Technical Report Series on the Boreal Ecosystem-Atmosphere Study (BOREAS)

Forrest G. Hall and Karl Huemmrich, Editors

Volume 190

BOREAS TF-1 SSA-OA Understory Flux, Meteorological, and Soil Temperature Data

T. Andrew Black, Z. Chen, and Zoran Nesic
University of British Columbia, Vancouver

National Aeronautics and Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

October 2000
Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the lead center for NASA’s scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA’s institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- **TECHNICAL PUBLICATION.** Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA’s counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- **TECHNICAL MEMORANDUM.** Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- **CONTRACTOR REPORT.** Scientific and technical findings by NASA-sponsored contractors and grantees.

- **CONFERENCE PUBLICATION.** Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- **SPECIAL PUBLICATION.** Scientific, technical, or historical information from NASA programs, projects, and mission, often concerned with subjects having substantial public interest.

- **TECHNICAL TRANSLATION.** English-language translations of foreign scientific and technical material pertinent to NASA’s mission.

Specialized services that complement the STI Program Office’s diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results . . . even providing videos.

For more information about the NASA STI Program Office, see the following:

- E-mail your question via the Internet to help@sti.nasa.gov
- Fax your question to the NASA Access Help Desk at (301) 621-0134
- Telephone the NASA Access Help Desk at (301) 621-0390
- Write to:
 NASA Access Help Desk
 NASA Center for AeroSpace Information
 7121 Standard Drive
 Hanover, MD 21076-1320
Technical Report Series on the
Boreal Ecosystem-Atmosphere Study (BOREAS)

Forrest G. Hall and Karl Huemmrich, Editors

Volume 190

BOREAS TF-1 SSA-OA Understory Flux, Meteorological, and Soil Temperature Data

T. Andrew Black, Z. Chen, and Zoran Nesic
University of British Columbia, Vancouver

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

October 2000
BOREAS TF-1 SSA-OA Understory Flux, Meteorological, and Soil Temperature Data

T. Andrew Black, Z. Chen, Zoran Nesic

Summary
The BOREAS TF-1 team collected energy, carbon dioxide, and momentum flux data under the canopy along with meteorological and soils data at the BOREAS SSA-OA site from mid-October to mid-November of 1993 and throughout all of 1994. The data are available in tabular ASCII files.

Table of Contents
1) Data Set Overview
2) Investigator(s)
3) Theory of Measurements
4) Equipment
5) Data Acquisition Methods
6) Observations
7) Data Description
8) Data Organization
9) Data Manipulations
10) Errors
11) Notes
12) Application of the Data Set
13) Future Modifications and Plans
14) Software
15) Data Access
16) Output Products and Availability
17) References
18) Glossary of Terms
19) List of Acronyms
20) Document Information

1. Data Set Overview

1.1 Data Set Identification
BOREAS TF-01 SSA-OA Understory Flux, Meteorological, and Soil Temperature Data

1.2 Data Set Introduction
The Tower Flux (TF)-01 team collected understory measurements of heat, carbon dioxide, and momentum fluxes along with meteorological, soil temperature, soil moisture, snow temperature, and tree bole temperature data at the BORéal Ecosystem-Atmosphere Study (BOREAS) Southern Study Area (SSA) Old Aspen (OA) tower site. These measurements were made in conjunction with above-canopy and profile measurements made at this site by the TF-02 group. The understory data were collected from mid-October to mid-November of 1993 and throughout all of 1994.
1.3 Objective/Purpose
The general objective was to study carbon dioxide and water vapor exchange between the forest and atmosphere at the SSA-OA site. Specific objectives were:

• To measure the fluxes of sensible heat, H₂O and CO₂ above the aspen stand throughout the year.
• To obtain from the CO₂ flux data estimates of gross photosynthesis and respiration.
• To determine the contribution of the hazelnut understory to net ecosystem productivity (NEP).
• To determine the effects of environmental factors on stand evapotranspiration and NEP.
• To take part in the development of procedures for scaling up component fluxes to the stand level.
• To study the processes controlling turbulent transfer of H₂O and CO₂ within the stand.
• To take part in the evaluation of methods of estimating nocturnal CO₂ in and above the stand.

1.4 Summary of Parameters
The following variables were measured from a 4-m tower under the aspen canopy: latent heat flux, sensible heat flux, CO₂ flux, CO₂ concentration, momentum flux, Bowen ratio, air temperature, wind speed and direction, friction velocity, water vapor concentration, and relative humidity. Other measurements collected to describe the soil and forest: soil heat flux, soil temperature, soil water potential, soil water content, tree bole temperatures, snow temperatures, net radiation, Photosynthetic Photon Flux Density (PPFD) transmitted through the canopy, and air pressure.

1.5 Discussion
In 1993 and 1994, the TF-01 group measured fluxes under the canopy at the SSA-OA site, while the TF-02 group measured above-canopy fluxes and profiles at that site. In 1996, the TF-01 group moved its equipment to the top of the 39 meter tower to measure above-canopy fluxes. This document describes the 1993 and 1994 under-canopy data collection effort.

The fluxes of momentum, sensible heat, latent heat (water vapor), and carbon dioxide using the eddy correlation method were measured at the 6-m height in 1993 and the 4 m height in 1994. These measurements were made on a 6 m tall scaffold tower located above 40 m south of the main flux tower at the OA site. The eddy correlation system consisted of 3-dimensional sonic anemometer (model 1012R2A (Solent) Gill Instruments, Lymington, UK) with a 15 cm path length, an infrared gas (CO₂/H₂O) analyzer (IRGA) (model 6262, LI-COR, Inc., Lincoln, NE) and a krypton open-path hygrometer (model KH20, Campbell Scientific, Inc., Logan, UT). Air was drawn at 8.0 L/min down 3 m of 3.2 mm inner diameter (i.d.) sampling tubing (model Bev-a-line, Thermoplastic Processes, Inc., Sterling, NJ), then down 1.7 m of copper tubing (3 mm i.d.) coiled and sandwiched between two aluminum plates within the same housing as the analyzer and then through the analyzer's sample cell. To prevent condensation in the sampling tubing, it was heated (2-3 °C above ambient) by passing an electric current through 20-AWG nichrome wire (about 15 ohms resistance) coiled around the exterior of the tubing. The pump (model DOA-V191-AA diaphragm pump, Gast, Inc., Dayton, OH) was located down stream of the sample cell resulting in the sample cell pressure being about 22 kPa less than atmospheric pressure. The delay time was 0.8 s. The IRGA was operated in absolute mode with dry air at zero CO₂ concentration flowing through the reference cell at 25 cm³/min. The KH20 hygrometer was operated continuously to evaluate signal delay time and any attenuation resulting from the sample tubing (Leuning and King, 1992; Lee et al., 1994).

Supporting measurements included soil heat flux at the 3 cm depth measured using nine soil heat flux plates (two model F, Middleton Instruments, Melbourne, Australia, and seven home-made, following Fuchs and Tanner (1968)) along a 20 m transect: average temperature of the surface 3 cm of the forest floor using two integrating thermometers; a soil temperature profile at depths of 2, 5, 10, 20, 50, and 100 cm (CSI direct-burial copper-constantan thermocouples); snow temperature (30-gauge chromel-constantan thermocouples); tree bole temperatures at 0.2, 4.0, 8.0, 12.0, and 15.8 cm (thermocouple wire); net radiation and PPFD (Swissteco net radiometer and LI-COR quantum sensor carried on a tram that traveled back and forth along a 65 m transect on two steel wires suspended 3-4 m above the ground) above the understory; air humidity below (model HMP-35C sensor, Vaisala, Inc.,
Woburn, MA) the overstory; wind speed and direction below the overstory (model 05031 vane propeller anemometer, R.M. Young Co., Traverse City, MI); and precipitation measured using a weighing rain gauge (Belfort Instrument Co., Baltimore, MD).

