Technical Report Series on the Boreal Ecosystem-Atmosphere Study (BOREAS)

Forrest G. Hall and Sara K. Conrad, Editors

Volume 222

BOREAS TGB-1/TGB-3 CH₄ Chamber Flux Data over the NSA Fen

Jill L. Bubier, University of New Hampshire, Durham
Tim R. Rice, McGill University, Montreal, Quebec

National Aeronautics and Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

November 2000
Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the lead center for NASA’s scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA’s institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA’s counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- TECHNICAL MEMORANDUM. Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees.

- CONFERENCE PUBLICATION. Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, projects, and mission, often concerned with subjects having substantial public interest.

- TECHNICAL TRANSLATION. English-language translations of foreign scientific and technical material pertinent to NASA’s mission.

Specialized services that complement the STI Program Office’s diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results . . . even providing videos.

For more information about the NASA STI Program Office, see the following:

- E-mail your question via the Internet to help@sti.nasa.gov

- Fax your question to the NASA Access Help Desk at (301) 621-0134

- Telephone the NASA Access Help Desk at (301) 621-0390

- Write to:
 NASA Access Help Desk
 NASA Center for AeroSpace Information
 7121 Standard Drive
 Hanover, MD 21076-1320
Technical Report Series on the Boreal Ecosystem-Atmosphere Study (BOREAS)

Forrest G. Hall and Sara K. Conrad, Editors

Volume 222

BOREAS TGB-1/TGB-3 CH₄ Chamber Flux Data over the NSA Fen

Jill L. Bubier, University of New Hampshire, Durham
Tim R. Rice, McGill University, Montreal, Quebec

National Aeronautics and Space Administration
Goddard Space Flight Center
Greenbelt, Maryland 20771

November 2000
BOREAS TGB-1, TGB-3 CH₄ Chamber Flux Data over the NSA-Fen

Jill L. Bubier, Tim Moore

Summary

The BOREAS TGB-3 team collected methane (CH₄) chamber flux measurements at the NSA fen site during May-September 1994 and June-October 1996. Gas samples were extracted approximately every 7 days from chambers and analyzed at the NSA lab facility. The data are provided in tabular ASCII files.

Table of Contents

1) Data Set Overview
2) Investigator(s)
3) Theory of Measurements
4) Equipment
5) Data Acquisition Methods
6) Observations
7) Data Description
8) Data Organization
9) Data Manipulations
10) Errors
11) Notes
12) Application of the Data Set
13) Future Modifications and Plans
14) Software
15) Data Access
16) Output Products and Availability
17) References
18) Glossary of Terms
19) List of Acronyms
20) Document Information

1. Data Set Overview

1.1 Data Set Identification
BOREAS TGB-01/TGB-03 CH₄ Chamber Flux Data over the NSA-Fen

1.2 Data Set Introduction
The Trace Gas Biogeochemistry (TGB)-01 and -03 teams collected chamber flux measurements at the BOReal Ecosystem-Atmosphere Study (BOREAS) Northern Study Area (NSA) Fen site from May to September 1994 and April to late October 1996.
1.3 Objective/Purpose
The objectives of these measurements were:
- To examine the trace gas exchange between the atmosphere and the boreal wetland soils.
- To quantify CH$_4$ emissions from the range of peatland soils in the Nelson House area, as represented by a suite of peatlands in the Tower Fen (TF) complex.
- To identify environmental controls on CH$_4$ emission and the spatial and temporal variability associated with those controls, in order to improve the process models that describe exchanges of trace gases between the boreal ecosystem and the atmosphere.
- To examine the change in CH$_4$ flux associated with the evolution of palsas and peat plateaus into collapse, through thermal degradation of permafrost.
- To identify the role of plant associations, as integrators of the environmental controls, in determining CH$_4$ flux in order to provide a framework for extrapolating single-point CH$_4$ measurements from the chamber to the landscape scale.

1.4 Summary of Parameters
In the 1994 sampling season, CH$_4$ chamber flux measurements were taken from six sites. These sites were designated as collapse bog (CB), collapse fen (CF), TF, remote bog (RB), remote fen (RF), and zoltai fen (ZF).

In the 1996 sampling season, CH$_4$ chamber fluxes were measured at four subsites in the NSA fen. These sites were designated as CB, CF, TF, and ZF. A spur (1, 2, 3, or 4) further designates each collar location along the boardwalk at each subite. The collar location is also designated by the microtopography, or dominant ground cover, of the collar location: palsa, hummock, hollow, lawn, open water at the edge of the collapse scars, brown moss, sphagnum, lichen.

1.5 Discussion
In 1994, CH$_4$ chamber flux measurements were taken at six subsites within the NSA fen site to determine the soil surface exchange rate of CH$_4$ at these locations. The locations represent the range of plant communities, water chemistry, and peatland types found in northern peatlands, including bog, rich fen, poor fen, and collapse scar (pH ranges from 3.8 to 7.2). The sampling collars were installed in the spring of 1994 by the McGill researchers (TGB-03), and measurements of CH$_4$ flux were made during and between the 1994 Intensive Field Campaigns (IFCs).

