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ABSTRACT

The present study addresses the subcritical
aeroelastic response of swept wings, in various flight
speed regimes, to arbitrary time-dependent external
excitations. The methodology based on the concept of
indicial functions is carried out in time and frequency
domains. As a result of this approach, the proper
unsteady aerodynamic loads necessary to study the
subcritical aeroelastic response of the open/closed loop
aeroelastic systems, and of flutter instability,
respectively are obtained. Validation of the aeroelastic
model is provided, and applications to subcritical
aeroelastic response to blast pressure signatures arc
illustrated. In this context, an original representation of
the aeroelastic response in the phase — space is
displayed, and pertinent conclusions on the implications
of a number of selected parameters of the system are
outlined.
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wing and the dimensionless radius of gyration,

J1,/mb} » respectively

Wing semi-span measured along the mid-
chord line
Dimensionless aerodynamic lift and

moment, L b, /mU;and M b2 /1.U}

y n
respectively
Wing mass per unit length and wing/air mass

ratio, m/zrpb,f , respectively
Load Factor, 1+ h"/g
Peak reflected pressure in excess and its

dimensionless value P p /mU3 , respectively

Shock pulse length factor
Laplace transform variable and operator,
respectively

Static unbalance about the elastic axis and its

dimensionless counterpart, 5’,/,,,1,“,
respectively N
Time variables and dimensionless time,
U,t/b, respectively

Freestrecam speed and its component normal to

the elastic axis, respectively
Dimensionless free-stream speed, U /b,@,

Vertical displacement in 2 direction
Twist angle about the pitch axis and its

amplitude, respectively

Structural damping ratio in plunging,

¢, /2mo, and in pitching, ¢ /2] w,
respectively

Dimensionless coordinate along the wing span,
y/

Swept angle (positive for swept back)
Dimensionless plunge coordinate, w/b,
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T Dimensionless positive phase duration of the

pulse, measured from the time of the arrival
@ Plunging-pitching frequency ratio,w, /@,
@, k Circular and reduced frequencies, wb, /U,

respectively
Uncoupled frequency in plunging, /Kh /m and

pitching, /](m/[y , respectively

1. INTRODUCTION

a

The modern post cold-war combat aircraft is likely to

be exposed during its operational life to more severe

environmental conditions than in the past. This implics
that, while being in flight, its structure should sustain
pressure pulses due to fuel explosions, shock waves,
sonic-boom, etc. It clearly results that the analysis of
the aeroelastic response in the precritical range should
be addressed in the various flight speed regimes i.c.
from the incompressible to the hypersonic one.

In this paper, using the time domain representation in
conjunction with the concept of indicial function'?, the
relevant unsteady aerodynamic loads necessary (0
approach the aeroelastic response of swept aircraft
wings in various flight speed regimes, such as the
incompressible, compressible subsonic, supersonic and
hypersonic ones are obtained. Such a representation of
unsteady aerodynamic loads is required
determination of the aeroelastic response to various
pressure signatures’™ in the subcritical flight speed
rcgime. Herein the idea of the modified strip theory
initiated by Yates® has been further developed as to
address the problem of the aeroelastic response of
swepl aircraft wings in various flight speed regimes. In
this context, an original phase — space representation,

provides full information about the behavior of the

aeroclastic system. As a by-product of the response
analysis, the conditions resulting in the occurrence of
the flutter instability can be obtained. A validation of

instability boundary was done via the study of the
aeroelastic eigenvalue problem, and an excellent

agreement was reached. Herein the case of a swept

wing (see Fig. 1), featuring the plunging and pitching
degrees of freedom is considered.

2. GENERAL THEORY

2.1. Aerodynamic Loads
An unified approach based upon the use of the

aerodynamic indicial functions
determine the aerodynamic lift and moment in subsonic
compressible and supersonic flight speed regimes is
developed. The aerodynamic loads in the various flight

speed regimes are obtained via the usc of the
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towards

enabling one 1o

appropriate indicial functions®” and their application
toward determination of the aeroelastic rcsponse and
flutter instability boundary is addressed in the paper.

2.1.1. Subsonic Compressible Flight Speed Regime

A significant work toward developing appropriate
analytical expressions for indicial functions in a
subsonic compressible flow has been carried.
In Refs. 3 and 4 it was shown that, for subsonic
compressible flight speed regime, the circulation
around the airfoil is determined by a new set of indicial

functions, different of the Wagner’s function.
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this procedure towards determination of the flutter Fig. 1. a) Non-uniform swept wing; b) Airfoil

section; c) 3-D view of a swept wing.

