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ABSTRACT

This article gives an analysis of the behavior of polarizing grids and reflecting polar-

izers by solving Maxwell's equations, for arbitrary angles of incidence and grid rotation,

for cases where the excitation is provided by an incident plane wave or a beam of ra-

diation. The scattering and impedance matrix representations are derived and used to

solve more complicated configurations of grid assemblies. The results are also compared

with data obtained in the calibration of reflecting polarizers at the Owens Valley Radio

Observatory (OVRO). From these analysis, we propose a method for choosing the opti-

mum grid parameters (wire radius and spacing). We also provide a study of the effects

of two types of errors (in wire separation and radius size) that can be introduced in the

fabrication of a grid.

Subject headings: instrumentation: polarimeters -- techniques: polarimetric -- tele-

scopes

1. Introduction.

The literature on wire grids is abundant and they have been studied with different techniques

and for numerous applications. Most of the analysis were however restricted to special cases of

incident field and grid orientations. The more general and arbitrary situation seems to have been

first studicd by Wait (see Wait (1955a) and Larsen (1962)). This problem is addressed again in

this paper and follows a line of analysis fairly similar to the one used by Wait. Our treatment is,

however, more general in that we do not assume that the wires of the grid are induced with only
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a longitudinal current; we will indeed show that an azimuthal component is also present. We also

solve for the induced current by considering the tangential components of both the electric and

magnetic fields at the surface of the wires.

This analysis is carried out in the next two sections and will serve as our basis for the treatment

of the reflecting polarizer (section 4) and the introduction of the scattering and impedance matrix

representations for a grid (section 3.3) which will in turn enable us to briefly discuss more compli-

cated systems. These matrices will be particularly useful in allowing us to define what will be called

the principal axes of a grid. These are two orthogonal and independent directions of polarization

in the plane of the incident radiation along which an arbitrary electric field can be decomposed

and shown to scatter without cross-polarization. With this representation at hand, it will then be

possible to derive a set of optimal parameters (wire radius and spacing) to be used in the selection of

a grid. We will also present an analysis of the effects of random errors that can be introduced in the

fabrication of grids, the results obtained will then bc compared to experimental results previously

published by Shapiro & Bloemhof (1990).

The last section will be dedicated to the study of the more subtle impacts that the nature of

the incoming radiation can have on the response of a grid assembly such as a reflecting polarizer

(section 4). Although limited to this particular case, our discussion could possibly apply to other

types of instruments. We have "also included at the end (Appendix II) a list of the symbols used in

the different equations.

2. The case of a single wire.

Before trying to solve the problem of the grid or the reflecting polarizer, it is preferable to

study the case of a single conducting wire. It will serve as the basis for our studies of the more

complicated cases to follow in subsequent sections.

Let's suppose that a wire of radius a is oriented, as depicted in Figure 1, parallel to the x-axis

at y = Yo, z = zo and that it is subjected to an incident plane wave Ei(r) of arbitrary direction and

polarization:

with

Ei(r) -- Eo(a' e_ + 3'ey + "_'ez)exp(-j(k. r - wt) ) (1)

k = k(aex + Bey + "Tez)

and where, of course, the following conditions of normalization and orthogonality apply: a2 + _2 +

72 = at2 + fit2 + .(2 _ 1 and aa _+/_/_ + "7"7_ = 0. Using the coordinate system depicted in Figure 1
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wehavea = sin(x/) sin(_g), _ = sin(x/) cos(_9) and "_ = cos(x/) where Xi is the angle of incidence

and _g the angle of grid rotation.

In everything that follows, we will drop _he exp(jwt) term mid assume it to be implicit in the

equations. We will also suppose that the wire is of infinite length and made of a good conducting

material of conductivity a such that any current flowing through it can be accurately represented

by a surface current vector K. This quantity is related to the current density J(r) as follows:

J(r) = KS(p - a) cxp(-jk, r) (2)

where

K = KXe_ + Keee

and y - Yo = pcos(0), z - zo = psin(0).

Before we solve for the scattered fields, it is to our advantage to note that for tile case considered

here (i.e., thin wire with an approximate solution involving no angular mode dependency), the

problem can be broken in two parts or modes. The mode where the electrical field is parallel to

the plane defined by e_, and k (the transverse magnetic or TM-mode) is related to the presence of

K s while another, where the magnetic field is parallel to this same plane, the transverse electric or

TE-mode is related to K °, The analysis will, therefore, be facilitated with the use of the two vector

potentials As and Fs for the scattered fields (Balanis 1989).

The TM-mode can be analyzed using the vector potential As, in the Lorentz gauge, with

F_ = 0. The needed equations are:

exp(-jkR) d3r,As(r)- #o J(r') (3)
4_r R

c 2
Es(r) = .-:--V(XT. As(r)) - jwAs(r) (4)

jw
1

Hs(r) = --V × As(r) (5)
#o

with

R2 = (x - x')" + (y - y')2 + (z - z') 2 .

Since we are concerned here with the longitudinal component of the surface current density,

we only need to consider the A z component of the vector potential (i.e., we set A p = A ° = 0).

Equation (3) can be solved exactly when K is expanded with a Fourier series, but in cases where

the wavelength of the incident wave is much larger than the wire radius it can be shown that:
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A_ (r) -- lr#oa KX H0(2)(k'p) exp(-j_o) (6)
2j

with k _ = kv'T - a 2, _o = k(olx + flYo + ?zo) and where H (2) (x) is Hankel's flmction of the second

kind of order n.

On the other hand, it is advantageous to study the TE-mode with the vector potential Fs, in

the appropriate gauge, with A_ = 0 (Balanis 1989). To do so, we will not consider the effect of the

current density (more precisely its azimuthal component) but that of the magnetization vector M

that it induces. The relevant equations are now:

J(r) = V x M(r) (7)

F_(r) - jWt_oeo4, fM(r') exP(RJkR)dar, (8)

1
Es(r) -- V x Fs(r) (9)

go

C 2

Hs(r) - V(V. Fs(r)) - jwFs(r) (10)
jw

with Rasdefined above.

