Technical Report Series on the Boreal Ecosystem-Atmosphere Study (BOREAS)

Forrest G. Hall and Karl Huemmrich, Editors

Volume 205

BOREAS TF-9 SSA-OBS Branch Level Flux Data

Mark. B. Rayment and Paul G. Jarvis
University of Edinburgh, UK

National Aeronautics and Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

November 2000
Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the lead center for NASA’s scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA’s institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- **TECHNICAL PUBLICATION.** Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA’s counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- **TECHNICAL MEMORANDUM.** Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- **CONTRACTOR REPORT.** Scientific and technical findings by NASA-sponsored contractors and grantees.

- **CONFERENCE PUBLICATION.** Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- **SPECIAL PUBLICATION.** Scientific, technical, or historical information from NASA programs, projects, and mission, often concerned with subjects having substantial public interest.

- **TECHNICAL TRANSLATION.** English-language translations of foreign scientific and technical material pertinent to NASA’s mission.

Specialized services that complement the STI Program Office’s diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results . . . even providing videos.

For more information about the NASA STI Program Office, see the following:

- E-mail your question via the Internet to help@sti.nasa.gov
- Fax your question to the NASA Access Help Desk at (301) 621-0134
- Telephone the NASA Access Help Desk at (301) 621-0390
- Write to: NASA Access Help Desk NASA Center for AeroSpace Information 7121 Standard Drive Hanover, MD 21076-1320
Technical Report Series on the Boreal Ecosystem-Atmosphere Study (BOREAS)

Forrest G. Hall and Karl Huemmrich, Editors

Volume 205

BOREAS TF-9 SSA-OBS
Branch Level Flux Data

Mark. B. Rayment and Paul G. Jarvis
University of Edinburgh, UK

National Aeronautics and Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

November 2000
BOREAS TF-9 SSA-OBS Branch Level Flux Data

Mark B. Rayment, Paul G. Jarvis

Summary

The BOREAS TF-9 team collected data that describe carbon dioxide and water vapor fluxes from foliage at the BOREAS SSA-OBS site from 07-April through 23-November-1996. The data are available in tabular ASCII files.

Table of Contents

1) Data Set Overview
2) Investigator(s)
3) Theory of Measurements
4) Equipment
5) Data Acquisition Methods
6) Observations
7) Data Description
8) Data Organization
9) Data Manipulations
10) Errors
11) Notes
12) Application of the Data Set
13) Future Modifications and Plans
14) Software
15) Data Access
16) Output Products and Availability
17) References
18) Glossary of Terms
19) List of Acronyms
20) Document Information

1. Data Set Overview

1.1 Data Set Identification
BOREAS TF-09 SSA-OBS Branch Level Flux Data

1.2 Data Set Introduction
A system of large cuvettes was used to measure whole branch CO₂ and H₂O vapor exchange of four black spruce (Picea mariana [Mill] BSP) branches at the BOREal Ecosystem-Atmosphere Study (BOREAS) Southern Study Area (SSA) Old Black Spruce (OBS) site.

1.3 Objective/Purpose
The objective of this study was to measure and model the CO₂ exchanges of boreal black spruce forest branches over the course of an entire growing season. These measurements will be used to parameterize models and to assist scaling up procedures from leaf level to stand level (eddy covariance) measurements.

1.4 Summary of Parameters and Variables
Measurements include CO₂ and H₂O fluxes, photosynthetic photon flux density (PPFD), air and leaf temperatures, relative humidity, air humidity deficit, and CO₂ concentration.
1.5 Discussion