1.6 Related Data Sets
BORÉAS TF-01 SSA-OA Tower Flux, Meteorological, and Soil Temperature Data
BORÉAS TF-01 SSA-OA Soil Characteristics Data
BORÉAS TF-02 SSA-OA Tower Flux and Meteorological Data
BORÉAS TF-09 SSA-OBSS Tower Flux, Meteorological, and Soil Temperature Data

2. Investigator(s)

2.1 Investigator Name and Title
Prof. T. Andy Black
University of British Columbia
Department of Soil Science

2.2 Title of Investigation
Boreal Forest Atmosphere Interactions: Exchanges of Energy, Water Vapor and Trace Gases (SSA-OA)

2.3 Contact Information

Contact 1:
Mr. Zoran Nesic
University of British Columbia
Department of Soil Science
2357 Main Mall Rm. 139
Vancouver, BC V6T 1Z4 CANADA
(604) 822-3479, 822-5654 (Lab)
(604) 822-8639 (fax)
NESIC@PPC.UBC.CA

Contact 2:
Prof. T. Andy Black
University of British Columbia
Department of Soil Science
2357 Main Mall Rm. 139
Vancouver, BC V6T 1Z4 CANADA
(604) 822-2730
(604) 822-8639 (fax)
ablack@unixg.ubc.ca

Contact 3:
K. Fred Huemmrich
University of Maryland
NASA GSFC
Code 923
Greenbelt, MD 20771
(301) 286-4862
(301) 286-0239 (fax)
Karl.Huemmrich@gsfc.nasa.gov
3. Theory of Measurements

Measurements of the fluxes of momentum, sensible heat, water vapor, and CO₂ were made with the eddy covariance technique. Velocity components, air temperature, water vapor density, and CO₂ concentration in the air were sampled rapidly, and calculations of relevant covariances were performed from these samples to obtain the fluxes. For example, the flux of CO₂ was determined as follows:

\[F_c = w'e' \]

where \(w' \) is the departure of the vertical velocity component from its mean over the averaging interval, usually 30 minute, and \(e' \) is the departure of CO₂ concentration from its mean.

At the overstory level, three rotations in the coordinate transformation are applied to the flux data to make the lateral component (\(v' \)), vertical component (\(w' \)), and covariance (\(u'v' \)) of the wind vector equal to zero. At the understory level, however, only the mean lateral wind velocity component was rotated to zero under the suspicion that nonzero mean vertical velocities are possible within the trunk space. Webb, Pearman, and Leuning (1980) (WPL) corrections were made to the water vapor and carbon dioxide fluxes measured using the closed-path LI-COR 6262 infrared gas analyzer (IRGA). Broadening correction was done, but not on-line (see Chen et al., 1998, for summary of theory).

4. Equipment

4.1 Sensor/Instrument Description

4.1.1 Collection Environment

Measurements were collected from mid-April to the end of 1996. Over that time period, temperature conditions from less than -10 °C to over 25 °C were experienced.

4.1.2 Source/Platform

A 37-m walkup scaffold main tower and a 6-m scaffold tower about 40 m from the main tower.

4.1.3 Source/Platform Mission Objectives

The objective of the flux tower was to support instrumentation for the study of the fluxes of CO₂, energy, water vapor, and momentum between the forest and atmosphere at the SSA-OA.

4.1.4 Key Variables

Variables measured using eddy covariance: CO₂ and water vapor fluxes, momentum fluxes, sensible heat fluxes, and latent heat fluxes.

Supporting meteorological variables: net radiation and PPFD under the canopy, wind speed, wind direction, air temperature, relative and absolute humidity, air temperature, soil temperature, soil heat flux, soil moisture, soil water potential, snow temperature, tree bole temperature, and precipitation.

4.1.5 Principles of Operation

A sonic anemometer determines the wind speed by a pair of transducers acting alternately as transmitters and receivers, sending pulses of high-frequency ultrasound between themselves. The 3-D sonic has three pairs of transducers arranged in nonparallel axes.

The LI-COR 6262 CO₂/H₂O analyzer is based on the difference in absorption of infrared radiation passing through two gas sampling cells. The reference cell is used for a gas of known CO₂ or H₂O concentration, and the sample cell is used for a gas of unknown concentration. Infrared radiation is transmitted through both cell paths, and the output of the analyzer is proportional to the difference in absorption between the two.

The principles of operation of most of the supporting instruments can be found in Pearcy et al. (1991) and Fritschen and Gay (1979).
4.1.6 Sensor/Instrument Measurement Geometry

Beneath aspen canopy flux measurement sensors were supported by a 2.1-m-long horizontal boom at a bearing of 238° fastened to the side of 6-m-tall scaffold-type understory tower located approximately 40 m from the main tower.

Under-canopy measurements included soil heat flux measured at the 3-cm depth using nine soil heat flux plates (two model F, Middleton Instruments, Melbourne, Australia, and seven homemade, following Fuchs and Tanner (1968)) along a 20-m transect; average temperature of the surface 3 cm of the forest floor using two integrating thermometers, a soil temperature profile at depths of 2, 5, 10, 20, 50, and 100 cm (CSI direct-burial copper-constantan thermocouples), and tree bole temperatures at 0.2, 4.0, 8.0, 12.0, and 15.8 cm into the bole (thermocouple wire).

Tree bole temperatures were measured in aspen trees using thermocouples placed in the bole at several depths determined from the north side of the tree. The temperatures were measured at 3.12 m height for the 0.2 cm depth, 3.16 m height for the 4.0 cm depth, 3.18 m height for the 8.0 cm depth (the center of the bole), at 3.16 m height for the 12 cm depth (4 cm depth from south side), and at 3.12 m height for the 15.8 cm depth (0.2 cm depth from south side). In addition, a measurement of the hazelnut stem temperature was made at 0.7 m height and 0.2 cm depth.

4.1.7 Manufacturer of Sensor/Instrument

Solent sonic anemometer:
Gill Instruments Limited
Solent House
Cannon Street
Lymington
Hampshire
SO41 9BR
United Kingdom

DAT-310 sonic anemometer:
Kaijo-Denki Co., Ltd.
No 19.1 Chrome Kanda-Nishikicho
Chiyoda-Ku
Tokyo 101
Japan

LI-COR LI-6262 IRGA, 190-SB PPFD, and LAI-2000 PCA:
LI-COR, Inc.
P.O. Box 4425/4421
Superior Street
Lincoln, NE 68504
(303) 499-1701
(303) 499-1767 (fax)

KH2O krypton hygrometer:
Campbell Scientific
P.O. Box 551
Logan, UT 84321

CN-1 net radiometer:
Middleton Instruments, Inc.
P.O. Box 442
South Melbourne
Victoria, 3205
Australia
S-1 net radiometer:
Swissteco Instruments Inc.
Stegweg, Eichenwies, CH-94633 OBERRIET SG
Switzerland

PSP pyranometer and PIR pyrgeometer:
The Eppley Laboratory, Inc.
12 Sheffield Ave.
P.O. Box 419
Newport, RI 02840
(401) 847-1020
(401) 847-1031 (fax)

05031 vane propeller anemometer:
R.M. Young Co.
Traverse City, MI

Distributor:
Campbell Scientific
P.O. Box 551
Logan, UT 84321
(801) 753-2342
(801) 752-3268

Soil temperature (burial) Campbell Thermocouple, Copper-constantan thermocouple:
Campbell Scientific
P.O. Box 551
Logan, UT 84321
(801) 753-2342
(801) 752-3268 (fax)

4000 IR thermometer:
Everest Interscience, Inc.
P.O. Box 3640
Fullerton, CA 92634-3640
(714) 992-4461

M1 dewpoint hygrometer (with D2 sensor):
General Eastern Instruments Corp.
Watertown, MA

HMP-35C Vaisala humidity sensor:
Vaisala, Inc.
Woburn, MA

Distributor:
Campbell Scientific
P.O. Box 551
Logan UT 84321
(801) 753-2342
(801) 752-3268 (fax)
Soil heat flux plate (model F):
Middleton Instruments, Inc.
P.O. Box 442
South Melbourne
Victoria, 3205
Australia

