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Abstract 

A nonlinear modeling technique was used to 
characterize response surfaces for non-dimensional 
longitudinal aerodynamic force and moment 
coefficients, based on wind tunnel data from a 
commercial jet transport model. Data were collected 
using two experimental procedures - one based on 
modem design of experiments (MDOE), and one using 
a classical one factor at a time (OFAT) approach. The 
nonlinear modeling technique used multivariate 
orthogonal functions generated from the independent 
variable data as modeling functions in a least squares 
context to characterize the response surfaces. Model 
terms were selected automatically using a prediction 
error metric. Prediction error bounds computed from 
the modeling data alone were found to be a good 
measure of actual prediction error for prediction points 
within the inference space. Root-mean-square model 
fit error and prediction error were less than 4 percent of 
the mean response value in all cases. Efficacy and 
prediction performance of the response surface models 
identified from both MDOE and OFAT experiments 
were investigated. 
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Introduction independent variables (Mach number, angle of sideslip, 
etc.) held constant. The OFAT experiment design has 

A fundamental scientific activity is to attempt to been used extensively for wind tunnel tests, so that 
find a mathematical description for the dependence of many wind tunnel facilities have computerized data 
an output variable on independent variables that are collection systems designed to efficiently conduct 
varied during an experiment. For static tests, this experiments designed in this way. 
mathematical description or model can be thought of 
geometrically as a hyper-surface, also called a response 
surface. Critical issues for successfully identifying an 
adequate response surface model from experimental 
data include the experiment design (or, how the 
independent variable values are set when measuring 
the output variable response), noise level on the 
measured output, identification of a mathematical 
model structure that can capture the functional 
dependence of the output variable on the independent 
variables, accurate estimates of unknown parameters in 
the identified model structure, and the ability of the 
identified model to predict output values for data that 
were not used to identify the response surface model. 

An important application area for experiment 
design and response surface modeling is wind tunnel 
testing. Since 1997, wind tunnel testing technology 
activities conducted and sponsored by NASA Langley 
Research Center have included applying formal 
experiment design principles to empirical 
aerodynamics'. These activities bring to bear on 
aerodynamic research problems the powerful 
machinery of formal experiment design first introduced 
by R.A. Fisher and associates early in the 2oth century2 

The focus of response surface modeling is on 
defining a relationship between the output variable 
(also called a response variable or a dependent 
variable) and the independent variables (also called 
factors) that are changed during the experiment. If this 
relationship is characterized well, it is possible to 
predict responses for any combination of independent 
variables in the range of those tested, not simply the 
specific points set in the test. Furthermore, such 
mathematical relationships, called response surface 
models, can be used to predict responses in other 
circumstances. e.g., in other tests, or in flight. The 
MDOE approach to experiment design adopts tactics 
intended to make errors independent and identically 
distributed. In this way, the effects of local single- 
point errors resulting from the combined effects of all 
inevitabre failures to precisely implement desired 
experimental conditions, can be made to substantially 
cancel. This results in higher precision than can be 
achieved for single points. Furthermore, the MDOE 
approach reduces the number of data points required to 
define the response surface, so the excess data points 
are available to assess the quality of predictions made 
by the model. 

and used successfully since then in a wide range of Typically, once the experimental data are 
industrial, scientific, and engineering applications. 

collected, polynomials in the independent variables are 
Collectively, these methods are described at NASA used to model the functional dependence of the output 
Langley as Modem Design of Experiments iMDoE)' variable on the independent variables, and the model 
after a phrase from the literature of formal experiment parameters are estimated from the measured data using 
design that distinguishes these methods from what is 

least squares linear regre~sion~.~.  Unfortunately, the 
commonly called classical experiment design. question of which polynomial terms should be included 

