Technical Report Series on the Boreal Ecosystem-Atmosphere Study (BOREAS)

Forrest G. Hall and Sara K. Conrad, Editors

Volume 220

BOREAS TGB-1 CH₄ Concentration and Flux Data from NSA Tower Sites

Patrick Crill and Ruth K. Varner
University of New Hampshire, Durham

National Aeronautics and Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

November 2000
Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the lead center for NASA’s scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA’s institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- **TECHNICAL PUBLICATION.** Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA’s counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- **TECHNICAL MEMORANDUM.** Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- **CONTRACTOR REPORT.** Scientific and technical findings by NASA-sponsored contractors and grantees.

- **CONFERENCE PUBLICATION.** Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- **SPECIAL PUBLICATION.** Scientific, technical, or historical information from NASA programs, projects, and mission, often concerned with subjects having substantial public interest.

- **TECHNICAL TRANSLATION.**
 English-language translations of foreign scientific and technical material pertinent to NASA’s mission.

Specialized services that complement the STI Program Office’s diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results . . . even providing videos.

For more information about the NASA STI Program Office, see the following:

- E-mail your question via the Internet to help@sti.nasa.gov
- Fax your question to the NASA Access Help Desk at (301) 621-0134
- Telephone the NASA Access Help Desk at (301) 621-0390
- Write to:
 NASA Access Help Desk
 NASA Center for AeroSpace Information
 7121 Standard Drive
 Hanover, MD 21076-1320
Technological Report Series on the
Boreal Ecosystem-Atmosphere Study (BOREAS)

Forrest G. Hall and Sara K. Conrad, Editors

Volume 220

BOREAS TGB-1 CH₄ Concentration
and Flux Data from NSA Tower Sites

Patrick Crill and Ruth K. Varner
University of New Hampshire, Durham

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

November 2000
BOREAS TGB-1 CH₄ Concentration and Flux Data from NSA Tower Sites

Patrick M. Crill, Ruth K. Varner

Summary

The BOREAS TGB-1 team made numerous measurements of trace gas concentrations and fluxes at various NSA sites. This data set contains half-hourly averages of ambient methane (CH₄) measurements and calculated fluxes for the NSA-Fen in 1996 and the NSA-BP and NSA-OJP tower sites in 1994. The purpose of this study was to determine the CH₄ flux from the study area by measuring ambient CH₄ concentrations. This flux can then be compared to the chamber flux measurements taken at the same sites. The data are provided in tabular ASCII files.

Table of Contents

1) Data Set Overview
2) Investigator(s)
3) Theory of Measurements
4) Equipment
5) Data Acquisition Methods
6) Observations
7) Data Description
8) Data Organization
9) Data Manipulations
10) Errors
11) Notes
12) Application of the Data Set
13) Future Modifications and Plans
14) Software
15) Data Access
16) Output Products and Availability
17) References
18) Glossary of Terms
19) List of Acronyms
20) Document Information

1. Data Set Overview

1.1 Data Set Identification
BOREAS TGB-01 CH₄ Concentration and Flux Data from NSA Tower Sites

1.2 Data Set Introduction
Ambient CH₄ was measured at two heights on a tower at the Northern Study Area (NSA) Tower Fen (TF), Beaver Pond (BP), and Old Jack Pine (OJP) sites during the summers of 1994 and 1996 by the BOREal Ecosystem-Atmosphere Study (BOREAS) Trace Gas Biogeochemistry (TGB)-01 team. Gradients were calculated and fluxes were determined from the available meteorological data.

1.3 Objective/Purpose
The purpose of this study was to determine the CH₄ flux from the study area by measuring ambient CH₄ concentrations. This flux can then be compared to the chamber flux taken at the same sites.
1.4 Summary of Parameters
Ambient CH₄ concentrations in parts per million (ppm), CH₄ fluxes in micromoles/m²/sec, air temperature in °C, and air pressure in kPa are reported.

1.5 Discussion
The ambient CH₄ measurements at the tower were collected semicontinuously once every 3 minutes over the field period from 15-Apr through 22-Oct-1996 at the TF site. The measurements were collected every 6 minutes over the field period from 03-Jun through 17-Sep-1994 at the BP site and from 29-May through 19-Sep-1994 at the OJP site. The tower measurements of ambient methane are used to calculate an integrated flux from a larger area than that which is measured with the chambers. The tower flux calculations can be compared with the chamber flux measurements to show plant community effects on flux rates. The towers had some problems throughout the field season that are addressed in Section 6.