Time domain reflectometry (TDR):
G.S. Gabel Corp.
Victoria, BC, Canada

CS105 Barometer:
Vaisala, Inc.
Woburn, MA

Distributor:
Campbell Scientific
P.O. Box 551
Logan, UT 84321
(801) 753-2342
(801) 752-3268 (fax)

TE525 Tipping-bucket rain gauge:
Texas Electronics

Distributor:
Campbell Scientific
P.O. Box 551
Logan, UT 84321
(801) 753-2342
(801) 752-3268 (fax)

Weighing rain gauge:
Belfort Instrument Co.
1600 S. Clinton Street
Baltimore, MD 21224

21x, CR10 Data logging system:
Campbell Scientific
P.O. Box 551
Logan, UT 84321
(801) 753-2342
(801) 752-3268 (fax)

TD-4X2N diaphragm pump:
Brailsford Co.
670 Milton Road
Rye, NY 10580
(914) 967-1820
(914) 967-1836 (fax)
DOA-V191-AA diaphragm pump:
Gast, Inc.
P.O. Box 97
Benton Harbor, MI
(616) 926-6171
(616) 925-8288 (fax)

Bev-a-line tube:
Thermoplastic Processes, Inc.
Sterling NS

Dekoron tubing:
Wirex Controls Ltd.
9446 McLaughlin Road N. Unit #27
Brampton, ON
Canada, L6X 4H9
(905) 459-0742
(905) 450-8216

4.2 Calibration

4.2.1 Specifications
In 1994, zeroing and calibration of the LI-6262 IRGA was done manually, using 350 ppm CO₂ cylinders (Medigas) calibrated using TF02 (AES) cylinders and a LI-COR dewpoint generator.

4.2.1.1 Tolerance
CO₂ concentration was accurate to within ± 1 mmol/mol.

4.2.2 Frequency of Calibration
Not given.

4.2.3 Other Calibration Information
None.

5. Data Acquisition Methods

The eddy covariance system consisted of a 3-D sonic anemometer/thermometer (SOLENT 1012R2A) for detecting the three velocity components and air temperature, the latter being derived from the speed of sound following Kaimal and Gaynor (1991), an open-path H₂O krypton gas analyzer for measuring water vapor density in the air, and a closed-path dual H₂O/CO₂ IRGA (LI-COR 6262) for measuring water vapor density and CO₂ concentration in the air.

The Solent sampled the wind speed components at 20.83 Hz, and its analog-to digital converter sampled the LI-COR signals at 10 Hz. Prior to sampling, the latter signals had been passed through a passive filter with a 7 Hz cut-off frequency. Spectral analysis showed that frequencies above 1 Hz made almost no contribution to fluxes.

For the flux system, all raw data were recorded using PC systems with backup tape drives. Half-hour fluxes were calculated online. For other measurements, all those data were recorded by data loggers (model 21X, Campbell Scientific, Inc., Logan, UT), which were networked together, using the model MD-9 network interface, along with the main system. Every 3 hours, this network automatically transferred (using PC ANYWHERE software, Symantec Corp.) all data from the loggers to a network computer.
6. Observations

6.1 Data Notes
None.

6.2 Field Notes
None.

7. Data Description

7.1 Spatial Characteristics

7.1.1 Spatial Coverage
All data were collected at the BOREAS SSA-OA site in the Prince Albert National Park (PANP). North American Datum of 1983 (NAD83) coordinates for the site are:
• SSA-OA: latitude 53.62889° N, longitude 106.19779° W, and elevation of 600.63 m.

The understory measurements were collected from a 6-m scaffold tower about 40 m from the main tower.

7.1.2 Spatial Coverage Map
Not applicable.

7.1.3 Spatial Resolution
Although the eddy covariance measurement is made at one point, it is well known that the fluxes measured with this technique can represent fluxes averaged over a relatively large area. An analysis of the upwind land surface area that contributes to a scalar flux measurement, often referred to as "fetch" or "footprint," is crucial in understanding the origins of the flux and any possible influences of spatial heterogeneity. According to Blanken's (1997) results (using Schuepp et al., 1990, model), the cumulative flux at 39 m reached 80% of the total flux at an upwind distance of 1,200 m under neutral conditions, 900 m under typical daytime stability conditions, and 2,700 m under typical nighttime stability conditions. The corresponding values for the 4-m height (above the understory) were 130, 80, and 300 m. Baldocchi (1997) suggests the latter values are overestimates. From the above results, there was adequate fetch at the OA site because the forest extended for at least 3 km in all directions.

7.1.4 Projection
None.

7.1.5 Grid Description
None.

7.2 Temporal Characteristics

7.2.1 Temporal Coverage
Under-canopy data were collected from 12-October to 13-November-1993 and from 01-January to 31-December-1994.

7.2.2 Temporal Coverage Map
None.

7.2.3 Temporal Resolution
The data reported are 30-minute statistical mean values.
7.3 Data Characteristics

7.3.1 Parameter/Variable

The parameters contained in the data files on the CD-ROM are:

<table>
<thead>
<tr>
<th>Column Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
</tr>
<tr>
<td>SUB_SITE</td>
</tr>
<tr>
<td>DATE_OBS</td>
</tr>
<tr>
<td>TIME_OBS</td>
</tr>
<tr>
<td>SENSIBLE_HEAT_FLUX_BELOW_CNPY</td>
</tr>
<tr>
<td>LIC_LATENT_HEAT_FLUX_4M</td>
</tr>
<tr>
<td>KRYPTON_LATENT_HEAT_FLUX_4M</td>
</tr>
<tr>
<td>NET_RAD_10CM</td>
</tr>
<tr>
<td>SOIL_HEAT_FLUX_3CM_1</td>
</tr>
<tr>
<td>SOIL_HEAT_FLUX_3CM_2</td>
</tr>
<tr>
<td>SOIL_HEAT_FLUX_3CM_3</td>
</tr>
<tr>
<td>SOIL_HEAT_FLUX_3CM_4</td>
</tr>
<tr>
<td>SOIL_HEAT_FLUX_3CM_5</td>
</tr>
<tr>
<td>SOIL_HEAT_FLUX_3CM_6</td>
</tr>
<tr>
<td>SOIL_HEAT_FLUX_3CM_7</td>
</tr>
<tr>
<td>SOIL_HEAT_FLUX_3CM_8</td>
</tr>
<tr>
<td>SOIL_HEAT_FLUX_3CM_9</td>
</tr>
<tr>
<td>MEAN_SOIL_HEAT_FLUX_3CM</td>
</tr>
<tr>
<td>SOIL_HEAT_FLUX_8CM</td>
</tr>
<tr>
<td>SOIL_HEAT_STORAGE_RATE</td>
</tr>
<tr>
<td>SURFACE_SOIL_HEAT_FLUX</td>
</tr>
<tr>
<td>CO2_FLUX_BELOW_CNPY</td>
</tr>
<tr>
<td>MEAN_CO2_CONC_4M</td>
</tr>
<tr>
<td>SDEV_CO2_CONC_4M</td>
</tr>
<tr>
<td>Bowen_RATIO_4M</td>
</tr>
<tr>
<td>KINEM_MOMENT_FLUX_4M</td>
</tr>
<tr>
<td>DOWN_PPFD_10CM</td>
</tr>
<tr>
<td>WIND_DIR_4M</td>
</tr>
<tr>
<td>WIND_SPEED_4M</td>
</tr>
<tr>
<td>FRICTION_VEL_4M</td>
</tr>
<tr>
<td>WIND_SPEED_RESULTANT_VECTOR_4M</td>
</tr>
<tr>
<td>WIND_DIR_RESULTANT_4M</td>
</tr>
<tr>
<td>MEAN_U_WIND_SPEED_4M</td>
</tr>
<tr>
<td>MEAN_W_WIND_SPEED_4M</td>
</tr>
<tr>
<td>VAR_W_WIND_SPEED_4M</td>
</tr>
<tr>
<td>SDEV_W_WIND_SPEED_4M</td>
</tr>
<tr>
<td>ABS_HUM_4M</td>
</tr>
<tr>
<td>MEAN_LIC_ABS_HUM_4M</td>
</tr>
<tr>
<td>SDEV_LIC_ABS_HUM_4M</td>
</tr>
<tr>
<td>MEAN_KRYPTON_ABS_HUM_4M</td>
</tr>
<tr>
<td>SDEV_KRYPTON_ABS_HUM_4M</td>
</tr>
<tr>
<td>MEAN_AIR_TEMP_4M</td>
</tr>
<tr>
<td>SDEV_AIR_TEMP_4M</td>
</tr>
<tr>
<td>SOLVENT_AIR_TEMP_4M</td>
</tr>
<tr>
<td>SOIL_TEMP_2CM</td>
</tr>
<tr>
<td>SOIL_TEMP_5CM</td>
</tr>
<tr>
<td>SOIL_TEMP_10CM</td>
</tr>
</tbody>
</table>
7.3.2 Variable Description/Definition
The descriptions of the parameters contained in the data files on the CD-ROM are:

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
<td>The identifier assigned to the site by BOREAS, in the format SSS-TTT-CCCCC, where SSS identifies the portion of the study area: NSA, SSA, REG, TRN, and TTT identifies the cover type for the site, 999 if unknown, and CCCCC is the identifier for site, exactly what it means will vary with site type.</td>
</tr>
<tr>
<td>SUB_SITE</td>
<td>The identifier assigned to the sub-site by BOREAS in the format GGGGG-IIIII, where GGGGG is the group associated with the sub-site instrument, e.g. HYD06 or STAFF, and IIIII is the identifier for sub-site, often this will refer to an instrument.</td>
</tr>
<tr>
<td>DATE_OBS</td>
<td>The date on which the data were collected.</td>
</tr>
<tr>
<td>TIME_OBS</td>
<td>The Greenwich Mean Time (GMT) of the start of the data collection.</td>
</tr>
<tr>
<td>SENSIBLE_HEAT_FLUX_BELOW_CNPY</td>
<td>The sensible heat flux measured below the canopy.</td>
</tr>
<tr>
<td>LIC_LATENT_HEAT_FLUX_4M</td>
<td>The latent heat flux measured with the LI-COR instrument at 4 m height.</td>
</tr>
<tr>
<td>KRYPTON_LATENT_HEAT_FLUX_4M</td>
<td>The latent heat flux measured with the Krypton instrument at 4 m height.</td>
</tr>
</tbody>
</table>
NET_RAD_10CM

The net radiation measured at 10 cm above the ground.

SOIL_HEAT_FLUX_3CM

The soil heat flux measured at 3 cm depth at plot 1.

SOIL_HEAT_FLUX_3CM_2

The soil heat flux measured at 3 cm depth at plot 2.

SOIL_HEAT_FLUX_3CM_3

The soil heat flux measured at 3 cm depth at plot 3.

SOIL_HEAT_FLUX_3CM_4

The soil heat flux measured at 3 cm depth at plot 4.

SOIL_HEAT_FLUX_3CM_5

The soil heat flux measured at 3 cm depth at plot 5.

SOIL_HEAT_FLUX_3CM_6

The soil heat flux measured at 3 cm depth at plot 6.

SOIL_HEAT_FLUX_3CM_7

The soil heat flux measured at 3 cm depth at plot 7.

SOIL_HEAT_FLUX_3CM_8

The soil heat flux measured at 3 cm depth at plot 8.

SOIL_HEAT_FLUX_3CM_9

The soil heat flux measured at 3 cm depth at plot 9.

MEAN_SOIL_HEAT_FLUX_3CM

The mean soil heat flux at 3 cm, the average of the 9 soil heat flux plates.

SOIL_HEAT_FLUX_8CM

The soil heat flux measured at 8 cm depth.

SOIL_HEAT_STORAGE_RATE

Rate of change of the heat storage in the 0-3 cm soil layer calculated using the MEAN_SOIL_HEAT_FLUX_3CM and GRAV_SOIL_WATER_CONTENT_3CM.

SURFACE_SOIL_HEAT_FLUX

Soil surface heat flux, the sum of MEAN_SOIL_HEAT_FLUX_3CM and SOIL_HEAT_STORAGE_RATE.

CO2_FLUX BELOW CNPY

The carbon dioxide flux measured below the canopy.

MEAN_CO2_CONC_4M

The mean carbon dioxide concentration measured at 4 m above the ground.

SDEV_CO2_CONC_4M

The standard deviation of the carbon dioxide concentration measured at 4 m above the ground.

BOWEN_RATIO_4M

The Bowen Ratio at 4 m above ground level.

KINEM_MOMENT_FLUX_4M

Kinematic momentum flux density measured at 4 m above the ground.

DOWN_PPFD_10CM

The incoming photosynthetic photon flux density measured at 10 cm above the ground.

WIND_DIR_4M

The wind direction measured at 4 m above ground level.

WIND_SPEED_4M

Mean horizontal wind speed measured at 4 m.

FRICTION_VEL_4M

The friction velocity measured at 4 m height above the ground.

WIND_SPEED_RESULTANT_VECTOR_4M

Resultant mean horizontal wind speed at 4 m above the ground.

WIND_DIR_RESULTANT_4M

The resultant mean horizontal wind direction at 4 m above the ground.

MEAN_U_WIND_SPEED_4M

Mean streamwise wind speed at 4 m above ground level.

MEAN_W_WIND_SPEED_4M

Mean vertical wind speed at 4 m above ground level.

VAR_W_WIND_SPEED_4M

Variance of the vertical wind velocity measured at 4 m above ground level.
<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDEV_W_WIND_SPEED_4M</td>
<td>Standard deviation of the vertical wind velocity measured at 4 m above ground level.</td>
</tr>
<tr>
<td>ABS_HUM_4M</td>
<td>The absolute humidity measured at 4 m above the ground.</td>
</tr>
<tr>
<td>MEAN_LIC_ABS_HUM_4M</td>
<td>Absolute humidity measured using a LI-COR instrument at 4 m above ground level.</td>
</tr>
<tr>
<td>SDEV_LIC_ABS_HUM_4M</td>
<td>Standard deviation of absolute humidity measured using a LI-COR instrument at 4 m above ground level.</td>
</tr>
<tr>
<td>MEAN_KRYPTON_ABS_HUM_4M</td>
<td>Absolute humidity measured using a Krypton instrument at 4 m above ground level.</td>
</tr>
<tr>
<td>SDEV_KRYPTON_ABS_HUM_4M</td>
<td>Standard deviation of absolute humidity measured using a Krypton instrument at 4 m above ground level.</td>
</tr>
<tr>
<td>MEAN_AIR_TEMP_4M</td>
<td>The mean air temperature measured at 4 m above the ground.</td>
</tr>
<tr>
<td>SDEV_AIR_TEMP_4M</td>
<td>The standard deviation of the air temperature measured at 4 m above the ground.</td>
</tr>
<tr>
<td>SOLENT_AIR_TEMP_4M</td>
<td>The air temperature at 4 m above ground level, measured by the Solent sonic anemometer using the speed of sound relationship.</td>
</tr>
<tr>
<td>SOIL_TEMP_2CM</td>
<td>Soil temperature at 2 cm depth.</td>
</tr>
<tr>
<td>SOIL_TEMP_5CM</td>
<td>Soil temperature measured at a depth of 5 cm.</td>
</tr>
<tr>
<td>SOIL_TEMP_10CM</td>
<td>Soil temperature at a depth of 10 cm.</td>
</tr>
<tr>
<td>SOIL_TEMP_20CM</td>
<td>Soil temperature at 20 cm depth.</td>
</tr>
<tr>
<td>SOIL_TEMP_50CM</td>
<td>Soil temperature measured at 50 cm depth.</td>
</tr>
<tr>
<td>SOIL_TEMP_100CM</td>
<td>The soil temperature recorded at 1 m in depth.</td>
</tr>
<tr>
<td>MEAN_SOIL_TEMP_INT_3CM</td>
<td>The temperature of the 0-3 cm surface layer during the last 1 minute of the half hour. The average of two integrating thermometers.</td>
</tr>
<tr>
<td>SOIL_WATER_POTENT_3CM</td>
<td>The soil water potential at 3 cm depth.</td>
</tr>
<tr>
<td>SOIL_WATER_POTENT_6CM</td>
<td>The soil water potential at 6 cm depth.</td>
</tr>
<tr>
<td>SOIL_WATER_POTENT_46CM</td>
<td>The soil water potential at 46 cm depth.</td>
</tr>
<tr>
<td>GRAV_SOIL_WATERCONTENT_3CM</td>
<td>Gravimetric soil water content of the 0-3 cm soil layer.</td>
</tr>
<tr>
<td>REL_HUM_4M</td>
<td>The relative humidity measured at 4 m above the ground level.</td>
</tr>
<tr>
<td>BOLE_TEMP_2MM</td>
<td>Tree bole temperature at 0.2 cm depth from north side.</td>
</tr>
<tr>
<td>BOLE_TEMP_4CM</td>
<td>Tree bole temperature at 4 cm depth from north side.</td>
</tr>
<tr>
<td>BOLE_TEMP_8CM</td>
<td>Tree bole temperature at 8 cm depth from north side.</td>
</tr>
<tr>
<td>BOLE_TEMP_12CM</td>
<td>Tree bole temperature at 12 cm depth from north side.</td>
</tr>
<tr>
<td>BOLE_TEMP_158MM</td>
<td>Tree bole temperature at 15.8 cm depth from north side.</td>
</tr>
<tr>
<td>HAZEL_BOLE_TEMP_2MM</td>
<td>The temperature at a depth of 0.2 cm inside the stem of a hazelnut plant.</td>
</tr>
<tr>
<td>SNOW_I RT TEMP</td>
<td>Snow surface temperature measured with an infrared thermometer.</td>
</tr>
<tr>
<td>SNOW_TEMP_6CM</td>
<td>Snow temperature 6 cm above ground level.</td>
</tr>
<tr>
<td>SNOW_TEMP_12CM</td>
<td>Snow temperature 12 cm above ground level.</td>
</tr>
<tr>
<td>SNOW_TEMP_18CM</td>
<td>Snow temperature 18 cm above ground level.</td>
</tr>
</tbody>
</table>
Snow temperature 24 cm above ground level.
Snow temperature 30 cm above ground level.
Snow temperature 36 cm above ground level.
The atmospheric pressure measured at the station.
Data quality flags, see documentation for description of codes.
Descriptive information to clarify or enhance the understanding of the other entered data.
The BOREAS certification level of the data.
The most recent date when the information in the referenced data base table record was revised.