In 1996, chamber CH$_4$ flux measurements were taken at four subsites within the fen complex in the NSA to determine the soil surface exchange rates of CH$_4$ at these locations. A subset of the collars installed by the McGill researchers (TGB-03) was measured again from June until the end of October 1996. In addition, the University of New Hampshire (UNH) researchers (TGB-01) installed 15 collars in the fall of 1995; 9 additional collars were installed by the UNH researchers in the spring of 1996. CH$_4$ flux measurements began in early April 1996 and continued until the end of October 1996.

Two different types of data are presented:
- CH$_4$ flux measurements using the UNH collars.
- CH$_4$ flux measurements using the McGill University collars.

1.6 Related Data Sets
BOREAS TGB-01 CO2 and CH4 Chamber Flux data over the NSA
BOREAS TGB-01 CH4 Tower Flux data over the NSA
BOREAS TGB-03 CH4 and CO2 Chamber Flux Data over NSA Upland Sites
BOREAS TGB-01/TGB-03 NEE data over the NSA Fen
BOREAS TGB-01/TGB-03 Water Table and Peat Temperature data over the NSA Fen
BOREAS TGB-03 Plant Species Composition Data over the NSA Fen
2. Investigator(s)

2.1 Investigator(s) Name and Title
Dr. Jill L. Bubier
Research Associate
University of New Hampshire

Dr. Patrick M. Crill
Research Associate Professor
University of New Hampshire

Dr. Tim R. Moore
Professor
McGill University

2.2 Title of Investigation
Magnitude and Control of Trace Gas Exchange in Boreal Ecosystems

2.3 Contact Information

Contact 1:
Dr. Jill L. Bubier
Institute for the Study of Earth, Oceans, and Space
Complex Systems Research Center
University of New Hampshire
Durham, NH 03824
(603) 862-4208
(603) 862-0188 (fax)
jill.bubier@unh.edu

Contact 2:
Dr. Patrick M. Crill
Institute for the Study of Earth, Oceans, and Space
Complex Systems Research Center
University of New Hampshire
Durham, NH 03824
(603) 862-3519
(603) 862-0188 (fax)
patrick.crill@unh.edu

Contact 3:
Ruth K. Varner
Research Scientist
Institute for the Study of Earth, Oceans, and Space
Complex Systems Research Center
University of New Hampshire
Durham, NH 03824
(603) 862-2939
(603) 862-0188 (fax)
ruth.kerwin@unh.edu
3. Theory of Measurements

Chamber fluxes measure the changes in mixing ratio of trace gases (CH₄) in a closed headspace over a period of time. This headspace is isolated from the atmosphere; therefore, we can quantify the exchange of material between the covered soil and the headspace.

4. Equipment

4.1 Sensor/Instrument Description

The CH₄ flux measurements were measured with PVC collars (26 cm in diameter) and chambers made from polycarbonate bottles (26 cm in diameter; 40 cm tall; area of exposure 0.053 m²; Moore and Roulet, 1991). Bottles were covered with aluminum foil to reduce heating. The neck of each bottle was sealed with a rubber stopper that contained a glass tube with a rubber septum with a 1 m length of Tygon tubing attached to the top to minimize disturbance. Syringes were made of polypropylene syringes.

CH₄ was quantified with a Shimadzu 14A Gas Chromatograph (GC) or a Shimadzu Mini2GC with a flame ionization detector (FID) operated at 125 °C after separation on a HayeSepQ column at 40 °C using ultra-pure (99.999%) N₂ as a carrier gas flowing at 30 mL/min. Analog signals (0-1 V) from the detectors were digitized at 10 Hz with a Hewlett Packard (HP) 35000D A/D board and quantified and logged using HP ChemStation software. Chamber fluxes were accomplished with aluminum chambers manufactured at UNH and designed by Patrick Crill.

4.1.1 Collection Environment

The chamber fluxes were collected under all ambient environmental conditions. The GC analysis was completed at the Heritage North Museum Lab in Thompson, Manitoba.

4.1.2 Source/Platform

CH₄ flux collars were inserted into the peat approximately 4-6 inches. Chambers were set in a groove in the collars.
4.1.3 Source/Platform Mission Objectives
The ground supported the collars, which supported the chambers.

4.1.4 Key Variables
The key variable measured during the sampling period was CH$_4$ flux. Net ecosystem exchange of CO$_2$ (NEE) was measured at the same time along with temperature and water table position. Percent cover of vascular plant species and bryophyte species was also recorded for each collar.

4.1.5 Principles of Operation
The Shimadzu GC-14A is equipped with a FID and a thermal conductivity detector (TCD). The FID is used to detect CH$_4$ while the TCD is used to detect CO$_2$. The FID employs a hydrogen flame in an air atmosphere to burn components as they exit the column. In the flame, carbon-carbon bonds are fragmented so that various organic ions and free electrons exist. Application of a voltage across a collector electrode over the flame causes an ion current to flow that is amplified and then measured as the output signal. The TCD detects CO$_2$ by passing a sample in a helium carrier gas past metallic filaments with current flowing through them. The sample components with lower thermal conductivity than the helium carrier gas raise the filament temperature when they pass through. The signal output from the TCD is a measurement of the change in filament resistance caused by the temperature rise. The signal output from both the FID and TCD is for a data processor, integrator, recorder, or computer (Instruction Manual: GC-14A; Shimadzu Corporation, Kyoto, Japan).

The GC-MINI2 was equipped with a FID and operated in the same manner as the GC-14A FID.