Since we are now concerned with the azimuthal component of the surface current density, we

only need to consider the M z, F_ components of the magnetization and vector potential (i.e., wc

have M p = M 0 = F_ -- Fs° -- 0). Again, in cases where the wavelength of the incident wave is

much larger than the wire radius it can be shown that:

rw#°e°a2 K ° H_ _) (k'p) exp(-j_o).El(r) - 4 (11)

It is now straightforward to calculate the scattered fields by combining the solution obtained

for each mode (using equations (4), (5) and (6) for the TM-mode and equations (9), (10) and (11)

for the TE-mode):

El(r) -- -jc_x/r-1- t_2F KXH}2) (k' p) exp(-j_o) (12)

ka golly2)(k'p) exp(-j_o) (13)E_(r) = -X/_--t_2F-_ -

E_(r) = - (1 - t_2) fgzH_ 2)(k'p) exp(-j_o) (14)

ax/_ - ka Kog_2)(k'p) exp(-j_o) (15)
H_(r) - _ Ct2F -_
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•x/1- a 2 F KXH} '2) (k'p) exp(-j_) (16)
H°(r) = -J Zo

(1 - a 2) ka KSH(o2)(k,p)cxp(-j_o) (17)
HsX(r) = -J Zo F -2-

where F = _2 and Zo = _ is the impedance of free space. Note that although equations

(12)-(17) represent the scattered field, the components of surface current density that are included

in these equations are that of the, yet undetermined, total surface current density which we are now

in a position to evaluate.

In order to do so, we must first express the incident plane wave in the appropriate coordinate

system. This can be done by first using the following expression:

exp(-jk(fly --F-Vz)) =

o_

(-j)nJn(k'p) exp(jnS') (18)

/ \

with 0'= O - arctan (_), Jn (x)the Bessel function of order n and by again splitting the incident
k--/

field in the two modes defined earlier (van de Hulst 1957; Balanis 1989). This enables us to express

the plane wave in cylindrical coordinates and match the fields with the usual boundary conditions

for their tangential components at the surface of the wire. For the TM-mode the condition is:

E_ + E_ = Z_(H_ + Hi). (19)

Within the order of precision used for our analysis (A >> a) and considering a solution with no

anglllar dependency, it can be shown that:

E_ _- a'Eoexp(-jk(ax +'yzo))

. , Eo ka
g_ -_ 7aZo'-2exp(-jk(ax+_zo)).

For the TE-mode we have:

with:

E_ + E_ = -Z_(H_ + Hi) (20)

ka

E_ "_ -j ('),'/_ - _¢'_,) Eo-_- exp (-jk (ax + _zo))

Eo

HI __ (V'_ - _"Y) Zo exp (-jk (ax + _/zo)) •
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In equations(19)and(20),Z_ = (1 + j) _ is the surface impedance of the wire (Jackson
• V 20"

1962). It is to be noted that for wires of small radius, relative to the wavelength, the boundary

conditions (19) and (20) along with the equation for Z_ represent approximations that are only valid

in the lowest mode and for a sufficiently good conductor. A more rigorous treatment shows that

these equations will be modified in the more general case (Wait 1979; Bouche, Molinet & Mittra

1997). But for the purpose of our analysis, the approximation used here is adequate.

When solving these two sets of equations we find the following expressions for the components

of the total surface current densities:

K • Eo °/(1 - J_oo " _)
= --- (21)

F (l_a2) H_2)(k,a)_j_o_H_2)(k,a)

gO = Eo . -J(7'l_- f_'7)(i +jZo.

F lx/_'Z___2Hl2)(k,a)+jzZ__o (1 - a2)H(2)(k,p) "

These last two equations can be inserted in equations (12)-(17) to calculate the value of the

fields at any point exterior to the wire. For a good conductor the internal fields are practically

nonexistent. Equations (21) and (22) are in agreement with the results presented in Balanis (1989,

see ch. 11) for the case of normal incidence and a perfectly conducting wire.

3. The polarizing grid.

3.1. Analysis.

With the solution for a single wire in hand, the problem of a configuration of an infinite number

of wires of infinite length separated by a distmlce d is simplified if one realizes that every wire will

be induced with the same surface current K. The only difference will be a phase term in the current

density J(r), given by equation (2), which depends on the position of the wire along the y-axis. The

same thing can be said for the scattered fields from any given wire, one only has to replace Yo by

nd in equations (12)-(17), where n is an integer that determines the position of the wire.

If the scattered fields are now just the sum of all the different scattered fields from the individual

wires, care must however be taken in evaluating the surface current. First, when one matches the

boundary conditions it must be done simultaneously at the surface of every wire. However, since

we are dealing with an infinite number of infinitely long wires subjected to the same incident plane

wave, it turns out that it is sufficient to do so for only one of the wires. If the boundary conditions

are matched for one wire they will be for all. We have chosen for our calculations the "center" wire

at n = 0. Second, to match the boundary conditions we must express the scattered fields of each

and every wire in a cylindrical coordinate system centered on the position of this "center" wire.



--7

Whenthis is done,wefind tile followingexpressionsfor thecomponentsof the inducedtotal
surfacecurrentdensity:

with

Eo , Nx
g _ = -- .c* --- (23)

F Ax

gO .Eo - fl'7)_ (24)= -3- F . (-/_

and

.& ka (25)N. = 1-a_oo. T

Az = (1 - a 2) $1 - J_o ' lx/i7_-d2H_2)(k'a) (26)

2

No = 1 + j_o . _a (27)

Z,. (1 - a 2) Sl (28)ao = 14i-=--g-_H_2)(k'a)+ j_

oc

= H_2)(k'a) + 2 _ H_2)(k'nd)cos(k3nd). (29)$1

n=l

We will give in section 3.4 adequate approximations for Az and A 0 that will greatly, simplify

the ewaluation of the rcflection and transmission coefficients which are soon to follow.

By, using the appropriate expansions for series of Hankers flmctions we can write down the

expressions for the components of the total electric field far away from the grid:

E}(r)

a'Eoexp(-jk r) (1-a 2) AF..... K* exp(-jkTIz - zol) exp(-j_o)
,_ _rd

= fl'Eoexp(-jk" r)

AF[_a__ kaKOz-z° ]+--_-_ g _ + j--_ _lz exp(-jkTIz - Zo D exp(-j_o)

= 7'Eoexp(-jk" r)

AF[ z- zo .fl ka ]+--_ ag _ ]-_ g 0Iz - zot " -_ exp(-jkTlz - zoD exp(-j_o)

where _ = k(ax + fly + 7Zo). From these it is now straightforward to get the reflection and

transmission coefficicnts (normalized to Eo) in the far-field:



R= = _F ._. (1-c_ 2) KZ (30)
Eo 7rd "f

Eo " rr-d "2 Ke (32)

T = = cxI + R x (33)

TY = fl' + E-'-_o" r-d -2- K° (34)

F )_ [ .fl ka 1T z = "r'+ E--£o"rr-'-'dc_K_ - 3"_" "_ ge (35)

where we have set zo = 0 for simplicity.

