flutter model. Since LCO behavior is closely related to subcritical flutter behavior (e.g., aeroelastic response at speeds near but below the flutter speed, with the attendant very low damping levels), attempts to study the behavior with wind-tunnel flutter models have been made. The attempts are frequently unsuccessful due to lack of knowledge of the necessary ingredients producing LCO, the inability to fully simulate full-scale aircraft conditions in wind-tunnel testing (model angle-of-attack and the mean, deformed wing shape are not matched in common scaling and testing procedures), and the differing dynamic testing conditions between flight and wind tunnel. The wind-tunnel testing environment has much more moderate frequency 'turbulence' than atmospheric flight conditions, resulting in continuously disturbed model motions which mask the subtleties of LCO behavior. Several wind-tunnel tests have reported unintentional LCO behavior observed during aeroelastic/flutter testing: Gránágy et al. found two branches of LCO behavior extending well below the flutter boundary for a high aspect ratio, elastic, actively controlled wing model; NASA's ARW-2 (supercritical, high aspect ratio, Aeroclastic Research Wing) exhibited a region of 'high dynamic response' in its first wing bending mode; and NASA’s High Speed Civil Transport (HSCT) Flexible Semispan Model exhibited two regions of 'LCO-like' response, one a broader region of 'high dynamic response' in the first bending mode and the other a narrow 'chimney' of 'high response.' At the highest tested pressure, flutter and model failure were encountered in this chimney region. The latter two cases, along with numerous other unsteady pressure experiments in the NASA Langley Transonic Dynamics Tunnel, are summarized in Ref. 15. One final recent wind-tunnel test is that of a two-dimensional pitching and plunging supercritical airfoil model. LCO behavior was measured that agreed with flutter motions calculated with a Navier-Stokes code and a frequency domain modal superposition flutter solution.

It is interesting to note a connection between the current focus on LCO phenomena and longstanding aeroelastic response behaviors such as buffeting and buffet onset, control surface buzz, and angle-of-attack effects. One of the first experimental studies of nonlinear transonic effects on flutter was Erickson's flutter and buffet tests of an early version of a space shuttle wing. Angle-of-attack and transition effects on damping were found over a very narrow transonic Mach range, and "limited amplitude flutter motions" and destructive wing flutter were encountered. Farmer, et al. studied the effect of supercritical and conventional wing profiles upon transonic flutter. Unpublished results of the effect of angle-of-attack upon flutter are similar in nature to those described above. Moss and Pierce document a case of torsional wing 'buzz' at buffet onset conditions on a solid steel model. For the 27 degree leading-edge wing sweep, the main wing shock and the separated flow behind it aligned with the torsion mode node line, providing the driving mechanism for the LCO.

Because of the difficulty of capturing LCO behavior in wind-tunnel tests, its occurrence in the tests of the typical business jet wing flutter model mentioned above led to its selection for further testing as the MAVRIC-I model. It is anticipated that this may be the first of a series of such research models. Due to its simple aluminum plate construction, the model has the strength to withstand large dynamic wing motions without failing, and making it ideal for the study of LCO behavior. This paper presents details of the model construction, refurbishment, and instrumentation followed by a description of the data system utilized for measuring the wing response and unsteady wing pressures. Testing of the model with three different wingtip configurations, in both air and R134a heavy gas is discussed. Finally, test results are given in the form of calculated (linear aerodynamics) and experimental flutter boundaries, and maps of regions of LCO response behavior.

MODEL CONSTRUCTION, REFURBISHMENT, AND INSTRUMENTATION

The MAVRIC flutter model has been tested previously in Langley's Transonic Dynamics Tunnel (TDT) in 1993 and 1994. It is a semispan model of a typical business jet design constructed of a stepped thickness aluminum plate planform and covered with end-grain balsa wood to provide the wing contour. The wing has no twist or dihedral, reflecting its...
The original purpose of providing wind-tunnel flutter test data for calibration of analysis methods and it was tested on the tunnel sidewall, low-mounted on a fuselage body of revolution. The plate structural construction method results in flutter models with sufficient strength to withstand oscillation amplitudes much larger than more typical flutter model construction methods can withstand without sustaining damage. Inspection of the previous test results indicated that the model exhibited LCO behavior at the higher transonic Mach numbers tested. Thus the model was selected for retesting as the MAVRIC-I model.