1.6 Related Data Sets
BOREAS TGB-01 NSA CH₄ and CO₂ Chamber Flux Data
BOREAS TGB-01 Soil CH₄ and CO₂ Profile Data from NSA Tower Sites
BOREAS TGB-03 CH₄ and CO₂ Chamber Flux Data from NSA Tower Sites

2. Investigator(s)

2.1 Investigator(s) Name and Title
Dr. Patrick M. Crill
Research Associate Professor
University of New Hampshire

2.2 Title of Investigation
Magnitude and Control of Trace Gas Exchange in Boreal Ecosystems

2.3 Contact Information

Contact 1:
Dr. Patrick M. Crill
Institute for the Study of Earth, Oceans, and Space
Complex Systems Research Center
University of New Hampshire
Durham, NH 03824
(603) 862-3519
(603) 862-0188 (fax)

Contact 2:
Ruth K. Varner
Research Scientist
Institute for the Study of Earth, Oceans, and Space
Complex Systems Research Center
University of New Hampshire
Durham, NH 03824
(603) 862-2939
(603) 862-0188 (fax)
3. Theory of Measurements

Tower measurements were completed to determine the turbulent exchange of energy and mass between the atmosphere and a variety of surface types as well as the processes controlling these fluxes. The towers measured radiation, heat, water, CO₂, and CH₄ fluxes. Using the meteorological data, the flux of trace gases like CH₄ can be determined and then compared with the chamber flux data. Refer to TF-10, Harry McCaughey, and TF-08, David Fitzjarrald, for tower information at the TF and OJP sites. Refer to BOREAS TGB-04 Water Table and Sediment Temperature, Nigel Roulet, for tower information at the BP site.

4. Equipment

4.1 Sensor/Instrument Description

CH₄ was quantified with a Shimadzu GC-MINI2-Gas Chromatograph (GC) with a flame ionization detector (FID) operated at 125 °C after separation on a HayeSepQ column at 40 °C using ultrapure (99.999%) N₂ as a carrier gas flowing at 30 mL/min. Analog signals (0-1 V) from the detectors were digitized at 10 Hertz (Hz) with a Hewlett Packard (HP) 35000D A/D board and quantified and logged using HP ChemStation software. Rotary valve switching and chromatography start/stop were controlled with the HP board and software and a relay driver.

4.1.1 Collection Environment

The samples were collected with pumps pulling air through 1/8-inch Nyaflow tubing that ran from the tower to the shack that housed the MINI2-GC. The equipment was operated under a range of ambient atmospheric conditions during the period.

4.1.2 Source/Platform

Rohn towers located at NSA TF, OJP, and BP sites.

4.1.3 Source/Platform Mission Objectives

The mission objective was to measure surface fluxes at the NSA TF, OJP, and BP sites.

4.1.4 Key Variables

Ambient CH₄ was measured at two different heights on a tower at the two sites.

4.1.5 Principles of Operation

The Shimadzu MINI2-GC is equipped with a hydrogen FID. The FID uses a hydrogen flame in an air atmosphere to burn components as they exit the column. In the flame, carbon-carbon bonds are fragmented so that various organic ions and free electrons exist. Application of a voltage across a collector electrode over the flame causes an ion current to flow, which is amplified and then measured as the output signal. This single signal output is for a data processor, integrator, recorder, or computer (Instruction Manual: MINI2-GC; Shimadzu Corporation, Kyoto, Japan).
4.1.6 Sensor/Instrument Measurement Geometry
Not applicable.

4.1.7 Manufacturer of Sensor/Instrument
Shimadzu Scientific Instruments, Inc.
7102 Riverwood Drive
Columbia, MD 21046
(410) 381-1227

Hewlett Packard

4.2 Calibration
A 1.898-ppmv (NSA-BP) or a 2.462-ppmv (NSA-OJP) working standard (1994) was run after each sample. Working standards were calibrated against two Canadian Atmospheric Environment Services (AES) certified primary standards by plumbing the standards into the sampling system and running the system for 12 hours. The working standard was also calibrated in the lab before deployment.

