Technical Report Series on the Boreal Ecosystem-Atmosphere Study (BOREAS)

Forrest G. Hall and Karl Huemmrich, Editors

Volume 189

BOREAS TF-1 SSA-OA Tower Flux, Meteorological, and Soil Temperature Data

T. Andrew Black, Z. Chen, and Zoran Nesic
University of British Columbia, Vancouver

National Aeronautics and Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

October 2000
Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the lead center for NASA’s scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA’s institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- **TECHNICAL PUBLICATION.** Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA’s counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- **TECHNICAL MEMORANDUM.** Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- **CONTRACTOR REPORT.** Scientific and technical findings by NASA-sponsored contractors and grantees.

- **CONFERENCE PUBLICATION.** Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- **SPECIAL PUBLICATION.** Scientific, technical, or historical information from NASA programs, projects, and mission, often concerned with subjects having substantial public interest.

- **TECHNICAL TRANSLATION.** English-language translations of foreign scientific and technical material pertinent to NASA’s mission.

Specialized services that complement the STI Program Office’s diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results... even providing videos.

For more information about the NASA STI Program Office, see the following:

- E-mail your question via the Internet to help@sti.nasa.gov

- Fax your question to the NASA Access Help Desk at (301) 621-0134

- Telephone the NASA Access Help Desk at (301) 621-0390

- Write to: NASA Access Help Desk NASA Center for AeroSpace Information 7121 Standard Drive Hanover, MD 21076-1320
Technical Report Series on the
Boreal Ecosystem-Atmosphere Study (BOREAS)

Forrest G. Hall and Karl Huemmrich, Editors

Volume 189

BOREAS TF-1 SSA-OA Tower Flux, Meteorological, and Soil Temperature Data

T. Andrew Black, Z. Chen, and Zoran Nesic
University of British Columbia, Vancouver

National Aeronautics and Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

October 2000
BOREAS TF-1 SSA-OA Tower Flux, Meteorological, and Soil Temperature Data

T. Andrew Black, Z. Chen, Zoran Nesic

Summary

The BOREAS TF-1 team collected energy, carbon dioxide, and momentum flux data above the canopy along with meteorological and soils data at the BOREAS SSA-OA site from mid-April to the end of the year for 1996. The data are available in tabular ASCII files.

Table of Contents

1) Data Set Overview
2) Investigator(s)
3) Theory of Measurements
4) Equipment
5) Data Acquisition Methods
6) Observations
7) Data Description
8) Data Organization
9) Data Manipulations
10) Errors
11) Notes
12) Application of the Data Set
13) Future Modifications and Plans
14) Software
15) Data Access
16) Output Products and Availability
17) References
18) Glossary of Terms
19) List of Acronyms
20) Document Information

1. Data Set Overview

1.1 Data Set Identification

BOREAS TF-01 SSA-OA Tower Flux, Meteorological, and Soil Temperature Data

1.2 Data Set Introduction

The Tower Flux (TF)-01 team collected heat, carbon dioxide, and momentum fluxes along with meteorological, soil temperature, soil moisture, and tree bole temperature data measured from the BOREal Ecosystem-Atmosphere Study (BOREAS) Southern Study Area (SSA) Old Aspen (OA) tower. These data were collected between 01-April and 31-December-1996.
1.3 Objective/Purpose

The general objective was to study carbon dioxide and water vapor exchange between the forest and atmosphere at the SSA-OA site. Specific objectives were:

- To measure the fluxes of sensible heat, H₂O and CO₂ above the aspen stand throughout the year.
- To obtain from the CO₂ flux data estimates of gross photosynthesis and respiration.
- To determine the contribution of the hazelnut understory to net ecosystem productivity (NEP).
- To determine the effects of environmental factors on stand evapotranspiration and NEP.
- To take part in the development of procedures for scaling up component fluxes to the stand level.
- To study the processes controlling turbulent transfer of H₂O and CO₂ within the stand.
- To take part in the evaluation of methods of estimating nocturnal CO₂ in and above the stand.

1.4 Summary of Parameters

From the tower, above the canopy, the following variables were measured: latent heat flux, sensible heat flux, net radiation, CO₂ flux, CO₂ concentration, momentum flux, Bowen ratio, air temperature, wind speed and direction, friction velocity, incident and reflected photosynthetic photon flux density (PPFD), incident and reflected shortwave and longwave radiation, water vapor concentration, relative humidity, precipitation, and air pressure. Under the canopy, the following measurements were collected to describe the soil and forest: soil heat flux, soil temperature, soil water potential, soil water content, and tree bole temperatures.

1.5 Discussion

In 1993 and 1994, the TF-01 group measured fluxes under the canopy at the SSA-OA site, while the TF-02 group measured above-canopy fluxes and profiles at that site. In 1996, the TF-01 group moved its equipment to the top of the 39 meter tower to measure above-canopy fluxes; this document describes the 1996 data collection effort.

The fluxes of momentum, sensible heat, latent heat (water vapor), and carbon dioxide using the eddy correlation method were measured at 39 m height on the main flux tower beginning in April 1996. This system operated continuously through the rest of 1996. The eddy correlation system consisted of 3-dimensional sonic anemometer (model 1012R2A (Solent) Gill Instruments, Lymington, UK) with a 15 cm path length, an infrared gas (CO₂/H₂O) analyzer (IRGA) (model 6262, LI-COR, Inc., Lincoln, NE) and a krypton open-path hygrometer (model KH20, Campbell Scientific, Inc. (CSI), Logan, UT). Air was drawn at 8.0 L/min down 3.2 mm inner diameter (i.d.) sampling tubing (model Bev-a-line, Thermoplastic Processes Inc., Sterling, NJ), then through copper tubing (3 mm i.d.) coiled and sandwiched between two aluminum plates within the same housing as the analyzer, and then through the analyzer's sample cell. To prevent condensation in the sampling tubing, it was heated (2-3 °C above ambient) by passing an electric current through 20-AWG nichrome wire (about 15 ohms resistance) coiled around the exterior of the tubing. The pump (model DOA-V191-AA diaphragm pump, Gast Inc., Dayton, OH) was located down stream of the sample cell resulting in the sample cell pressure being about 22 kPa less than atmospheric pressure. The IRGA was operated in absolute mode with dry air at zero CO₂ concentration flowing through the reference cell at 25 cm³/min. The KH20 hygrometer was operated continuously to evaluate signal delay time and any attenuation resulting from the sample tubing (Leuning and King, 1992; Lee et al., 1994).

Supporting measurements included soil heat flux at the 3-cm depth measured using nine soil heat flux plates (two, model F, Middleton Instruments, Melbourne, Australia, and seven homemade, following Fuchs and Tanner (1968)) along a 20-m transect; average temperature of the surface 3 cm of the forest floor using two integrating thermometers; a soil temperature profile at depths of 2, 5, 10, 20, 50, and 100 cm (CSI direct-burial copper-constantan thermocouples); tree bole temperatures at 0.2, 4.0, 8.0, 12.0, and 15.8 cm (thermocouple wire); downward total and diffuse solar (model PSP pyranometer, The Eppley Laboratory, Inc., Newport, RI), downward longwave (Eppley model PIR pyrgeometer), and net radiation (one model S-1 net radiometer, Sisstec Instruments, Oberriet, Switzerland (belonging to University of British Columbia (UBC)) and one Middleton model CN-1 net...
radiometer (belonging to Atmospheric Environment Service (AES)); PPFD (LI-COR model 190-SB quantum sensor) above the forest (at 33 m height from the ground); wind speed and direction above the overstory (model 05031 vane propeller anemometer, R.M. Young Co., Traverse City, MI); soil water content using the time-domain reflectometry (TDR) technique (Hook and Livingston, 1996) with two probes consisting of 3 stainless steel rods (3 mm diameter, 30 cm long, and 2 cm apart) were positioned horizontally at 8 cm (organic layer) and 15 cm (mineral layer) depths, five 120 cm segmented rods (two thin stainless steel strips, 1.2 cm wide and 1.5 cm apart bonded by an epoxy resin layer) were installed to measure average water content in 15 cm (0-30 cm) and 30 cm soil layers (30 - 120 cm depth); and infrared surface temperatures of the aspen and hazelnut canopies (model 4000 IR thermometer, Everest Interscience, Inc., Fullerton, CA).