The branch bags consisted of two 5-mm-thick acrylic end pieces, oval in shape (600-mm major axis, 300-mm minor axis, 0.14-m² area), separated by five thin (5-mm diameter) stainless steel rods. One end was made such that it could slide up or down the rods in order to adjust the bag length to suit the individual branch. An ovaloid shape was chosen to minimize dead volume within the bag, to minimize the bag’s surface area to volume ratio (minimizing any adsorption/desorption effects), to minimize attenuation of incoming light, and for aesthetic reasons. The bag itself was effected by covering the structure with polypropylene film (ICI Propafilm, 34-mm thickness, ICI PLC, London) and sealing along the edge of the end piece with silicone sealant. The bottom of the bag was left unsealed to allow placement of the bag upon the branch; afterward, it and the branch entry point were sealed in a similar fashion. A 12-volt electric fan (RS 583-050, RS Components Ltd., Northants) was mounted at the trunk end of each bag, and blew air at a high flow rate (40 dm³/s, approximately 18 to 26 air changes min⁻¹) through the bag via large shrouded inlet and outlet ports. When a gas exchange measurement was to be made, the ventilation fan was switched off, thin flap valves dropped over the inlet and outlet and were shut tight with small electromagnets, and an internal circulating fan was switched on. Air was circulated (5 dm³/min) at all times between all bags and the box containing the infrared gas analyzer (IRGA) and control system through loops of tubing (5-mm i.d. Dekabon, Furon, Gembiox, Belgium), and at measurement time a small amount of air (0.2 dm³/min) was diverted from the appropriate loop to the IRGA (LI-6262, LI-COR, Inc., Lincoln, NE) operating in absolute mode. Within each bag, relative humidity and air temperature were measured (Vaisala HMB 30A, Vaisala (UK) Ltd., Cambridge), as was leaf temperature (thin Cu-Con thermocouple referenced to the air temperature sensor) and, for a period, bag internal vs. external temperature (Cu-Con thermocouple). Light incident upon each branch was measured with a Macam light sensor (Macam SD101QV, Macam, Livingstone) mounted directly onto the branch, midway along its length. Sensor outputs were recorded through a Campbell AM416 multiplexer to a Campbell CR21X data logger (Campbell Scientific, Ltd., Shepshed, Leics.), which also initiated the measurement sequence.

Each bag was closed for 5 minutes in turn, during which time the sensors were read every 20 seconds; thus, each bag was measured every 20 minutes. Gas exchange was calculated from the slope of the regression of gas concentration upon time (excluding the readings from the initial 40 s for CO₂ and the initial 80 s for H₂O vapor in order to ensure that the IRGA was entirely flushed of the previous sample) and the volume of the system (106.3, 134.3, 91.9, and 106.3 dm³ for bags 1 to 4, respectively). The air sample bleed to the IRGA during the measurement period was negligible (~1 dm³) compared to the bag volume and was ignored in calculations. All bags were leak tested by shading the branch to its light compensation point, blowing into the bag to create a high internal/external concentration differential, closing the inlet and outlet ports, and monitoring bag concentration over a period of time.

1.6 Related Data Sets

- BOREAS TF-09 SSA-OBS Tower Flux, Meteorological, and Soil Temperature Data
- BOREAS TE-10 Leaf Gas Exchange Data
- BOREAS TE-11 Leaf Gas Exchange Measurements
- BOREAS TE-12 Leaf Gas Exchange Data

2. Investigator(s)

2.1 Investigator(s) Name and Title

Mr. Mark B. Rayment and Prof. Paul G. Jarvis
Institute of Ecology and Resource Management
University of Edinburgh UK

2.2 Title of Investigation

The CO₂ Exchanges of Boreal Black Spruce Forest
3. Theory of Measurements

The net carbon uptake of a tree depends on the assimilation of carbon dioxide by photosynthesis in the leaves and the carbon dioxide emissions resulting from respiratory processes in the leaves and woody tissues of the tree. Transpiration of water occurs mainly from the foliage. Enclosures surrounding branches remain open for the majority of the time and are periodically closed, at which time the rate of change of gas concentration allows calculation of an integrated measure of the net exchange of gases between the branch and the atmosphere.