4.2.1 Specifications
None given.

4.2.1.1 Tolerance
The FID's maximum sensitivity is 3E x 10^{-12} g/s for diphenyl.

4.2.2 Frequency of Calibration
Calibration gases were run after every set of high and low samples.

4.2.3 Other Calibration Information
Not applicable.

5. Data Acquisition Methods
Sampling ports were suspended at 6.65 m and 3.59 m on the NSA-TF tower and at 0.25 and 1.5 m above ground level on the NSA-BP. The tower was located 88.0 m into the fen area from the access road and 150 m into the beaver pond. A continuous stream of air was pulled through 1/8-inch outer diameter (o.d.) nylon tubing at 2.5 L/min with diaphragm pumps. Using electronically actuated rotary valves, a subsample of this flow is diverted through a 1-m perma-pure drier (to ensure consistent humidity over a run period), then into the 1-mL sample loop, and then injected into the GC. A 1.898-ppmv working standard was run after each sample. The OJP ambient CH_4 sampling was completed in much the same manner as the BP sampling. The sampling ports were suspended at 13.5 m and 30 m above ground level on the tower. A continuous stream of air was pulled through 1/8-inch o.d. nylon tubing at 2.5 L/min with diaphragm pumps. Using electronically actuated rotary valves, a subsample of this flow was diverted through a 1-m hydropurge tube in the NSA-TF and through a 1-m perma-pure drier (to ensure consistent humidity over a run period), then into the 1-mL sample loop, and then injected into the GC. At the NSA-TF, a 1.519-ppmv working standard (14-Apr through 22-Aug) and a 1.517-ppmv working standard (23-Aug through 22-Oct) were used. A 1.898-ppmv CH_4 working standard was run after each sample at the BP site. The standard for the OJP site was 2.462-ppmv CH_4.
6. Observations

6.1 Data Notes
None given.

6.2 Field Notes NSA-Fen (TF):
- 14-Apr-1996 - Hooked up gases and instrument at TF tower site.
- 30-Apr-1996 - Replaced valve fitting of CH₄ standard due to small leak.
- 02-May-1996 - Generator turned off for maintenance at 09:00.
- 06-May-1996 - Changed regulator on CH₄ standard.
- 25-May-1996 - Column temperature of MINI2-GC reduced to 45 °C at 11:22 run#00048.
- 10-Jun-1996 - Switched the pump intakes from high point (6.65 m) to low point (3.59 m).
- 14-Jul-1996 - At run #01323 computer clock is 14:03, and 'real' time is 13:53.
- 21-Jul-1996 - GC not operating, last file recorded was run#1532 on 19-Jul-1997 at 02:57. Restarted sequence on run #01533 at 15:59. Computer clock reads 16:11.
- 27-Jul-1996 - Stopped sequence at run #01801, column temperature of MINI2-GC raised to 120 °C at 12:44. Turned column temperature to 45 °C at 13:55. Restarted with run #01802 at 13:59.
- 22-Aug-1996 - Generator down for maintenance at 12:47. Stopped sequence at run #02979. New CH₄ standard, 1.517 ppm at site now. At 14:30 quality standard peaks begin to appear due to the CH₄ standard regulator pressure.
- 23-Aug-1996 - Upper tower intake moved horizontally but kept at the same level. Tower work done in the vicinity of the intake from 21:15 to 23:00.
- 25-Aug-1996 - Upper tower intake moved to original position at 20:20.
- 07-Sep-1996 - Generator stopped due to power surge, restarted on 09-Sep-1997 at 11:00. Last run recorded was run #03622.
- 09-Sep-1996 - Small fire in generator hut, system down at 11:15.
- 11-Sep-1996 - Bad filter in generator, system down for a few days. Fuse blew in MINI2-GC.
- 13-Sep-1996 - Replaced fuse in MINI2-GC. Started sequence at 11:15 with run #03623. Looks good!
- 17-Oct-1996 - Generator down for maintenance at 12:00. Restarted at 12:30 with run #05097.
- 22-Oct-1996 - Sequence stopped after run #05328 (last run). Tape backup of data files, system shut down for season at 13:40.
NSA-BP:
- 02-Jun-1994 - Hooked up gases at BP tower.
- 03-Jun-1994 - MINI2-GC up and running.
- 04-Jun-1994 - Generator was down, back up at 15:16. Power down again at 16:57 in the middle of run #45. Power back on line at 17:15. Started sequence with run #45 at 18:41.
- 14-Jun-1994 - Power off. The standard was off. Power bar got moved. Appears to be working beautifully.
- 15-Jun-1994 - Snowed last night. Everything was down since 17:30 yesterday. Last run was #311. Even the pump was switched off. Got everything up, replaced Isobar with another surge suppressor. Heated ovens and detectors to 150 °C and 165 °C respectively, for 2 hours. Capped air flow to second detector. Started sequence at run #312 at 12:35.
- 16-Jun-1994 - Generator down at 17:30. Started back up at 18:50, run #1847.
- 20-Jul-1994 - Generator was down. Run started at 12:43, Run #1604.
- 04-Jul-1994 - Restart of system.
- 21-Jul-1994 - Compressor went down at 15:03, back up at 15:05 with run #1552.
- 25-Jul-1994 - Oil addition to generator.
- 05-Sep-1994 - Switched generators and added oil to big one, 17:27.
- 14-Sep-1994 - Sequence stopped, restarted at 15:29.
- 19-Sep-1994 - Breakdown of system, stopped running at 09:53.