4.1.6 Sensor/Instrument Measurement Geometry
Not applicable.

4.1.7 Manufacturer of Sensor/Instrument
The investigator manufactured collar and chambers.

Manufacturer of GC-14A FID/TCD and GC-MINI2:
Shimadzu Scientific Instruments, Inc.
7102 Riverwood Drive
Columbia, MD 21046
(410) 381-1227

4.2 Calibration

4.2.1 Specifications
Analyses were conducted with a Shimadzu FID-GC using a Porapak Q column. Nitrogen was used as the carrier gas and CH$_4$ standards of 2.349 ppmv were used to calibrate. Precision of the analysis (standard deviation as percent of the mean of 10-15 daily repetitions of the standard) was less than 1% of the standards. Fluxes between 0.1 and -0.1 mg/m2/d were not detectable.

Signal peaks from the detectors were quantified with working standards calibrated against Canadian Atmospheric Environment Services (AES) certified primary standards acquired by the BOREAS project and a CO$_2$/CH$_4$ standard of Niwot Ridge air prepared by National Oceanic and Atmospheric Administration (NOAA) Climate Monitoring and Diagnostics Laboratory (CMDL). Uncertainty in the standards’ analyses on a given day ranged from 0.1 to 0.2%.

4.2.1.1 Tolerance
The sensitivity of the TCD is approximately 6,000 mV mL/mg. The FID’s maximum sensitivity is 3×10^{-12} g/s for diphenyl.
4.2.2 Frequency of Calibration

The instrument is calibrated on a daily basis. Standards are run generally before and after samples on a given day of analysis.

4.2.3 Other Calibration Information

None given.

5. Data Acquisition Methods

A total of 124 PVC collars were placed along the moisture, chemistry, plant community, and permafrost gradients in the peatland complex, and were sampled in 1994. At four of the sites (bog collapse scar (BC), fen collapse scar (FC), TF, and ZF, boardwalks were installed spanning the environmental gradients to minimize disturbance. CH₄ was sampled at each of the collars once a week from early May through mid-September 1994 using a static chamber technique (Crill et al., 1988). Water was added to the groove in each collar before inserting the chamber in order to make an air-tight seal. Air samples were obtained from each chamber by inserting a polypropylene syringe into the Tygon tubing equipped with a three-way stopcock, pumping the piston four or five times to mix air in the chamber before a 60-mL sample was drawn. A 10-mL sample was taken from the 60-mL syringe using the three-way stopcock. Five 10-mL samples were taken at 4-minute intervals over a 20-minute period. Samples were returned to a laboratory in Thompson and analyzed for CH₄ within 4-6 hours of collection. After analysis, the syringes were disassembled and allowed to equilibrate with ambient air. Syringe barrels and plungers were reassembled immediately before sampling.

The 1996 chamber fluxes are determined by analysis of concentrations of methane (CH₄) in a time series of grab samples of headspace over the ground surface enclosed by a clear chamber covered in an opaque shroud to prevent light from entering the chamber. For the TGB-01 collars, the NEE chambers were used. The chambers were 0.3660 m² in area and were either 0.905 m or 0.045 m in height. For the TGB-03 collars, chambers were made of polycarbonate bottles (0.026 m in diameter; 0.040 m tall; area of exposure 0.053 m²) and were covered with aluminum foil to reduce heating. The neck was sealed with a rubber stopper that contained a glass tube with a rubber septum. Tygon tubing (1 m in length), equipped with a three-way stopcock, was attached to the top of each chamber to allow sampling at a distance that would minimize disturbance. TGB-03 collars were made of PVC tubing. The rim of the collars were routed with a groove that was filled with water when the chambers were put in place in order to create an air tight seal. TGB-01 collars were made of aluminum and were also designed with a trough for creating an air tight seal.

For both types of chambers and collars, the chamber was placed on the trough of a collar imbedded in the ground. Water was added to the trough of the collar to create an airtight seal. Five 60-mL samples were removed from the headspace with polypropylene syringes and polycarbonate/nylon stopcocks at 4-minute intervals for 20 minutes or at 2-minute intervals for 10 minutes (five samples per chamber). Samples were returned to the Heritage North Museum lab in Thompson, Manitoba, and analyzed for CO₂ and CH₄, using gas chromatography within 12 hours after collection.

6. Observations

6.1 Data Notes

None given.

6.2 Field Notes

None given.
7. Data Description

7.1 Spatial Characteristics

7.1.1 Spatial Coverage

1994 TGB-03 Collars:
The area of exposure for each collar and chamber was 0.053 m². The 100 collars were placed so as to cover the environmental gradients in the TF complex, an area approximately 6 km². Global Positioning System (GPS) coordinates based on the North American Datum of 1983 (NAD83) for the major sampling locations are:

<table>
<thead>
<tr>
<th>Site</th>
<th>NLat</th>
<th>SDev</th>
<th>WLon</th>
<th>SDev</th>
<th>Elev</th>
<th>SDev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collapse Bog (CB)</td>
<td>55°55'4.931"</td>
<td>2.75</td>
<td>98°25'5.294"</td>
<td>1.18</td>
<td>217.20</td>
<td>3.86</td>
</tr>
<tr>
<td>Collapse Fen (CF)</td>
<td>55°54'59.959"</td>
<td>5.60</td>
<td>98°25'6.109"</td>
<td>1.90</td>
<td>218.40</td>
<td>7.62</td>
</tr>
<tr>
<td>Zoltai Fen (ZF)</td>
<td>55°55'5.477"</td>
<td>2.07</td>
<td>98°25'26.396"</td>
<td>1.29</td>
<td>217.10</td>
<td>3.11</td>
</tr>
</tbody>
</table>