Equations (30)-(35) along with (23)-(24) are the solution to the polarizing grid problem for

cases where it is assumed that k_a << 1 and a << d.

For predictions of measurements made in the laboratory, one merely has to transform these

coefficients to the laboratory coordinate system. If we adopt for this system the coordinates of the

incident/transmitted (u, v, w) and reflected (u _,v _, w r) plane waves defined in Figures 1 and 2, the

last system of equations is simplified to:

RU' = Eo " r-d" ,,f lx//-f-_-?2 flK= - jo_"f _- K e (36)

R,/ = F A 1[ ka ]- E--_o"lr'--d" "7_ v_'Tgx + jfl -_ K° (37)

Rw' = 0 (38)

T,, = a,, F )_ 1 [ ka 1- E'--_o"rc"'d" ,_ lv/-f_-7"2 flg= + joL"/-_ g ° (39)

To = fl,, F A 1[ ka ]- E--£o"-_" ,71x,/-f_-72 crTK= - jl_ 2- K° (40)

T" = 0 (41)

with e" and fl" related to the incident field by :

E,(r) = Eo (c_" eu + B" ev) exp (-jkw) .

As can be seen, the reflected and transmitted fields have no component along their respective

direction of propagation as is required for the propagation of plane waves in free space.
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3.2. Effects of grid imperfections.

So far we have assumed that there were no in:perfections in the construction of the grid,

obviously (and unfortunately) such is not the case in a realistic situation. It would be instructive

if we could calculate the effects of errors that are likely to be introduced in the fabrication process.

In this section we will provide expressions that will allow us to evaluate changes in the reflection

and transmission coefficients induced by two possible imperfections: random errors in wire spacing

and random variations in the size of the wire radius.

3.2.1. Random errors in wire. spacing.

It is our experience that some of the commercially available grids when observed under a

microscope show some defects in their assembly. Visually, the most obvious manifestation of this is

inconsistency in the spacing between wires. In order to calculate the effect of these errors we have

to go back to the discussion of section 3.1 that guided us into the evaluation of the induced current

on the wires. Since we can no longer assume that the wires are evenly spaced, we must now realize

that they will in general have different values for the current and fields on their surface. This will

be made more apparent if we write down the expression for the x-component of the electric field on

the surface of the "center" wire:

OO

E_(a) = - (1 - a 2) Fexp (-jk (ax + 7zo)) Z K,_ (_) G,_ (_) (42)

with:

{ H_2)(k'a) exp (-jkB_o) ,n = 0Gn (_) = g_ 2) (k' tnd + _,_l) exp (-jk_ (nd + _n)) ,n # O.
(43)

K_ is the induced surface current on wire n and the _,_ are statistically independent random

errors in the positioning of the wires. Now, if E {x} stands for the expected value of x and if we

suppose that the errors have a zero mean, we can write:

E{_ r} = 0 ,r=1,3,5... (44)

E{_ r} = E{_ r}=E{_ r} ,Vm, n (45)

E{_r_n s} = E{_[a}E{_} ,m#n (46)

rgt :r "fn 2:_mK* = _,, K_ = E{_ n K_} ,Vm, n. (47)

The first equation is deduced from the supposed evenness of the probability density function of

the errors, the second states that their statistics are the same across the grid and the third expresses
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their statisticalindependence.Thelastof theseequationsarisesfromthefact that if wewereto
testa largenumberof similargrids,everywirewouldexhibitthesameaveragevalue_mKXforany
inducedsurfacecurrentmoment(independentofits positionn).

We will not go into the details of the calculations as they are somewhat lengthy, but it can be

shown that if we apply this last set of equations and expand K_ (_) and Gn(_) with their Taylor

series around _m = 0 while solving for the boundary conditions, we can find an expression (valid to

the second order in _) for the average longitudinal surface current:

U x ._ K x

where K x is the current density induced on the wires of a perfect grid and is given by equation (23).

One sees that the errors bring a perturbation which is proportional to their common variance.

If the same approach is used to calculate the effect of such random errors on the value of the

azimuthal surface current density Kn°, one finds that it remains unaffected:

K-'-'__ K °

with K e given by equation (24).

From this we could then proceed and calculate the expected value of the reflection and trans-

mission coefficients by evaluating equation (42) (and the corresponding equations for the y and z

directions) in the far field, when this is accomplished we find that the coefficients have exactly the

same form as shown in equations (30)-(35) (or (36)-(41)). We then merely have to replace K x and

K ° by K x and K ° respectively.

3.2.2. Random errors in the wire radius (wire to wire).

Another type of error which can be analyzed is one concerning the random variation in the

size of the wire radius, which we will denote by the letter TI. More explicitly, we are considering

differences between wires and not variations along a single wire; we assume the diameter of a wire

to be constant but somewhat uncertain in its value. This is the kind phenomenon that could occur

if the wires were stretched with slightly different tensions when installed or perhaps also in cases

where the wires have a finite ellipticity and are rotated between rows. We can proceed in the same

manner as we did in the last section for the analysis of the boundary conditions and the fields away

from the grid. When this is done we get:
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K x _ K _

K----_ __ K o

__

1

E.%-o¢ a. (0) 2 2 [E  oJ ,o=o

E{_72} fl(92Qo 10Qo V_-(_2 [0Qo]2_ ]

Qo(O) [ 2 Owo + a a,o h-; J,o=oJ

where _/,_ is the random error in the size of the radius of wire n, Gn is given by equation (43)

(with _ = 0 and a replaced by a + r/), Az and A0 by (26) and (28) respectively and Qo (r_o) =

H} 2) (k' (ao + r/o)). Again the expected value of the different coefficients can be obtained by replacing

the current components K x and K ° by K-_ and K ° in equations (30)-(35) (or (36)-(41)). It will

also be noted that the errors contain a perturbation term which is proportional to their common
vaxiance.

3.2.3. Predictions and comparison with experiments.

Now that we have derived the equations for the reflection and transmission coefficients it would

be interesting to compare the predictions that our model makes with experimental data. Although

we have independently treated the two types of errors, it is nevertheless obvious that within the

limit of precision of our analysis (small errors) that they can both be simultaneously added in

the expressions for the reflection and transmission coefficients. Doing so would in principle allow

us to compare theory and experiments as actual grids are liable to exhibit both kinds of defects.

This also suggests though that it might be impossible to separate the effects of both errors in

measurements. It turns out, however, that the perturbations caused by the errors in the size of the

wire are predicted by our model to be smaller than those caused by the errors of the other type

(for equivalent error amplitudes), and we neglect them in the following comparison of theory and

measured grid properties.