NSA-OJP:
- 29-May-1994 - Pumps off briefly.
- 06-Jun-1994 - Having problems with pumps; finally up and running at 18:00.
- 04-Aug-1994 - Problem with GC; stopped sequence and rebooted. At 15:26 started up again.
- 07-Aug-1994 - Run #3007 screwed up due to messing with pumps to fix flow problem.
- 09-Aug-1994 - Baked out column again due to messy baseline; back up at 11:55.
- 29-Aug-1994 - Peaks look good; inject valve sounds bad!!!
- 01-Sep-1994 - Auto GC looks good.
- 02-Sep-1994 - Generator went down; restarted and relit at 15:02.
- 04-Sep-1994 - Generator has been down for maintenance this morning. Baked out column for 2 hrs. at 180 °C. Restarted at 14:05.
- 05-Sep-1994 - Baseline looks good!
- 19-Sep-1994 - Shut down entire system for the season!
7. Data Description

7.1 Spatial Characteristics

7.1.1 Spatial Coverage
The spatial positions of the areas from which the measured trace gasses originated vary depending on the prevailing winds. The North American Datum of 1983 (NAD83) coordinates of the sites where the measurement equipment was set up are:

NSA-OJP Tower (55.93°N, 98.62°W)
NSA-BP Tower (55.84°N, 98.03°W)
NSA-Fen (TF) Tower (55.91481°N, 98.42072°W)

7.1.2 Spatial Coverage Map
Not available.

7.1.3 Spatial Resolution
The spatial resolution of the area of the measurement sites varies depending on the prevailing winds.

7.1.4 Projection
Not applicable.

7.1.5 Grid Description
Not applicable.

7.2 Temporal Characteristics

7.2.1 Temporal Coverage
The automatic sampling of ambient CH₄ at the TF sites was approximately every 3 minutes, and at the BP and the OJP sites was approximately every 6 minutes, semicontinuously over the period from 15-Apr through 22-Apr-1996, and 28-May through 19-Sep-1994.

7.2.2 Temporal Coverage Map

<table>
<thead>
<tr>
<th>TIME PERIOD</th>
<th>SITE</th>
<th>COLLECTION NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-Apr-1996</td>
<td>Tower Fen</td>
<td>Start of semicontinuous data collection</td>
</tr>
<tr>
<td>IFC-1</td>
<td>Tower Fen</td>
<td>Semicontinuous data collection</td>
</tr>
<tr>
<td>June</td>
<td>Tower Fen</td>
<td>Semicontinuous data collection</td>
</tr>
<tr>
<td>July</td>
<td>Tower Fen</td>
<td>Semicontinuous data collection</td>
</tr>
<tr>
<td>IFC-2</td>
<td>Tower Fen</td>
<td>Semicontinuous data collection</td>
</tr>
<tr>
<td>August</td>
<td>Tower Fen</td>
<td>Semicontinuous data collection</td>
</tr>
<tr>
<td>September</td>
<td>Tower Fen</td>
<td>Semicontinuous data collection</td>
</tr>
<tr>
<td>October</td>
<td>Tower Fen</td>
<td>Semicontinuous data collection</td>
</tr>
<tr>
<td>IFC-3</td>
<td>Tower Fen</td>
<td>Semicontinuous data collection</td>
</tr>
<tr>
<td>22-Oct-1996</td>
<td>Tower Fen</td>
<td>End of semicontinuous data collection</td>
</tr>
</tbody>
</table>

7.2.3 Temporal Resolution
The ambient CH₄ at the towers was measured approximately every 3 minutes in 1996 and every 6 minutes in 1994.