Classical experimentation methods have been 
popular for hundreds of years, and form the basis of 
conventional wind tunnel testing procedures in use 
today. The defining feature of classical testing 
methods is an error control strategy that requires each 
independent variable to be changed one at a time, 
while holding all other variables constant. This 
method, formally described in the literature of 
experiment design as One Factor At a Time (OFAT) 
testing, typically involves changing the levels of the 
independent variable under study as a monotonically 
increasing function of time. This is the basis of the 
common polar, for example, which is a popular wind 
tunnel testing data structure that consists of a series of 
angle of attack levels set sequentially in a 
monotonically increasing sequence, with all other 

. - 

i n  the model for a given set of data is ofien addressed 
by trial-and-error, or by just including all polynomial 
terms that could possibly be identified from the data, 
based on information limitations. A simple example of 
an information limitation is the general statement that a 
quadratic polynomial will f i t  3 data points exactly, but 
a cubic polynomial, with its 4 model parameters, 
cannot be identified from just 3 data points. This 
problem of which modeling functions to include in the 
linear regression model, called model structure 
determination, gets more difficult as the range of the 
independent variables for the model increases or the 
complexity of the underlying functional dependency 
increases. 
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Various stepwise regression  technique^^,^ can be 
used to identify an adequate model structure, but these 
methods are iterative and require the involvement of an 
experienced analyst. Neural networks using radial 
basis functions with subspace partitioning, or back 
propagation with layered and interconnected nonlinear 
activation functions, have also been applied to the 
response surface modeling problem6. For this type of 
approach, there is a loss of physical insight and a 
danger of overfitting the data, because the model 
structures used contain many parameters, typically 
with no mechanism for limiting the size of the model 
other than the judgment of the analyst. 

In this work, a nonlinear multivariate orthogonal 
modeling technique7 was used to model response 
surfaces for wind tunnel data. The technique generates 
nonlinear orthogonal modeling functions from the 
independent variable data, and uses those modeling 
functions with a predicted squared error metric to 
determine appropriate model structure. The orthogonal 
functions are generated in a manner that allows them to 
be decomposed without ambiguity into an expansion of 
ordinary multivariate polynomials. This allows the 
identified orthogonal function model to be converted to 
a multivariate ordinary polynomial expansion in the 
independent variables, which provides physical insight 
into the identified functional dependencies. 

The next section gives the problem statement and 
describes the necessary theory. Following this, the 
multivariate orthogonal function modeling method is 
applied to identify response surface models for 
non-dimensional longitudinal aerodynamic force and 
moment coefficients, based on wind tunnel data from a 
commercial jet transport model. 

Theoretical Development 

The a ] ,  j = 1,2, ..., n are constant model parameters to 

be determined, and E denotes the modeling error 
vector. Eq. (1) represents the usual mathematical 
model used to fit a response surface to measured data 
from an experiment. We put aside for the moment the 
important questions of determining how candidate 
modeling functions pJ should be computed from the 

independent variables, as well as which candidate 
modeling functions should be included in Eq. (I), 
which implicitly determines n. Now define an Nxn 
matrix P, 

T 
and let a  = [a ,  ,a2 ,..., a,] . Eq. ( I )  can be written as a 

standard least squares regression problem, 

where y is a vector of measured dependent variable 
values and P is a matrix whose columns contain 
modeling functions of the measured independent 
variables, and a is a vector of unknown parameters. 
The variable E represents a vector of errors that are to 
be minimized in a least squares sense. The least 
squares cost function is 

The parameter vector estimate that minimizes this cost 
function is computed from 

The multivariate orthogonal function modeling The estimated parameter covariance matrix is 

approach presented here was first developed in 
Ref. 171. ~ o v ( i )  = E {(i - a ) ( i  - a)  = 02 [ P  'PI -' (6)  

Assume an N-dimensional vector of dependent 
T variable values, y = [yl ,y2 ,..., yN ] , modeled in where E is the expectation operator, and the equation 

terms of a linear combination of n modeling functions error variance 02 can be estimated from the residuals, 
p ,  j = 2 . n . Each p, is an N-dimensional 

vector which in general depends on the independent v = y - P i  (7) 
variables. Then, 
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and n is the number of elements in parameter vector a .  
Parameter standard errors are computed as the square 
root of the diagonal elements of the ~ o v ( r i )  matrix 

from Eq. (6),  using h2 from Eq. (8). 