Figure 1 shows the refurbished model mounted on the TDT sidewall. The refurbishments included: a new streamlined aft fuselage section, a new streamlined under-wing 'belly-pan' fairing, a new wingtip body of revolution for the 'clean wing' configuration, and instrumentation. The fuselage consists of bodies of revolution integrated with a 4-inch standoff section to account for the wall boundary layer. The original aft fuselage closure was a straight-sided conical section commencing at the wing trailing edge, which aggravated wing-fuselage juncture flow separation. The new aft fuselage was extended 6 inches and contained a 24-inch circular arc section closure with a sharp trailing edge. The new belly-pan closure was designed to minimize forward- and aft-facing curvatures and to meld smoothly with the wing lower surface.

Figure 2. Layout of wing and instrumentation.

Figure 2a shows the wing planform and instrumentation layout (described below) while Figure 2b shows the stepped aluminum plate and end-grain balsa wood upper and lower surfaces. The plate thickness steps from 0.276 inches to 0.106 inches over the wingspan. The wing has a taper ratio of 0.29, a midchord sweep angle of 23 degrees, and a span, S, of 53.17 inches. The wing thickness varies from 13 percent (extrapolated to the symmetry plane) to 8.5 percent at the wingtip.

Figure 3 shows the three wingtip configurations tested: clean wingtip (body of revolution), pencil tipstore, and winglet. They are attached to the wingtip with three mounting screws. The winglet, also used in the 1994 test, is canted 75 degrees from the wing plane and has a 41 degree leading-edge sweep. The pencil tipstore was constructed to match the properties of the original winglet used in the 1993 test and thus has different mass properties than the present winglet.

The model is instrumented with 84 differential unsteady pressure sensors at three spanwise chords, 8 miniature piezoelectric accelerometers, and root bending and torsion strain gages. A servo-accelerometer measuring the model angle-of-attack was also mounted to the wing plate root. Bending and torsion strain gages were also bonded to the wing plate root inside of the fuselage housing, where the bolt restraints at the root caused the torsion strain gage to be ineffective.

Figure 4 shows the wing lower surface and fuselage. Also, routing troughs for the instrumentation are visible on the lower wing surface. The upper surface (not shown) has similar instrumentation routings.
The 4-inch standoff of the fuselage from the wind-tunnel wall is clearly visible. Spanwise measurements are referenced to Buttock Line 0.00 inches, which is located at the centerline of the fuselage body of revolution, abutting the standoff.

Figure 3. Wingtip configurations tested: winglet, pencil tipstore, and clean wingtip.

Figure 4. View of lower wing and fuselage mounted on tunnel sidewall.

Eight accelerometers were mounted to the bottom of the wing plate at locations as near as allowed by the wing contour thickness to the leading and trailing edges at span stations $y = 14, 24, 36$ and 48 inches ($y/S = 0.26, 0.45, 0.68, 0.90$). The wing contour at these locations was restored by filling the cavities with a silicone sealant. This filling resulted in detrimental straining of the accelerometer casings under strained conditions and in situ calibrations of the accelerometers were required. Late in the test the wing upper surface was tufted in order to visually observe the extent of flow separation and make correlations with regions of LCO activity. Also, optical targets were installed on the wing lower surface for use by the Videogrammatic Model Deformation System. This system was capable of recording dynamic model deformations at a rate of 60 frames per second.

An attractive detail of the MAVRIC-I model construction and instrumentation procedures is their low cost relative to standard procedures. While the structural metal plate and end-grain balsa wood fabrication method is not favored for models requiring similitude with full-scale aircraft, it is quite adequate in producing models devoted to computational method validation and is much less expensive. A similar economy was followed in selecting the method for instrumenting the model. With the end-grain balsa wood in place and no desire to modify the wing profile (the LCO behavior of the model was to be preserved), the decision was made to install instrumentation using minimally invasive surface routing of the balsa wood. Figure 5 shows the routing troughs for the mid and outboard upper surface chords of pressure sensors during fabrication.