7.3 Data Characteristics
7.3.1 Parameter/Variable
The parameters contained in the data files on the CD-ROM are:

<table>
<thead>
<tr>
<th>Column Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
</tr>
<tr>
<td>SUB_SITE</td>
</tr>
<tr>
<td>DATE_OBS</td>
</tr>
<tr>
<td>TIME_OBS</td>
</tr>
<tr>
<td>CH4_CONC_HI</td>
</tr>
<tr>
<td>CH4_CONC_LO</td>
</tr>
<tr>
<td>GRADIENT</td>
</tr>
<tr>
<td>DIFFUSION_COEF</td>
</tr>
<tr>
<td>AIR_TEMP_IM</td>
</tr>
<tr>
<td>AIR_PRESS_1M</td>
</tr>
<tr>
<td>CH4_FLUX</td>
</tr>
<tr>
<td>REVISION_DATE</td>
</tr>
<tr>
<td>CRTFCN_CODE</td>
</tr>
</tbody>
</table>

7.3.2 Variable Description/Definition
The descriptions of the parameters contained in the data files on the CD-ROM are:

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
<td>The identifier assigned to the site by BOREAS, in the format SSS-TTT-CCCCC, where SSS identifies the portion of the study area: NSA, SSA, REG, or TRN; TTT identifies the cover type for the site (999 if unknown); and CCCCC is the for site (exactly what it means will vary with site type).</td>
</tr>
<tr>
<td>SUB_SITE</td>
<td>The identifier assigned to the subsite by BOREAS, in the format GGGGG-IIIII, where GGGGG is the group associated with the subsite instrument (e.g.) HYD06 or STAFF, and IIIII is the identifier for the subsite (often this will refer to an instrument).</td>
</tr>
<tr>
<td>DATE_OBS</td>
<td>The date on which the data were collected.</td>
</tr>
<tr>
<td>TIME_OBS</td>
<td>The Greenwich Mean Time (GMT) when the data were collected.</td>
</tr>
<tr>
<td>CH4_CONC_HI</td>
<td>Methane concentration at 30 meters above ground.</td>
</tr>
<tr>
<td>CH4_CONC_LO</td>
<td>Methane concentration at 13.5 meters above ground.</td>
</tr>
<tr>
<td>GRADIENT</td>
<td>Gradient for methane measurement.</td>
</tr>
<tr>
<td>DIFFUSION_COEF</td>
<td>Diffusion coefficient.</td>
</tr>
<tr>
<td>AIR_TEMP_IM</td>
<td>The temperature of the air as taken 1 meter above the ground.</td>
</tr>
<tr>
<td>AIR_PRESS_1M</td>
<td>Air pressure at 1 meter above the ground.</td>
</tr>
<tr>
<td>CH4_FLUX</td>
<td>Methane flux.</td>
</tr>
<tr>
<td>REVISION_DATE</td>
<td>The most recent date that the information in the referenced data base table record was revised.</td>
</tr>
<tr>
<td>CRTFCN_CODE</td>
<td>The BOREAS certification level of the data. Examples are Checked by PI (CPI), Certified by Group (CGR), Preliminary (PRE), and CPI but questionable (PI_???).</td>
</tr>
</tbody>
</table>
7.3.3 Unit of Measurement
The measurement units for the parameters contained in the data files on the CD-ROM are:

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
<td>[none]</td>
</tr>
<tr>
<td>SUB_SITE</td>
<td>[none]</td>
</tr>
<tr>
<td>DATE_OBS</td>
<td>[DD-MON-YY]</td>
</tr>
<tr>
<td>TIME_OBS</td>
<td>[HHMM GMT]</td>
</tr>
<tr>
<td>CH4_CONC_HI</td>
<td>[parts per million]</td>
</tr>
<tr>
<td>CH4_CONC_LO</td>
<td>[parts per million]</td>
</tr>
<tr>
<td>GRADIENT</td>
<td>[parts per million][meter-1]</td>
</tr>
<tr>
<td>DIFFUSION_COEF</td>
<td>[meters2][second-1]</td>
</tr>
<tr>
<td>AIR_TEMP_1M</td>
<td>[degrees Celsius]</td>
</tr>
<tr>
<td>AIR_PRESS_1M</td>
<td>[kiloPascals]</td>
</tr>
<tr>
<td>CH4_FLUX</td>
<td>[micromoles][meter-2][second-1]</td>
</tr>
<tr>
<td>REVISION_DATE</td>
<td>[DD-MON-YY]</td>
</tr>
<tr>
<td>CRTFCN_CODE</td>
<td>[none]</td>
</tr>
</tbody>
</table>