Shapiro _ Bloemhof (1990) have published measurements of the unwanted cross-polarized

transmittance through three grids on which they had purposely introduced random errors in the

wire positioning. They quoted the errors in term of the random variation in the distance between

wires (pitch) with amplitudes of 7%, 23% and 52% of the mean wire separation (aimed at 108tam

with a wire radius of 12.5/am). We must divide these values by a factor of v_ in order to relate

them to our errors in since we have defined these as pertaining to the absolute position of the

wires. Figure 3 shows a comparison of our model's predictions with their measurements done for

cases where the incoming field is at normal incidence to the grid and polarized parallel to the

wire orientation. Although the agreement is not perfect, the outcome is very satisfactory ms the

theoretical curves cxifibit the right behavior with frequency and error amplitude.
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3.3. The scattering matrix and the impedance model.

3.3.1. The scattering matrix and the principal axes of a grid.

Tile relationship between tile reflection and transmission coefficients in equations (36)-(41) is

reminiscent of what is often encountered in microwave engineering in the analysis of systems that

can be accurately dealt with using a lumped-elements model. With this in mind, it is tempting to

consider any problem involving a polarizing grid by treating the different components as lumped

and interconnected through a transmission line of characteristic impedance Zo (Lamb 1997). We

can then go ahead and model the grid as a 4-port device since the reflection and transmission

coefficients given by the aforementioned set of equations provides us with the scattering parameters

at each port.

In this context, it is more convenient to work with a single coordinate system (u, v, w) (see

Figures 1 and 2) for both the incident/transmitted and reflected plane waves since we can assume

that their propagation is done along the same transmission line (it is however understood that, in

reality, away from normal incidence the transmitted and reflected waves travel along different axes).

We therefore assume that the incident/transmitted fields travel along the w-axis (with the u-axis

vertical and the v-axis horizontal) and the reflected fields along the negative w-axis as seen from a

given side of the grid.

Since there are two possible independent states of polarization (with the field aligned along the

u or v-axes), where the waves can travel either toward or away from the grid, we need two ports

on each side of the grid. So for example, if the incident wave on a given port has an electric field

polarized along a given axis we can define 4 scattering parameters: one for the reflected signal at

the input port and three for the transmissions to the other ports. The same thing can be done for

every port leading to a total of 16 scattering parameters.

In what follows, a scattering parameter stun is defined with the 3 ports m _ n terminated with

the line characteristic impedance Zo. Also, each port n has two signals: an incoming signal E + and

an outgoing signal En; n = 1, 2 (3, 4 on the other side of the grid) refer to polarization along the

u and v axes respectively. The scattering matrix relates the different signals as follows:

E_-

E;

Sll

821

s31

841

812 813 814

822 823 824

832 833 834

842 843 844

E¢
E;
E+

(48)

The elements of the matrix can be directly evaluated from equations (36)-(41) and shown to

be:
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with:

S

RU_ R_V T_,_ T_,,

RUV RVV T_,_, T v.

TU_ TUV RU_ RUV

T uv T vv R uv Rvv

(49)

1 I ]7rd 7(1 72 ) [ff Nz _5272ka No (50).... _ -__

R.V = A 1 [ Nz_B2ka No]7rd 3"(1- 72 ) 523'2_ --'2 A00 (51)

RUV = A a[_ [Nz ka No] (52)_d (1--=7/ _+T_

rd 3'(1 72 ) 32 Nz c_23"2 ka No (53)_. _ _ + -y_

A 1 [ Nx 132ka No] (54)T w' = 1-7r----_'7(1-72 ) _272_-7-x"+- T'_O 0

T_V = A _ [_zzz ka NO] (55)lrd " (1 -3"2) - -2- " A-oe

where Nz, Az, No and A0 are given by equations (25), (26), (27) and (28) respectively.

We can go one step further and render things considerably simpler if we make a change of

coordinates and use the following a.s eigenvectors instead of eu and ev:

Pl

P2

/_eu + aTev

x//3 2 + _272

-c_Teu + _ev

V//_ 2 -f- _272

From now on we will refer to these as the princzpal axes of the grid (for reasons that will soon

become apparent). A close examination of the first of these two equations shows that Pl is parallel

to the projection of the direction of the wires in the plane of the incident field. The matrix S then

takes a simpler form (we also interchange the second row with the third and the second colunm

with the third):

S

RI_ Tll 0 0
Tit nil 0 0
0 0 R± T±

0 0 T± R±

(56)
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where

(1 (57)
a H = a--:

R± = (1-a 2) a N0 (58)
--T---

Tii = 1+ nl, (59)
T± = 1 - Rx. (60)

We then have a further simplification in the modeling of the grid, evidently equations (57)-(60)

represent the reflection and transmission coefficients along the two principal axes.

This last representation has the ad_-antage of simplifying calculations since it allows us to de-

compose any incident field into two non-interacting components, one along each one of the principal

axes. That is, a field polarized along one of the principal axes scatters only in this same polarization

state (as can be deduced from the block-diagonal form of equation (56)). It is also interesting to

note that even though we have defined the principal axes within the framework of our approxima-

tion of the grid (k'a << 1 and a << d), the result obtained here still holds in the general case (see

Appendix I for a proof). This implies that for the case where one wishes to use a different approach

to solve (numerically or otherwise) the scattering off a grid of arbitrary characteristics, it will always

be possible to split the incoming field along the principal axes therefore avoiding cross-polarization

terms and greatly simplifying the solution.

3.3.2. The impedance model.

It seems reasonable to think that a grid could also be modeled with another representation

where the scattering matrix is replaced by an impedance matrix which contains the same number of

elements since as before, the grid is still treated as a 4-port device. In this case however, the matrix

relates the total voltages (electric fields) and currents (magnetic fields) between each and every

port (Collin 1992). The scattering matrix formulation follows more naturally from our analysis and

has the advantage of dealing with quantities (reflection and transmission coefficients) which are

directly measurable whereas impedances are not (at least at the wavelengths considered here). The

impedance model has however received a great deal of attention in the literature and often seems

to be the way in which polarizing grids are characterized (Wait 1954, 1955a; Larsen 1962).