4. Equipment

4.1 Sensor/Instrument Description

4.1.1 Collection Environment

Measurements were collected from early April through late November; temperatures ranged from below freezing to over 30 °C during that period.

4.1.2 Source/Platform

The branch bags surrounded individual spruce branches. The bags were supported in position by elastic ropes attached to the trunk above the bag and, where necessary, to a support projecting from the canopy access tower. This arrangement allowed the bags to move freely as the trees and branches moved with the wind. Each of the bags was positioned on a south-facing branch to minimize shading by the tower. The bags could be reached from the canopy access tower, made of 5- by 9-foot scaffolding.
Instruments:
- Gas concentration: IRGA LI-6262 (LI-COR, Inc., Lincoln, NE) operating in absolute mode.
- Relative humidity and air temperature: Vaisala HMB 30A (Vaisala (UK) Ltd., Cambridge).
- Leaf temperature: thin Cu-Con thermocouple referenced to the air temperature sensor.
- Incident PPFD: Macam SD101QV light sensor mounted directly onto the branch, midway along its length.
- Logger: Campbell AM416 multiplexer and Campbell CR21X data logger.
- Tubing: 5-mm i.d. Dekabon.

4.1.3 Source/Platform Mission Objectives
The objective was to measure branch-scale CO2 and water vapor fluxes and related environmental variables in black spruce at the southern edge of the boreal forest.

4.1.4 Key Variables
- CO2 and water vapor fluxes. Supporting meteorological variables: PPFD, air temperature, leaf temperature, CO2, and water vapor concentration.

4.1.5 Principles of Operation
The LI-COR LI-6262 IRGA is a closed-path instrument with reference and sample cells with an infrared source at one end and a detector at the other. Different gases absorb infrared of different frequencies, and filters are used to select a narrow band that corresponds to an absorption band of the gas of interest. The LI-6262 measures CO2 and H2O concentrations. A gas of known concentration is passed through a reference cell, and the gas whose concentration is to be measured is passed through the sample cell. The amount of infrared reaching the detector in each cell is a function of the gas concentration in the cell. The difference in voltage produced by the detectors of the reference and sample cells is then a function of the difference in concentration of the gas in the cells. Other sensors were common meteorological sensors used in a standard fashion. For principles of operations of these sensors, please see a relevant textbook; e.g., Pearcy et al. (1991).

4.1.6 Sensor/Instrument Measurement Geometry
Two branch bags were installed on each of two trees at the SSA-OBS site in early April 1996. Two bags were positioned in the upper canopy (at 7.85 m above the ground for branch number 1 and 8.25 m for branch number 3) and two in the lower canopy (at 5.22 m for branch number 2 and 5.48 m for branch number 4); the trees’ diameters at breast height (DBH) were 10 cm and 9 cm. The bags were supported in position by elastic ropes attached to the trunk above the bag and, where necessary, to a support projecting from the canopy access tower. This arrangement allowed the bags to move freely as the trees and branches moved with the wind. Each of the bags was positioned on a south-facing branch to minimize shading by the tower. Humidity, air and leaf temperatures, and PPFD were measured within the bag, close to or in contact with the leaves. Gas concentration was measured on a sample of air circulated between the bag and the IRGA. The IRGA was positioned in an insulated box mounted on the canopy access tower.

4.1.7 Manufacturer of Instrument
LI-COR LI-6262
P.O. Box 4425/4421
Superior Street
Lincoln, NE 68504
USA

Vaisala HMB 30A
Vaisala (UK) Ltd.
Cambridge
UK
4.2 Calibration

4.2.1 Specifications
The LI-6262: The output linearization of this instrument was calibrated by the manufacturer and was last performed in July 1993. The field calibration fixes the lower and upper ends of the linearization function and is carried out by passing CO₂ and water vapor free air through the reference cell (the instrument is used in the absolute mode) and setting the CO₂ and water vapor channels to zero. The upper point is set by passing dry air of known CO₂ or of known water vapor concentration through the sample cell and adjusting the appropriate channel to read the correct value. CO₂ standard gases were cross-referenced to the BOREAS primary standards, and a LI-COR LI-610 dewpoint generator was used to produce air of known water vapor density.