Estimated model output is 

For response surface modeling, the modeling 
functions (columns of P) are often chosen as 
polynomials in the measured independent variables. 
This approach corresponds to using the terms of a 
Taylor series expansion to approximate the functional 
dependence of the output response variable on the 
independent variables. 

If the modeling functions are instead multivariate 
orthogonal functions generated from the measured 
independent variable data, advantages accrue in the 
model structure determination for response surface 
modeling. After the model structure is determined 
using the multivariate orthogonal modeling functions, 
each retained modeling function can be decomposed 
into an expansion of ordinary polynomials in the 
independent variables. Combining like terms from this 
final step puts the final model in the standard form of a 
Taylor series expansion. It is this latter fonn of the 
model that provides the physical insight, particularly in 
the case of modeling non-dimensional aerodynamic 
force and moment coefficients. This is the reason that 
aircraft dynamics and control analyses are nearly 
always conducted with the assumption of this form for 
the dependence of the non-dimensional aerodynamic 
force and moment coefficients on independent 
variables such as angle of attack and Mach number. 

or, using Eq. (I I), 

Eq. (13) shows that when the modeling functions 
are orthogonal, the reduction in the estimated cost 
resulting from including the term aJ p, in the model 

depends only the dependent variable data y and the 
added orthogonal modeling function pj  . This 

decouples the least squares modeling problem, and 
makes it possible to evaluate each orthogonal modeling 
function in terms of its ability to reduce the least 
squares model fit to the data, regardless of which other 
orthogonal modeling functions are present in the 
model. When the modeling functions pJ are instead 

polynomials in the independent variables (or any other 
non-orthogonal function set), the least squares problem 
is not decoupled, and iterative analysis is required to 
find the subset of modeling functibns necessary for an 
adequate model structure. 

The orthogonal modeling functions to be 
included in the model are chosen to minimize predicted 
squared error PSE, defined by8 

j 2 n  
Multivariate Orthogonal Function Modeling PSE=-+2omaX- 

N N  (15) 

Orthogonal modeling functions pJ have the 

following important property: where o;, is the maximum variance of elements in 

the error vector E, assuming the correct model 
T p, pJ = O  , i # j  , i , j=1 ,2  ,..., n (10) structure. The PSE in Eq. (15) depends on the mean 

squared fit error j / N ,  and a term proportional to the 

Using ~ q s ,  (2) and (10) in Eq. (5 ) ,  the j th element of number of terms in the model, n . The latter term is a 

the estimated parameter vector 6 is given by model overfit penalty that prevents overfitting the data 
with too many model terms, which is detrimental to 
model prediction accuracy8. The factor of 2 in the 

;I = (P: J') / (P;  PJ ) (I1)  model overfit penalty term accounts for the fact that 
the PSE is being used when the model structure is not 

Combining Eqs. (2), (4), and (9)-(lo), correct, i.e., during the model structure determination 
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stage. Ref. [8] contains further justifying statistical 
arguments and analysis for the form of PSE in 
Eqs. (14)-(15). Note that while the mean squared fit 

error ~ J N  must decrease with the addition of each 
orthogonal modeling function to the model (by Eq. 

(12) or (13)), the overfit penalty term a:?, n/N 
increases with each added model tenn (n increases). 
Introducing the orthogonal modeling functions into the 
model in order of most effective to least effective in 
reducing the mean squared fit error (quantified by 

, for the jth orthogonal modeling function) 

means that the PSE metric will always have a single 
global minimum value. Figure 1 depicts this 
graphically, using actual modeling results from one of 
the cases discussed later. Ref. [8] contains details on 
the statistical properties of the PSE metric, including 
justification for its use in modeling problems. 