Taking advantage of the principal axes representation, it is possible to treat each two-dimensional

block of the scattering matrix (equation (56)) separately. It can be shown that the impedance matrix

Zb corresponding to a given block Sb can be expressed as:

Zb = Zo" (I+ Sb)" (I7:Sb)-' (61)
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where I is the unit matrix and the upper and lower signs correspond respectively to the upper

left and lower right blocks of the scattering matrix (equation (56)). Applying this last equation to

equation (56) we get:

Z

zp zp o o

z_ z_ o o
o o z_ -z.

o o -z. z.

with:

Zo 1 + Rllz, =
2 R H

Zo l-R±

2 R±

It follows quite naturally from equations (57)-(60) that we could have defined two impedances

Zfl and Z±:

1 +R H
ztl = zo.--

1 - Rli

1 - R±
Zl = Zo'--

1 +R±

One can easily verify that Z H and Z± are respectively equal to Zp and Zn placed in parallel

to the characteristic impedance Zo. W'e therefore see that the impedance matrix gives the "actual"

impedance of the grid along each of the principal axes whereas the scattering matrix includes, as

should bc expected, the contribution of tile loads of characteristic impedance Zo which is assumed

to be connected to the appropriate ports when defining its parameters.

3.4. Approximations and selection of a grid.

W_ will now study more closely our simpler equations (57) and (58) for the reflection coefficients

Rll and R±and try to find relations that will allow us to find a set of optimum parameters for the

selection of a grid. But before we do so, it will be to our advantage to approximate the expressions

for As and A0 (equations (26) and (28)).

So if we limit ourselves to situations where d << )_, a << A and Zs << Zo (good conducting wires)

and use the proper expansion for Hankel's functions and series of Hankel's functions applicable in

such cases (small arguments) we find:



- 16-

A2_ 1(2/}(I - a2) _-_d- + x/(l - a2) IrZoaA

where kO __ 0.577215 is Euler's constant. In equation (63) we have kept things to the lowest order

possible and we did not expand Z_; tile same is not truc for equation (62) for reasons that we shall

encounter shortly.

We turn now to the problem of selecting the right parameters for a grid. If we decompose

a given incident field into two components along the principal axes Pl and P2 (see section 3.3.1),

a perfect grid would completely reflect the first of these and transmit the second (RI[ = -1 and
a 2

T± = 1). As we will soon see, the coefficient of reflection R± is proportional to _ when Zs --+ 0

and is therefore a very small quantity for the cases considered here and we will not worry about it

anymore (i.e., T± is nearly equal to unity). The condition of total reflection will dictate our choice

for the parameters of the grid. A close study of equation (57) tells us that in order to achieve perfect

reflection we must simultaneously satisfy the following relations for the real and imaginary parts of

A z (for what follows we assume Nz _- 1, see equation (25)):

A (1-a 2)
Re{Az} = --"

7rd ?

hn {Az} = 0.

Solving for these we then get:

t

[ 1a --_ (1 - a:2) 4 rTaZo

d -- 2ra. (65)

Had we kept equation (62) to the lowest order, we would have been unable to specify an

optimum value for the wire radius but only the relation that binds d to a. It is also of interest to

note that for a given wavelength, the finite size of the wire radius is, to this level of approximation,
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dictated by the conductivity a; if we let a _ oc then there is no restriction on the smallness of the

radius.

In a quantitative example to demonstrate the values that cml be expected for a and d, assume

that we are working at normal incidence at a wavelength of 1 mm with a grid made of copper

(o" = 5.8 × 107 f_-lm-1). Using these, we obtain a "_ ll#m and d "_ 70#m.

At this point it is appropriate to discuss the implications of the two assumptions we made

at the beginning concerning the wire radius and spacing, namely that k'a << 1 and a << d. It is

important to makc surc that a given choice of grid paranmtcrs are well within the boundaries of

applicability of our model. As a means of determining these boundaries, we simulated the response

of grids (and assemblies of grids, see section 4) for different combinations of wire radius and spacing

and made sure that the results obtained were reliable (for example, it is obviously imperative that

the magnitude of the reflection and transmission coefficients never exceed unity). As it turns out,

there is a fairly strong restriction linking the size of the wires and the wavelength, but if one makes

sure that ), > 40 a then one seems to be well within safe modeling conditions, a cannot be too small

either. However, since for a good conductor (again let's use copper) the skin depth at 1 mm is on

the order of 0.1/_m, our assumption of the existence of an idealized surface current is more than

adequate. It seems that the second restriction concerning the spacing of the wires is not as binding

as the first one. It is clear that d > 2a for if not the wires would be touching, but it appears that

everything is fine for d > 4 a. Our proposed optimized values for the grid are therefore justified.

It is also appropriate to point out that using equations (62) and (63) for Az and A0 (with

or without the optimal values for a and d given by equations (64) and (65)) along with equations

(57)-(60) for the reflection and transmission coefficients along the principal axes renders the task of

calculating the response of a grid a rather simple one. It becomes unnecessary to confront the more

intimidating representations derived earlier in section 3.1 (compare with equations (23)-(35)). For

example, to the lowest order, we get for the reflection coefficients:

-1
Rll _ (66)

1 +j_-_ln d

•(1 -  2a2
RI -_ -J-- (67)

"r Ad

which arc in agrecment with known results (Larscn 1962) (more precisely, for the case of normal

incidence discussed in Larsen (1962), equation (66) reduces to the result presented there whereas

equation (67) differs by a factor of two or three depending on which approximation it is compared

to).
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4. The reflecting polarizer.

4.1. Analysis.

Fromthe solutionof the polarizinggrid it is a somewhatnaturalextensionto considerthe
morecomplicatedproblemofthereflectingpolarizer.A reflectingpolarizerconsistsof anassembly
wherea polarizinggrid,like theonestudiedin thelastsection,is followedby a mirrorparalleling
it at somedistance;Sobehind(effectivelyplacingthemirrorat z = 0).

It is appropriate in this case to use the method of images to solve this problem (Wait 1954).

We then assume that images of both the incident and scattered fields arc emanating from tile other

side of the mirror. This is equivalent to saying that the image world is made of a grid positioned

at z = -zo with an image incident field impinging on it. Assuming that the mirror is made of a

material of good conductivity, one can write for the image incident field E_(r):

E_(r) -- Eo (a_ez + fl_ey - "y_ez) exp(-jk(ax + BY - "Tz) )

with:

1

a_n - (1 - 3'2) [a' (c_2RTM + _32RTE) + a_B' (RTM -- RTE)]

, 1 [B' ( 2RT +  2RTM) + (RTM -
/_m -- (1-"r '2)

_ = 7' RT M

(68)

(69)

(70)

where RTE and RTM are the reflection coefficients of the mirror, with a dependency on the angle of

incidence, for transverse electric and transverse magnetic modes of incoming radiation respectively

(Fowles 1975). It is important to note that these tranverse modes of radiation are not the same as

those introduced in section 2, they are defined here in relation to the plane which is parallel the

normal vector out of the surface of the mirror (-ez) and the wave vector k.