7.3.3 Unit of Measurement
The measurement units for the parameters contained in the data files on the CD-ROM are:

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE NAME</td>
<td>[none]</td>
</tr>
<tr>
<td>SUB_SITE</td>
<td>[none]</td>
</tr>
<tr>
<td>DATE_OBS</td>
<td>[DD-MON-YY]</td>
</tr>
<tr>
<td>TIME_OBS</td>
<td>[HHMM GMT]</td>
</tr>
<tr>
<td>SENSIBLE_HEAT_FLUX_BELOW_CNPY</td>
<td>[Watts][meter^-2]</td>
</tr>
<tr>
<td>LIC_LATENT_HEAT_FLUX_4M</td>
<td>[Watts][meter^-2]</td>
</tr>
<tr>
<td>KRYPTON_LATENT_HEAT_FLUX_4M</td>
<td>[Watts][meter^-2]</td>
</tr>
<tr>
<td>NET_RAD_10CM</td>
<td>[Watts][meter^-2]</td>
</tr>
<tr>
<td>SOIL_HEAT_FLUX_3CM_1</td>
<td>[Watts][meter^-2]</td>
</tr>
<tr>
<td>SOIL_HEAT_FLUX_3CM_2</td>
<td>[Watts][meter^-2]</td>
</tr>
<tr>
<td>SOIL_HEAT_FLUX_3CM_3</td>
<td>[Watts][meter^-2]</td>
</tr>
<tr>
<td>SOIL_HEAT_FLUX_3CM_4</td>
<td>[Watts][meter^-2]</td>
</tr>
<tr>
<td>SOIL_HEAT_FLUX_3CM_5</td>
<td>[Watts][meter^-2]</td>
</tr>
<tr>
<td>SOIL_HEAT_FLUX_3CM_6</td>
<td>[Watts][meter^-2]</td>
</tr>
<tr>
<td>SOIL_HEAT_FLUX_3CM_7</td>
<td>[Watts][meter^-2]</td>
</tr>
<tr>
<td>SOIL_HEAT_FLUX_3CM_8</td>
<td>[Watts][meter^-2]</td>
</tr>
<tr>
<td>SOIL_HEAT_FLUX_3CM_9</td>
<td>[Watts][meter^-2]</td>
</tr>
<tr>
<td>MEAN_SOIL_HEAT_FLUX_3CM</td>
<td>[Watts][meter^-2]</td>
</tr>
<tr>
<td>SOIL_HEAT_FLUX_8CM</td>
<td>[Watts][meter^-2]</td>
</tr>
<tr>
<td>SOIL_HEAT_STORAGE_RATE</td>
<td>[Watts][meter^-2]</td>
</tr>
<tr>
<td>SURFACE_SOIL_HEAT_FLUX</td>
<td>[Watts][meter^-2]</td>
</tr>
<tr>
<td>CO2_FLUX_BELOW_CNPY</td>
<td>[micromoles][meters^-2][second^-1]</td>
</tr>
<tr>
<td>MEAN_CO2_CONC_4M</td>
<td>[parts per million]</td>
</tr>
<tr>
<td>SDEV_CO2_CONC_4M</td>
<td>[parts per million]</td>
</tr>
<tr>
<td>BOWEN_RATIO_4M</td>
<td>[unitless]</td>
</tr>
<tr>
<td>KINEM_MOMENT_FLUX_4M</td>
<td>[meter^2][second^-2]</td>
</tr>
<tr>
<td>DOWN_PPFD_10CM</td>
<td>[micromoles][meters^-2][second^-1]</td>
</tr>
<tr>
<td>WIND_DIR_4M</td>
<td>[degrees from North]</td>
</tr>
<tr>
<td>WIND_SPEED_4M</td>
<td>[meters][second^-1]</td>
</tr>
<tr>
<td>FRICTION_VEL_4M</td>
<td>[meters][second^-1]</td>
</tr>
<tr>
<td>WIND_SPEED_RESULTANT_VECTOR_4M</td>
<td>[meters][second^-1]</td>
</tr>
<tr>
<td>WIND_DIR_RESULTANT_4M</td>
<td>[degrees from North]</td>
</tr>
<tr>
<td>MEAN_U_WIND_SPEED_4M</td>
<td>[meters][second^-1]</td>
</tr>
<tr>
<td>MEAN_W_WIND_SPEED_4M</td>
<td>[meters][second^-1]</td>
</tr>
</tbody>
</table>
7.3.4 Data Source

The sources of the parameter values contained in the data files on the CD-ROM are:

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
<td>[Assigned by BORIS.]</td>
</tr>
<tr>
<td>SUB_SITE</td>
<td>[Assigned by BORIS.]</td>
</tr>
<tr>
<td>DATE_OBS</td>
<td>[Supplied by Investigator.]</td>
</tr>
<tr>
<td>TIME_OBS</td>
<td>[Supplied by Investigator.]</td>
</tr>
<tr>
<td>SENSIBLE_HEAT_FLUX_BELOW_CNPY</td>
<td>[Solent sonic anemometer]</td>
</tr>
<tr>
<td>LIC_LATENT_HEAT_FLUX_4M</td>
<td>[IRGA]</td>
</tr>
<tr>
<td>KRYPTON_LATENT_HEAT_FLUX_4M</td>
<td>[krypton hygrometer]</td>
</tr>
<tr>
<td>NET_RAD_10CM</td>
<td>[Net radiometer]</td>
</tr>
</tbody>
</table>
7.3.5 Data Range