7.3.4 Data Source
The sources of the parameter values contained in the data files on the CD-ROM are:

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>SUB_SITE</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>DATE_OBS</td>
<td>Investigator</td>
</tr>
<tr>
<td>TIME_OBS</td>
<td>Investigator</td>
</tr>
<tr>
<td>CH4_CONC_HI</td>
<td>Shimadzu MINI2-GC</td>
</tr>
<tr>
<td>CH4_CONC_LO</td>
<td>Shimadzu MINI2-GC</td>
</tr>
<tr>
<td>GRADIENT</td>
<td>Calculated by Investigator</td>
</tr>
<tr>
<td>DIFFUSION_COEF</td>
<td>See TGB-04</td>
</tr>
<tr>
<td>AIR_TEMP_1M</td>
<td>See TGB-04</td>
</tr>
<tr>
<td>AIR_PRESS_1M</td>
<td>See TGB-04</td>
</tr>
<tr>
<td>CH4_FLUX</td>
<td>Calculated by Investigator</td>
</tr>
<tr>
<td>REVISION_DATE</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>CRTFCN_CODE</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>

7.3.5 Data Range
The following table gives information about the parameter values found in the data files on the CD-ROM.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Minimum Data Value</th>
<th>Maximum Data Value</th>
<th>Missing Data Value</th>
<th>Unrel Data Value</th>
<th>Detect Below Value</th>
<th>Data Limit</th>
<th>Cllctd</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
<td>NSA-BVP-FLXTR</td>
<td>NSA-OJP-FLXTR</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>SUB_SITE</td>
<td>TGB01-FLX01</td>
<td>TGB01-FLX01</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>DATE_OBS</td>
<td>28-MAY-94</td>
<td>22-OCT-96</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>TIME_OBS</td>
<td>0</td>
<td>2358</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>CH4_CONC_HI</td>
<td>1.469</td>
<td>4.999</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>CH4_CONC_LO</td>
<td>1.466</td>
<td>5.129</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>GRADIENT</td>
<td>-0.3305</td>
<td>1.8834</td>
<td>-999</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>DIFFUSION_COEF</td>
<td>0</td>
<td>1.3339</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Blank</td>
<td></td>
</tr>
<tr>
<td>AIR_TEMP_1M</td>
<td>-2.32</td>
<td>28.67</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>Blank</td>
<td></td>
</tr>
<tr>
<td>AIR_PRESS_1M</td>
<td>98.2</td>
<td>101.7</td>
<td>-999</td>
<td>-999</td>
<td>None</td>
<td>Blank</td>
<td></td>
</tr>
<tr>
<td>CH4_FLUX</td>
<td>-1.42133612</td>
<td>2.34546945</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Blank</td>
<td></td>
</tr>
</tbody>
</table>
Minimum Data Value -- The minimum value found in the column.
Maximum Data Value -- The maximum value found in the column.
Missing Data Value -- The value that indicates missing data. This is used to indicate that an attempt was made to determine the parameter value, but the attempt was unsuccessful.
Unreliable Data Value -- The value that indicates unreliable data. This is used to indicate an attempt was made to determine the parameter value, but the analysis personnel deemed the value unreliable.
Below Detect Limit -- The value that indicates parameter values below the instrument's detection limits. This is used to indicate that an attempt was made to determine the parameter value, but the analysis personnel determined that the parameter value was below the detection limit of the instrumentation.
Data Not Collected -- This value indicates that no attempt was made to determine the parameter value. This usually indicates that the BOREAS Information System (BORIS) combined several similar but not identical data sets into the same data base table but this particular science team did not measure that parameter.

Blank -- Indicates that blank spaces are used to denote that type of value.
N/A -- Indicates that the value is not applicable to the respective column.
None -- Indicates that no values of that sort were found in the column.

7.4 Sample Data Record

The following are wrapped versions of data records from a sample data file on the CD-ROM.

SITE_NAME,SUB_SITE,DATE_OBS,TIME_OBS,CH4_CONC_HI,CH4_CONC_LO,GRADIENT,DIFFUSION_COEF,AIR_TEMP_IM,AIR_PRESS_IM,CH4_FLUX,REVISION_DATE,CRTFCN_CODE
'NSA-BVP-FLXTR', 'TGB01-FLX01', 01-AUG-94, 2303, 2.449, 2.537, .0702 0, 13.84, 100.4, 0, 27-SEP-96, 'CPI'
'NSA-BVP-FLXTR', 'TGB01-FLX01', 01-AUG-94, 2334, 2.351, 2.478, .1012 0, 13.3, 100.4, 0, 27-SEP-96, 'CPI'

8. Data Organization

8.1 Data Granularity

The smallest unit of data tracked by BORIS is the measurements made for a given site on a given day.

8.2 Data Format(s)

The Compact Disk-Read-Only Memory (CD-ROM) files contain American Standard Code for Information Interchange (ASCII) numerical and character fields of varying length separated by commas. The character fields are enclosed with single apostrophe marks. There are no spaces between the fields.