1.6 Related Data Sets
BOREAS TF-01 SSA-OA Soil Characteristics Data
BOREAS TF-02 SSA-OA Tower Flux and Meteorological Data
BOREAS TF-01 Understory Flux, Meteorological, and Soil Temperature Data
BOREAS TF-09 SSA-OBS Tower Flux, Meteorological, and Soil Temperature Data

2. Investigator(s)

2.1 Investigator Name and Title
Prof. T. Andy Black
University of British Columbia
Department of Soil Science

2.2 Title of Investigation
Boreal Forest Atmosphere Interactions: Exchanges of Energy, Water Vapor and Trace Gases (SSA-OA)

2.3 Contact Information
Contact 1:
Mr. Zoran Nesic
University of British Columbia
Department of Soil Science
2357 Main Mall Rm. 139
Vancouver, BC V6T 1Z4 CANADA
(604) 822-3479, 822-5654 (Lab)
(604) 822-8639 (fax)
NESIC@PPC.UBC.CA

Contact 2:
Prof. T. Andy Black
University of British Columbia
Department of Soil Science
2357 Main Mall Rm. 139
Vancouver, BC V6T 1Z4 CANADA
(604) 822-2730
(604) 822-8639 (fax)
ablack@unixg.ubc.ca
3. Theory of Measurements

Measurements of the fluxes of momentum, sensible heat, water vapor, and CO$_2$ were made with the eddy covariance technique. Velocity components, air temperature, water vapor density, and CO$_2$ concentration in the air were sampled rapidly, and calculations of relevant covariances were performed from these samples to obtain the fluxes. For example, the flux of CO$_2$ was determined as follows:

\[F_c = w'c' \]

where \(w' \) is the departure of the vertical velocity component from its mean over the averaging interval, usually 30 minute, and \(c' \) is the departure of CO$_2$ concentration from its mean.

At the overstory level, three rotations in the coordinate transformation are applied to the flux data to make the lateral component (\(v' \)), vertical component (\(w' \)), and covariance (\(u'v' \)) of the wind vector equal to zero. At the understory level, however, only the mean lateral wind velocity component was rotated to zero under the suspicion that nonzero mean vertical velocities are possible within the trunk space. Webb, Pearman, and Leuning (1980) (WPL) corrections were made to the water vapor and carbon dioxide fluxes measured using the closed-path LI-COR 6262 infrared gas analyzer (IRGA). Broadening correction was done, but not on-line (see Chen et al., 1998, for summary of theory).

4. Equipment

4.1 Sensor/Instrument Description

4.1.1 Collection Environment

Measurements were collected from mid-April to the end of 1996. Over that time period, temperature conditions from less than -30 °C to over 30 °C were experienced.

4.1.2 Source/Platform

A 37-m walk up scaffold main tower and a 6-m scaffold tower about 40 m from the main tower.

4.1.3 Source/Platform Mission Objectives

The objective of the flux tower was to support instrumentation for the study of the fluxes of CO$_2$, energy, water vapor, and momentum between the forest and atmosphere at the SSA-OA.

4.1.4 Key Variables

Variables measured using eddy covariance: CO$_2$ and water vapor fluxes, momentum fluxes, sensible heat fluxes, and latent heat fluxes.

Supporting meteorological variables: net radiation, downward total and diffuse solar radiation, downward longwave radiation, PPFD, wind speed, wind direction, air temperature, soil temperature, soil heat flux, soil moisture, and precipitation.
4.1.5 Principles of Operation
A sonic anemometer determines the wind speed by a pair of transducers acting alternately as transmitters and receivers, sending pulses of high frequency ultrasound between themselves. The 3-D sonic has three pairs of transducers arranged in nonparallel axes.

The LI-COR 6262 CO2/H2O analyzer is based on the difference in absorption of infrared radiation passing through two gas sampling cells. The reference cell is used for a gas of known CO2 or H2O concentration, and the sample cell is used for a gas of unknown concentration. Infrared radiation is transmitted through both cell paths, and the output of the analyzer is proportional to the difference in absorption between the two.

The principles of operation of most of the supporting instruments can be found in Pearcy et al. (1991) and Fritschen and Gay (1979).

4.1.6 Sensor/Instrument Measurement Geometry
Above-canopy sensors were supported by a vertical triangular mast mounted on top of a 37 m tall scaffold-type main tower. The sonic anemometer was mounted at a height of 39 m. Other above-canopy measurements included downward total and diffuse solar (model PSP pyranometer, The Eppley Laboratory, Inc., Newport, RI), downward longwave (Eppley model PIR pyrgeometer) and net radiation (one model S-1 net radiometer, Swissteco Instruments, Oberriet, Switzerland, and one Middleton model CN-1 net radiometer), PPFD (LI-COR model 190-SB quantum sensor) above the forest (at 33 m height from the ground), wind speed and direction above the overstory (model 05031 vane propeller anemometer, R.M. Young Co., Traverse City, MI), and infrared surface temperatures of the aspen and hazelnut canopies (model 4000 IR thermometer, Everest Interscience, Inc., Fullerton, CA).

Under-canopy measurements included soil heat flux measured at the 3 cm depth using nine soil heat flux plates (two model F, Middleton Instruments, Melbourne, Australia, and seven homemade, following Fuchs and Tanner (1968)) along a 20 m transect, average temperature of the surface 3 cm of the forest floor using two integrating thermometers, a soil temperature profile at depths of 2, 5, 10, 20, 50, and 100 cm (CSI direct-burial copper-constantan thermocouples); tree bole temperatures at 0.2, 4.0, 8.0, 12.0, and 15.8 cm into the bole (thermocouple wire); and soil water content using the time-domain reflectometry (TDR) technique (Hook and Livingston, 1996), where two probes consisting of 3 stainless steel roads (3 mm diameter, 30 cm long, and 2 cm apart) were positioned horizontally at 8-cm (organic layer) and 15 cm (mineral layer) depths, and five 120 cm segmented rods (two thin stainless steel strips, 1.2 cm wide and 1.5 cm apart, bonded by an epoxy resin layer) were installed to measure average water content in 15-cm (0-30 cm) and 30 cm soil layers (30-120 cm depth).

Tree bole temperatures were measured in aspen trees using thermocouples placed in the bole at several depths determined from the north side of the tree. The temperatures were measured at 3.12 m height for the 0.2 cm depth, 3.16 m height for the 4.0 cm depth, 3.18 m height for the 8.0 cm depth (the center of the bole), at 3.16 m height for the 12 cm depth (4 cm depth from south side), and at 3.12 m height for the 15.8 cm depth (0.2 cm depth from south side). In addition, a measurement of the hazelnut stem temperature was made at 0.7 m height and 0.2 cm depth.

4.1.7 Manufacturer of Sensor/Instrument
Solent sonic anemometer:
Gill Instruments Limited
Solent House
Cannon Street
Lymington
Hampshire
SO41 9BR
United Kingdom
DAT-310 sonic anemometer:
Kaijo-Denki Co., Ltd.
No 19.1 Chrome Kanda-Nishikicho
Chiyoda-Ku
Tokyo 101
Japan

LI-COR LI-6262 IRGA, 190-SB PPFD, and LAI-2000 PCA:
LI-COR Inc.
P.O. Box 4425/4421
Superior Street
Lincoln, NE 68504
(303) 499-1701
(303) 499-1767 (fax)

KH2O krypton hygrometer:
Campbell Scientific
P.O. Box 551
Logan, UT 84321

CN-1 net radiometer:
Middleton Instruments, Inc.
P.O. Box 442
South Melbourne
Victoria, 3205
Australia

S-1 net radiometer:
Swissteco Instruments, Inc.
Stegweg, Eichenwies, CH-94633 OBERRIET SG
Switzerland

PSP pyranometer and PIR pyrgeometer:
The Eppley Laboratory, Inc.
12 Sheffield Ave.
P.O. Box 419
Newport, RI 02840
(401) 847-1020
(401) 847-1031 (fax)

05031 vane propeller anemometer:
R.M. Young Co.
Traverse City, MI

Distributor:
Campbell Scientific
P.O. Box 551
Logan, UT 84321
(801) 753-234
(801) 752-3268
Soil temperature (burial) Campbell Thermocouple, Copper-constantan thermocouple:
Campbell Scientific
P.O. Box 551
Logan, UT 84321
(801) 753-2342
(801) 752-3268 (fax)

4000 IR thermometer:
Everest Interscience, Inc.
P.O. Box 3640
Fullerton, CA 92634-3640
(714) 992-4461

M1 dewpoint hygrometer (with D2 sensor):
General Eastern Instruments Corp.
Watertown, MA

HMP-35C Vaisala humidity sensor:
Vaisala, Inc.
Woburn, MA

Distributor:
Campbell Scientific
P.O. Box 551
Logan, UT 84321
(801) 753-2342
(801) 752-3268 (fax)