The following table gives information about the parameter values found in the data files on the CD-ROM.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Minimum Data Value</th>
<th>Maximum Data Value</th>
<th>Missing Data Value</th>
<th>Unrel Data Value</th>
<th>Below Data Value</th>
<th>Detect Data Value</th>
<th>Not Data Value</th>
<th>Limit</th>
<th>Collectd</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
<td>SSA-9OA-FLXTR</td>
<td>SSA-9OA-FLXTR</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>SUB_SITE</td>
<td>9TF01-UNS01</td>
<td>9TF01-UNS01</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>DATE_OBS</td>
<td>12-OCT-93</td>
<td>31-DEC-94</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>TIME_OBS</td>
<td>0</td>
<td>2344</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>SENSIBLE_HEAT_FLUX_below_cnpy</td>
<td>-4573</td>
<td>8845.4</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIC_LATENT_HEAT_FLUX_4M</td>
<td>-299.61</td>
<td>3162</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KRYPTON_LATENT_HEAT_4M</td>
<td>-8032</td>
<td>3431</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NET_RAD_10CM</td>
<td>-6.101</td>
<td>225.43</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOIL_HEAT_FLUX_3CM_1</td>
<td>-14.24</td>
<td>98.4</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOIL_HEAT_FLUX_3CM_2</td>
<td>-17.04</td>
<td>92.9</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOIL_HEAT_FLUX_3CM_3</td>
<td>-13.98</td>
<td>84.9</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOIL_HEAT_FLUX_3CM_4</td>
<td>-13.26</td>
<td>68.39</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOIL_HEAT_FLUX_3CM_5</td>
<td>-15.34</td>
<td>107.2</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOIL_HEAT_FLUX_3CM_6</td>
<td>-15.34</td>
<td>263.6</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOIL_HEAT_FLUX_3CM_7</td>
<td>-14.76</td>
<td>77.5</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOIL_HEAT_FLUX_3CM_8</td>
<td>-10.66</td>
<td>81.8</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOIL_HEAT_FLUX_3CM_9</td>
<td>-12.56</td>
<td>35.77</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEAN_SOIL_HEAT_FLUX_3CM</td>
<td>-3103.3</td>
<td>79.9</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOIL_HEAT_FLUX_8CM</td>
<td>-10.93</td>
<td>63.64</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOIL_HEAT_STORAGE_RATE</td>
<td>-45.74</td>
<td>64.41</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SURFACE_SOIL_HEAT_FLUX</td>
<td>-3107.5</td>
<td>86.068</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2_FLUX_BELLOW_CNPy</td>
<td>-1461.3636</td>
<td>109.9614</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEAN_CO2_CONC_4M</td>
<td>-14.465</td>
<td>553.94</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SDEV_CO2_CONC_4M</td>
<td>0</td>
<td>79.62</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOWEN_RATIO_4M</td>
<td>-6572.9</td>
<td>8628.6</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KINEM_MOMENT_FLUX_4M</td>
<td>-144</td>
<td>64.4</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOWN_PPPD_10CM</td>
<td>-1.9505</td>
<td>2838.1</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WIND_DIR_4M</td>
<td>-2.199</td>
<td>350.79</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Value</td>
<td>Quality</td>
<td>Notes</td>
<td>Comment</td>
<td>Date</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WIND_SPEED_4M</td>
<td>0</td>
<td>-999</td>
<td>None</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRICTION_VEL_4M</td>
<td>.0008</td>
<td>-999</td>
<td>None</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WIND_SPEED_RESULTANT VECTOR 4M</td>
<td>1.583</td>
<td>-999</td>
<td>None</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WIND_DIR_RESULTANT 4M</td>
<td>359.92</td>
<td>-999</td>
<td>None</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEAN_U_WIND_SPEED_4M</td>
<td>.01</td>
<td>-999</td>
<td>None</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEAN_W_WIND_SPEED_4M</td>
<td>.25</td>
<td>-999</td>
<td>None</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAR_W_WIND_SPEED_4M</td>
<td>0</td>
<td>-999</td>
<td>None</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SDEV_W_WIND_SPEED_4M</td>
<td>10.77</td>
<td>None</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABS_HUM_4M</td>
<td>.9719</td>
<td>16.889</td>
<td>-999</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEAN_LIC_ABS_HUM_4M</td>
<td>-.204</td>
<td>25.875</td>
<td>-999</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEAN_KRYPTON_ABS_HUM_4M</td>
<td>-2.364</td>
<td>56.38</td>
<td>None</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SDEV_LIC_ABS_HUM_4M</td>
<td>1.992</td>
<td>None</td>
<td>None</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SDEV_KRYPTON_ABS_HUM_4M</td>
<td>21.1</td>
<td>None</td>
<td>None</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEAN_AIR_TEMP_4M</td>
<td>-11.447</td>
<td>28.507</td>
<td>-999</td>
<td>None</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SDEV_AIR_TEMP_4M</td>
<td>.017</td>
<td>19.85</td>
<td>None</td>
<td>None</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOLENT_AIR_TEMP_4M</td>
<td>-6.948</td>
<td>29.316</td>
<td>-999</td>
<td>None</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOIL_TEMP_2CM</td>
<td>-3.69</td>
<td>17.78</td>
<td>None</td>
<td>None</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOIL_TEMP_5CM</td>
<td>-3.061</td>
<td>15.69</td>
<td>None</td>
<td>None</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOIL_TEMP_10CM</td>
<td>-2.867</td>
<td>15.23</td>
<td>None</td>
<td>None</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOIL_TEMP_20CM</td>
<td>-2.205</td>
<td>14.17</td>
<td>None</td>
<td>None</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOIL_TEMP_50CM</td>
<td>-.965</td>
<td>12.1</td>
<td>None</td>
<td>None</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOIL_TEMP_100CM</td>
<td>-.227</td>
<td>10.21</td>
<td>None</td>
<td>None</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEAN_SOIL_TEMP_INT_3CM</td>
<td>-2.563</td>
<td>19.985</td>
<td>None</td>
<td>None</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOIL_WATER_POTENT_3CM</td>
<td>.0272</td>
<td>699.9</td>
<td>-999</td>
<td>None</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOIL_WATER_POTENT_6CM</td>
<td>.0292</td>
<td>699.9</td>
<td>-999</td>
<td>None</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOIL_WATER_POTENT_46CM</td>
<td>.0261</td>
<td>36.21</td>
<td>-999</td>
<td>None</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRAV_SOIL_WATER_CONTENT_3CM</td>
<td>.065</td>
<td>.307</td>
<td>-999</td>
<td>None</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REL_HUM_4M</td>
<td>-129.47</td>
<td>98.459</td>
<td>-999</td>
<td>None</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOLE_TEMP_2MM</td>
<td>-29.275</td>
<td>32.34</td>
<td>-999</td>
<td>None</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOLE_TEMP_4CM</td>
<td>-29.392</td>
<td>27.413</td>
<td>-999</td>
<td>None</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOLE_TEMP_8CM</td>
<td>-29.313</td>
<td>26.185</td>
<td>-999</td>
<td>None</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOLE_TEMP_12CM</td>
<td>-29.173</td>
<td>25.689</td>
<td>-999</td>
<td>None</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOLE_TEMP_158MM</td>
<td>-29.47</td>
<td>28.548</td>
<td>-999</td>
<td>None</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAZEL_BOLE_TEMP_2MM</td>
<td>0</td>
<td>27.344</td>
<td>-999</td>
<td>None</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNOW_I RT TEMP</td>
<td>-35.627</td>
<td>132.57</td>
<td>-999</td>
<td>None</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNOW_TEMP_6CM</td>
<td>-7.998</td>
<td>29.94</td>
<td>-999</td>
<td>None</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNOW_TEMP_12CM</td>
<td>-9.293</td>
<td>29.301</td>
<td>-999</td>
<td>None</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNOW_TEMP_18CM</td>
<td>-12.511</td>
<td>29.008</td>
<td>-999</td>
<td>None</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNOW_TEMP_24CM</td>
<td>-15.011</td>
<td>28.847</td>
<td>-999</td>
<td>None</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNOW_TEMP_30CM</td>
<td>-18.131</td>
<td>28.774</td>
<td>-999</td>
<td>None</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNOW_TEMP_36CM</td>
<td>-23.509</td>
<td>28.627</td>
<td>-999</td>
<td>None</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SURF_PRESS</td>
<td>59.95</td>
<td>95.97</td>
<td>-999</td>
<td>None</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DATA_QUALITY_FLAG</td>
<td>N/A</td>
<td>N/A</td>
<td>None</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMMENTS</td>
<td>N/A</td>
<td>N/A</td>
<td>None</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRTFCN_CODE</td>
<td>CPI</td>
<td>CPI</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REVISION_DATE</td>
<td>18-AUG-99</td>
<td>18-AUG-99</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Minimum Data Value -- The minimum value found in the column.