For wind tunnel testing, repeated runs at the same 

test conditions are often available. If a: is the output 
variance estimated from measurements of the output 
for repeated runs at the same test conditions, then 

2 
(T,,, can be estimated as 

If the output errors were Gaussian, Eq. (16) 
would correspond to conse~atively placing the 
maximum output variance at 25 times the estimated 
value (corresponding to a 5 0 ,  maximum deviation). 
However, the output errors are in general not Gaussian, 
because PSE is used to evaluate candidate model 

structures. Jn addition, the estimate of a$ may not be 
very good, because of relatively few repeated runs 
available and inevitable errors in duplicating test 
conditions. These are the reasons for choosing 50, 
for the maximum deviation in Eq. (16). The model 
structure determined using PSE was found to be 

2 virtually the same for a,,, in the range: 

Using orthogonal functions to model the 
dependent variable made it possible to evaluate the 
merit of including each modeling function individually 
as part of the model, using the predicted squared error 
PSE. Since the goal is to select a model structure with 
minimum PSE, and the PSE always has a single global 
minimum for orthogonal modeling functions, the 

model structure determination was a well-defined and 
straightforward process that could be (and was) 
automated. 

After the orthogonal modeling functions that 
minimized PSE were selected, each retained 
orthogonal function was expanded into an ordinary 
polynomial expression, and common terms in the 
ordinary polynomials were combined using double 
precision arithmetic to arrive finally at a multivariate 
model using only ordinary polynomials in the 
independent variables. This procedure is explained 
below in the Parameter Estimation section. 

Orthogonal modeling functions are useful in 
determining the model structure for the dependent 
variable using the PSE metric, by virtue of the 
properties of orthogonal modeling functions and the 
resultant decoupling of the associated least squares 
problem. The subsequent decomposition of the 
retained orthogonal functions is done to express the 
results in physically meaningful tenns and to allow 
analytic differentiation for partial derivatives of the 
dependent variable with respect to the independent 
variables. 

The next section describes a procedure for using 
the independent variable data to generate orthogonal 
modeling functions, which have the orthogonality 
property of Eq. (1 0). 

Orthogonal Function Generation 

The technique for generating orthogonal 
functions of several independent variables based on the 
data will now be described. Each orthogonal function 
p, in general depends on the independent variables. 

Let x, , j = 1,2,. . . , m represent Nx l vectors of the rn 

independent variables. Each element of the -7 
corresponds to one data point. Assign k as a positive 
integer that serves as a label for a unique set of m 

non-negative integers (rl , r2 ,  . . . . rnl} . For example, if 

m=2, it might be that k=l corresponds to {0,0}, k=2 
corresponds to (0, I}, k=3 corresponds to {I ,O f ,  k=4 
corresponds to (0,2), k=5 corresponds to { 1, I ) , and so 
on. Orthogonal function pk is associated with the kth 
set of m non-negative integers, and also with the 
ordinary polynomial function wk of the rn 
independent variables: 
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where, for example, x: denotes an N-dimensional The scalars y j  are computed for each j by 

vector with each element of the independent variable - both sides of Eq. (22) by p; and invoking 
vector sl raised to the rl power, and 63 denotes an 

the orthogonality of the pJ from Eq. (lo), 
element-by-element product. Note that each wk is an 
ordinary polynomial in the independent variables. 
Define the order of wk as k p : ( ~ P @ p i )  

Y j  = (23) 

p(k) = rl +r2 +...+ r, 
p: PJ 

(19) 

The quantities on the right in Eq. (23) are either a 
The orthogonal functions of m independent measured independent variable vector or a previously 

are defined the generating generated orthogonal function. *Aer the y: 
relations: 

are determined from Eq. (23) for each j, pk can be 

P1 = I  (20) computed from Eq. (22). 