Figure 5. Upper surface pressure sensor installation showing routing channels during refurbishment of model.

Figure 6 indicates the method for assembling the pressure sensor mounting blocks, which included the 0.020-inch surface orifices. Shown from the bottom to the top are a pressure sensor, a protective metal sleeve, a mounting block with orifice hole, and the assembled mounting. The 0.5 inch long 2.0 psi.
differential sensors were sealed inside the protective sleeves, which were then sealed into the mounting blocks already installed in the wing and covered with a filler material. The routed troughs containing reference pressure tubing and electrical wiring were covered with balsa strips and smoothed to the wing contour. The sensor reference tubes were connected to pressure manifolds located in the routed troughs. The manifolds were connected to the wind-tunnel plenum chamber by tubing. The three chords of pressure sensors were located at span stations \(y = 11.5, 33.5, \) and 46.5 inches \((y/S = 0.22, 0.63, \) and 0.87). At each station, 18 upper surface and 10 lower surface pressure orifices were located as indicated in Table I. In the following sections, upper (U) and lower (L) surface pressures and pressure coefficients are labeled for the Inboard (I), Middle (M), and Outboard (O) (e.g., PMU\(_i\), PMU\(_m\), and CPMU\(_i\) for the upper, middle sensor measurement at \(x/C = 0.44 \)).

Following completion of the installation of the instrumentation, the wing surface was smoothed where required with filler material to restore the model to its original contours. With end-grain balsa wood construction, it is not possible to achieve the high quality surface finish typically required for performance wind-tunnel testing. However, a good quality surface finish was achieved, and the final wing surface was surveyed to provide coordinates for computational code validations. The model was not painted for this test due to concern over protection of the pressure sensor orifices and the surface finish near the orifices. Finally, upper and lower surface transition grit strips were applied. The #80 grit strips were located at five percent chord and were approximately 0.25 inches wide.

STRUCTURAL MODELING AND VIBRATION TESTING

The MSC NASTRAN Finite Element Model (FEM) of the clean wing (wing with no tip) configuration from the earlier tests was modified for the current test. In the FEMs, the aluminum plate is represented by plate elements with plate thickness based on measured values. Plate elements representing the end-grain balsa wood, with thickness based on the airfoil shape, are superimposed on the aluminum plate elements. The same balsa properties derived for use in the earlier FEM were used and rendered good quality results in terms of mass and stiffness. New FEMs were constructed for all three of the current tip configurations. Plate and concentrated mass elements were used for the clean wingtip and winglet, and beam elements with concentrated masses were used for the tipstore. The final measured and NASTRAN model weights were 24.25, 24.46, and 24.53 lb for the clean wingtip, tipstore, and winglet configuration, respectively.

<table>
<thead>
<tr>
<th>Upper x/C</th>
<th>Lower x/C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td>0.11</td>
<td>0.11</td>
</tr>
<tr>
<td>0.16</td>
<td>0.16</td>
</tr>
<tr>
<td>0.22</td>
<td>0.22</td>
</tr>
<tr>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>0.38</td>
<td>0.38</td>
</tr>
<tr>
<td>0.44</td>
<td>0.44</td>
</tr>
<tr>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>0.55</td>
<td>0.55</td>
</tr>
<tr>
<td>0.60</td>
<td>0.60</td>
</tr>
<tr>
<td>0.65</td>
<td>0.65</td>
</tr>
<tr>
<td>0.70</td>
<td>0.70</td>
</tr>
<tr>
<td>0.76</td>
<td>0.76</td>
</tr>
<tr>
<td>0.82</td>
<td>0.82</td>
</tr>
<tr>
<td>0.88</td>
<td>0.88</td>
</tr>
<tr>
<td>0.94</td>
<td>0.94</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Table 1. Unsteady pressure orifice locations for Inboard, Middle, and Outboard pressure chords.
Vibration tests were conducted before the wind-tunnel test and periodically (wind-off) during the test. Table 2 gives the pre-test analytical and experimental bending and torsion mode frequencies and experimental measured damping values for the three wingtip configurations tested. The clean wingtip modal displacements and node lines for the first two bending and torsion modes are shown in Figure 7. Due to the large wing displacements anticipated for the test, attention was given to ensure that clearances at the wing root were adequate to prevent any rubbing or binding. Large amplitude free decay records indicated smooth damping in the first bending mode, decreasing from 1.5 percent for 2.5-inch deflections to 1 percent at the lowest amplitudes.