In contrast to the incompressible case, the indicial
functions in subsonic compressible” flow are not
analytic, except for limited instants of time. Following
the formulation in Ref. 8, in our approach, new indicial
functions, for the plunging and pitching degrees of
freedom arc presented. Via the usc of the four indicial
functions defined for a two-dimensional lifting surface,
the corresponding indicial lift and moment can be
written as:

L, ()= 1 C,o pU 2S00 16X, ) )
M (0)=CopULSHy (9 @)+ £+ 1) (0)). (1)
L,(t)=C,.pU_ Sqb(8,,(t)-L(a+1p. () (1¢)



Myq (T)= CLaprS(zb)q()b
(B @)+ L a+ 1Y, €)= 00 (@)1 (a+1)°0, ©).c19)

The expressions presented in Egs. (1) have been

adapted and extended as to approach the swept aircraft

wing aeroclastic problems. Herein, the quantities in
brackets <>, identify the indicial functions for the

compressible flight speed regimes; p; is the plunging
velocity and g, is the indicial angular velocity;
(z,.m,) and (Lq,Myq) correspond to the lift and

moment due to plunging (in y direction) and pitching

(around the elastic axis), respectively. The unsteady lift
associated with the compressible flight speed regime
can be described as:

@)=t Lo e-s o)

- 2CLapri I; Dy -1, )Z'(TU )dTO 2
As concern the aerodynamic moment, M (1-) this can

be obtained from Eq. (2) by replacing ¢, and ¢ _ by
-2b¢,,, and -2bg,,, . respectively.

In order to have an unique formulation in both the

incompressible and compressible flight speed regimes,
the indicial functions appearing in the acrodynamic lift
and moment, Eq. (2), have to be expressed in a form
which is similar to that used in the incompressible flight

speed range®, where the elastic axis is located at ab
back from the mid-chord. To this end, their modified

expressions have to be used. These are:

aerodynamic moment, M (z) this can be obtained from

Egs. (4) by replacing [, and H, by M, 6 and A,

9.(r)=¢,(x); (3a)
Bors (£)= 9,4 (T)+ L (a+ 1), (7): Gy
¢, (0)=0,0)-3(a+1)p () (3c)

Pouty (f) = Gy (T)+ %(‘1 + ]X¢Cq (T)_ Do (T)) (3d)
-Ha+1)9.()

The validation of the new indicial function is provided '

in the frequency domain, where the unsteady
aerodynamic coefficients arc determined, and the
comparisons with those available in the classical
literature®'? are provided in Fig. 2. The following
representations for the unsteady acrodynamic lift is
postulated:

L,(k1)= pU},,kZb(%z4 +azQ), (4a)

where T
Ll=iH‘+H4, L2=iH2+H3. (4b)
Herein, the dimensionless unsteady aerodynamic

coefficients f, have been introduced, and the reduced

frequency k, has been included as to render the

3

respectively.
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Fig. 2. Unsteady aerodynamic derivatives in: a-b)
compressible subsonic and c-d) supersonic flight speed
regimes. Comparisons with data from Ref. 9 through

13.
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Notice that there is a considerable influence of the

Mach number on the indicial functions. In contrast to

the behavior of the indicial function (Wagner's
function) in the incompressible flow speed that features

at 7 =0 an infinite value modeled as a Dirac pulse &(7),

in the compressible speed range a finitc value for the

indicial function at 7 =0 is experienced. Moreover, in
contrast to the compressible flight speed regime, where
the aerodynamic lift and moment arc obtainable

T A@ = AtAR T R AT AT

through four indicial aerodynamic functions, in the
incompressible regime, a single function, namely the

Wagner one is sufficient for determining the lift and

moment.