The process can be repeated to generate 
where I represents an N x ~  vector of Ones and k=l is ofihogonal functions of arbitrary order in the 
associated with the set of m zeros, rl = r2 =. . . = r,, = 0 . independent variables, subject only to limitations 

Each new set k evolves from a previous set , related related to the information contained in the data. 

as follows: Speaking loosely, the multivariate orthogonal functions 

pk are orthogonalized versions of the corresponding 

I ordinary polynomial functions wk . r , - l *  rp ,  r p + ] ,  ---yrnl 

k a { rl, r2, ..., rP-l ,  rP + 1, rP+t, ..., rn, ] Parameter Estimation 

Once the orthogonal functions to be included in - 

where Lr is an integer. In Eq. (2 I ) ,  the only difference the model of Eq- (1) were generated by Eqs. (22) 

between the integers in set r and those in set k is that and (23), then selected by minimizing the PSE from 
Eq. (14), each retained orthogonal function was 

the integer index for independent variable /I in set k is decomposed into an expansion of ordinaly polynomial 
one more than in set r .  By assumption, the rth functions in the independent variables. This step 
orthogonal function has already been generated. The introduced negligible error, as described below. 
orthogonal function pk is then generated by From the orthogonal function generating equation 

(22) and the discussion in the previous section, it can 
k 

P X . =  X ~ @ P ;  - Z. y J  pJ (22) be deduced that for any index k, the orthogonal 
J function pk is a linear combination of the w, for all 

i < k . In other words, each orthogonal function pk 
with the Over all  j that can be expressed as a linear combination of the 
P The Y: are constants to be w , ,  i =  1,2, ..., k ,  which are ordinary polynomials 

determined. The index k and its associated integer set corresponding to the integer sets of all previously 
keep track of the independent variable orders for the generated orthogonal functions plus the current (kfh) 
kth orthogonal function. Each new orthogonal function one. In equation form, 
must be orthogonal only to the previously generated 
orthogonal functions of the same order, one order pk = b k I w I  + hk2w2 +...+ bkkwk (24) 
lower, and two orders lower to be orthogonal to the 
entire set of generated orthogonal functions. Proof of where the b k i ,  = l , 2 , . . . , k  , are constants to be 
this was found by weisfeld9. Orthogonality was 
verified numerically in the software implementation of determined. There is question as the model 
the technique used in this work. structure given for each pk in Eq. (24), because this 
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model structure was guaranteed by the use of Eq. (22) subsequent decomposition of each retained orthogonal 
in generating each orthogonal function. function in terms of ordinary polynomials. The 

The hk,  , i = 1,2 ,..., k in Eq. (24) needed for the 

decomposition of each orthogonal function were 
computed using a conventional least squares solution, 
as given in Eqs. (5) and (6). Since the form and 
number of tenns needed for the ordinary polynomial 
expansion of each orthogonal function was known, the 
decomposition of the orthogonal functions into an 
ordinary polynomial expansion introduced negligible 

number of ordinary polynomial terms np may be 

different than n from the orthogonal function 
expansion. 

The orthogonal function model of Eq. (1) was 
useful in determining the model structure for the 
dependent variable using the minimum PSE criterion, 
by virtue of the properties of orthogonal functions and 
the resultant decoupling of the associated least squares 

error - on the order of the numerical precision (1 0-12) problem. The subsequent decomposition of the 
retained orthogonal functions was done to express the - 

- for each orthogonal function. It would also be results in physically meaningful terms and to allow 
possible to find the bkl parameters in Eq. (24) exactly, analytical differentiation for derivatives of the 

dependent variable with respect to the independent 
by bookkeeping and properly combining the y ,  variables. 

values. 

When all retained orthogonal functions were 
decomposed, the expansions like Eq. (24) were 
substituted into Eq. (1) for each retained orthogonal 
function, and common terms in the ordinary 
polynomials were combined using double precision 
arithmetic to arrive finally at a multivariate model 
using only ordinary polynomials in the independent 
variables. Ordinary polynomial tenns that contributed 
less than 0.1 percent of the final model output root- 
mean-square magnitude were dropped. The computer 
program that implements the procedure described here 

- - --- 

can determine up to 8th order models with a maximum 
of I0 independent variables. 

In summary, a model given by Eq. ( I )  of the 
dependent variable in terms of orthogonal functions 
p, was determined using the minimum PSE criterion. 