The aggressive LCO testing led to some cracks developing in the balsa wood, predominantly in the inboard region of the wing. This was reflected in small changes noted in modal frequencies from the wind-off vibration tests made during the test. For the clean wingtip configuration, the three lowest frequency modes varied from 4.07 to 3.91, from 14.04 to 12.75, and from 31.76 to 30.32 respectively, over the duration of the test.

TRANSONIC DYNAMICS TUNNEL

The TDT is a closed circuit, continuous-flow wind tunnel capable of testing at stagnation pressures from near zero to atmospheric conditions and over a Mach number range from zero to 1.2. The test section of the TDT is 16 feet square with cropped corners. Controlled variation of pressure in the tunnel simulates variations in flight altitude. Tests can be performed in the TDT using air as the test medium; however, the most distinguishing feature of the tunnel is the use of a heavy gas, presently R-134a refrigerant. R-134a is about four times as dense as air, yet has a speed of sound of about half that of air. These properties of higher density and lower sonic speed have beneficial effects on the design, fabrication, and testing of aeroelastically scaled wind-tunnel models. Other advantages resulting from the use of a heavy gas are a nearly three-fold increase in Reynolds number and lower tunnel drive horsepower requirements.

DATA ACQUISITION SYSTEM

Two digital Data Acquisition Systems (DAS) were utilized during the test. The primary system, DAS E, sampled 107 signals, all those discussed above plus several tunnel parameters and reference sine waves, at 1000 samples per second (sps). Analog antialiasing prefilters set at 200 Hz. were used on all channels. The second system, DAS D, sampled a subset of 30 instrumentation signals at 5000 sps using 1000 Hz. prefilters. The DAS D system was intended as a backup for DAS E and to provide information on any high frequency behavior above the 200 Hz. cutoff of the DAS E data. Approximately 1100 tunnel test points were acquired during the test, consisting of test...
Figure 7. Mode shapes and node lines for the first two bending and torsion modes of the clean wingtip configuration.

Tab Points (TP) and flutter Bypass Points (BP). At Tab Points, 10 seconds of data were acquired on both of the DAS systems. Since the TDT is devoted to flutter model testing, it is provided with a 'Bypass Valve' system that can rapidly decrease the test section dynamic pressure by venting the back-leg of the tunnel circuit to the plenum chamber. The system is activated via a trigger by test personnel in the control room who are monitoring model activity. The data system contains a 'circular file' that continuously maintains data for the preceding minute of the test. Activation of the Bypass Valves initiates acquisition of a BP data point by the DAS. This point consists of the one minute of data recorded prior to and one minute of data acquired following the BP event.

Results

In the present paper, only an overview of the test results will be given. The calculated and experimental flutter boundaries are given for the model in air and heavy gas, followed by a discussion of the flutter and LCO behaviors observed. Finally, maps of the LCO behavior of the model at dynamic pressures of 50-100 pounds per square foot (psf) are given, along with samples of time histories and wing pressure coefficients.

During testing, typical TDT flutter testing procedures were followed. The wing root bending strain gauge was monitored to ensure that limiting bending moments of 2600 in.-lb. were not exceeded. Early testing established the root angle of attack for near-zero wing loading as \(\alpha = 0.6 \) deg. Subsequent testing was performed for the three wingtip configurations at this angle and at increments of +1.0 and +1.5 deg, that is, for \(\alpha = +0.6, +1.6, \) and +2.1 deg. Testing was performed at constant tunnel total pressures, typically beginning at the lowest pressure to be tested for a given run and proceeding to higher pressures by 'bleeding' in air or heavy gas. At each pressure, tunnel test conditions were established by varying fan speed (RPM) which simultaneously varied tunnel Mach number and test section dynamic pressure.