Soil heat flux plate (model F):
Middleton Instruments, Inc.
P.O. Box 442
South Melbourne
Victoria, 3205
Australia

Time domain reflectometry (TDR):
G.S. Gabel Corp.
Victoria, BC, Canada

CS105 Barometer:
Vaisala, Inc.
Woburn, MA

Distributor:
Campbell Scientific
P.O. Box 551
Logan, UT 84321
(801) 753-2342
(801) 752-3268 (fax)
TE525 Tipping-bucket rain gauge:
Texas Electronics

Distributor:
Campbell Scientific
P.O. Box 551
Logan, UT 84321
(801) 753-2342
(801) 752-3268 (fax)

Weighing rain gauge:
Belfort Instrument Co.
1600 S. Clinton Street
Baltimore, MD 21224

21x, CR10 Data logging system:
Campbell Scientific
P.O. Box 551
Logan, UT 84321
(801) 753-2342
(801) 752-3268 (fax)

TD-4X2N diaphragm pump:
Brailsford Co.
670 Milton Road
Rye, NY 10580
(914) 967-1820
(914) 967-1836 (fax)

DOA-V191-AA diaphragm pump:
Gast, Inc.
P.O. Box 97
Benton Harbor, MI
(616) 926-6171
(616) 925-8288 (fax)

Bev-a-line tube:
Thermoplastic Processes, Inc.
Sterling NS

Dekoron tubing:
Wirex Controls Ltd.
9446 McLaughlin Road N. Unit #27
Brampton, ON
Canada, L6X 4H9
(905) 459-0742
(905) 450-8216
4.2 Calibration

4.2.1 Specifications
In 1996, the eddy covariance IRGA at the 33 m height was automatically calibrated by one of the eddy covariance PCs at midnight every day. A solenoid valve was opened, permitting nitrogen gas to flow into the entrance of the sampling tube for 12 seconds. This established the voltage signals corresponding to zero CO₂ and water vapor concentrations. A second solenoid was then opened for 12 seconds, permitting dry air with 350 mmol/mol CO₂ to enter the sampling tube, thereby calibrating the analyzer. The computer changed the calibration parameters in the control program, which ensured that CO₂ concentration was accurate to within ± 1 mmol/mol.

4.2.1.1 Tolerance
See Section 4.2.1.

4.2.2 Frequency of Calibration
See Section 4.2.1.

4.2.3 Other Calibration Information
None.

5. Data Acquisition Methods
The eddy covariance system consisted of a 3-D sonic anemometer/thermometer (SOLENT 1012R2A) for detecting the three velocity components and air temperature, the latter being derived from the speed of sound following Kaimal and Gaynor (1991), an open-path H₂O krypton gas analyzer for measuring water vapor density in the air, and a closed-path dual H₂O/CO₂ IRGA (LI-COR 6262) for measuring water vapor density and CO₂ concentration in the air.

The Solent sampled the wind speed components at 20.83 Hz, and its analog-to-digital converter sampled the LI-COR signals at 10 Hz. Prior to sampling, the latter signals had been passed through a passive filter with a 7 Hz cut-off frequency. Spectral analysis showed that frequencies above 1 Hz made almost no contribution to fluxes.

For the flux system, all raw data were recorded using PC systems with backup tape drives. Half-hour fluxes were calculated online. For other measurements, all those data were recorded by data loggers (model 21X, Campbell Scientific, Inc., Logan, UT), which were networked together, using the model MD-9 network interface, along with the main system. Every 3 hours, this network automatically transferred (using PC ANYWHERE software, Symantec Corp.) all data from the loggers to a network computer. This computer was accessed from our laboratory at UBC through a communication system, which comprised a modem, cellular phone, and Yagi antenna at the site, and a phone and modem in the laboratory. The Yagi antenna was mounted above the trees, and the cellular phone was housed in a thermostatically controlled box near the antenna. At midnight, the site computer compressed the previous 24 hours of half-hour flux data, called the laboratory, and in 3 minutes transferred (using Kermit file transfer software) the compressed data to the laboratory computer.

6. Observations

6.1 Data Notes
None.

6.2 Field Notes
None.
7. Data Description

7.1 Spatial Characteristics

7.1.1 Spatial Coverage
All data were collected at the BOREAS SSA-OA site in the Prince Albert National Park (PANP). North American Datum of 1983 (NAD83) coordinates for the site are:
- SSA-OA: latitude 53.62889° N, longitude 106.19779° W, and elevation of 600.63 m.

7.1.2 Spatial Coverage Map
Not applicable.

7.1.3 Spatial Resolution
Although the eddy covariance measurement is made at one point, it is well known that the fluxes measured with this technique can represent fluxes averaged over a relatively large area. An analysis of the upwind land surface area that contributes to a scalar flux measurement, often referred to as "fetch" or "footprint," is crucial in understanding the origins of the flux and any possible influences of spatial heterogeneity. According to Blanken's (1997) results (using Schuepp et al., 1990, model), the cumulative flux at 39 m reached 80% of the total flux at an upwind distance of 1,200 m under neutral conditions, 900 m under typical daytime stability conditions, and 2,700 m under typical nighttime stability conditions. The corresponding values for the 4 m height (above the understory) were 130, 80, and 300 m. Baldocchi (1997) suggests the latter values are overestimates. From the above results, there was adequate fetch at the OA site because the forest extended for at least 3 km in all directions.

7.1.4 Projection
None.

7.1.5 Grid Description
None.

7.2 Temporal Characteristics

7.2.1 Temporal Coverage
The flux data were collected from 20-April to 31-December-1996. The supporting meteorological data were collected from 02-February-1996 to 31-December-1996. Note that Saskatchewan Research Council (SRC) (Airborne Fluxes and Meteorology (AFM)-07) operated a MESONET site at the OA (70 m southeast of main tower) through the study period.

7.2.2 Temporal Coverage Map
None.

7.2.3 Temporal Resolution
The data reported are 30-minute statistical mean values.

7.3 Data Characteristics
7.3.1 Parameter/Variable

The parameters contained in the data files on the CD-ROM are:

<table>
<thead>
<tr>
<th>Column Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
</tr>
<tr>
<td>SUB_SITE</td>
</tr>
<tr>
<td>DATE_OBS</td>
</tr>
<tr>
<td>TIME_OBS</td>
</tr>
<tr>
<td>SENSIBLE_HEAT_FLUX_ABV_CNPY</td>
</tr>
<tr>
<td>LATENT_HEAT_FLUX_ABV_CNPY</td>
</tr>
<tr>
<td>NET_RAD_ABV_CNPY</td>
</tr>
<tr>
<td>SOIL_HEAT_FLUX_3CM_1</td>
</tr>
<tr>
<td>SOIL_HEAT_FLUX_3CM_4</td>
</tr>
<tr>
<td>SOIL_HEAT_FLUX_3CM_6</td>
</tr>
<tr>
<td>SOIL_HEAT_FLUX_3CM_7</td>
</tr>
<tr>
<td>SOIL_HEAT_FLUX_3CM_8</td>
</tr>
<tr>
<td>SOIL_HEAT_FLUX_3CM_9</td>
</tr>
<tr>
<td>SOIL_HEAT_FLUX_8CM</td>
</tr>
<tr>
<td>CO2_FLUX_ABV_CNPY</td>
</tr>
<tr>
<td>CO2_CONC_ABV_CNPY</td>
</tr>
<tr>
<td>CO2_CONC_39M</td>
</tr>
<tr>
<td>CO2_CONC_28M</td>
</tr>
<tr>
<td>CO2_CONC_22M</td>
</tr>
<tr>
<td>CO2_CONC_18M</td>
</tr>
<tr>
<td>CO2_CONC_10M</td>
</tr>
<tr>
<td>CO2_CONC_4M</td>
</tr>
<tr>
<td>CO2_CONC_2M</td>
</tr>
<tr>
<td>CO2_CONC_50CM</td>
</tr>
<tr>
<td>BOWEN_RATIO_ABV_CNPY</td>
</tr>
<tr>
<td>KINEM_MOMENT_FLUX_ABV_CNPY</td>
</tr>
<tr>
<td>DOWN_PPFD_ABV_CNPY</td>
</tr>
<tr>
<td>UP_PPFD_ABV_CNPY</td>
</tr>
<tr>
<td>WIND_DIR_ABV_CNPY</td>
</tr>
<tr>
<td>WIND_SPEED_ABV_CNPY</td>
</tr>
<tr>
<td>FRICTION_VEL_ABV_CNPY</td>
</tr>
<tr>
<td>MEAN_U_WIND_SPEED</td>
</tr>
<tr>
<td>VAR_W_WIND_SPEED</td>
</tr>
<tr>
<td>H2O_CONC_ABV_CNPY</td>
</tr>
<tr>
<td>H2O_CONC_39M</td>
</tr>
<tr>
<td>H2O_CONC_28M</td>
</tr>
<tr>
<td>H2O_CONC_22M</td>
</tr>
<tr>
<td>H2O_CONC_18M</td>
</tr>
<tr>
<td>H2O_CONC_10M</td>
</tr>
<tr>
<td>H2O_CONC_4M</td>
</tr>
<tr>
<td>H2O_CONC_2M</td>
</tr>
<tr>
<td>H2O_CONC_50CM</td>
</tr>
<tr>
<td>AIR_TEMP_ABV_CNPY</td>
</tr>
<tr>
<td>AIR_TEMP_ABV_CNPY_2</td>
</tr>
<tr>
<td>SOLENT_AIR_TEMP_ABV_CNPY</td>
</tr>
<tr>
<td>SOIL_TEMP_2CM</td>
</tr>
<tr>
<td>SOIL_TEMP_5CM</td>
</tr>
<tr>
<td>SOIL_TEMP_10CM</td>
</tr>
<tr>
<td>SOIL_TEMP_20CM</td>
</tr>
</tbody>
</table>
7.3.2 Variable Description/Definition
The descriptions of the parameters contained in the data files on the CD-ROM are:

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
<td>The identifier assigned to the site by BOREAS, in the format SSS-TTT-CCCCC, where SSS identifies the portion of the study area: NSA, SSA, REG, TRN, and TTT identifies the cover type for the site, 999 if unknown, and CCCCC is the identifier for site, exactly what it means will vary with site type.</td>
</tr>
<tr>
<td>SUB_SITE</td>
<td>The identifier assigned to the sub-site by BOREAS in the format GGGGG-III, where GGGGG is the group associated with the sub-site instrument, e.g. HYD06 or STAFF, and IIIII is the identifier for sub-site, often this will refer to an instrument.</td>
</tr>
<tr>
<td>DATE_OBS</td>
<td>The date on which the data were collected.</td>
</tr>
<tr>
<td>TIME_OBS</td>
<td>The Greenwich Mean Time (GMT) of the start of the data collection.</td>
</tr>
<tr>
<td>SENSIBLE_HEAT_FLUX_ABV_CNPY</td>
<td>The sensible heat flux measured above the canopy.</td>
</tr>
<tr>
<td>LATENT_HEAT_FLUX_ABV_CNPY</td>
<td>The latent heat flux measured above the canopy.</td>
</tr>
<tr>
<td>NET_RAD_ABV_CNPY</td>
<td>The net radiation measured above the canopy.</td>
</tr>
<tr>
<td>SOIL_HEAT_FLUX_3CM_1</td>
<td>The soil heat flux measured at 3 cm depth at plot...</td>
</tr>
<tr>
<td>Variable</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>SOIL_HEAT_FLUX_3CM_4</td>
<td>The soil heat flux measured at 3 cm depth at plot 4.</td>
</tr>
<tr>
<td>SOIL_HEAT_FLUX_3CM_6</td>
<td>The soil heat flux measured at 3 cm depth at plot 6.</td>
</tr>
<tr>
<td>SOIL_HEAT_FLUX_3CM_7</td>
<td>The soil heat flux measured at 3 cm depth at plot 7.</td>
</tr>
<tr>
<td>SOIL_HEAT_FLUX_3CM_8</td>
<td>The soil heat flux measured at 3 cm depth at plot 8.</td>
</tr>
<tr>
<td>SOIL_HEAT_FLUX_3CM_9</td>
<td>The soil heat flux measured at 3 cm depth at plot 9.</td>
</tr>
<tr>
<td>SOIL_HEAT_FLUX_8CM</td>
<td>The soil heat flux measured at 8 cm depth.</td>
</tr>
<tr>
<td>CO2_FLUX_ABV_CNPY</td>
<td>The carbon dioxide flux measured above the canopy.</td>
</tr>
<tr>
<td>CO2_CONC_ABV_CNPY</td>
<td>The carbon dioxide concentration measured above the canopy.</td>
</tr>
<tr>
<td>CO2_CONC_39M</td>
<td>The carbon dioxide concentration measured at 39 m above ground level.</td>
</tr>
<tr>
<td>CO2_CONC_28M</td>
<td>The carbon dioxide concentration measured at 28 m above ground level.</td>
</tr>
<tr>
<td>CO2_CONC_22M</td>
<td>The carbon dioxide concentration measured at 22 m above ground level.</td>
</tr>
<tr>
<td>CO2_CONC_18M</td>
<td>The carbon dioxide concentration measured at 18 m above ground level.</td>
</tr>
<tr>
<td>CO2_CONC_10M</td>
<td>The carbon dioxide concentration measured at 10 m above ground level.</td>
</tr>
<tr>
<td>CO2_CONC_4M</td>
<td>The carbon dioxide concentration measured at 4 m above ground level.</td>
</tr>
<tr>
<td>CO2_CONC_2M</td>
<td>The carbon dioxide concentration measured at 2 m above ground level.</td>
</tr>
<tr>
<td>CO2_CONC_50CM</td>
<td>The carbon dioxide concentration measured at 50 cm above the ground.</td>
</tr>
<tr>
<td>BOWEN_RATIO_ABV_CNPY</td>
<td>The above-canopy Bowen Ratio, defined as the sensible heat flux divided by the latent heat flux.</td>
</tr>
<tr>
<td>KINEM_MOMENT_FLUX_ABV_CNPY</td>
<td>Kinematic momentum flux density measured above the canopy.</td>
</tr>
<tr>
<td>DOWN_PPFD_ABV_CNPY</td>
<td>The downward (incoming) photosynthetic photon flux density measured above the canopy.</td>
</tr>
<tr>
<td>UP_PPFD_ABV_CNPY</td>
<td>The reflected photosynthetic photon flux density measured above the canopy.</td>
</tr>
<tr>
<td>WIND_DIR_ABV_CNPY</td>
<td>The direction from which the wind is blowing (increasing in a clockwise direction from the North) and measured above the canopy.</td>
</tr>
<tr>
<td>WIND_SPEED_ABV_CNPY</td>
<td>The wind speed measured above the canopy.</td>
</tr>
<tr>
<td>FRICTION_VEL_ABV_CNPY</td>
<td>The friction velocity above the canopy.</td>
</tr>
<tr>
<td>MEAN_U_WIND_SPEED</td>
<td>Mean of a 30 minute period of the streamwise wind speed.</td>
</tr>
<tr>
<td>VAR_W_WIND_SPEED</td>
<td>Variance of the vertical wind velocity.</td>
</tr>
<tr>
<td>H2O_CONC_ABV_CNPY</td>
<td>The water vapor concentration measured above the canopy.</td>
</tr>
<tr>
<td>H2O_CONC_39M</td>
<td>The water vapor concentration measured at 39 m above ground level.</td>
</tr>
<tr>
<td>H2O_CONC_28M</td>
<td>The water vapor concentration measured at 28 m above ground level.</td>
</tr>
</tbody>
</table>
H2O_CONC_22M
The water vapor concentration measured at 22 m above ground level.

H2O_CONC_18M
The water vapor concentration measured at 18 m above ground level.

H2O_CONC_10M
The water vapor concentration measured at 10 m above ground level.

H2O_CONC_4M
The water vapor concentration measured at 4 m above ground level.

H2O_CONC_2M
The water vapor concentration measured at 2 m above ground level.

H2O_CONC_50CM
The water vapor concentration measured at 50 cm above the ground.

AIR_TEMP_ABV_CNPY
The air temperature measured above the canopy.

AIR_TEMP_ABV_CNPY_2
A second air temperature measured above the canopy.

SOLENT_AIR_TEMP_ABV_CNPY
The air temperature measured by the Solent sonic anemometer using the speed of sound relationship.

SOIL_TEMP_2CM
Soil temperature at 2 cm depth.

SOIL_TEMP_5CM
Soil temperature measured at a depth of 5 cm.

SOIL_TEMP_10CM
Soil temperature at a depth of 10 cm.

SOIL_TEMP_20CM
Soil temperature at 20 cm depth.

SOIL_TEMP_50CM
Soil temperature measured at 50 cm depth.

SOIL_TEMP_100CM
The soil temperature recorded at 1 m in depth.