Each p ,  in Eq. ( I )  was then decomposed into an 

expansion of ordinary polynomial functions, with the 
results combined to arrive at a model of the form: 

j =  G,wl1 + G ~ I ~ + . . . + ~ , , , ~ W , , , ~  (25) 

with 

i l , i 2 ,  ..., i ~ { 1 , 2  ,..., kmm)  n~ (26) 

Experimental Data 

The wind tunnel data used in this work were 
recently acquired in the National Transonic Facility 
(NTF) at NASA Langley Research Center. The model 
was a commercial jet transport, although nothing about 
the current analytical method is limited to this class of 
aircraft, which was selected for illustrative purposes. 
Non-dimensional aerodynamic lift, drag, and pitching 
moment coefficient values were measured for various 
angles of attack and Mach numbers within the cruise 
flight envelope of the vehicle. The independent 
variables were angle of attack and Mach number. The 
response variables were non-dimensional aerodynamic 
coefficients for lift force, drag force, and pitching 
moment. 

The wind tunnel data was collected using two 
different experiment designs, MDOE and OFAT, over 
roughly the same range of angle of attack and Mach 
number. For the MDOE experiment, the independent 
variables were set according to a 2nd order Box-Wilson 
design including far-comer points, with additional 
points from a custom 3rd order design1' that was based 
on an orthogonally blocked extension to a Box-Wilson 
design. For the OFAT experiment, angle of attack 
settings were increased monotonically with time for 
various constant Mach number settings. 

where k,,, is the total number of orthogonal The MDOE data from the full wind tunnel test 
were divided into 9 subspaces, shown in Table I. 

functions generated and w l l ,  w , ~  .... , w , ,  are ordinary 
Within each subspace, independent variables were set 

polynomials in the independent variables. The positive according to the normalized values contained in 
integer values of i ,  , i 2 ,  . . . , in,, and np depend on the Table 2. Normalized independent variable values can 

be found by mapping the independent variable values 
particular orthogonal functions retained in the model 

in engineering units for each subspace onto the interval 
structure determination stage and also on the 
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I I .  The normalization of each independent 
variable was implemented by 

where 2 was the normalized value of the independent 
variable, and the independent variable range in 
engineering units was [xnrin,  xnrm ] , The inverse 

transformation was 

For example, a normalized value of 0.707 for 
angle of attack in subspace 2 would correspond to 
3.634 degrees in engineering units, since the angle of 
attack interval for subspace 2 was [1.5,4] deg. 
Similarly, the normalized Mach number setting -0.707 
corresponds to Mach number 0.718 for subspace 2, 
with Mach number interval [0.7,0.82]. All modeling 
and prediction in this work was done using normalized 
values of the independent variables. 

Results 

The multivariate orthogonal function nonlinear 
modeling technique was first applied to experimental 
data from the individual MDOE subspaces in Table I .  

Values for a:, were found from the repeated runs at 
the normalized center points of the independent 
variable ranges, using the method described above. 
Model structure detennination and parameter 
estimation was done automatically using the 
orthogonal function modeling technique, without 
iteration or analyst judgment of any kind. While the 
orthogonal function modeling software allows manual 
override by the analyst in the model structure 
determination stage, this option was not used for any of 
the results presented here. All data analysis and 
modeling was done on a 450 MHz computer running 
Matlab 5.3. The orthogonal modeling technique was 
implemented as a Matlab m-filelo. 

the measured lift coefficient data and the response 
surface model values. The solid horizontal lines are 
the 95% confidence bounds for the prediction error of 
the response surface model, computed as two times the 
square root of the PSE from Eq. (14). The prediction 
error bound calculation therefore used modeling data 
to estimate the range for the residuals in prediction 
cases. 