Each data file on the CD-ROM has four header lines of Hyper-Text Markup Language (HTML) code at the top. When viewed with a Web browser, this code displays header information (data set title, location, date, acknowledgments, etc.) and a series of HTML links to associated data files and related data sets. Line 5 of each data file is a list of the column names, and line 6 and following lines contain the actual data.
9. Data Manipulations

9.1 Formulae

9.1.1 Derivation Techniques and Algorithms

- **NSA-Fen (TF):** Ambient CH₄ mixing ratios were determined at 3-minute intervals at 6.65m (ppm_CH₄_6.65_m) and 3.59 m (ppm.CH₄_3.59_m) over the NSA-TF site.
- **NSA-BP:** Ambient CH₄ mixing ratios were determined at 6-minute intervals at 0.25m (ppmv.CH₄_25_cm) and 1.5 m (ppmv.CH₄_1.5_m) over the NSA-BP site. The concentrations were determined by comparing the unknown ambient peak areas with the known standard peak area that was run immediately following each set of ambient samples:

 \[R_f = \frac{C_{std}}{A_{std}} \]
 \[C_s = R_f \times A_s \]
 \[R_f = \text{Response factor} \]
 \[A_{std} = \text{Standard peak area} \]
 \[C_{std} = \text{Concentration of the standard} \]
 \[C_s = \text{Concentration of the sample} \]
 \[A_s = \text{Peak area of sample} \]

 The response factor was calculated for the GC and then multiplied by the ambient air peak to determine the concentration of the tower sample.

 The concentration gradients were calculated by subtracting the lower sampling port CH₄ concentrations from the higher sampling port CH₄ concentrations and dividing by the difference in height of the sampling ports (3.06 m, 1996; 1.25 m, 1994).

 \[G = \frac{(CH_4_{low} - CH_4_{high})}{(Port_{high} - Port_{low})} \]

 \(G = \text{Gradient} \)
 \(CH_4_{low} = \text{Methane mixing ratio at the lower sampling port} \)
 \(CH_4_{high} = \text{Methane mixing ratio at the upper sampling port} \)
 \(Port_{high} = \text{Height of the upper sampling port above the ground} \)
 \(Port_{low} = \text{Height of the lower sampling port above the ground} \)

 Half-hourly averages were determined and used to calculate CH₄ emissions (CH₄_flux) by comparing the concentration gradient to the transfer coefficient (K), air temperature at 1 meter, and air pressure.

 NOTE: The transfer coefficient (K), air temperature at 1 meter, and air pressure data were calculated and provided by N. Roulet and N. Comer, McGill University, BOREAS TGB-03 CO₂ and CH₄ chamber flux data over the NSA. See BOREAS TGB-03 CO₂ and CH₄ chamber flux data over the NSA for details on flux calculation.

- **NSA-OJP:** Ambient CH₄ concentrations were determined at 6-minute intervals at 13.5 m and 30 m over the NSA-OJP site. The concentrations were determined by comparing the unknown ambient peak areas with the known standard peak area that was run immediately following each set of ambient samples using the above-described equations. The concentration gradients were calculated by subtracting the lower sampling port CH₄ concentrations from the higher sampling port CH₄ concentrations and dividing by the difference in height of the sampling ports (16.5 m) as per above. Half-hourly averages were determined.

9.2 Data Processing Sequence

9.2.1 Processing Steps

None given.
9.2.2 Processing Changes
None.

9.3 Calculations

9.3.1 Special Corrections/Adjustments
None given.

9.3.2 Calculated Variables
None given.

9.4 Graphs and Plots
None given.

10. Errors

10.1 Sources of Error
None given.

10.2 Quality Assessment

10.2.1 Data Validation by Source
None given.

10.2.2 Confidence Level/Accuracy Judgment
None given.

10.2.3 Measurement Error for Parameters
The analytical precision of the GC is 0.2% for CH$_4$ at near-ambient conditions.

10.2.4 Additional Quality Assessments
None given.

10.2.5 Data Verification by Data Center
Data were examined for general consistency and clarity.

11. Notes

11.1 Limitations of the Data
The analytical precision of the GC is 0.2% for CH$_4$.

11.2 Known Problems with the Data
Periodic power failures may cause incongruities in the data.

11.3 Usage Guidance
None given.

11.4 Other Relevant Information
None given.
12. Application of the Data Set

These data sets may be used in comparison with the chamber flux data to determine if the tower flux calculations agree with the small-scale flux calculations. These data can also be compared with the larger scale aircraft studies.