Initial testing at lower dynamic pressures was conducted up to \(M = 1.2 \). Generally, model response was benign above \(M = 0.96 \) and subsequent testing focused on Mach numbers up to 1.0. Figures 8a and 8b give the flutter boundaries in air and heavy gas for the three wingtip configurations calculated using the FEMs and linear doublet lattice aerodynamics. Figure 8c also includes the limited number of experimental flutter points that were obtained in air. Figure 8c presents the corresponding experimental boundaries for heavy gas. The calculated results show similar trends with Mach number for the model in air and heavy gas, with the flutter boundary in air being about 20 psf lower than in heavy gas. The calculated flutter frequencies are similar for air and heavy gas, dropping from 12-14 Hz at \(M = 0.6 \) to about 10 Hz at \(M = 0.95 \). The experimental results in heavy gas (Figure 8c) show similar trends with each wingtip configuration but deviate from the linear calculations for the higher Mach numbers where the slopes of the experimental results are steeper. At \(M = 0.6 \) there is good agreement with the linear analysis.
Figure 8. Flutter boundaries and frequencies in air and heavy gas.
for the flutter dynamic pressure, Q, and frequency, f_r. However, at $M = 0.90$ the experimental values of Q and f_r have dropped to about 85 psf and below 8 Hz, respectively, well below the corresponding values from the analysis. Figure 9 shows the aft wingtip accelerometer time history recorded during a typical BP flutter point at $M_1 = 0.856$, $Q = 92$ psf, and $\alpha = 0.6$ deg. for the tipstore configuration. The peak amplitude of ± 20 g's, when the Bypass Valves were fired, corresponds to wingtip displacements of ± 2.9 inches for this $f_r = 8.2$ Hz flutter motion. The flutter analysis indicates that the flutter mode results predominantly from the coalescence of the wind-off first bending and torsion modes at $f = 3.68$ and 29.91 Hz, respectively for this configuration. The highest f_r measured during the test was at the highest dynamic pressure flutter point in heavy gas ($M_1 = 0.595$ and $Q_1 = 165$ psf) where $f_r = 12.5$ Hz.

![Sample of an aft wingtip accelerometer response at a flutter condition, pencil tipstore in heavy gas: $M_1 = 0.856$, $Q = 92$ psf, $\alpha = 0.6$ deg.](image)

Figure 9. Sample of an aft wingtip accelerometer response at a flutter condition, pencil tipstore in heavy gas: $M_1 = 0.856$, $Q = 92$ psf, $\alpha = 0.6$ deg.

The behavior of the model when approaching 'flutter' and 'LCO' points throughout the Mach range 0.60-0.95 was of interest since it involved elements familiar to flutter test engineers and central to this test: pseudo-random wing response to tunnel turbulence, 'bursting' and beating wing motions, rapid onset of 'diverging' wing oscillations, and the monotonic growth of wing oscillations to constant amplitude which is the signature of Limit Cycle Oscillations. Response to tunnel turbulence is termed pseudo-random here since there is correlation with tunnel disturbances, particularly at frequencies below 100 Hz. Bursting wing motions are commonly observed during approaches to flutter conditions and are typified by sudden growth of wing oscillations, typically of the subcritical flutter mode, whose amplitudes crest and then subside. The duration of these bursts, which occur with irregular intervals, is viewed as an indicator of approaching flutter onset. Bursting wing motions are mentioned since they were observed during this test. This behavior is more regular than in bursting, and is usually associated with closely spaced frequency components. The distinction between these latter two behaviors in practice can be difficult. In general, for Mach numbers between 0.60-0.85 the Mach number interval between the start of bursting behavior and flutter onset or LCO behavior grows with increasing Mach number. For lower speeds in this range, this difference is small and what is generally termed 'classical flutter onset' is observed. That is, over a short interval of increasing Mach number or dynamic pressure, exponentially diverging wing motions are encountered that usually lead to wing failure unless corrective action is taken. At the higher speeds in this range this difference in Mach number becomes larger and the situation becomes increasingly fuzzy. It is in this region of $M \sim 0.85-0.95$ where LCO behavior, which does not fit the classical flutter onset model, is encountered for the MAVRIC-I model.