Maximum Data Value -- The maximum value found in the column.

Missing Data Value -- The value that indicates missing data. This is used to indicate that an attempt was made to determine the parameter value, but the attempt was unsuccessful.

Unreliable Data Value -- The value that indicates unreliable data. This is used to indicate an attempt was made to determine the parameter value, but the value was deemed to be unreliable by the analysis personnel.

Below Detect Limit -- The value that indicates parameter values below the instruments detection limits. This is used to indicate that an attempt was made to determine the parameter value, but the analysis personnel determined that the parameter value was below the detection limit of the instrumentation.

Data Not Collected -- This value indicates that no attempt was made to determine the parameter value. This usually indicates that BORIS combined several similar but not identical data sets into the same data base table but this particular science team did not measure that parameter.

Blank -- Indicates that blank spaces are used to denote that type of value.

N/A -- Indicates that the value is not applicable to the respective column.

None -- Indicates that no values of that sort were found in the column.

7.4 Sample Data Record

The following are wrapped versions of data record from a sample data file on the CD-ROM.

SITE_NAME, SUB_SITE, DATE_OBS, TIME_OBS, SENSIBLE_HEAT_FLUX_BELOW_CNPRY,
LIC_LATENT_HEAT_FLUX_4M, KRYPTON_LATENT_HEAT_FLUX_4M, NET_RAD_10CM,
SOIL_HEAT_FLUX_3CM_1, SOIL_HEAT_FLUX_3CM_2, SOIL_HEAT_FLUX_3CM_3,
SOIL_HEAT_FLUX_3CM_4, SOIL_HEAT_FLUX_3CM_5, SOIL_HEAT_FLUX_3CM_6,
SOIL_HEAT_FLUX_3CM_7, SOIL_HEAT_FLUX_3CM_8, SOIL_HEAT_FLUX_3CM_9,
MEAN_SOIL_HEAT_FLUX_3CM, SOIL_HEAT_FLUX_8CM, SOIL_HEAT_STORAGE_RATE,
SURFACE_SOIL_HEAT_FLUX, CO2_FLUX_BELOW_CNPRY, MEAN_CO2_CONC_4M, SDEV_CO2_CONC_4M,
BOWEN_RATIO_4M, KINEM_MOMENT_FLUX_4M, DOWN_PPFD_10CM, WIND_DIR_4M, WIND_SPEED_4M,
FRICTIONVEL_4M, WIND_SPEED_RESULTANT_VECTOR_4M, WIND_DIR_RESULTANT_4M,
MEAN_U_WIND_SPEED_4M, MEAN_W_WIND_SPEED_4M, VAR_W_WIND_SPEED_4M,
SDEV_W_WIND_SPEED_4M, ABS_HUM_4M, MEAN_LIC_ABS_HUM_4M, SDEV_LIC_ABS_HUM_4M,
MEAN_KRYPTON_ABS_HUM_4M, SDEV_KRYPTON_ABS_HUM_4M, MEAN_AIR_TEMP_4M,
SDEV_AIR_TEMP_4M, SOLENT_AIR_TEMP_4M, SOIL_TEMP_2CM, SOIL_TEMP_5CM,
SOIL_TEMP_10CM, SOIL_TEMP_20CM, SOIL_TEMP_50CM, SOIL_TEMP_100CM,
MEAN_SOIL_TEMP_INT_3CM, SOIL_WATER_POTENT_3CM, SOIL_WATER_POTENT_6CM,
SOIL_WATER_POTENT_46CM, GRAY_SOIL_WATER_CONTENT_3CM, REL_HUM_4M, BOLE_TEMP_2MM,
BOLE_TEMP_4CM, BOLE_TEMP_8CM, BOLE_TEMP_12CM, BOLE_TEMP_15MM, HAZEL_BOLE_TEMP_2MM,
SNOW_INT_TEMP, SNOW_TEMP_6CM, SNOW_TEMP_12CM, SNOW_TEMP_18CM, SNOW_TEMP_24CM,
SNOW_TEMP_30CM, SNOW_TEMP_36CM, SURF_PRESS, DATA_QUALITY_FLAG, COMMENTS,
CRTFCN_CODE, REVISION_DATE
'SSA-9OA-FLXTR', '9TF01-UNS01', 01-JUN-94, 0, 2.823, 8.352,, 0.0, 19.69, 16.87, 18.27,
16.64, 22.21, 22.27, 16.6, 13.89, 14.53, 17.886, 21.53, -3.906, 13.979, 1.8751, 372.23,
.338, -.01, 0, 1.74, 0.12, 0.77, 1.007, 1.075, 1.064, .24, .05, .005, 6.0113, 8.425, ..,
8. Data Organization

8.1 Data Granularity
The smallest unit of data tracked by the BOREAS Information System (BORIS) was data collected at a given site on a given date.

8.2 Data Format
The Compact Disk-Read-Only Memory (CD-ROM) files contain American Standard Code for Information Interchange (ASCII) numerical and character fields of varying length separated by commas. The character fields are enclosed with single apostrophe marks. There are no spaces between the fields.

Each data file on the CD-ROM has four header lines of Hyper-Text Markup Language (HTML) code at the top. When viewed with a Web browser, this code displays header information (data set title, location, date, acknowledgments, etc.) and a series of HTML links to associated data files and related data sets. Line 5 of each data file is a list of the column names, and line 6 and following lines contain the actual data.

9. Data Manipulations

9.1 Formulae

9.1.1 Derivation Techniques and Algorithms
There are many equations and formulae used in the calculations of fluxes from the raw voltage signals. Readers are referred to the relevant references for details.

9.2 Data Processing Sequence

9.2.1 Processing Steps
Averages, variances, and covariances are calculated in real time, and coordinate rotation is applied on the half-hourly covariances and variances. WPL corrections were made to the water vapor and carbon dioxide fluxes measured using the closed-path LI-COR 6262 IRGA.

BORIS staff processed these data by:
- Reviewing the initial data files and loading them online for BOREAS team access.
- Designing relational data base tables to inventory and store the data.
- Loading the data into the relational data base tables.
- Working with the team to document the data set.
- Extracting the data into logical files.
9.2.2 Processing Changes
None.

9.3 Calculations

9.3.1 Special Corrections/Adjustments
WPL corrections were made to the water vapor and carbon dioxide fluxes measured using the closed-path LI-COR 6262 IRGA. Broadening correction was done, but not online (see Chen et al., 1998, for summary of theory).

9.3.2 Calculated Variables
The Bowen ratio is the ratio of the sensible to latent heat flux. The soil heat storage rate is the rate of change of heat storage in the 0-3 cm surface layer calculated from the gravimetric soil water content and the mean integrated soil temperature. The soil surface heat flux density is the sum of the 3-cm soil heat flux and the soil heat storage rate.

9.4 Graphs and Plots
See Black et al., 1996; Chen et al., 1998; Blanken, 1997; and Yang, 1998.

10. Errors

10.1 Sources of Error
See Section 10.2.1.

10.2 Quality Assessment

10.2.1 Data Validation by Source
Data were checked and flagged for various conditions in the original data base at the University of British Columbia (UBC) (Z. Nesic). Relatively little data were missing in 4-m measurements in 1994 and 39 m in 1996.