The Vaisala temperature and humidity probes either were bought new or were returned to the manufacturer for calibration immediately prior to installation.

The Macam PPFD sensors were purchased new immediately prior to installation, and the manufacturer's calibration factors were used.

All bags were leak tested by shading the branch to its light compensation point, blowing into the bag to create a high internal/external concentration differential, closing the inlet and outlet ports, and monitoring bag concentration over a period of time.

The LI-6262 was usually calibrated every 4 to 7 days. Typical CO₂ drift was 1-ppm drift in span and offset. Typical drift for the water vapor was 0.1 kPa in span and offset.

4.2.1.1 Tolerance
None.

4.2.2 Frequency of Calibrations
The LI-6262 was usually calibrated every 4 to 7 days.

4.2.3 Other Calibration Information
None.
5. Data Acquisition Methods

When a gas exchange measurement was to be made, the ventilation fan was switched off, thin flap valves dropped over the inlet and outlet and were shut tight with small electromagnets, and an internal circulating fan was switched on. Air was circulated (5 dm³/min) at all times between all bags and the box containing the IRGA and control system through loops of tubing, and at measurement time a small amount of air (0.2 dm³/min) was diverted from the appropriate loop to the IRGA operating in absolute mode. Within each bag, relative humidity and air temperature were measured, as was leaf temperature and, for a period, bag internal vs. external temperature. Light incident upon each branch was measured with a Macam light sensor mounted directly onto the branch, midway along its length.

Each bag was closed for 5 minutes in turn, during which time the sensors were read every 20 seconds; thus, each bag was measured every 20 minutes. Gas exchange was calculated from the slope of the regression of gas concentration upon time (excluding the readings from the initial 40 s for CO₂ and the initial 80 s for H₂O vapor in order to ensure that the IRGA was entirely flushed of the previous sample) and the volume of the system (106.3, 134.3, 91.9, and 106.3 dm³ for bags 1 to 4, respectively). The air sample bleed to the IRGA during the measurement period was negligible (~1 dm³) compared to the bag volume and was ignored in calculations.

A Campbell Scientific 21x data logger was used to log the data together with a Campbell AM416 multiplexer. The raw signal from each sensor was converted into the appropriate units in the data logger program. The data logger also initiated the measurement sequence.

6. Observations

6.1 Data Notes

Values given are on a PROJECTED leaf area basis; that is, values should be adjusted by a shape factor to express rates on a total surface or hemisurface area basis. For black spruce, hemisurface area was last reported to be 1.27 x projected area; i.e., these rates would be divided by 1.27 to given rates on a hemisurface area basis.

6.2 Field Notes

None given.

7. Data Description

7.1 Spatial Characteristics

7.1.1 Spatial Coverage

All data were collected at the BOREAS SSA-OBS site. North American Datum of 1983 (NAD83) coordinates for this site are latitude 53.98717° N, longitude 105.11779° W, and elevation of 628.94 m.

Branches had total projected needle areas of 3115, 2014, 1657, and 2342 cm², for chambers one through 4, respectively.

7.1.2 Spatial Coverage Map

None.

7.1.3 Spatial Resolution

The values are point measurements from trees near the locations given in Section 7.1.1.

7.1.4 Projection

None.
7.1.5 Grid Description
None.

7.2 Temporal Characteristics

7.2.1 Temporal Coverage
The data were collected from 06-April to 22-November-1996. Data were collected continuously with gaps between 18- and 26-June and 03- and 07-July.

7.2.2 Temporal Coverage Map
All data were collected at the BOREAS SSA-OBS site.

7.2.3 Temporal Resolution
Each observation took 5 minutes to complete data collection cycled through each of the four bags so that observations of any given bag occur every 20 minutes.