Figures 10 and 11 present experimental data from a consecutive series of test points for conditions near the bottom of the transonic 'flutter dip'. The data is for the clean wingtip configuration at $\alpha = 0.6$ deg in heavy gas. Figure 10 presents aft wingtip accelerometer time histories illustrating the model behavior elements discussed above while Figure 11 presents pressure coefficient, C_p, distributions for the outboard row of sensors at the corresponding conditions. The ranges covered are $M = 0.881-0.95$ and $Q = 80.7-89.8$ psf. The $M = 0.881$ condition (Figs. 10a and 11a) is just below the onset of bursting activity and is characterized by low level activity in all structural modes up to 200 Hz with the preponderance of activity in the 1" and 2rd bending modes (1" bending wind-on frequency, f_{1p}, is 7.8 Hz). Flow at the outboard chord of pressures is intermittently separated at all but the highest Mach number. This is shown in Figure 11e by the trailing edge C_p minimum level rising above 0.0 psi while the maximum level remains below 0.0 psi. At $M = 0.89$ bursting activity in the 1" bending mode is seen (Figure 10b) with durations reaching 1-2 seconds and $f_{1p} = 7.5$ Hz. At this condition, the pressure level minima at the midchord trailing edge, $C_{P_{1\text{ch}}}$ (not shown), has decreased to 0.0, indicating that the region of separated flow has spread towards midchord. Fully developed LCO occurs at $M = 0.895$ with an average LCO amplitude of about 12 g’s and
with $f_{un} = 7.3$ Hz. A decreasing frequency of f_{un} with increasing Mach number has been noted in previous studies documenting high wing response transonic behaviors and it is demonstrated here as well. As the separated flow region continues to grow with Mach number increasing from 0.913 to 0.95, f_{un} drops from 7.1 Hz to 6.6 Hz. Beating behavior is seen at $M = 0.913$ while the response at $M = 0.95$ is much calmer, very similar to that at $M = 0.881$. Note that at the LCO condition, $M = 0.895$, the trailing-

Figure 10. Sequence of aft wingtip accelerometer responses exhibiting pseudo-random, bursting, Limit Cycle Oscillation, and beating responses: Clean wingtip, heavy gas, $\alpha = 0.6$ deg.

Figure 11. Sequence of pressure coefficient distributions from outboard pressure chord at Tab Points shown in Figure 10: mean, minimum, and maximum coefficient values.
edge wingtip flow on both the upper and lower surfaces is intermittently separating and reattaching, whereas at Mach 0.95 with the upper and the lower aft surfaces fully separated at the wingtip (Figure 11c) the response is benign. Three features which distinguish LCO wind-tunnel testing from flight testing are the test environment, the sensitivity of the LCO behavior, and the wing loading condition. A good portion of the nonstationary nature of the response shown in Figure 10 is related to the wind-tunnel test environment. Transonic wind tunnels (even those with documented good flow control and quality) are inherently 'noisy' in the frequency range 0-100 Hz where all aeroelastic testing is focused. This is in contrast to the flight test environment where disturbance levels in the 0-100 Hz range are well below those of wind-tunnels. Secondly, a feature seen repeatedly in this test was the sensitivity of the bursting, beating, and LCO behaviors to changing tunnel conditions. A consistent observation was that when transitioning from one stabilized tunnel condition to another, these dynamic behaviors were invariably accentuated, usually subsiding to lower levels once conditions were stabilized. This was true even for quite slow adjustments to tunnel condition (accomplished with a low rate of fan RPM changes). Thus this LCO behavior appears to be due to a very fine balance of forces on the wing, occurring at conditions of intermittent flow separations over wing regions of dominant modal motions (e.g., the wingtip region here for the 1" bending and torsion modes).