SOIL_TEMP_INT_3CM_3
The temperature of the 0-3 cm surface layer during the last 1 minute of the half hour from integrating thermometer 3.

SOIL_TEMP_INT_3CM_4
The temperature of the 0-3 cm surface layer during the last 1 minute of the half hour from integrating thermometer 4.

SOIL_WATER_POTENT_3CM
The soil water potential at 3 cm depth.

SOIL_WATER_POTENT_6CM
The soil water potential at 6 cm depth.

SOIL_WATER_POTENT_46CM
The soil water potential at 46 cm depth.

SOIL_WATER_CONTENT_0_15CM
The soil water content between 0 and 15 cm depth, measured by Time Domain Reflectometry (TDR).

SOIL_WATER_CONTENT_15_30CM
The soil water content between 15 and 30 cm depth, measured by Time Domain Reflectometry (TDR).

SOIL_WATER_CONTENT_30_60CM
The soil water content between 30 and 60 cm depth, measured by Time Domain Reflectometry (TDR).

SOIL_WATER_CONTENT_60_90CM
The soil water content between 60 and 90 cm depth, measured by Time Domain Reflectometry (TDR).

SOIL_WATER_CONTENT_90_120CM
The soil water content between 90 and 120 cm depth, measured by Time Domain Reflectometry (TDR).

REL_HUM_ABV_CNPY
The relative humidity measured above the canopy.

REL_HUM_ABV_CNPY_2
A second relative humidity measured above the canopy.

BOLE_TEMP_2MM
Tree bole temperature at 0.2 cm depth from north side.

BOLE_TEMP_4CM
Tree bole temperature at 4 cm depth from north side.
7.3.3 Unit of Measurement

The measurement units for the parameters contained in the data files on the CD-ROM are:

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE NAME</td>
<td>[none]</td>
</tr>
<tr>
<td>SUB_SITE</td>
<td>[none]</td>
</tr>
<tr>
<td>DATE_OBS</td>
<td>[DD-MON-YY]</td>
</tr>
<tr>
<td>TIME_OBS</td>
<td>[HHMM GMT]</td>
</tr>
<tr>
<td>SENSIBLE_HEAT_FLUX_ABV_CNPY</td>
<td>[Watts][meter^-2]</td>
</tr>
<tr>
<td>LATENT_HEAT_FLUX_ABV_CNPY</td>
<td>[Watts][meter^-2]</td>
</tr>
<tr>
<td>NET_RAD_ABV_CNPY</td>
<td>[Watts][meter^-2]</td>
</tr>
<tr>
<td>SOIL_HEAT_FLUX_3CM_1</td>
<td>[Watts][meter^-2]</td>
</tr>
<tr>
<td>SOIL_HEAT_FLUX_3CM_4</td>
<td>[Watts][meter^-2]</td>
</tr>
<tr>
<td>SOIL_HEAT_FLUX_3CM_6</td>
<td>[Watts][meter^-2]</td>
</tr>
<tr>
<td>SOIL_HEAT_FLUX_3CM_7</td>
<td>[Watts][meter^-2]</td>
</tr>
<tr>
<td>SOIL_HEAT_FLUX_3CM_8</td>
<td>[Watts][meter^-2]</td>
</tr>
<tr>
<td>SOIL_HEAT_FLUX_3CM_9</td>
<td>[Watts][meter^-2]</td>
</tr>
<tr>
<td>SOIL_HEAT_FLUX_8CM</td>
<td>[Watts][meter^-2]</td>
</tr>
<tr>
<td>CO2_FLUX_ABV_CNPY</td>
<td>[micromoles][meter^-2][second^-1]</td>
</tr>
<tr>
<td>CO2_CONC_ABV_CNPY</td>
<td>[parts per million]</td>
</tr>
<tr>
<td>CO2_CONC_39M</td>
<td>[parts per million]</td>
</tr>
<tr>
<td>CO2_CONC_28M</td>
<td>[parts per million]</td>
</tr>
<tr>
<td>CO2_CONC_22M</td>
<td>[parts per million]</td>
</tr>
<tr>
<td>CO2_CONC_18M</td>
<td>[parts per million]</td>
</tr>
<tr>
<td>CO2_CONC_10M</td>
<td>[parts per million]</td>
</tr>
<tr>
<td>CO2_CONC_4M</td>
<td>[parts per million]</td>
</tr>
</tbody>
</table>

BOLE_TEMP_8CM Tree bole temperature at 8 cm depth from north side.
BOLE_TEMP_12CM Tree bole temperature at 12 cm depth from north side.
BOLE_TEMP_158MM Tree bole temperature at 15.8 cm depth from north side.
RAINFALL The amount of rainfall measured above the canopy over the 30 minute period.
DOWN_SHORTWAVE_RAD_ABV_CNPY The downward (incoming) solar radiation measured above the canopy.
DOWN_SHORTWAVE_RAD_ABV_CNPY_2 A second downward (incoming) shortwave radiation measurement taken above the canopy.
UP_SHORTWAVE_RAD_ABV_CNPY The reflected (outgoing) solar radiation measured above the canopy.
DOWN_LONGWAVE_RAD_ABV_CNPY The downward (incoming) longwave radiation measured above the canopy.
UP_LONGWAVE_RAD_ABV_CNPY The upward (outgoing) longwave radiation measured above the canopy.
SURF_PRESS The atmospheric pressure measured at the station.
CRTFCN_CODE The BOREAS certification level of the data. Examples are CPI (Checked by PI), CGR (Certified by Group), PRE (Preliminary), and CPI-?? (CPI but questionable).
REVISION_DATE The most recent date when the information in the referenced data base table record was revised.
CO2_CONC_2M [parts per million]
CO2_CONC_50CM [parts per million]
BOWEN_RATIO_ABV_CNPY [unitless]
KINEM_MOMENT_FLUX_ABV_CNPY [meters^2][second^-2]
DOWN_PPFD_ABV_CNPY [micromoles][meter^-2][second^-1]
UP_PPFD_ABV_CNPY [micromoles][meter^-2][second^-1]
WIND_DIR_ABV_CNPY [degrees]
WIND_SPEED_ABV_CNPY [meters][second^-1]
FRICITION_VEL_ABV_CNPY [meters][second^-1]
MEAN_U_WIND_SPEED [meters][second^-2]
VAR_W_WIND_SPEED [meters^2][second^-2]
H2O_CONC_ABV_CNPY [parts per thousand]
H2O_CONC_39M [parts per thousand]
H2O_CONC_28M [parts per thousand]
H2O_CONC_22M [parts per thousand]
H2O_CONC_18M [parts per thousand]
H2O_CONC_10M [parts per thousand]
H2O_CONC_4M [parts per thousand]
H2O_CONC_2M [parts per thousand]
H2O_CONC_50CM [parts per thousand]
AIR_TEMP_ABV_CNPY [degrees Celsius]
AIR_TEMP_ABV_CNPY_2 [degrees Celsius]
SOLENT_AIR_TEMP_ABV_CNPY [degrees Celsius]
SOIL_TEMP_2CM [degrees Celsius]
SOIL_TEMP_5CM [degrees Celsius]
SOIL_TEMP_10CM [degrees Celsius]
SOIL_TEMP_20CM [degrees Celsius]
SOIL_TEMP_50CM [degrees Celsius]
SOIL_TEMP_100CM [degrees Celsius]
SOIL_TEMP_INT_3CM_3 [degrees Celsius]
SOIL_TEMP_INT_3CM_4 [degrees Celsius]
SOIL_WATER_POTENT_3CM [MegaPascals]
SOIL_WATER_POTENT_6CM [MegaPascals]
SOIL_WATER_POTENT_46CM [MegaPascals]
SOIL_WATER_CONTENT_0_15CM [meter^3][meter^-3]
SOIL_WATER_CONTENT_15_30CM [meter^3][meter^-3]
SOIL_WATER_CONTENT_30_60CM [meter^3][meter^-3]
SOIL_WATER_CONTENT_60_90CM [meter^3][meter^-3]
SOIL_WATER_CONTENT_90_120CM [meter^3][meter^-3]
REL_HUM_ABV_CNPY [percent]
REL_HUM_ABV_CNPY_2 [percent]
BOLE_TEMP_2CM [degrees Celsius]
BOLE_TEMP_4CM [degrees Celsius]
BOLE_TEMP_8CM [degrees Celsius]
BOLE_TEMP_12CM [degrees Celsius]
BOLE_TEMP_158MM [degrees Celsius]
RAINFALL [millimeters]
DOWN_SHORTWAVE_RAD_ABV_CNPY [Watts][meter^-2]
DOWN_SHORTWAVE_RAD_ABV_CNPY_2 [Watts][meter^-2]
UP_SHORTWAVE_RAD_ABV_CNPY [Watts][meter^-2]
DOWN_LONGWAVE_RAD_ABV_CNPY [Watts][meter^-2]
UP_LONGWAVE_RAD_ABV_CNPY [Watts][meter^-2]
SURF_PRESS [kiloPascals]
CRTFCN_CODE [none]
REVISION_DATE [DD-MON-YY]
7.3.4 Data Source