7.3 Data Characteristics

7.3.1 Parameter/Variable
The parameters contained in the data files on the CD-ROM are:

<table>
<thead>
<tr>
<th>Column Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
</tr>
<tr>
<td>SUB_SITE</td>
</tr>
<tr>
<td>DATE_OBS</td>
</tr>
<tr>
<td>TIME_OBS</td>
</tr>
<tr>
<td>CHAMBER_NUM</td>
</tr>
<tr>
<td>CO2_FLUX_CHAMBER</td>
</tr>
<tr>
<td>H2O_FLUX_CHAMBER</td>
</tr>
<tr>
<td>DOWN_PPFD_CHAMBER</td>
</tr>
<tr>
<td>AIR_TEMP_CHAMBER</td>
</tr>
<tr>
<td>LEAF_TEMP_CHAMBER</td>
</tr>
<tr>
<td>AIR_HUM_DEFICIT_CHAMBER</td>
</tr>
<tr>
<td>REL_HUM_CHAMBER</td>
</tr>
<tr>
<td>CO2_CONC_CHAMBER</td>
</tr>
<tr>
<td>CRTFCN_CODE</td>
</tr>
<tr>
<td>REVISION_DATE</td>
</tr>
</tbody>
</table>

7.3.2 Variable Description/Definition
The descriptions of the parameters contained in the data files on the CD-ROM are:

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
<td>The identifier assigned to the site by BOREAS, in the format SSS-TTT-CCCCC, where SSS identifies the portion of the study area: NSA, SSA, REG, TRN, and TTT identifies the cover type for the site, 999 if unknown, and CCCCC is the identifier for site, exactly what it means will vary with site type.</td>
</tr>
<tr>
<td>SUB_SITE</td>
<td>The identifier assigned to the sub-site by BOREAS, in the format GGGGG-IIIII, where GGGGG is the group associated with the sub-site</td>
</tr>
</tbody>
</table>
7.3.3 Unit of Measurement

The measurement units for the parameters contained in the data files on the CD-ROM are:

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
<td>[none]</td>
</tr>
<tr>
<td>SUB_SITE</td>
<td>[none]</td>
</tr>
<tr>
<td>DATE_OBS</td>
<td>[DD-MON-YY]</td>
</tr>
<tr>
<td>TIME_OBS</td>
<td>[HHMM GMT]</td>
</tr>
<tr>
<td>CHAMBER_NUM</td>
<td>[unitless]</td>
</tr>
<tr>
<td>CO2_FLUX_CHAMBER</td>
<td>[micromoles][meter^-2][second^-1]</td>
</tr>
<tr>
<td>H2O_FLUX_CHAMBER</td>
<td>[millimoles][meters^-2][second^-1]</td>
</tr>
<tr>
<td>DOWN_PPFD_CHAMBER</td>
<td>[micromoles][meters^-2][second^-1]</td>
</tr>
<tr>
<td>AIR_TEMP_CHAMBER</td>
<td>[degrees Celsius]</td>
</tr>
<tr>
<td>LEAF_TEMP_CHAMBER</td>
<td>[degrees Celsius]</td>
</tr>
<tr>
<td>AIR_HUM_DEFICIT_CHAMBER</td>
<td>[parts per thousand]</td>
</tr>
<tr>
<td>REL_HUM_CHAMBER</td>
<td>[percent]</td>
</tr>
<tr>
<td>CO2_CONC_CHAMBER</td>
<td>[parts per million]</td>
</tr>
<tr>
<td>CRTFCN_CODE</td>
<td>[none]</td>
</tr>
<tr>
<td>REVISION_DATE</td>
<td>[DD-MON-YY]</td>
</tr>
</tbody>
</table>

7.3.4 Data Source

The sources of the parameter values contained in the data files on the CD-ROM are:

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
<td>[Assigned by BORIS.]</td>
</tr>
<tr>
<td>SUB_SITE</td>
<td>[Assigned by BORIS.]</td>
</tr>
<tr>
<td>DATE_OBS</td>
<td>[Supplied by Investigator.]</td>
</tr>
<tr>
<td>TIME_OBS</td>
<td>[Supplied by Investigator.]</td>
</tr>
<tr>
<td>CHAMBER_NUM</td>
<td>[Supplied by Investigator.]</td>
</tr>
</tbody>
</table>
7.3.5 Data Range

The following table gives information about the parameter values found in the data files on the CD-ROM.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Minimum Data Value</th>
<th>Maximum Data Value</th>
<th>Missng Data Value</th>
<th>Unrel Data Value</th>
<th>Below Detect Limit</th>
<th>Data Not Collected</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
<td>SSA-OBS-FLXTR</td>
<td>SSA-OBS-FLXTR</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>SUB_SITE</td>
<td>9TF09-FLX02</td>
<td>9TF09-FLX02</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>DATE_OBS</td>
<td>07-APR-96</td>
<td>23-NOV-96</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>TIME_OBS</td>
<td>0</td>
<td>2355</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>CHAMBER NUM</td>
<td>1</td>
<td>4</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>CO2 FLUX CHAMBER</td>
<td>-5.95</td>
<td>1.57</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>H2O FLUX CHAMBER</td>
<td>-.16</td>
<td>2</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>DOWN PPFD CHAMBER</td>
<td>0</td>
<td>1838</td>
<td>None</td>
<td>None</td>
<td>Blank</td>
<td>Blank</td>
</tr>
<tr>
<td>AIR TEMP CHAMBER</td>
<td>-33.8</td>
<td>47.8</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>LEAF TEMP CHAMBER</td>
<td>-34.5</td>
<td>48.7</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>AIR HUM DEFICIT CHAMBER</td>
<td>-1.33</td>
<td>77.41</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Blank</td>
</tr>
<tr>
<td>REL HUM CHAMBER</td>
<td>0</td>
<td>111.5</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>CO2 CONC CHAMBER</td>
<td>133</td>
<td>661</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>CRTFCN_CODE</td>
<td>CPI</td>
<td>CPI</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>REVISION_DATE</td>
<td>02-SEP-98</td>
<td>02-SEP-98</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

Minimum Data Value -- The minimum value found in the column.
Maximum Data Value -- The maximum value found in the column.
Missng Data Value -- The value that indicates missing data. This is used to indicate that an attempt was made to determine the parameter value, but the attempt was unsuccessful.
Unrel Data Value -- The value that indicates unreliable data. This is used to indicate an attempt was made to determine the parameter value, but the value was deemed to be unreliable by the analysis personnel.
Below Detect Limit -- The value that indicates parameter values below the instruments detection limits. This is used to indicate that an attempt was made to determine the parameter value, but the analysis personnel determined that the parameter value was below the detection limit of the instrumentation.
Data Not Collected -- This value indicates that no attempt was made to determine the parameter value. This usually indicates that BORIS combined several similar but not identical data sets into the same data base table.
but this particular science team did not measure that parameter.

Blank -- Indicates that blank spaces are used to denote that type of value.
N/A -- Indicates that the value is not applicable to the respective column.
None -- Indicates that no values of that sort were found in the column.

7.4 Sample Data Record
The following are wrapped versions of data record from a sample data file on the CD-ROM.

SITE_NAME,SUB_SITE,DATE_OBS,TIME_OBS,CHAMBER_NUM,CO2_FLUX_CHAMBER,
H2O_FLUX_CHAMBER,DOWN_PPFD_CHAMBER,AIR_TEMP_CHAMBER,LEAF_TEMP_CHAMBER,
AIR_HUM_DEFICIT_CHAMBER,REL_HUM_CHAMBER,CO2_CONC_CHAMBER,CRTFCN_CODE,
REVISION_DATE
'SSA-OBS-FLXTR','9TF09-FLX02',01-JUN-96,0,1,-3.13,.001,902.0,27.5,28.3,15.34,
63.41,352.0,'CPI',02-SEP-98
'SSA-OBS-FLXTR','9TF09-FLX02',01-JUN-96,5,2,-3.94,-.001,1299.0,26.4,26.4,9.44,
78.93,314.0,'CPI',02-SEP-98

8. Data Organization

8.1 Data Granularity
The smallest unit of data tracked by the BOREAS Information System (BORIS) was data collected at a given site on a given date.