There are several sources of error in the measurements. These are coded, based on field notes, in the COMMENTS column. The following are the definitions of these codes:

P = all sensors "parked" in a tower shelter for protection (e.g. high winds).
Z = zero check on LI-COR
B = daily backup of data files
C = computer crash
S = starting time of a run, if not on the half hour (e.g. $S_{18:50:30}$).
RK = rotated krypton 90 degrees
CK = cleaned krypton
SK = suspect snow on krypton
SS = suspect snow on sonic anemometer/thermometer
AP = adjusted LI-COR sampling pump
TC = zero gas tank change
RT = repair zero gas tank
PF = power failure
PP = suspect pulp and paper mill influence
CS = communication problem with sonic anemometer/thermometer
ZE = data compression error due to incorrect CPU time
The DATA_QUALITY_FLAG column contains four data quality flags:

- Flag one is for the sonic anemometer/thermometer. The low status of this flag (0) indicates problems with the anemometer/thermometer and its built-in Analog to Digital (A/D) card. This affected all measurements contained in this data file.
- Flag two is for the closed-path analyzer (LI-COR6262) in measuring CO₂. The low status of this flag indicates that the analyzer was not performed properly. The measurements of MEAN_CO2_CONC_4M, SDEV_CO2_CONC_4M, and CO2_FLUX_BELOW_CNPY are of poor quality.
- Flag three is for the closed-path analyzer (LI-COR6262) in measuring H₂O. The low status of this flag indicates that the analyzer was not performed properly. The measurements of MEAN_LIC_ABS_HUM_4M, SDEV_LIC_ABS_HUM_4M, and LIC_LATENT_HEAT_FLUX_4M are of poor quality.
- Flag four is for the open-path analyzer (krypton). The low status of this flag indicates problems with this analyzer, mostly as a result of precipitation landing on the sensor. Measurements made with this analyzer, including MEAN_KRYPTON_ABS_HUM_4M, SDEV_KRYPTON_ABS_HUM_4M, and KRYPTON_LATENT_HEAT_FLUX_4M are poor in quality. Some runs with this flag set high might also have been interfered by precipitation. Users should therefore be careful in interpreting the measurements made with this analyzer. Users are also advised to use MEAN_KRYPTON_ABS_HUM_4M only as the absolute humidity measurement, because this type of open-path analyzers (K20) can have substantial zero drift over a short time period.

10.2.2 Confidence Level/Accuracy Judgment
None given.

10.2.3 Measurement Error for Parameters
None given.

10.2.4 Additional Quality Assessments
None.

10.2.5 Data Verification by Data Center
Data were examined to check for spikes, values that are four standard deviations from the mean, long periods of constant values, and missing data.

11. Notes

11.1 Limitations of the Data
None given.

11.2 Known Problems with the Data
See Section 10.2.1.

11.3 Usage Guidance
Read this document carefully or contact Drs. T.A. Black and Z. Chen.

11.4 Other Relevant Information
None.
12. Application of the Data Set

These data are useful for the study of water, energy, and carbon exchange in a mature aspen forest.

13. Future Modifications and Plans

Data collection from the SSA-OA tower continued after 1996. Contact Dr. T.A. Black for information about these data.

14. Software

14.1 Software Description

None.

14.2 Software Access

None given.

15. Data Access

The SSA-OA understory flux, meteorological, and soil temperature data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

15.1 Contact Information

For BOREAS data and documentation please contact:

ORNL DAAC User Services
Oak Ridge National Laboratory
P.O. Box 2008 MS-6407
Oak Ridge, TN 37831-6407
Phone: (423) 241-3952
Fax: (423) 574-4665
E-mail: ornldaac@ornl.gov or ornl@eos.nasa.gov

15.2 Data Center Identification

Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC) for Biogeochemical Dynamics http://www-eosdis.ornl.gov/.

15.3 Procedures for Obtaining Data

Users may obtain data directly through the ORNL DAAC online search and order system [http://www-eosdis.ornl.gov/] and the anonymous FTP site [ftp://www-eosdis.ornl.gov/data/] or by contacting User Services by electronic mail, telephone, fax, letter, or personal visit using the contact information in Section 15.1.

15.4 Data Center Status/Plans

The ORNL DAAC is the primary source for BOREAS field measurement, image, GIS, and hardcopy data products. The BOREAS CD-ROM and data referenced or listed in inventories on the CD-ROM are available from the ORNL DAAC.
16. Output Products and Availability

16.1 Tape Products
None.

16.2 Film Products
None.

16.3 Other Products
These data are available on the BOREAS CD-ROM series.

17. References

17.1 Platform/Sensor/Instrument/Data Processing Documentation
None.

17.2 Journal Articles and Study Reports

17.3 Archive/DBMS Usage Documentation
None.

18. Glossary of Terms
None.
19. List of Acronyms

A/D - Analog to Digital
AES - Atmospheric Environment Service
AFM - Airborne Fluxes and Meteorology
ASCII - American Standard Code for Information Interchange
ATD - Atmospheric Technology Division
ATI - Applied Technologies, Inc.
BOREAS - BOReal Ecosystem-Atmosphere Study
BORIS - BOREAS Information System
CD-ROM - Compact Disk-Read-Only Memory
DAAC - Distributed Active Archive Center
EOS - Earth Observing System
EOSDIS - EOS Data and Information System
GIS - Geographic Information System
GMT - Greenwich Mean Time
GSFC - Goddard Space Flight Center
HTML - Hyper-Text Markup Language
i.d. - inner diameter
IFC - Intensive Field Campaign
IRGA - Infrared Gas Analyzer
LAI - Leaf Area Index
NAD83 - North American Datum of 1983
NASA - National Aeronautics and Space Administration
NEP - Net Ecosystem Productivity
NSA - Northern Study Area
OA - Old Aspen
ORNL - Oak Ridge National Laboratory
PANP - Prince Albert National Park
PAR - Photosynthetically Active Radiation
PC - Personal Computer
PPFD - Photosynthetic Photon Flux Density
SRC - Saskatchewan Research Council
SSA - Southern Study Area
TDR - Time Domain Reflectometry
TF - Tower Flux
UBC - University of British Columbia
URL - Uniform Resource Locator
WPL - Webb, Pearman, and Leuning (1980) corrections

20. Document Information

20.1 Document Revision Date
Written: 04-Sep-1998
Last Updated: 01-Nov-1999

20.2 Document Review Date(s)
BORIS Review: 19-Aug-1999
Science Review:

20.3 Document ID
20.4 Citation
When using these data, please include the following acknowledgment as well as citations of relevant papers in Section 17.2:

Data were collected and processed by T.A. Black and Z. Nesic of the University of British Columbia.

If using data from the BOREAS CD-ROM series, also reference the data as:

Also, cite the BOREAS CD-ROM set as:

20.5 Document Curator

20.6 Document URL
Technical Report Series on the Boreal Ecosystem-Atmosphere Study (BOREAS)

BOREAS TF-1 SSA-OA Understory Flux, Meteorological, and Soil Temperature Data

Authors:
- T. Andrew Black, Z. Chen, and Zoran Nesic
- Forrest G. Hall and Karl Huemmrich, Editors

Performing Organization:
- Goddard Space Flight Center
- Greenbelt, Maryland 20771

Funding Numbers:
- 923
- RTOP: 923-462-33-01

Perfoming Organization Report Number:
- 2000-03136-0

Sponsoring/Monitoring Agency:
- National Aeronautics and Space Administration
- Washington, DC 20546-0001

Supplementary Notes:
- T.A. Black, Z. Chen, and Z. Nesic; University of British Columbia, Vancouver; K. Huemmrich: University of Maryland, NASA Goddard Space Flight Center, Greenbelt, Maryland

Abstract:

The BOREAS TF-1 team collected energy, carbon dioxide, and momentum flux data under the canopy along with meteorological and soils data at the BOREAS SSA-OA site from mid-October to mid-November of 1993 and throughout all of 1994. The data are available in tabular ASCII files.

Subject Terms:
- BOREAS, tower flux, meteorological data, soils data.