The circles in Figure 3 are prediction errors 
computed for 5 data points not used for the modeling. 
This data was collected at the randomly selected 
normalized independent variable settings given in 
Table 3. For these points, the identified response 
surface model was used to predict the measured output. 
Figure 3 shows that the 95% confidence bound for the 
prediction error computed from PSE was a 
conservative measure of actual prediction error, 
indicated by the circles. The prediction errors were 
roughly the same magnitude as the residuals for the 
modeling data (or inference data), marked by x's. This 
indicates that the functional dependence was captured 
well by the identified response surface model. 

The other plots in Figure 3 show similar 
information for the drag force and pitching moment 
coefficients. Table 4 contains detailed information 
about the modeling and prediction for this case. The 
first two rows of Table 4 show the mean values of the 
coefficients and estimates of the standard deviation of 
the output noise from repeated center point runs. This 
gives a measure of the output noise level and the how 
the noise magnitude compares to the mean measured 
output. Residual magnitudes close to the noise level is 
the best that any model can be expected to do. The 
third row shows the prediction error estimated from the 
modeling data, and the fourth row shows the root mean 
square of the modeling error using the independent 
variable settings in Table 2 for subspace 2 of Table 1 .  
The fifth row of Table 4 shows the root mean square of 
the actual prediction error using the identified response 
surface model to predict the 5 points from Table 3.  
The prediction error estimate based on the modeling 
data was conservative (i.e., too large) by approximately 
a factor of 4 for this data. The actual prediction 
perfonnance was nearly the best that it could be, 
considering the values for the estimated output noise 

Figure 2 shows the response surface model fit to a,, compared to the actual prediction errors. The 
measured lift coefficient data for the normalized actual prediction errors were less than 1 percent of the 
independent variable values listed in Table 2 for mean values for all coefficients, indicating an excellent 
subspace 2 of Table 1. The crosses shown in Figure 2 prediction capability for the identified response surface 
are the measured data used for the modeling. The models. Finally, the last three rows of Table 4 indicate 
middle plot in Figure 3 shows the residuals for the lift the number of orthogonal function terms in each 
coefficient model, which are the differences between identified response surface model, the number of 
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ordinary polynomial terms in each model after prediction results. The prediction points were chosen 
decomposing the orthogonal functions, and the randomly in the independent variable space 
maximum order of the ordinary polynomial terms in corresponding to subspaces 1.2, and 3 in Table I .  
the model 

Similar analysis was done for the other subspaces 
defined in Table 1. The results showed that prediction 
errors estimated from the modeling data were always 
conservative, but by varying amounts. Also, the model 
fit errors and prediction errors were larger for the 
higher Mach number cases (subspaces 4-9), because of 
larger output noise values, estimated by a,. 

Response surface modeling was repeated for 
subspace 2 using only the 2nd order Box-Wilson and 
far-comer points from the original experiment design 
in Table 2.  Results plotted in Figure 4 show that 
model fit errors and prediction errors were generally 
larger, but the prediction error estimates from 
modeling data were still conservative. The increased 
number of prediction points in Figure 4 resulted from 
treating the unused 3rd order points in Table 2 as 
additional prediction cases. 

Response surface modeling was then done for the 
same independent variable space corresponding to 
subspaces 1, 2, and 3, but using data from an OFAT 
experiment design. For this experiment, several 
sweeps through the angle of attack range were made 
for 4 different Mach numbers. Table 6 contains the 
modeling and prediction results, and Figure 8 shows 
the plots for this case. The same number of data points 
(90) were used for the OFAT data set as for the MDOE 
data set. The response surface model identified from 
the OFAT data was applied to the same prediction data 
points used with the MDOE data. Comparing the 
information in Tables 5 and 6, the models identified 
from the MDOE and OFAT data were of comparable 
complexity, and the model fit errors were nearly the 
same, except for the drag force coefficient, which was 
fit better using the MDOE data. Prediction errors were 
lower for lift and drag force coefficient models 
identified from the MDOE data. The prediction error 

~i~~~~~ 5 and 6 show results from response for the drag coefficient was significantly lower (by 

surface modeling based on the 2nd order Box-Wilson roughly a factor of 3) using MDOE data, 

design and the 3rd order augmented design, excluding using OFAT data. 