8.2 Data Format
The Compact Disk-Read-Only Memory (CD-ROM) files contain American Standard Code for Information Interchange (ASCII) numerical and character fields of varying length separated by commas. The character fields are enclosed with single apostrophe marks. There are no spaces between the fields.

Each data file on the CD-ROM has four header lines of Hyper-Text Markup Language (HTML) code at the top. When viewed with a Web browser, this code displays header information (data set title, location, date, acknowledgments, etc.) and a series of HTML links to associated data files and related data sets. Line 5 of each data file is a list of the column names, and line 6 and following lines contain the actual data.

9. Data Manipulations

9.1 Formulae
None.

9.1.1 Derivation Techniques and Algorithms
None.

9.2 Data Processing Sequence
A linear fit was made between the gas concentrations and time; data were rejected if the sum of the squares of the residuals was less than 0.9 and the calculated flux was nonzero.
9.2.1 Processing Steps
BORIS staff processed these data by:
- Reviewing the initial data files and loading them online for BOREAS team access.
- Designing relational data base tables to inventory and store the data.
- Loading the data into the relational data base tables.
- Working with the team to document the data set.
- Extracting the data into logical files.

9.2.2 Processing Changes
None.

9.3 Calculations
Flux calculations: \(\text{flux} = \frac{\text{concentration change} \times \text{molar volume}}{\text{time interval} \times \text{leaf area}} \)

9.3.1 Special Corrections/Adjustments
None.

9.3.2 Calculated Variables
None.

9.4 Graphs and Plots
None.

10. Errors

10.1 Sources of Error
Major sources of error include sensor drift, measurement of branch bag volume, and measurement of leaf area.

10.2 Quality Assessment

10.2.1 Data Validation by Source
None given.

10.2.2 Confidence Level/Accuracy Judgment
None given.

10.2.3 Measurement Error for Parameters
None given.

10.2.4 Additional Quality Assessments
None given.

10.2.5 Data Verification by Data Center
Data were examined to check for spikes, values that are four standard deviations from the mean, long periods of constant values, and missing data.
11. Notes

11.1 Limitations of the Data
Potential users of these data should be aware of the limitations of gas exchange as a means of investigating photosynthesis and of the implications of these measurements having been made on entire, enclosed branches.

11.2 Known Problems with the Data
All known bad data have been removed from the files.

11.3 Usage Guidance
Potential users of these data should be aware of the limitations of gas exchange as a means of investigating photosynthesis and of the implications of these measurements having been made on entire, enclosed branches. They should also be aware that these data have been submitted to BORIS out of courtesy rather than contractual obligation and should therefore seek the permission of the investigators before publishing analyses derived from them. These data remain the property of the University of Edinburgh and of the UK Natural Environment Research Council.

11.4 Other Relevant Information
None.

12. Application of the Data Set
This data set is useful for the examination of effects of environmental variables on photosynthesis and transpiration at the scale of individual branches.

13. Future Modifications and Plans
Although these data represent the most recent data set, believed to be error free, some data might, in the future, be found to be in error.

14. Software

14.1 Software Description
The logger program was written with Campbell PC208. Flux and humidity-based calculations and initial screening of the data were carried out with a program written in Microsoft Visual Basic. Final data screening was carried out in Statistical Analysis System (SAS).