1996 TGB-01 Collars:
Collapse Bog (CB) collars were located in a small, circular collapse scar (75 m diameter) almost completely surrounded by permafrost peat plateau, behind the generator shed. Three spurs were located perpendicular to the boardwalk. Spur 1 was adjacent to the moat, or open water lagg area; spur 2 was in a hummock-hollow area; and spur 3 was in the center of the collapse scar. In addition to the collars in the collapse scar, this subsite had two collars on the palsa (frozen peat plateau) adjacent to the collapse scar. Collar designations were as follows:

CB1moat = collapse bog, spur 1, moat
CB2hk = collapse bog, spur 2, hummock
CB2hw = collapse bog, spur 2, hollow
CB3hk = collapse bog, spur 3, hummock
CBpalmoss = collapse bog, palsa, moss
Cbpallich = collapse bog, palsa, lichen

Collapse Fen (CF) collars were located in a small, linear collapse feature that was east of and accessed from the main trail to the tower hut. Four spurs were located perpendicular to the main boardwalk. Spur 1 was located adjacent to the moat; spur 2 was in a uniform lawn of Sphagnum riparium; spur 3 was in a small treed ridge; and spur 4 was on the far edge of the collapse scar where the influence of groundwater was apparent. Collar designations were as follows:

CF1moat = collapse fen, spur 1, moat
CF2wn = collapse fen, spur 2, lawn
CF3hka = collapse fen, spur 3, hummock (a)
CF3hkb = collapse fen, spur 3, hummock (b)
CF4bmos = collapse fen, spur 4, brown moss
CF4sph = collapse fen, spur 4, sphagnum
Tower Fen (TF) collars were located along the boardwalk to the micrometeorological tower in the NSA fen. Four spurs were located perpendicular to the main boardwalk. Spur 1 was just beyond the moat at the beginning of the boardwalk in a treed area of tamarack (Larix laricina), spur 2 was in a tall shrub zone (Betula glandulosa), spur 3 was in a low shrub zone just before the hut, and spur 4 was just beyond the hut in a mixed low shrub/sedge zone. Collar designations were as follows:

\[
\begin{align*}
TF1hk &= \text{tower fen, spur 1, hummock} \\
TF2hk &= \text{tower fen, spur 2, hummock} \\
TF2hw &= \text{tower fen, spur 2, hollow} \\
TF3hk &= \text{tower fen, spur 3, hummock} \\
TF3hw &= \text{tower fen, spur 3, hollow} \\
TF4hw &= \text{tower fen, spur 4, hollow}
\end{align*}
\]

Zoltai Fen (ZF) collars were located in a sedge-dominated (Carex spp.) fen area of the peatland complex, north of the fen tower, and accessed from Rt. 391. Three spurs were located perpendicular to the main boardwalk. Spur 1 was on a treed ridge; spur 2 was in a shrub-dominated hummock-hollow area; and spur 3 was in a wet, sedge-dominated area near the edge of a palsa. Collar designations were as follows:

\[
\begin{align*}
ZF1hk &= \text{zoltai fen, spur 1, hummock} \\
ZF2hk &= \text{zoltai fen, spur 2} \\
ZF2hw &= \text{zoltai fen, spur 2, hollow} \\
ZF3bmoss &= \text{zoltai fen, spur 3, brown moss} \\
ZF3hw &= \text{zoltai fen, spur 3, hollow (Sphagnum)} \\
ZF3hk &= \text{zoltai fen, spur 3, hummock (Sphagnum)}
\end{align*}
\]

1996 TGB-03 Collars:
For chamber CH$_4$ flux data from the McGill collars, the collars were the same as those sampled by TGB-03 in 1994. Major locations and spurs are the same as for the UNH collars described above. Microtopography for the McGill collars is designated as:
- Hummock
- Hollow
- Lawn (uniform area with little microtopography)
- Carpet (uniform area with water table closer to the peat surface than in lawn areas, peat is often a floating mat)
- Pool (water table above peat surface; submerged bryophytes, and Carex spp. or other emergent vascular plants present in collars)
- Moat (open water area or lagg at edge of peatland)

Collapse Fen (CF) location and spurs are the same as for the UNH collars described above. McGill collars are as follows:

\[
\begin{align*}
FC4p16 &= \text{collapse fen, spur 4, pool, collar 16} \\
FC4p17 &= \text{collapse fen, spur 4, pool, collar 17} \\
FC4p16new &= \text{collapse fen, spur 4, pool, collar 16 relocated to new position on 22-August-1996 because vegetation was dying within the collar} \\
FC4p17new &= \text{collapse fen, spur 4, pool, collar 17 relocated to new position on 22-August-1996 because vegetation was dying within the collar} \\
FC4p19 &= \text{collapse fen, spur 4, pool, collar 19} \\
FC4p20 &= \text{collapse fen, spur 4, pool, collar 20} \\
FCm3f &= \text{collapse fen, moat spur 1, collar 3 floating} \\
FCm2f &= \text{collapse fen, moat spur 1, collar 2 floating} \\
FCm1f &= \text{collapse fen, moat spur 1, collar 1 floating}
\end{align*}
\]
Tower Fen (TF) location and spurs are the same as for the UNH collars described above. McGill collars are as follows:

- TF4c16 = tower fen, spur 4, carpet, collar 16
- TF4n17 = tower fen, spur 4, lawn, collar 17
- TF4c18 = tower fen, spur 4, carpet, collar 18
- TF4n19 = tower fen, spur 4, lawn, collar 19
- TF4c20 = tower fen, spur 4 lawn, collar 20
- TF3w11 = tower fen, spur 3, hollow, collar 11
- TF3k12 = tower fen, spur 3, hummock, collar 12
- TF3w14 = tower fen, spur 3, hollow, collar 14
- TF3w15 = tower fen, spur 3, hollow, collar 15
- TFm1f = tower fen, moat, collar 1 floating
- TFm2f = tower fen, moat, collar 2 floating
- TFm3f = tower fen, moat, collar 3 floating

Zoltai Fen (ZF) location and spurs are the same as the UNH collars above. McGill collars are as follows:

- ZF3k11 = zoltai fen, spur 3, hummock, collar 11
- ZF3new = zoltai fen, spur 3, new collar
- ZF3p15 = zoltai fen, spur 3, pool, collar 15
- ZFmike = zoltai fen, new spur used by Mike Waddington in 1994 (Carex rostrata, C. aquatilis lawn)
- ZF2w8 = zoltai fen, spur 2, hollow, collar 8

7.1.2 Spatial Coverage Map
None given.

7.1.3 Spatial Resolution
The 24 UNH collars spanned the full range of hydrologic, plant community, and water chemistry gradients found in the larger peatland complex in order to capture the spatial variability in CH₄ fluxes. The 26 1996 McGill collars were placed along the same gradients with an emphasis on the wet end of the moisture gradient in order to resample the 1994 sites that exhibited the highest CH₄ fluxes.

7.1.4 Projection
Not applicable.

7.1.5 Grid Description
Not applicable.

7.2 Temporal Characteristics

7.2.1 Temporal Coverage
CH₄ flux, water table, and peat temperature measurements were made from mid-May through mid-September 1994. The chamber CH₄ flux measurements for 15 of the UNH collars were made from 15-April-1996 to 23-October-1996. The chamber CH₄ flux measurements for the other nine UNH collars were made 15-June-1996 to 23-October-1996. Chamber CH₄ flux measurements for the McGill collars were made from 03-June-1996 to 22-October-1996.

7.2.2 Temporal Coverage Map
Not applicable.
7.2.3 Temporal Resolution
CH$_4$ flux measurements were made once at week at each of the 124 collars throughout the 1994 season. The chamber CH$_4$ flux measurements for 15 of the UNH collars were made approximately every 7 days from 15-April-1996 to 23-October-1996. The chamber CH$_4$ flux measurements for the other nine UNH collars were made approximately every 7 days from approximately 15-June-1996 to 23-October-1996. Chamber CH$_4$ flux measurements for the McGill collars were made approximately every 7 days from 03-June-1996 to 22-October-1996.

7.3 Data Characteristics

7.3.1 Parameter/Variable
The parameters contained in the data files on the CD-ROM are:

<table>
<thead>
<tr>
<th>Column Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
</tr>
<tr>
<td>SUB_SITE</td>
</tr>
<tr>
<td>DATE_OBS</td>
</tr>
<tr>
<td>COLLAR_ID</td>
</tr>
<tr>
<td>AIR_TEMP</td>
</tr>
<tr>
<td>CH4_FLUX</td>
</tr>
<tr>
<td>CRTFCN_CODE</td>
</tr>
<tr>
<td>REVISION_DATE</td>
</tr>
</tbody>
</table>

7.3.2 Variable Description/Definition
The descriptions of the parameters contained in the data files on the CD-ROM are:

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
<td>The identifier assigned to the site by BOREAS, in the format SSS-TTT-CCCCC, where SSS identifies the portion of the study area: NSA, SSA, REG, TRN, and TTT identifies the cover type for the site, 999 if unknown, and CCCCC is the identifier for site, exactly what it means will vary with site type.</td>
</tr>
<tr>
<td>SUB_SITE</td>
<td>The identifier assigned to the sub-site by BOREAS, in the format GGGGG-IIIII, where GGGGG is the group associated with the sub-site instrument, e.g. HYD06 or STAFF, and IIIII is the identifier for sub-site, often this will refer to an instrument.</td>
</tr>
<tr>
<td>DATE_OBS</td>
<td>The date on which the data were collected.</td>
</tr>
<tr>
<td>COLLAR_ID</td>
<td>A TGB designation for the chamber collar site.</td>
</tr>
<tr>
<td>AIR_TEMP</td>
<td>The air temperature.</td>
</tr>
<tr>
<td>CH4_FLUX</td>
<td>Methane flux.</td>
</tr>
<tr>
<td>CRTFCN_CODE</td>
<td>The BOREAS certification level of the data. Examples are CPI (Checked by PI), CGR (Certified by Group), PRE (Preliminary), and CPI-???(CPI but questionable).</td>
</tr>
<tr>
<td>REVISION_DATE</td>
<td>The most recent date when the information in the referenced data base table record was revised.</td>
</tr>
</tbody>
</table>
7.3.3 Unit of Measurement
The measurement units for the parameters contained in the data files on the CD-ROM are:

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
<td>[none]</td>
</tr>
<tr>
<td>SUB_SITE</td>
<td>[none]</td>
</tr>
<tr>
<td>DATE_OBS</td>
<td>[DD-MON-YY]</td>
</tr>
<tr>
<td>COLLAR_ID</td>
<td>[none]</td>
</tr>
<tr>
<td>AIR_TEMP</td>
<td>[degrees Celsius]</td>
</tr>
<tr>
<td>CH4_FLUX</td>
<td>[micromoles][meter^-2][second^-1]</td>
</tr>
<tr>
<td>CRTFCN_CODE</td>
<td>[none]</td>
</tr>
<tr>
<td>REVISION_DATE</td>
<td>[DD-MON-YY]</td>
</tr>
</tbody>
</table>

7.3.4 Data Source
The sources of the parameter values contained in the data files on the CD-ROM are:

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
<td>Supplied by BORIS</td>
</tr>
<tr>
<td>SUB_SITE</td>
<td>Supplied by BORIS</td>
</tr>
<tr>
<td>DATE_OBS</td>
<td>Investigator</td>
</tr>
<tr>
<td>COLLAR_ID</td>
<td>Investigator</td>
</tr>
<tr>
<td>AIR_TEMP</td>
<td>Not specified</td>
</tr>
<tr>
<td>CH4_FLUX</td>
<td>GC-FID</td>
</tr>
<tr>
<td>CRTFCN_CODE</td>
<td>Supplied by BORIS</td>
</tr>
<tr>
<td>REVISION_DATE</td>
<td>Supplied by BORIS</td>
</tr>
</tbody>
</table>

7.3.5 Data Range
The following table gives information about the parameter values found in the data files on the CD-ROM.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Minimum Data Value</th>
<th>Maximum Data Value</th>
<th>Missng Data Value</th>
<th>Unrel Data Value</th>
<th>Below Detect Limit</th>
<th>Data Collectd</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
<td>NSA-FEN-FLXTR</td>
<td>NSA-FEN-FLXTR</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>SUB_SITE</td>
<td>TGB03-FLX01</td>
<td>TGB03-FLXZF</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>DATE_OBS</td>
<td>09-MAY-94</td>
<td>21-OCT-96</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>COLLAR_ID</td>
<td>CB1c01</td>
<td>ZFC-03</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>AIR_TEMP</td>
<td>-5</td>
<td>28</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Blank</td>
</tr>
<tr>
<td>CH4_FLUX</td>
<td>-6.9921875</td>
<td>1.39266204</td>
<td>-999</td>
<td>-888</td>
<td>Blank</td>
<td>None</td>
</tr>
<tr>
<td>CRTFCN_CODE</td>
<td>CPI</td>
<td>CPI</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>REVISION_DATE</td>
<td>14-APR-97</td>
<td>29-APR-98</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

Minimum Data Value -- The minimum value found in the column.
Maximum Data Value -- The maximum value found in the column.
Missng Data Value -- The value that indicates missing data. This is used to indicate that an attempt was made to determine the parameter value, but the attempt was unsuccessful.
Unrel Data Value -- The value that indicates unreliable data. This is used to indicate an attempt was made to determine the parameter value, but the value was deemed to be unreliable by the analysis personnel.
Below Detect Limit -- The value that indicates parameter values below the
Data Not Cllctd -- This value indicates that no attempt was made to
determine the parameter value. This usually
indicates that BORIS combined several similar but
not identical data sets into the same data base table
but this particular science team did not
measure that parameter.

Blank -- Indicates that blank spaces are used to denote that type of value.
N/A -- Indicates that the value is not applicable to the respective column.
None -- Indicates that no values of that sort were found in the column.

7.4 Sample Data Record
The following are wrapped versions of sample data records from a selected file on the CD-ROM:

SITE_NAME, SUB_SITE, DATE_OBS, COLLAR_ID, AIR_TEMP, CH4_FLUX, CRTFCN_CODE, REVISION_DATE
'NSA-9BS-T03BS', 'TGB03-FLXBM', 07-JUN-94, 'C-BM-05', 9.04900463, 0, 'CPI', 04-APR-97
'NSA-9BS-T03BS', 'TGB03-FLXBM', 07-JUN-94, 'C-BM-06', 27.877662, -.00425, 'CPI', 04-APR-97

8. Data Organization

8.1 Data Granularity
CH4 flux measurements for a given site on a given day.

8.2 Data Format(s)
The Compact Disk-Read-Only Memory (CD-ROM) files contain American Standard Code for
Information Interchange (ASCII) numerical and character fields of varying length separated by
commas. The character fields are enclosed with single apostrophe marks. There are no spaces between
the fields.