One can go through calculations similar to those carried out in section 3.1 and find the following

relations between the components of the total surface current densities of the "real" and image grids:

I

K Ix = _am K =
ffP

g,O =
_,,¢_ - _,,_

where K' stands for the surface current of the image grid.
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Fromtheseandby matchingtheboundaryconditionsat thegrid, it is straightforward,but
tedious,to solvefor theproblem.Wegiveherethefinalresults:

where

g x

K 0 =

R x =

RY =

R z -_

Eo 2ja' sn(k'),h) Nx

-F-" (1 - a 2) AS1 - jL_v/-f - a2AS2 exp (-jk'_h) (71)

E_2 " -2j (7'fl - B"Y) cs(k_fh) No
exp (-jk_/h) (72)

F V_-a2ES2+j_-_(1-a'2)F_S1

, F
-- j sn(kTh) g x exp (jkTh) (73)

¢_'_ + Eoo "3_-d sn(k'yh) K x - cs(kTh) K ° exp (jk_h) (74)

-_/m - E---_"J-_ asn(k'_h) K_ + _ kaY • -_ cs(k'_h) K ° exp (jkTh) (75)

sn(x)

cs(z)

AS1

As2

ES1

zs2

1

- 2j [exp(jz) - rz exp(-jx)]

1

= _ [exp(jx) + ro exp(-jx)]

= H_2)(k'a)- rxH_2)(k'2h)

n= 1

=
= +  og  l(k'2h)

o0

+2 E [H_2)(k'nd) +r°"(o2) ( k'V/(nd)2+ 4h2)] cos(kfind)
n=l

-_ H[2)(k'a) + roHl2)(k'2h)

and

I
Otrn

rx --
Ot I

"/mZ -- ]_m'_

?'0 ---- --

We have also replaced -zo by h (h > 0) so that the distance between the mirror and the grid

is expressed by a positive quantity. This set of equations along with equations (68)-(70) give us the

solution of the reflccting polarizcr problcm for cases where kra << 1 and a << d.
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As was the case for the polarizing grid, if we transform those coefficients to the laboratory

frame of coordinates (u', v', w') (see Figure 2) we obtain:

F 2£ jexp(jk'yh) [ KX _ 1 (76)R _'' = a_- E--_" It---d" 3"V;i-7_ ' 3sn(k3'h) -aT cs(k_h) K °

[ ]RV' -'- _" - _oo " -_ "F2A j exp (jk3"h)3"x/_____" aTsn(k3"h) KX + 3 --2- cs(kTh) g° (77)

= 0 (TS)

" and/_;_ given by :with a m

and finally s" and 3" are related to the incident field by:

(79)

(8o)

E,(r) = Eo (a"eu + 3"ev) exp (-jkw) .

4.2. Solution using the scattering matrix.

The scattering matrix representation of the polarizing grid gives us the advantage of rendering

possible the solution of problems that would be otherwise extremely difficult, if not impossible,

to solve using Maxwell's equations. For example, a solution of the reflecting polarizer problem is

straightforward if we "connect" the mirror to ports 3 and 4 of the grid at a distancc h behind. Using

the definitions introduced in the discussion leading to equation (48) we have:

E_ = E_RTEexp(-jk"/2h)

E + = E4RTMexp(-jk3"2h )

where RTE and RTM are as defined in the previous section.

We can then solve for E_- and E_- and find results that are in agreement with those obtained

in the previous section.
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4.3. Experimental results.

Reflecting polarizers like those studied here were tested at the OVRO for polarimetry in the

wavelength ranges of 1.3 mm as well as successfully used for polarimetry observations at 3 mm

(Akeson 1997; Akeson et al. 1996). They are composed of an aluminum mirror and a grid of gold-

plated tungsten wires of 25 #m diameter and spaced at an interval of 125 #m. The inside diameter

of the grid is roughly 16 cm, some 25 times bigger than the incident Gaussian beam at 1.3 mm

(Akeson 1997).

In this section, we will compare data obtained in the calibration of these polarizers at 1.3 mm

with the model calculated earlier. In the experimental set-up, the incident beam is composed of

radiation emanating from a hot load (absorber at room temperature) polarized along the vertical

axis and a cold load (absorber in liquid nitrogen) along the horizontal axis. The beam is incident

on the polarizers at an angle of Xi = 34 deg. with the grid rotated by _9 = 4-50.3 deg. relative to

the vertical, all in the coordinate system of the laboratory (coordinates (u,v,w) of Figure 1). These

values can be inserted in the appropriate equations of our earlier analysis and used to test our model

against the experimental data.

The calibration consists in using our model to map out the actual distance between the grid

and the mirror as the latter is moved with a micro-positioner which is part of the assembly. When

this is done, this distance can then be precisely adjusted to _ in order to use the polarizer as

a reflecting quarter-wave plate for polarimctry measurements. The grid rotation angle _g nmst

also be calibrated so that it can be set to the proper value that will allow the transformation

of incident linear polarization to circular polarization. (This condition is met for fl = +a'r (or

tan(_9 ) = +1_), as can be asserted from our earlier discussion of the principal axes of a grid in

section 3.3; this gives _g -- +50.3 deg as quoted above).

Figure 4 shows the results obtained from such measurements (of the reflected polarized intensity

along the horizontal v'-axis in the laboratory coordinate system) made on antenna #6 of the OVRO

array at a frequency of 232.037 GHz when the separation between the grid and the mirror is varied

through a range of a several hundreds of microns. Accompa_lying the data points is a least square fit

of our model (solid curve) with no free parameters as far as the grid is concerned, only the hot and

cold load levels and the offset in the mirror-grid separation were allowed to be fitted. The agreement

is very good. The main shortcoming of the fit is at a backshort position of roughly 900#m where

a resonance is evident from the data. The model also shows a resonance at the same position but

the fit is not perfect. This feature is caused by the small amount of unwanted transmission from

the component of the incident electric field aligned with one of the principal axes (Pl) which gets

trapped between the grid and the mirror.