The sources of the parameter values contained in the data files on the CD-ROM are:

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
<td>[Assigned by BORIS.]</td>
</tr>
<tr>
<td>SUB_SITE</td>
<td>[Assigned by BORIS.]</td>
</tr>
<tr>
<td>DATE_OBS</td>
<td>[Supplied by Investigator.]</td>
</tr>
<tr>
<td>TIME_OBS</td>
<td>[Supplied by Investigator.]</td>
</tr>
<tr>
<td>SENSIBLE_HEAT_FLUX_ABV_CNPY</td>
<td>[Solent sonic anemometer]</td>
</tr>
<tr>
<td>LATENT_HEAT_FLUX_ABV_CNPY</td>
<td>[IRGA]</td>
</tr>
<tr>
<td>NET_RAD_ABV_CNPY</td>
<td>[Net radiometer]</td>
</tr>
<tr>
<td>SOIL_HEAT_FLUX_3CM_1</td>
<td>[soil heat flux plate]</td>
</tr>
<tr>
<td>SOIL_HEAT_FLUX_3CM_4</td>
<td>[soil heat flux plate]</td>
</tr>
<tr>
<td>SOIL_HEAT_FLUX_3CM_6</td>
<td>[soil heat flux plate]</td>
</tr>
<tr>
<td>SOIL_HEAT_FLUX_3CM_7</td>
<td>[soil heat flux plate]</td>
</tr>
<tr>
<td>SOIL_HEAT_FLUX_3CM_8</td>
<td>[soil heat flux plate]</td>
</tr>
<tr>
<td>SOIL_HEAT_FLUX_3CM_9</td>
<td>[soil heat flux plate]</td>
</tr>
<tr>
<td>SOIL_HEAT_FLUX_8CM</td>
<td>[soil heat flux plate]</td>
</tr>
<tr>
<td>CO2_FLUX_ABV_CNPY</td>
<td>[IRGA]</td>
</tr>
<tr>
<td>CO2_CONC_ABV_CNPY</td>
<td>[IRGA]</td>
</tr>
<tr>
<td>CO2_CONC_39M</td>
<td>[IRGA]</td>
</tr>
<tr>
<td>CO2_CONC_26M</td>
<td>[IRGA]</td>
</tr>
<tr>
<td>CO2_CONC_22M</td>
<td>[IRGA]</td>
</tr>
<tr>
<td>CO2_CONC_18M</td>
<td>[IRGA]</td>
</tr>
<tr>
<td>CO2_CONC_10M</td>
<td>[IRGA]</td>
</tr>
<tr>
<td>CO2_CONC_4M</td>
<td>[IRGA]</td>
</tr>
<tr>
<td>CO2_CONC_2M</td>
<td>[IRGA]</td>
</tr>
<tr>
<td>CO2_CONC_50CM</td>
<td>[IRGA]</td>
</tr>
<tr>
<td>BOWEN_RATIO_ABV_CNPY</td>
<td>[Supplied by Investigator.]</td>
</tr>
<tr>
<td>KINEM_MOMENT_FLUX_ABV_CNPY</td>
<td>[Solent sonic anemometer]</td>
</tr>
<tr>
<td>DOWN_PPFD_ABV_CNPY</td>
<td>[quantum sensor]</td>
</tr>
<tr>
<td>UP_PPFD_ABV_CNPY</td>
<td>[quantum sensor]</td>
</tr>
<tr>
<td>WIND_DIR_ABV_CNPY</td>
<td>[vane propeller anemometer]</td>
</tr>
<tr>
<td>WIND_SPEED_ABV_CNPY</td>
<td>[vane propeller anemometer]</td>
</tr>
<tr>
<td>FRICTION_VEL_ABV_CNPY</td>
<td>[Solent sonic anemometer]</td>
</tr>
<tr>
<td>MEAN_U_WIND_SPEED</td>
<td>[Solent sonic anemometer]</td>
</tr>
<tr>
<td>VAR_W_WIND_SPEED</td>
<td>[Solent sonic anemometer]</td>
</tr>
<tr>
<td>H2O_CONC_ABV_CNPY</td>
<td>[krypton hygrometer]</td>
</tr>
<tr>
<td>H2O_CONC_39M</td>
<td>[IRGA]</td>
</tr>
<tr>
<td>H2O_CONC_26M</td>
<td>[IRGA]</td>
</tr>
<tr>
<td>H2O_CONC_22M</td>
<td>[IRGA]</td>
</tr>
<tr>
<td>H2O_CONC_18M</td>
<td>[IRGA]</td>
</tr>
<tr>
<td>H2O_CONC_10M</td>
<td>[IRGA]</td>
</tr>
<tr>
<td>H2O_CONC_4M</td>
<td>[IRGA]</td>
</tr>
<tr>
<td>H2O_CONC_2M</td>
<td>[IRGA]</td>
</tr>
<tr>
<td>H2O_CONC_50CM</td>
<td>[IRGA]</td>
</tr>
<tr>
<td>AIR_TEMP_ABV_CNPY</td>
<td>[thermometer]</td>
</tr>
<tr>
<td>AIR_TEMP_ABV_CNPY_2</td>
<td>[thermometer]</td>
</tr>
<tr>
<td>SOLENT_AIR_TEMP_ABV_CNPY</td>
<td>[Solent sonic anemometer]</td>
</tr>
<tr>
<td>SOIL_TEMP_2CM</td>
<td>[thermocouple]</td>
</tr>
<tr>
<td>SOIL_TEMP_5CM</td>
<td>[thermocouple]</td>
</tr>
<tr>
<td>SOIL_TEMP_10CM</td>
<td>[thermocouple]</td>
</tr>
<tr>
<td>SOIL_TEMP_20CM</td>
<td>[thermocouple]</td>
</tr>
</tbody>
</table>
7.3.5 Data Range