Each data file on the CD-ROM has four header lines of Hyper-Text Markup Language (HTML)
code at the top. When viewed with a Web browser, this code displays header information (data set
title, location, date, acknowledgments, etc.) and a series of HTML links to associated data files and
related data sets. Line 5 of each data file is a list of the column names, and line 6 and following lines
contain the actual data.
9. Data Manipulations

9.1 Formulae

9.1.1 Derivation Techniques and Algorithms

\[R_f = \frac{C_{std}}{A_{std}} \]
\[C_s = R_f \times A_s \]
\[R_f = \text{Response factor} \]
\[A_{std} = \text{Standard peak area} \]
\[C_{std} = \text{Concentration of the standard} \]
\[C_s = \text{Concentration of the sample} \]
\[A_s = \text{Peak area of sample} \]

CH\textsubscript{4} concentrations were calculated from the average of 10 peak areas of known CH\textsubscript{4} standards. The response factor was calculated as the concentration of the known standard divided by the average of 10 standard peak areas. The peak area of the unknown sample was multiplied by the response factor.

The flux calculations were made by fitting a regression curve to the time series of CH\textsubscript{4} concentrations. The flux rate of a gas is calculated using the following equation:

\[\text{Flux (mg/m}^2\text{/d)} = \text{ppmv/min} \times \left(\frac{P}{R \times g/mol \text{ of the gas}} \right) \times \left(\frac{1}{T} \right) \times \frac{V_c}{A_c} \]
\[\times \left(1000 \text{ mg/g} \times 1440 \text{ min/d} \right) \]

where:
\[P = \text{pressure in atmospheres} \]
\[R = 8.2054 \times 10^{-5} \text{ m}^3\text{atm/mol/K} \]

\[\text{gases: \ CH}_4 = 16 \text{ g/mol} \]
\[T = \text{degrees K of the chamber} \]
\[V_c = \text{chamber volume in m}^3 \]
\[A_c = \text{chamber area in m}^2 \]

\[V_c = \left(\frac{E}{100} \times 0.047 \times 1000 \right) + V_t \]

\[V_c = \text{volume of the chamber} \]
\[V_t = \text{volume of the top narrow part of chamber} = 1.4 \]
\[E = \text{height of cylindrical part of chamber in cm} \]

9.2 Data Processing Sequence

9.2.1 Processing Steps

The peak areas were taken directly from the HP ChemStation reports from the GC. They were entered into spreadsheets and the concentrations were calculated by the formulas in Section 9.1. The spreadsheets then automatically calculate the flux using the formulas in Section 9.1.

The flux equation included the slope of the regression line of the five samples; the height and volume of the chamber; air temperature (see above). Fluxes were calculated by linear regression of the concentration change in the five samples. If one sample deviated from the line, the flux was recalculated without the outlier. The correlation coefficient of the regression had to be significant to the 95% confidence limit for \(n=4 \) or 5 (\(r^2 = 0.95 \) or 0.87); otherwise the sample was rejected. Sites with ebullition were kept in the data set even if a large increase was observed between two of the samples as long as the correlation coefficient was still significant at \(p < 0.05 \).
9.2.2 Processing Changes
Not applicable.

9.3 Calculations
At sites where oxidation of CH$_4$ occurred, the flux needed to start at or near ambient levels of CH$_4$ and be drawn down below ambient. The correlation coefficient also had to show significant correlation. If these criteria were not met, the flux was determined to be below our minimal detectable flux and was regarded as a 0 flux rate. If an efflux of CH$_4$ was measured at any of these sites, the data were eliminated.

For sites where CH$_4$ was known to have a positive flux (from the soil into the atmosphere), the regressions of the time series were expected to have an r^2 of greater than 0.85 for n=5. If this was not the case with five data points, then one or at most two points might be dropped to get a better fit. The r^2 would have to be greater than 0.92 for n=4, and 0.96 for n=3 (90% confidence interval). If the fit was not good enough (r^2 less than required for 90% confidence interval), the data were eliminated.

If -888 is present in the data set, it represents a measurement that was taken but discarded for some reason. If -999 is present, then no data were taken.

9.3.1 Special Corrections/Adjustments
Not applicable.

9.3.2 Calculated Variables
Not applicable.

9.4 Graphs and Plots
None given.

10. Errors

10.1 Sources of Error
One source of error was disturbance while sampling the chamber. If the peat or the chamber was disturbed, a large pulse of CH$_4$ was emitted. These samples were eliminated from the data set and the number -9666 was recorded to note the error. If no data were taken at that collar on a particular date, -999 was recorded to denote missing data. Field sampling error could also account for some error in the concentration of the syringe samples:

- Not flushing the sampling line from the chamber before sampling could cause dilution of the sample with air from the last sampling time.
- Not completely closing the syringes or having them come open during transport will cause dilution from ambient air.
- Placing the chamber down with much force can change the pressure inside the chamber to other than ambient and can effect the mechanisms and processes producing/taking up CH$_4$.

(Errors such as these would have been written down in the lab/field books, and those data have been edited out.) The analytical precision of the GCs is 0.2% for CH$_4$.

10.2 Quality Assessment

10.2.1 Data Validation by Source
Each flux measurement has been verified by checking the calculations in the spreadsheets and assessing the slope and intercept for the linear regression.

10.2.2 Confidence Level/Accuracy Judgment
None given.
10.2.3 Measurement Error for Parameters
The analytical precision of the GCs is 0.2% for CH₄.