Before we try to explain the differences in width and shape of the resonance, we would first like

to show two ways by which it can be suppressed (such a response from the polarizer is a nuisance

when trying to calibrate it and should be avoided).
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First, reducingtheamountof unwantedtransmissionthroughthegridwouldcertainlyhavea
dampingeffecton theresonance.Wehaveshownhowto dojust thatin section3.4whendefininga
setof optimumparametersfor a grid,sousingequations(64)and(65)wefindfor ourapplication
a __ 24/zm and d _ 148#m. Figure 5 shows a comparison of the simulated responses for the

polarizer tested at OVRO and our optimized polarizer. As can be seen, any sign of the resonance

has disappeared in the latter.

Another way of avoiding the resonance, while still using the same original grid with a = 12.5 pm

and d = 125 pro, is to replace the mirror with another grid (Young 1997) and rotate both of them in

such a way that the projected orientation of their wires in the plane of the incident field are aligned

with a principal axis. By this we mean that the two grids have their angle of rotation specified

by tan(_g) = _1 (or _9 = 50.3deg) and tan(_pg) = _-1 (or _g -- -50.3deg) respectively.

This would ensure that the unwanted transmitted field from the first grid would almost be entirely

transmitted through the second grid, therefore getting rid of the resonance.

Obviously, trying to solve for such a configuration using Maxwell's equations would be a

formidable task. We can however use our scattering matrix model developed in section 3.3. We

then have to define two matrices, one for each grid, and solve the problem for cases where they are

separated by a given distance while terminating the last grid by the line characteristic impedance

Zo (E + = E_- = 0). We simulated thc response predicted for such an arrangement of grids and got

results that are practically identical to those presented in Figure 5 for the optimum polarizer.

5. Grids and beams of radiation.

Until now we have restricted our analysis to cases where the dimensions of the grid (or the

asscmbly) and the extent of the incident wave were assumed to bc infinite. These simplifications

were necessary in order to allow us to have a chance at a solution, as the reality of finite sizes brings

severe difficulties in the analysis. It would however seem reasonable to suppose that if the incoming

excitation can be properly represented by a beam of radiation which is of a size a few times smaller

that the actual dimensions of the assembly that the results obtained with our analysis should still

be valid. Indeed, one could argue that the incident beam should only induce currents in the vicinity

of the area where it impinges on the assembly. There should therefore be little to no differences in

its response whether it is infinite or not.

Although we believe this argument to be a reasonable one, we will show that the characteristics

of the incoming radiation can be important in some cases. We will in fact argue that it can explain

the discrepancies in the width and shape of the resonance observed in the response of the reflecting

polarizer presented in section 4.3 (see Figure 4).

As a starting point, let's take note that we can always mathematically express a beam of

radiation Eo(r) as a summation of plane waves with different amplitude (and phase) and k vectors.

For example, in the laboratory system of coordinates (u,v,w), the electric field along the u-axis
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EU(r, t) = a'Eo(r)exp (jwot) can be expressed by (using its Fourier transform in (w, k)-space and

assuming the beam to be monochromatic at wo = kc):

°"FEU(r,t) = (2_r)i _dwdakE°(k'w)exp[-j(k'r-wt)] (81)

/?Eo(k,w) = 2m5 (w - wo) d3r'Eo(r ') exp (jk- r') (82)
O_5

where _ (z) is Dirac's delta distribution.

Let's now assume that the incident radiation can be satisfactorily modeled using a circular

Gaussian beam with a beam waist Wo and a Rayleigh range ZR = -_. We also know that the

resonance will occur for a grid-mirror separation of h __ _ for each spectral component, where kz is

the projection of the wave vector along the z-axis perpendicular to the reflecting polarizer (in the

coordinates system of the grid of Figure 1). From this we can express the width of the resonance

Ah as a function of kz and Akz tile spectrum extent along tile same axis:

Akz
Ah __ 7r--

k_'

We need to find an expression for Akz and this can be done as follows. Using the wave

uncertainty relation, we can evaluate the spectrum extent in the laboratory system of axes as:

Ak_ __ Wo-1

Akv _ Wo-1

Akw ,_ ZR 1

Transforming these in the coordinate system of the grid and inserting the result in the expression
for the width of the resonance we find:

zXh _ (k_o)2 Wo_ (1 - 3`_)+ -- . (83)

When we use the corresponding values of the different parameters appearing in equation (83)

for the case of the reflecting polarizer discussed in the last section (A = 1.3 mm, 3' = 0.83 and

Wo = 3 mm) we find Ah __ 37_m. If we take into account the finite bandwidth of the OVRO

receivers (1 GHz), a similar exercise shows that at most only a few microns need to be added to

the previous estimate. Although these numbers represent only a rough calculation of what could

be expected, they nevertheless tell us that there will be a significant broadening of the resonant
feature.
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Wewill not try to producea perfectfit to thedataobtained at OVRO for this would require

extensive modeling of our experimental set-up and therefore bring us to a level of complexity that

we do not wish to tackle at this time. But using equations (81) and (82) and applying the result of

our analysis of the reflecting polarizer for every spectral component hence calculated, we can get a

better idea of the phenomenon considered here.

We have done this and the result is shown in Figure 6 where we present the result of a simulation

of the effect of a Gaussian beam on the width and shape of the resonance exhibited by a reflecting

polarizer of the kind discussed in section 4.3. The beam is converging with its waist situated some

10 cm "behind" the polarizer and the integrated power (over a beam width) is measured some

distance away from the assembly in the far-field. Although there still remain some differences, this

simulation shares a lot of the same features observed experimentally.

We believe that simulations like this one along with our earlier calculations provide convincing

and compelling evidences for the importance of appropriately taking into account the nature of the

incident radiation in the analysis of similar systems.

6. Conclusion.

In this paper, a general solution for the analysis of polarizing grids was presented; it is valid for

arbitrary angles of incidence and of grid rotation. With it and the scattering matrix representation

that derives from it, basically any configuration or system of grids can be analyzed as long as some

assumptions concerning the wire radius and spacing are respected ()_ > 40a and d > 4a). This is

not a severe restriction as most grid currently available satisfy those conditions, we refer the reader

to Chambers et al. (1986, 1988) for cases where a larger size of wire is needed. Our analysis also

allowed us to define a set of optimum values for both the wire radius and spacing as specified by

the following equations:

1

[(1- 0_2)47_7(TZo]

2_a.

We provided an analysis of the effects that two types of random errors can have on the per-

formance of a grid. It was shown that errors in the wire spacing were the most important and

could have some impact on the amount of unwanted polarization transmitted through a grid. In

that respect, our model showed to be in good agreement with the experimental results of Shapiro

& Bloemhof (1990).

Comparisons with experimental data obtained in the calibration of a reflecting polarizer used

at the OVRO were also presented and predictions from our model are in good agreement with it.