Finally, the wing loading condition in flight is an important parameter that is very rarely matched in aeroelastic wind tunnel testing due to the varying similitude requirements for matching model strength versus stiffness. Thus flutter models are usually tested near unloaded wing conditions (α= 0) and not near a 1-g statically deformed wing shape which similitude with the 1-g flight test would require. In the LCO maps discussed next, the effect of angle-of-attack on LCO behaviors is seen to be considerable.

Visual inspection of strip chart time histories for the two wingtip accelerometers was used to identify regions of bursting, beating, and LCO behavior. Maps of these behaviors are presented in Figures 12 and 13 for the three wingtip configurations tested in heavy gas and air, respectively. The maps cover the three angles tested and the dynamic pressure range from 50-100 psf. The Mach number range shown is 0.82 to 0.96. Although the model was tested, at the lower pressure levels, to Mach 1.2, no LCO behavior was observed above Mach 1.0. Severe Reynolds number and/or transition effects, evident in comparing mean wing pressures for air and heavy gas (not shown), were seen at Q = 50 psf. This effect was also noticeable at 75 psf but was not seen at 100 psf. Thus, the LCO map for air, Figure 13, should be used with caution, while that for heavy gas, Figure 12, is believed to be reliable for transonic flow with turbulent boundary layer flow. On the other hand, comparison of the two figures provides insight into the effect of the test gas on LCO behavior, with particular focus upon the effect of the speed of sound, and thus the reduced frequency, on LCO for a given model.

Numbers attached to boundaries in the Figures 12 and 13 give the half-amplitude LCO g-levels for the region denoted by the boundary. Regions of bursting and beating activity are denoted with 'B'. The dominant LCO behavior of the model was in the 1" bending mode, while LCO involving the 1" torsion mode was found for a narrow Mach number range during testing in air. Some regions of small amplitude LCO response of the 2" bending mode were also observed. Boundaries at the 100 psf level in these figures obviously merge with the flutter boundaries presented in Figure 8 and define what has traditionally been referred to as the bottom of the 'transonic dip'. This emphasizes the difficulty in distinguishing between flutter and large amplitude LCO behavior in such regions. Many of these 'flutter points' in Figure 8 actually were LCO points, even though the amplitude of the wing response led to Bypass Valve action. Likewise, there were a number of test conditions in the LCO map regions of Figures 12 and 13 where the Bypass Valve was used. Absence of boundaries in certain map regions should not be taken as implying benign response. Due to the complexity of the LCO behaviors, limitations in number of test points achievable, and concern for model integrity, the coverage of conditions in the maps is neither complete nor continuous.

A consistent feature of the maps, which has been observed elsewhere, is LCO behavior occurring at constant Mach number over a range of dynamic pressure. Narrowness of these regions leads to use of the term 'chimneys' in describing them. A feature notable in the maps is the trend of the dominant 1" wing bending LCO 'chimney' with angle-of-attack. In heavy gas, Figures 12a and 12b show the Mach number associated with this chimney increasing from Mach 0.9 at α= 0.6 deg. to Mach 0.92 at α = 2.1 deg. In contrast to this trend, in air (Figure 13a and
Figure 12. Maps of Limit Cycle Oscillation regions for model in heavy gas. Indices give half-amplitude levels of aft wingtip accelerometer response in g's; 'B' indicates bursting/beating response.
Figure 13. Maps of Limit Cycle Oscillation regions for model in air. Indices give half-amplitude levels of aft wingtip accelerometer response in g's; 'B' indicates bursting/beating response.
Inviscid methods are not reliable for such LCOreattaching flows would appear to be a necessity. Shock-boundary layer interactions for separating and those presented herein. Capability to treat unsteady necessary to compute LCO application cases like resolving the shock-boundary layer interactions are intensified when considering requirements for even for attached flow transonic cases. These issues allowing only a small number of sample applications computer cost and runtimes, up to the present, equations have been too expensive in terms of economical code capable of performing the numerous achieving the proper level of flow modeling with an maturity. The highest code levels encompassing the status of applications in this area. At issue has been features for many years. Reference 21 documents held promise of computing transonic aeroelastic Computational Fluid Dynamics (CFD) codes have the I" bending mode wind-on frequency near 10 Hz. in heavy gas, the shock oscillation feature is closer to mode near 30 Hz, whereas for the same Mach number interaction between shock oscillations and the torsion mechanism for the 1" torsion LCO seen here in air is measured on airfoils _°. Thus a possible coupling of self-excited shock oscillations that have been is at about k = o_/U - 0.07 with b chosen as the semichord in the midchord row of pressure sensors. This value is at the low end of the range of reduced frequencies of self-excited shock oscillations that have been measured on airfoils. Thus a possible coupling mechanism for the 1" torsion LCO seen here in air is interaction between shock oscillations and the torsion mode near 30 Hz, whereas for the same Mach number in heavy gas, the shock oscillation feature is closer to the 1" bending mode wind-on frequency near 10 Hz.