14.2 Software Access
None given.
15. Data Access

The SSA-OBS branch-level flux data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

15.1 Contact Information
For BOREAS data and documentation please contact:

ORNL DAAC User Services
Oak Ridge National Laboratory
P.O. Box 2008 MS-6407
Oak Ridge, TN 37831-6407
Phone: (423) 241-3952
Fax: (423) 574-4665
E-mail: ornldaac@ornl.gov or ornl@eos.nasa.gov

15.2 Data Center Identification
Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC) for Biogeochemical Dynamics

15.3 Procedures for Obtaining Data
Users may obtain data directly through the ORNL DAAC online search and order system [http://www-eosdis.ornl.gov/] and the anonymous FTP site [ftp://www-eosdis.ornl.gov/data/] or by contacting User Services by electronic mail, telephone, fax, letter, or personal visit using the contact information in Section 15.1.

15.4 Data Center Status/Plans
The ORNL DAAC is the primary source for BOREAS field measurement, image, GIS, and hardcopy data products. The BOREAS CD-ROM and data referenced or listed in inventories on the CD-ROM are available from the ORNL DAAC.

16. Output Products and Availability

16.1 Tape Products
None.

16.2 Film Products
None.

16.3 Other Products
These data are available on the BOREAS CD-ROM series.
17. References

17.1 Platform/Sensor/Instrument/Data Processing Documentation
None.

17.2 Journal Articles and Study Reports

17.3 Archive/DBMS Usage Documentation
None.

18. Glossary of Terms
None.
19. List of Acronyms

- ASCII - American Standard Code for Information Interchange
- BOREAS - BOReal Ecosystem-Atmosphere Study
- BORIS - BOREAS Information System
- CD-ROM - Compact Disk-Read-Only Memory
- DAAC - Distributed Active Archive Center
- DBH - Diameter at Breast Height
- EOS - Earth Observing System
- EOSDIS - EOS Data and Information System
- GIS - Geographic Information System
- GMT - Greenwich Mean Time
- GSFC - Goddard Space Flight Center
- HTML - HyperText Markup Language
- IRGA - Infra-Red Gas Analyzer
- NASA - National Aeronautics and Space Administration
- NSA - Northern Study Area
- OBS - Old Black Spruce
- ORNL - Oak Ridge National Laboratory
- PANP - Prince Albert National Park
- PPFD - Photosynthetic Photon Flux Density
- SAS - Statistical Analysis System
- SSA - Southern Study Area
- TE - Terrestrial Ecology
- TF - Tower Flux
- URL - Uniform Resource Locator

20. Document Information

20.1 Document Revision Date
Written: 25-Jun-1997
Revised: 10-Aug-1999

20.2 Document Review Date(s)
Science Review:

20.3 Document ID

20.4 Citation
When using these data, please include the following acknowledgment as well as citations of relevant papers in Section 17.2:

Users of these data should be aware that these data have been submitted to BORIS out of courtesy rather than contractual obligation and should therefore seek the permission of the investigators before publishing analyses derived from them. These data remain the property of the University of Edinburgh and of the UK Natural Environment Research Council.
If using data from the BOREAS CD-ROM series, also reference the data as:

Also, cite the BOREAS CD-ROM set as:

20.5 Document Curator

20.6 Document URL
Technical Report Series on the Boreal Ecosystem-Atmosphere Study (BOREAS)

BOREAS TF-9 SSA-OBS Branch Level Flux

AUTHOR(S)
Mark B. Rayment and Paul G. Jarvis
Forrest G. Hall and Karl Huemmrich, Editors

PERFORMING ORGANIZATION NAME(S) AND ADDRESS (ES)
Goddard Space Flight Center
Greenbelt, Maryland 20771

SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS (ES)
National Aeronautics and Space Administration
Washington, DC 20546-0001

ABSTRACT
The BOREAS TF-9 team collected data that describe carbon dioxide and water vapor fluxes from foliage at the BOREAS SSA-OBS site from 07-April through 23-November-1996. The data are available in tabular ASCII files.