The following table gives information about the parameter values found in the data files on the CD-ROM.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Minimum Value</th>
<th>Maximum Value</th>
<th>Missng</th>
<th>Unrel</th>
<th>Below Data Limit</th>
<th>Data Not Collectd</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE NAME</td>
<td>SSA-9OA-FLXTR</td>
<td>SSA-9OA-FLXTR</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>SUB_SITE</td>
<td>9TF01-FLX01</td>
<td>9TF01-FLX01</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>DATE_OBS</td>
<td>01-APR-96</td>
<td>30-DEC-96</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>TIME_OBS</td>
<td>0</td>
<td>2330</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>SENSIBLE_HEAT_FLUX_ABV_CNPy</td>
<td>-161.03</td>
<td>696.11</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>LATENT_HEAT_FLUX_ABV_CNPy</td>
<td>-17.75</td>
<td>545.3</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>NET_RAD_ABV_CNPy</td>
<td>-85.387</td>
<td>833.85</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>SOIL_HEAT_FLUX_3CM_1</td>
<td>-9.29</td>
<td>52.31</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>SOIL_HEAT_FLUX_3CM_2</td>
<td>-20.37</td>
<td>52.01</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>SOIL_HEAT_FLUX_3CM_3</td>
<td>-23.83</td>
<td>64.07</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>SOIL_HEAT_FLUX_3CM_4</td>
<td>-18.32</td>
<td>52.69</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>SOIL_HEAT_FLUX_3CM_5</td>
<td>-18.24</td>
<td>48.1</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>SOIL_HEAT_FLUX_3CM_6</td>
<td>-31.5</td>
<td>29.26</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>SOIL_HEAT_FLUX_6CM</td>
<td>-10.45</td>
<td>47.37</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>CO2_FLUX_ABV_CNPy</td>
<td>-35.289</td>
<td>26.052</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>CO2_CONC_ABV_CNPy</td>
<td>323.91</td>
<td>402.07</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Variable</td>
<td>Value 1</td>
<td>Value 2</td>
<td>Value 3</td>
<td>Value 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2 CONC 39M</td>
<td>-34.642</td>
<td>32.327</td>
<td>-999</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2 CONC 28M</td>
<td>25.895</td>
<td>103.71</td>
<td>-999</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2 CONC 22M</td>
<td>-38.455</td>
<td>32.148</td>
<td>-999</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2 CONC 18M</td>
<td>32.646</td>
<td>104.55</td>
<td>-999</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2 CONC 10M</td>
<td>324.8</td>
<td>403.34</td>
<td>-999</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2 CONC 4M</td>
<td>324.63</td>
<td>419.14</td>
<td>-999</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2 CONC 2M</td>
<td>321.16</td>
<td>416.14</td>
<td>-999</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2 CONC 50CM</td>
<td>320.09</td>
<td>413.04</td>
<td>-999</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOWEN RATIO ABV CNPY</td>
<td>-4</td>
<td>4</td>
<td>-999</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KINEM MOMENT FLUX</td>
<td>-2.65</td>
<td>.144</td>
<td>-999</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOWN_PPFD_ABV_CNPY</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UP_PPFD_ABV_CNPY</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WIND_DIR_ABV_CNPY</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WIND_SPEED_ABV_CNPY</td>
<td>0</td>
<td>8.994</td>
<td>-999</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRICTION_VEL_ABV_CNPY</td>
<td>.002</td>
<td>1.628</td>
<td>-999</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEAN_U_WIND_SPEED</td>
<td>.022</td>
<td>9.673</td>
<td>-999</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAR_W_WIND_SPEED</td>
<td>0</td>
<td>3.681</td>
<td>-999</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2O CONC_ABV_CNPY</td>
<td>-.215</td>
<td>22.144</td>
<td>-999</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2O CONC 39M</td>
<td>320.55</td>
<td>516.64</td>
<td>-999</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2O CONC 28M</td>
<td>324.8</td>
<td>658.1</td>
<td>-999</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2O CONC 22M</td>
<td>326.1</td>
<td>681.11</td>
<td>-999</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2O CONC 18M</td>
<td>307.29</td>
<td>819.24</td>
<td>-999</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2O CONC 10M</td>
<td>2.871</td>
<td>27.459</td>
<td>-999</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2O CONC 4M</td>
<td>2.891</td>
<td>25.854</td>
<td>-999</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2O CONC 2M</td>
<td>2.896</td>
<td>26.526</td>
<td>-999</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2O CONC 50CM</td>
<td>2.909</td>
<td>26.307</td>
<td>-999</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIR_TEMP_ABV_CNPY</td>
<td>-34.451</td>
<td>31.492</td>
<td>-999</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIR TEMP_ABV_CNPY_2</td>
<td>-33.378</td>
<td>30.343</td>
<td>-999</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOIL TEMP 2CM</td>
<td>-2.9</td>
<td>17.64</td>
<td>-999</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOIL TEMP 5CM</td>
<td>-2.341</td>
<td>15.495</td>
<td>-999</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOIL TEMP 10CM</td>
<td>-2.117</td>
<td>14.838</td>
<td>-999</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOIL TEMP 20CM</td>
<td>-1.584</td>
<td>13.454</td>
<td>-999</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOIL TEMP 50CM</td>
<td>-1.602</td>
<td>11.791</td>
<td>-999</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOIL TEMP 100CM</td>
<td>.223</td>
<td>10.241</td>
<td>-999</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOIL TEMP_INT_3CM_3</td>
<td>-6.096</td>
<td>20.6</td>
<td>-999</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOIL TEMP_INT_3CM_4</td>
<td>-2.103</td>
<td>21.48</td>
<td>-999</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOIL WATER_POTENT_3CM</td>
<td>-1.3</td>
<td>-.003</td>
<td>-999</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOIL WATER_POTENT_6CM</td>
<td>-1.3</td>
<td>-.006</td>
<td>-999</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOIL WATER_POTENT_46CM</td>
<td>-1.3</td>
<td>-.015</td>
<td>-999</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOIL WATER_CONTENT_0_15CM</td>
<td>.14</td>
<td>.7</td>
<td>-999</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOIL WATER_CONTENT_15_30CM</td>
<td>.08</td>
<td>.46</td>
<td>-999</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOIL WATER_CONTENT_30_60CM</td>
<td>.17</td>
<td>.38</td>
<td>-999</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOIL WATER_CONTENT_60_90CM</td>
<td>.2</td>
<td>.37</td>
<td>-999</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Value 1</td>
<td>Value 2</td>
<td>Value 3</td>
<td>Value 4</td>
<td>Value 5</td>
<td>Value 6</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>SOIL_WATER_CONTENT_90_120CM</td>
<td>.24</td>
<td>.36</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>REL_HUM_ABV_CNPY</td>
<td>19.139</td>
<td>105</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>REL_HUM_ABV_CNPY_2</td>
<td>27.707</td>
<td>121.55</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>BOLE_TEMP_2MM</td>
<td>-35.61</td>
<td>36.36</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>BOLE_TEMP_4CM</td>
<td>-35.66</td>
<td>30.25</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>BOLE_TEMP_8CM</td>
<td>-35.57</td>
<td>28.59</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>BOLE_TEMP_12CM</td>
<td>-35.26</td>
<td>28</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>BOLE_TEMP_158MM</td>
<td>-35.26</td>
<td>30.31</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>RAINFALL</td>
<td>0</td>
<td>20.57</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>DOWN_SHORTWAVE_RAD_ABV_CNPY</td>
<td>-5.106</td>
<td>974.41</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>DOWN_SHORTWAVE_RAD_ABV_CNPY_2</td>
<td>0</td>
<td>972.8</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>UP_SHORTWAVE_RAD_ABV_CNPY</td>
<td>-.91769</td>
<td>143.75</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>DOWN_LONGWAVE_RAD_ABV_CNPY</td>
<td>125.42</td>
<td>405.23</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>UP_LONGWAVE_RAD_ABV_CNPY</td>
<td>189.8</td>
<td>479.07</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>SURF_PRESS</td>
<td>91.23</td>
<td>96.86</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>CRTFCN_CODE</td>
<td>CPI</td>
<td>CPI</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>REVISION_DATE</td>
<td>18-AUG-99</td>
<td>18-AUG-99</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

Minimum Data Value -- The minimum value found in the column.
Maximum Data Value -- The maximum value found in the column.
Missing Data Value -- The value that indicates missing data. This is used to indicate that an attempt was made to determine the parameter value, but the attempt was unsuccessful.
Unrel Data Value -- The value that indicates unreliable data. This is used to indicate an attempt was made to determine the parameter value, but the value was deemed to be unreliable by the analysis personnel.
Below Detect Limit -- The value that indicates parameter values below the instruments detection limits. This is used to indicate that an attempt was made to determine the parameter value, but the analysis personnel determined that the parameter value was below the detection limit of the instrumentation.
Data Not Collected -- This value indicates that no attempt was made to determine the parameter value. This usually indicates that BORIS combined several similar but not identical data sets into the same data base table but this particular science team did not measure that parameter.
Blank -- Indicates that blank spaces are used to denote that type of value.
N/A -- Indicates that the value is not applicable to the respective column.
None -- Indicates that no values of that sort were found in the column.
7.4 Sample Data Record