DISCUSSION OF COMPUTATIONAL CODE VALIDATIONS

Computational Fluid Dynamics (CFD) codes have held promise of computing transonic aeroelastic features for many years. Reference 21 documents the status of applications in this area. At issue has been achieving the proper level of flow modeling with an economical code capable of performing the numerous computer runs necessary to demonstrate method maturity. The highest code levels encompassing the various implementations of the Navier-Stokes equations have been too expensive in terms of computer cost and runtimes, up to the present, allowing only a small number of sample applications even for attached flow transonic cases. These issues are intensified when considering requirements for resolving the shock-boundary layer interactions necessary to compute LCO application cases like those presented herein. Capability to treat unsteady shock-boundary layer interactions for separating and reattaching flows would appear to be a necessity. Inviscid methods are not reliable for such LCO applications. Perturbation methods based on steady viscous flows may be useful in predicting onset boundaries, but are unlikely to be useful in determining LCO amplitudes.

Reference 10 reports LCO calculations for the 1993 test of the MAVRIC-I model using an interactive quasi-steady boundary layer method coupled with a Transonic Small Disturbance code. Large amplitude LCO simulations are shown for M = 0.888, Q = 79 psf and α = 0.2 deg. The calculations agreed well with the observed model frequency and amplitudes (about 3 inches half-amplitude wingtip motion) for this test condition in air. The calculation also agrees well with the LCO map from the current test: this condition is contained within the 1" wing bending LCO region of Figure 13a (α = 0.6 deg.). Thus, this data set provides excellent code validation test cases for the important class of flow conditions involving shock-induced transonic flow separation onset at low wing angles, including Limit Cycle Oscillation behavior.

CONCLUDING REMARKS

The Models for Aerelastic Validation Research Involving Computation model (MAVRIC-I), a business jet wing-fuselage semi-span flutter model, was tested in NASA Langley’s Transonic Dynamics Tunnel with the goal of obtaining experimental data suitable for Computational Aeroelasticity code validation at transonic separation onset conditions. The inexpensive aluminum plate/balsa wood construction and instrumentation procedures are notable in this research model, and similar procedures are being considered for future research model projects. Unsteady pressures and wing responses were obtained for three wingtip configurations: clean, tipstore, and winglet. Traditional flutter boundaries were measured over the range of M = 0.6 to 0.9 and maps of Limit Cycle Oscillation behavior were made in the range of M = 0.85 to 0.95. Effects of dynamic pressure and angle-of-attack were measured. Testing in both R134a heavy gas and air provided unique data on Reynolds number, transition effects, and the effect of the speed of sound on LCO behavior. The data set provides excellent code validation test cases for the important class of flow conditions involving shock-induced transonic flow separation onset at low wing angles, including Limit Cycle Oscillation behavior.

ACKNOWLEDGEMENTS

This work was supported by the NASA Aerospace Systems Concepts to Test (ASCoT) program. The authors wish to acknowledge Gulfstream Aerospace...
of Savannah, Georgia for providing the semispan business jet wing flutter model and the SEEK EAGLE Office, Eglin Air Force Base, Florida for support of the structural dynamic modeling and testing, and the wind tunnel testing.

REFERENCES