the far-comer points in Table 2. In these cases, some 
prediction errors were outside prediction error bound 
estimates based on the modeling data. All of these 
outliers were in fact far-comer points, which were 
included as prediction points for these cases. In this 
context, the far-comer points were extrapolations for 
the identified models, with prediction errors higher 
than the estimates based on the modeling data. 
Including the far-comer points in the modeling 
decreased the prediction errors for both 2nd and 3rd 
order designs individually. In addition, use of the 3rd 
order experiment design with far-comer points 
decreased the prediction error compared to using the 
2nd order Box-Wilson experiment design with far- 
comer points. When the far-comer points were not 
included, models identified from the 3rd order 
experiment design had higher prediction errors than 
models identified from the 2nd order Box-Wilson 
design. All of this behavior was consistent for data 
from the other subspaces in Table I .  

Data from a larger independent variable subspace 
was also analyzed. Specifically, all the test points in 
Table 2 for subspaces 1, 2, and 3 in Table 1 were 
combined into a single MDOE data set. Figure 7 
shows the modeling and prediction results in the same 
format as before, for all three longitudinal aerodynamic 
coefficients. Table 5 contains the modeling and 

Figures 7 and 8 show that the orthogonal function 
modeling technique did well with either MDOE or 
OFAT data, in terms of fitting the model data 
accurately, estimating prediction error from model 
data, and actual prediction, except for the degraded 
prediction with the drag coefficient model using OFAT 
data, noted earlier. All prediction errors and model 
errors in Tables 5 and 6 were less than 4 percent of the 
mean values for all aerodynamic coefficients. 

Finally, Table 7 contains response surface 
modeling results for subspaces 1 ,  2, and 3, using only 
2nd order Box-Wilson points, including far comer 
points. These data represent a subset of the MDOE 
data used for Table 5 and Figure 7. Using the MDOE 
subset of 2" order points with far comers (Table 7). 
the prediction error for all output response surface 
models was increased compared to the response 

-surface models identified from all MDOE data (Table 
5). This behavior was similar to what was seen in 
Figures 3 and 4 for MDOE subspace 2 data. Compared 
to the models identified from OFAT data, prediction 
errors using the models identified from the MDOE Znd 
order subset data were lower for CD and CL, but 
higher for CM. The number of data points used to 
identify the models in Table 7 was 60, compared to 90 
for Tables 5 and 6. 
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Concluding Remarks OFAT data achieved lower prediction errors for lift 
and drag response predictions, but not for pitching 

A nonlinear modeling technique based on the use moment. 
of multivariate orthogonal modeling functions 
generated from the measured data was used to 
characterize response surfaces for wind tunnel data. A References 
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Table 1 Inference Subspace Data Ranges Table 2 Normalized lndependent Variable Values 

Inference Angle of Attack Mach ~~~b~~ 
Subspace (deg) 

min max min max 

Point Angle of Mach 
Number Attack Number 

1 1  
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Table 3 Inference Subspace 2 Table 5 MDOE Data, Subspaces 1,2, and 3 
Prediction Data Points Modeling and Prediction Results 

Table 4 MDOE Data, Inference Subspace 2 
Modeling and Prediction Results 

Table 6 OFAT Data, Subspaces 1,2, and 3 
Modeling and Prediction Results 

12 
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Table 7 MDOE Data, Subspaces I ,  2, and 3 
2nd Order Box-Wilson with Far Comers 

Modeling and Prediction Results 

Mean Value 0.033 0.447 -0.067 

Prediction Error 
3.1 16 49.331 22.664 

(XI 04) 

Model Error 

djlN ( ~ 1 0 ~ )  
2.667 37.263 15.094 

Orthogonal 
Function Terms 14 12 2 1 

Ordinary 
Polvnomial Terms 

13 
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19 20 22 

Maximum Order 
of Ordinary 

Polynomial Terms 
6 6 6 

% 
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