The following are wrapped versions of data record from a sample data file on the CD-ROM.

```
SITE_NAME, SUB_SITE, DATE_OBS, TIME_OBS, SENSIBLE_HEAT_FLUX_ABV_CNPY,
LATENT_HEAT_FLUX_ABV_CNPY, NET_RAD_ABV_CNPY, SOIL_HEAT_FLUX_3CM,  
SOIL_HEAT_FLUX_6CM, SOIL_HEAT_FLUX_9CM, CO2_FLUX_ABV_CNPY,
CO2_CONC_ABV_CNPY, CO2_CONC_30CM, CO2_CONC_60CM, CO2_CONC_90CM,
CO2_CONC_120CM, CO2_CONC_150CM, CO2_CONC_180CM, CO2_CONC_210CM,
CO2_CONC_240CM, CO2_CONC_270CM, CO2_CONC_300CM, BOWEN_RATIO_ABV_CNPY,
KINEM_MOMENT_FLUX_ABV_CNPY, DOWN_PPFD_ABV_CNPY, UP_PPFD_ABV_CNPY,
WIND_DIR_ABV_CNPY, WIND_SPEED_ABV_CNPY, FRICTION_VEL_ABV_CNPY,
MEAN_U_WIND_SPEED, VAR_W_WIND_SPEED, H20_CONC_ABV_CNPY, H20_CONC_39H,
H20_CONC_28H, H20_CONC_22H, H20_CONC_18H, H20_CONC_10H, H20_CONC_5H,
AIR_TEMP_ABV_CNPY, AIR_TEMP_ABV_CNPY_2, SOIL_TEMP_ABV_CNPY, SOIL_TEMP_2CM,
SOIL_TEMP_5CM, SOIL_TEMP_10CM, SOIL_TEMP_20CM, SOIL_TEMP_50CM, SOIL_TEMP_100CM,
SOIL_TEMP_INT_3CM, SOIL_TEMP_INT_4CM, SOIL_WATER_POTENT_3CM,
SOIL_WATER_POTENT_6CM, SOIL_WATER_POTENT_46CM, SOIL_WATER_POTENT_15CM,
SOIL_WATER_POTENT_30CM, SOIL_WATER_POTENT_60CM, SOIL_WATER_POTENT_90CM,
SOIL_WATER_POTENT_120CM, REL_HUM_ABV_CNPY, REL_HUM_ABV_CNPY_2,
BOLE_TEMP_2CM, BOLE_TEMP_4CM, BOLE_TEMP_8CM, BOLE_TEMP_12CM,
BOLE_TEMP_15CM, BOLE_TEMP_20CM, BOLE_TEMP_25CM, BOLE_TEMP_30CM,
RAINFALL, DOWN_SHORTWAVE_RAD_ABV_CNPY, DOWN_SHORTWAVE_RAD_ABV_CNPY_2,
UP_SHORTWAVE_RAD_ABV_CNPY, DOWN_LONGWAVE_RAD_ABV_CNPY, UP_LONGWAVE_RAD_ABV_CNPY,
SURE_PRESS, CRFTCN_CODE, REVISION_DATE
'SSA-9OA-FLXTR', '9TF01-FLX01', '01-JUN-96', '01-JUN-96',  
20.871, 19.806, 20.203, 12.12, 10.591, 10.011, 8.502, 5.983,
4.139, 13.21, 15.69, -0.31, -0.31, -0.31, -0.32, -0.32, -0.32,
-0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32,
-0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32,
-0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32,
-0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32,
-0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32,
-0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32,
-0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32,
-0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32,
-0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32,
-0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32,
-0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32,
-0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32,
-0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32,
-0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32,
-0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32,
-0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32,
-0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32,
-0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32,
-0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32,
-0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32,
-0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32,
-0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32,
-0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32,
-0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32,
-0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32,
-0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32,
-0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32,
-0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32,
-0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32,
-0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32,
-0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32,
-0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32,
-0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32,
-0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32,
-0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32,
-0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32,
-0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32,
-0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32, -0.32,
9. Data Manipulations

9.1 Formulae

9.1.1 Derivation Techniques and Algorithms
There are many equations and formulae used in the calculations of fluxes from the raw voltage signals. Readers are referred to the relevant references for details.

9.2 Data Processing Sequence

9.2.1 Processing Steps
Averages, variances, and covariances are calculated in real time, and coordinate rotation is applied on the half-hourly covariances and variances. WPL corrections were made to the water vapor and carbon dioxide fluxes measured using the closed-path LI-COR 6262 IRGA.

BORIS staff processed these data by:
- Reviewing the initial data files and loading them online for BOREAS team access.
- Designing relational data base tables to inventory and store the data.
- Loading the data into the relational data base tables.
- Working with the team to document the data set.
- Extracting the data into logical files.

9.2.2 Processing Changes
None.

9.3 Calculations

9.3.1 Special Corrections/Adjustments
WPL corrections were made to the water vapor and carbon dioxide fluxes measured using the closed-path LI-COR 6262 IRGA. Broadening correction was done, but not online (see Chen et al., 1998, for summary of theory).

9.3.2 Calculated Variables
The Bowen ratio is the ratio of the sensible to latent heat flux.

9.4 Graphs and Plots
See Black et al., 1996; Chen et al., 1998; Blanken, 1997; and Yang, 1998.

10. Errors

10.1 Sources of Error
None given.

10.2 Quality Assessment

10.2.1 Data Validation by Source
Data were checked and flagged for various conditions in the original data base at UBC (Z. Nesic). Relatively little data were missing in 4-m measurements in 1994 and 39-m measurements in 1996.

10.2.2 Confidence Level/Accuracy Judgment
None given.
10.2.3 Measurement Error for Parameters
None given.

10.2.4 Additional Quality Assessments
None.

10.2.5 Data Verification by Data Center
Data were examined to check for spikes, values that are four standard deviations from the mean, long periods of constant values, and missing data.

11. Notes

11.1 Limitations of the Data
None given.

11.2 Known Problems with the Data
The soil heat flux plates at plots 2, 3, and 5 did not collect any usable data.

11.3 Usage Guidance
Read this document carefully or contact Drs. T.A. Black and Z. Chen.

11.4 Other Relevant Information
None.

12. Application of the Data Set
These data are useful for the study of water, energy, and carbon exchange in a mature aspen forest.

13. Future Modifications and Plans
Data collection from the SSA-OA tower continued after 1996. Contact Dr. T.A. Black for information about these data.

14. Software

14.1 Software Description
None given.

14.2 Software Access
None given.
15. Data Access

The SSA-OA tower flux, meteorological, and soil temperature data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

15.1 Contact Information

For BOREAS data and documentation please contact:

ORNL DAAC User Services
Oak Ridge National Laboratory
P.O. Box 2008 MS-6407
Oak Ridge, TN 37831-6407
Phone: (423) 241-3952
Fax: (423) 574-4665
E-mail: ornldaac@ornl.gov or ornl@eos.nasa.gov

15.2 Data Center Identification

Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC) for Biogeochemical Dynamics http://www-eosdis.ornl.gov/.

15.3 Procedures for Obtaining Data

Users may obtain data directly through the ORNL DAAC online search and order system [http://www-eosdis.ornl.gov/] and the anonymous FTP site [ftp://www-eosdis.ornl.gov/data/] or by contacting User Services by electronic mail, telephone, fax, letter, or personal visit using the contact information in Section 15.1.

15.4 Data Center Status/Plans

The ORNL DAAC is the primary source for BOREAS field measurement, image, GIS, and hardcopy data products. The BOREAS CD-ROM and data referenced or listed in inventories on the CD-ROM are available from the ORNL DAAC.

16. Output Products and Availability

16.1 Tape Products

None.

16.2 Film Products

None.

16.3 Other Products

These data are available on the BOREAS CD-ROM series.
17. References

17.1 Platform/Sensor/Instrument/Data Processing Documentation
None.

17.2 Journal Articles and Study Reports


17.3 Archive/DBMS Usage Documentation
None.

18. Glossary of Terms
None.

19. List Of Acronyms

AES - Atmospheric Environment Service
AFM - Airborne Fluxes and Meteorology
ASCII - American Standard Code for Information Interchange
ATD - Atmospheric Technology Division
ATI - Applied Technologies, Inc.
BOREAS - BOReal Ecosystem-Atmosphere Study
BORIS - BOREAS Information System
CD-ROM - Compact Disk-Read-Only Memory
DAAC - Distributed Active Archive Center
EOS - Earth Observing System
EOSDIS - EOS Data and Information System
GIS - Geographic Information System
GMT - Greenwich Mean Time
GSFC - Goddard Space Flight Center
HTML - Hyper-Text Markup Language
i.d. - inner diameter
20. Document Information

20.1 Document Revision Date
Written: 04-Sep-1998
Last Updated: 03-Nov-1999

20.2 Document Review Date(s)
BORIS Review: 04-May-1999
Science Review:

20.3 Document ID

20.4 Citation
When using these data, please include the following acknowledgment as well as citations of relevant papers in Section 17.2:

Data were collected and processed by T.A. Black and Z. Nesic of the University of British Columbia.

If using data from the BOREAS CD-ROMs please also reference the data as:

Also, cite the BOREAS CD-ROM set as:

20.5 Document Curator

20.6 Document URL
### Technical Report Series on the Boreal Ecosystem-Atmosphere Study (BOREAS)

#### BOREAS TF-1 SSA-OA Tower Flux, Meteorological, and Soil Temperature Data

**Author(s):**
- T. Andrew Black, Z. Chen, and Zoran Nesic
- Forrest G. Hall and Karl Huemmrich, Editors

**Performing Organization Name(s) and Address(es):**
- Goddard Space Flight Center
  - Greenbelt, Maryland 20771

**Sponsoring / Monitors Agency Name(s) and Address(es):**
- National Aeronautics and Space Administration
  - Washington, DC 20546-0001

**Abstract:**
The BOREAS TF-1 team collected energy, carbon dioxide, and momentum flux data above the canopy along with meteorological and soils data at the BOREAS SSA-OA site from mid-April to the end of the year for 1996. The data are available in tabular ASCII files.