- 25 -

The only discrepancies appeared in the nature of a resonance, more precisely its width. But we

have shown that it could be accounted for by including m the analysis a proper treatment of the

effects of the nature of the incident radiation on the response of the polarizer.
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published experimental results. We wish to thank the staff of the Owens Valley Radio Observatory,
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funded by the National Science Foundation under Contract No. AST 96-13717 and the polarimetry

project at OVRO through NASA grant NAG5-4462. M. H. work was supported in part by a grants

from FCAR and the d_?partement de physique de l'Universit6 de Montr6al.
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A. Generalization of the principal axes.

Referring to equations (49) for the scattering matrix, one first realizes that such a symmetry

in its components will always be seen when representing an arbitrary polarizing grid. Only the

functions which define R uu, T T'u, ... will change. Further, when trying to reduce the scattering

matrix to a form similar to equation (56) it is only necessary to concentrate on only one of the

two blocks (each appearing twice) present in equation (49). For example, if one diagonalizes the

block composed of the reflection coefficients then the transmission block is also diagonalized and

vice-versa. In obtaining the results which follow, we have worked with the reflection block appearing

in the upper left and lower right of equation (49). We will now show that the orientation of the

principal axes is determined by the symmetry of the grid and can be deduced using the formalism

of group theory.

As seen by the incident wave, the grid has a symmetry which can be expressed by a represen-

tation of the point group C2v. The four covering involved are: the identity (E); a rotation by 7r

about the w-axis (C2), a reflection (av) across a plane defined by the w-axis and and an axis defined

by the projection of the direction of the wires in the plane of the incident field and finally another

reflection (a_v) across a plane perpendicular to the previous one (and to the plane of the incident

field). Upon studying the character table of this group (see Tinkham (1964, p. 325)) and the effect

of the above operations on the two possible states of linear polarization (along the u and v-axes)

we find that only two non degenerate irreducible representations (B1 and B2 in Tinkham (1964, p.

325)) will be realized. For each of these there will exist one eigenvector, each corresponding to a

given principal axis. These can be deduced by constructing the appropriate symmetry coordinates

(Wilson et al. 1955) which turn out to be the two principal axes Pl and P2 previously defined in

section 3.3.1.

Since this result was obtained with the use of group theory, it is perfectly general and indepen-

dent of any approximations that can bc used in dealing with a polarizing grid.
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B. List of symbols.

a wire radius,

As scattering vector potential,

c speed of light in free space,

d wire spacing,

Ei, Es, ET incident, scattered and total electric field,

F constant (= _),

F8 scattering vector potential,

h grid-mirror separation (reflecting polarizer),

Hs scattered magnetic field,

H (2) Hankel function of the second kind of order n,

J current density vector,

Jn Bessel function of the first kind of order n,

k wave vector of the incident wave (]k] = k = _),

k' = kvq - a 2,

K total surface current density vector,

_--k-, _ mean longitudinal and azimuthal surface current densities,

Pl, P2 principal axes of a grid,

R x, R y, R z reflection coefficients in the system of coordinates of the grid (see Figure 1),

R u', R v' reflection coefficients in the system of coordinates of the laboratory (see Figures 1

and 2),

Rjl , R± reflection coefficients along the principal axes of a grid,

RTE, RTM transverse electric and transverse magnetic reflection coefficients of the mirror,

S scattering matrix,

T x, T y, T z transmission coefficients in the system of coordinates of the grid (see Figure 1),

T u, T v transmission coefficients in the system of coordinates of the laboratory (see Figures 1

and 2),
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TII ,Ta transmission coefficients along the principal axes of a grid,

Wo, ZR beam waist and Rayleigh range of a circular Gaussian beam,

Z impedance matrix,

Zo, impedance of free space (= _e&o°),

Zp, Zn grid impedance along the principal axes (as defined with the impedance matrix),

Zs surface impedance of the wires (= (1 + j) _,

Zll , Z± grid impedance along the principal axes (as defined with the scattering matrix),

a projection of the normalized wave vector on the x-axis

(= sin (Xi) sin (qog)),

projection of the normalized wave vector on the y-axis

(= sin (;_i) cos (Wg)),

7 projection of the normalized wave vector on the z-axis (= cos (Xi)),

a_, fl_, 7_ projection of the normalized incident field on the x, y and z-axes,

a',/3" projection of the normalized incident field on the u and v-axes,

(x) Dirac's delta distribution,

co, #o permittivity and permeability of free space,

rh ( random errors in wire radius and spacing,

A wavelength,

(7 wire conductivity,

_o9,Xi angle of grid rotation and angle of incidence,

Euler's constant (_,2 0.577215),

w angular frequency of radiation.
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Fig. 1.-- Coordinates system for the study of a polarizing grid or a single wire. The wave vector

k of the incident radiation is aligned with thc w-axis, the u, x azld y-axes are in the plazm of the

page, the w and z-axes are in the plane perpendicular to the u-axis (into the page) and the wires

are parallel to the xy-plane. We refer to the (u, v, w) and (x, y, z) systems as the laboratory and

grid coordinates respectively.
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Fig. 2.-- Definition of the system of coordinates (u', v', w I) for the reflected wave in relation to the

(u, v, w) system of the incident/transmitted waves introduced earlier in Figure 1. The u I and u-axes

are one and the same and are pointing out of the page. The direction of propagation of the reflected

wave is along the negative wt-axis.
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Fig. 3.-- Curves of predicted values for the cross-polarized transmittance plotted against experi-

mental data from Shapiro & Bloemhof (1990) and Bloemhof (1998). The three grids have a random

error (l-a) in wire positioning of 5%, 16% and 37% with mean distance between wires of 103#m,

109#m and l14#m respectively; they all have a wire radius of 12.5pro.
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Fig. 4.-- Calibration data from antenna #6 of the OVRO array. Data points are shown with an

error bar and the solid curve is a least squares fit from the model presented in this paper. The

intensity is in arbitrary units.
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Fig. 5. Comparison of tile predicted results obtained for the polarizer tested at OVRO (solid

curve) and our optimized polarizer (broken curve). The resonance is not present on the optimized

polarizer's response. The two curves are plotted with a small vertical offset between them. The

intensity is in arbitrary units.
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Fig. 6.-- Simulation of the effect of a Gaussian beam (Wo = 3 mm) on the width and shape of

the resonance exhibited by a reflecting polarizer as discussed in section 4.3. The broken and solid

curves show the results predicted for an incident plane wave and a Gaussian beam respectively.