10.2.4 Additional Quality Assessments
None given.

10.2.5 Data Verification by Data Center
Data were examined for general consistency and clarity.

11. Notes

11.1 Limitations of the Data
The analytical precision of the GCs is 0.2% for CH₄.

11.2 Known Problems with the Data
None given.

11.3 Usage Guidance
The manuscript by Bubier et al. (1995) contains predictive relationships developed from data described in this document.

11.4 Other Relevant Information
Not applicable.

12. Application of the Data Set
The chamber flux data can be used in connection with the tower flux data to determine the CH₄ exchange between the atmosphere and the boreal soils. The plant community and water table and temperature data can be used in comparison with the flux data to determine controls on the fluxes for a certain biome. The chamber CH₄ flux data can also be compared with chamber NEE data to examine the relationship between net ecosystem productivity and CH₄ flux.

13. Future Modifications and Plans
This data set is in its draft format.

14. Software

14.1 Software Description
None given.

14.2 Software Access
None given.
15. Data Access

The CH$_4$ chamber flux data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

15.1 Contact Information

For BOREAS data and documentation please contact:

ORNL DAAC User Services
Oak Ridge National Laboratory
P.O. Box 2008 MS-6407
Oak Ridge, TN 37831-6407
Phone: (423) 241-3952
Fax: (423) 574-4665
E-mail: ornldaac@ornl.gov or ornl@eos.nasa.gov

15.2 Data Center Identification

Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC) for Biogeochemical Dynamics

15.3 Procedures for Obtaining Data

Users may obtain data directly through the ORNL DAAC online search and order system [http://www-eosdis.ornl.gov/] and the anonymous FTP site [ftp://www-eosdis.ornl.gov/data/] or by contacting User Services by electronic mail, telephone, fax, letter, or personal visit using the contact information in Section 15.1.

15.4 Data Center Status/Plans

The ORNL DAAC is the primary source for BOREAS field measurement, image, GIS, and hardcopy data products. The BOREAS CD-ROM and data referenced or listed in inventories on the CD-ROM are available from the ORNL DAAC.

16. Output Products and Availability

16.1 Tape Products

None.

16.2 Film products

None.

16.3 Other Products

These data are available on the BOREAS CD-ROM series.
17. References

17.1 Platform/Sensor/Instrument/Data Processing Documentation
Not applicable.

17.2 Journal Articles and Study Reports

17.3 Archive/DBMS Usage Documentation
None.

18. Glossary of Terms
None.

19. List of Acronyms

AES - Atmospheric Environment Services, Canada
ASCII - American Standard Code for Information Interchange
BOREAS - BOREal Ecosystem-Atmosphere Study
BORIS - BOREAS Information System
BP - Beaver Pond site, NSA
CB - collapse bog subsite, NSA fen complex
CD-ROM - Compact Disk-Read-Only Memory
CF - Collapse Fen subsite, NSA fen complex
CMDL - Climate Monitoring and Diagnostics Laboratory
DAAC - Distributed Active Archive Center
ECD - Electron Capture Detector
EOS - Earth Observing System
EOSDIS - EOS Data and Information System
FID - Flame Ionization Detector
GC - Gas Chromatograph
GIS - Geographic Information System
GPS - Global Positioning System
GSFC - Goddard Space Flight Center
HTML - HyperText Markup Language
IFC - Intensive Field Campaign
IRGA - Infrared Gas Analyzer
LI-6200 - LI-COR portable photosynthesis system
NAD83 - North American Datum of 1983
NASA - National Aeronautics and Space Administration
NEE - Net Ecosystem Exchange of CO₂
NSA - Northern Study Area
OBS - Old Black Spruce, NSA
OJP - Old Jack Pine, NSA
ORNL - Oak Ridge National Laboratory
PANP - Prince Albert National Park
SSA - Southern Study Area
TCD - Thermal Conductivity Detector
TF - Tower Fen subsite, NSA fen complex
UNH - University of New Hampshire
URL - Uniform Resource Locator
YJP - Young Jack Pine, NSA
ZF - Zoltai fen subsite, NSA fen complex
20. Document Information

20.1 Document Revision Date
Written:
Last Updated: 11-Jun-1999

20.2 Document Review Date(s)
BORIS Review: 10-Mar-1998
Science Review:

20.3 Document ID

20.4 Citation
When using these data, please contact the investigators listed in Section 2.3 and cite any relevant papers in Section 17.2.

If using data from the BOREAS CD-ROM series, also reference the data as:

Also, cite the BOREAS CD-ROM set as:

20.5 Document Curator

20.6 Document URL
Title:
Technical Report Series on the Boreal Ecosystem-Atmosphere Study (BOREAS) BOREAS TGB-1/TGB-3 CH₄ Chamber Flux Data over the NSA Fen

Authors:
Jill L. Bubier and Tim R. Moore
Forrest G. Hall and Sara K. Conrad, Editors

Performing Organization:
Goddard Space Flight Center
Greenbelt, Maryland 20771

Funding Numbers:
923
RTOP: 923-462-33-01

Abstract:
The BOREAS TGB-3 team collected methane (CH₄) chamber flux measurements at the NSA fen site during May-September 1994 and June-October 1996. Gas samples were extracted approximately every 7 days from chambers and analyzed at the NSA lab facility. The data are provided in tabular ASCII files.

Subject Terms:
BOREAS, trace gas biogeochemistry.