13. Future Modifications and Plans

None.

14. Software

14.1 Software Description
HP ChemStation.

14.2 Software Access
Contact Hewlett Packard.

15. Data Access

The TGB-01 CH₄ concentration and flux data from NSA tower sites are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

15.1 Contact Information
For BOREAS data and documentation please contact:

ORNL DAAC User Services
Oak Ridge National Laboratory
P.O. Box 2008 MS-6407
Oak Ridge, TN 37831-6407
Phone: (423) 241-3952
Fax: (423) 574-4665
E-mail: ornldaac@ornl.gov or ornl@eos.nasa.gov

15.2 Data Center Identification
Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC) for Biogeochemical Dynamics

15.3 Procedures for Obtaining Data
Users may obtain data directly through the ORNL DAAC online search and order system [http://www-eosdis.ornl.gov/] and the anonymous FTP site [ftp://www-eosdis.ornl.gov/data/] or by contacting User Services by electronic mail, telephone, fax, letter, or personal visit using the contact information in Section 15.1.

15.4 Data Center Status/Plans
The ORNL DAAC is the primary source for BOREAS field measurement, image, GIS, and hardcopy data products. The BOREAS CD-ROM and data referenced or listed in inventories on the CD-ROM are available from the ORNL DAAC.
16. Output Products and Availability

16.1 Tape Products
None.

16.2 Film Products
None

16.3 Other Products
These data are available on the BOREAS CD-ROM series.

17. References

17.1 Platform/Sensor/Instrument/Data Processing Documentation

17.2 Journal Articles and Study Reports

17.3 Archive/DBMS Usage Documentation
None.

18. Glossary of Terms
None given.
19. List of Acronyms

AES - Atmospheric Environment Services
ASCII - American Standard Code for Information Interchange
BOREAS - BOReal Ecosystem-Atmosphere Study
BORIS - BOREAS Information System
BP - Beaver Pond
CD-ROM - Compact Disk-Read-Only Memory
CGR - Certified by Group
CMDL - Climate Monitoring and Diagnostics Laboratory
CPI - Checked by PI
CPI-??? - CPI but Questionable
DAAC - Distributed Active Archive Center
ECD - Electron Capture Detector
EOS - Earth Observing System
EOSDIS - EOS Data and Information System
FID - Flame Ionization Detector
GC - Gas Chromatograph
GIS - Geographic Information System
GMT - Greenwich Mean Time
GSFC - Goddard Space Flight Center
HP - Hewlett Packard
HTML - HyperText Markup Language
NAD 83 - North American Datum of 1983
NASA - National Aeronautics and Space Administration
NOAA - National Oceanic and Atmospheric Administration
NSA - Northern Study Area
OBS - Old Black Spruce
OJP - Old Jack Pine
ORNL - Oak Ridge National Laboratory
PANP - Prince Albert National Park
PRE - Preliminary
SSA - Southern Study Area
TCD - Thermal Conductivity Detector
TF - Tower Fen
TGB - Trace Gas Biogeochemistry
URL - Uniform Resource Locator
YJP - Young Jack Pine

20. Document Information

20.1 Document Revision Dates
Written: 22-Nov-1994
Last Updated: 08-Jun-1999

20.2 Document Review Date
BORIS Review: 06-Oct-1997
Science Review: 08-May-1998

20.3 Document ID

Page 15
20.4 Citation
 When using these data, please contact the investigators listed in Section 2.3 and cite any relevant papers from Section 17.2.

 If using data from the BOREAS CD-ROM series, also reference the data as:

 Also, cite the BOREAS CD-ROM set as:

20.5 Document Curator

20.6 Document URL
Technical Report Series on the Boreal Ecosystem-Atmosphere Study (BOREAS)

BOREAS TGB-1 CH₄ Concentration and Flux Data from NSA Tower Sites

Patrick Crill and Ruth K. Varner
Forrest G. Hall and Sara K. Conrad, Editors

Goddard Space Flight Center
Greenbelt, Maryland 20771

National Aeronautics and Space Administration
Washington, DC 20546-0001

The BOREAS TGB-1 team made numerous measurements of trace gas concentrations and fluxes at various NSA sites. This data set contains half-hourly averages of ambient methane (CH₄) measurements and calculated fluxes for the NSA-Fen in 1996 and the NSA-BP and NSA-OJP tower sites in 1994. The purpose of this study was to determine the CH₄ flux from the study area by measuring ambient CH₄ concentrations. This flux can then be compared to the chamber flux measurements taken at the same sites. The data are provided in tabular ASCII files.