More recently, in Refs. 14 - 15, the concept of indicial

function in subsonic compressible flow has been used,

and an approximation and validation of indicial

functions for any value of the Mach number in the
compressible speed range was obtained. Keeping in
mind the relationship between C(k) and ®(ik) for the
incompressible flow-field (see Ref. 8), one can define,
for the compressible flight speed regime, the analogous
of Theodorsen’s function in terms of the corresponding
indicial functions as:

C, (k)= F.(k)+iG, (k)= ik J:’ o, (™ dr = ikd, (ik);(5ri;)w

I Q.
-- -H Lomaxet al 128 !
7 0.8 ' I ﬁ‘ 0.85i
» 05§ - ! !
51 M |
O | |
04 | 032 P2 037 |
} 1
021 . 13 :
02 glg , { 4 ¢
lo3 s © 013 |
T |

0 - 10 15 20

7 Time [s], half—chords

o Pom(r) = A1+Aze"r‘/'T _-hihe'h’lr'+A4e'b’/'
S
e =0, r011 /;_‘ R - _011 ‘
—02 l—016 / -0.18 }
T dem S /M i

arbn T
7
04 ' // \:1':- .

e e,

0 5 10 15 720

—— Time [s], half—chords

C.,(k)=M (k)+iN (k)= ik®,, (ik); Gy (D) = ArtAse ™ 4 Ase ™ AT
C, (k)= F, )+ iG, (k)= ik, (k); (50) S i ]
Cqu (I\ ) = qu (k)+ iqu (k): ’kd) My (lk)’ (Sd) 04 PP oa T 4\ 042 i
where C, (k). C,, (k) are the compressible analogous 03 M \ ]
of Theodorsen’s function for plunging for lift,,ggd;;:;:l 11 \ j
moment and C., (k) Cch(k) are the compre'ssiblew L 02 Q 16 ‘;\ 7 018 !
analogous of Theodorsen’s function for pitching for lift P — e 8'“ 1
and moment, respectively. Also in this case, the four "~ 008 ‘ »0% |
new complex functions, should collapse, in the . 806 e i
incompressible flight speed regime, into a single one, 0 5 10 15 20
namely the Theodorsen’s function. Paralleling the ~ T Mimes], half—chords ;
developments carried out for the incompressible flight Pt = ArpA2eT +Ase” YA
speed regime, for the compressible one, the lift and }
. . R T pos T004 =44
moment per unit span for plunging (Ly. My) and for TS L s 2
- -0.07 : 007,
pitching (Lq’Myq) about the leading edge, are expressed -01 Lot / —012 '
similarly as: gy ~O15 017 :
L, ()= CupUZHC,(): T B
M ()=25C, pUIKC, ()i 60 easp Ll 028 |
L,(k)=2C,,pU.b'qC,, (k); (6¢) -63 H Lomaxetal ]
; , 0 5 10 15 20
M, (k)=2C,,pU_b*qC (k). (6d) Time [s], half—chords

It clearly appears that, whereas from the response
problem, considered in the time domain, the flutter
boundary is obtainable in a numerical way, for the
flutter analysis in a classical sense, the aerodynamic
loads have to be converted from the Laplace space to
the frequency domain, replacing s — ik .

Fig. 3 Indicial lift and moment functions from plunging
and pitching of a 2-DOF lifting surface. Comparisons
with Refs. 2 and 8. o ’

4
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Fig. 4 Some of the real and imaginary parts of the
analogous of Theodorsen’s function for the subsonic (a-
b) and supersonic (c-d) flight speed regimes.

2.1.2. Supersonic Flight Speed Regime
The expressions of the indicial functions for two-
dimensional lifting surfaces in supersonic flow are not

displayed here. The same notations, as for the subsonic
compressible have been used. The new supersonic
indicial functions for selected Mach numbers are

displayed and compared with those provided by Ref. 8
iin Fig. 3. Likewise Theodorsen’s function, also in this

‘case, the newly defined indicial functions can be
“expressed in terms of their real and imaginary parts.
—— Some of these components are presented and validated

“in Fig. 4. Tn this context, the initial and final values of

the Wagner’s function, expressed in the time domain,
can be obtained by taking the limit of s@(s) in the

- Laplace transformed space for 7 - 0 and 17—,

respectively. From the property of the initial value, in
the incompressible flight speed regime, this implies:

_lime(r)= lims®(s)= #(0*)=0.5. (Ta)

S \ﬂnle from the property of the final value:

limo(t )—lm(l)s(b( s)=o(=)=1- (7b)
The first of the above expressions, namely the property
of the initial value, is valid if ¢(r) does not contain an
impulse §(z). In such a case the limit of the converted

function in the Laplace transformed space does not
exist. The second expression, occurring from the
property of the final value, is applicable only in the case

" Where ¢(r) and ¢'(z) are both Laplace transformable

and if the function sd(s) has all its singularitics in the

left half of the s-plane. These properties are fulfilled by
the Wagner’s function and by the new indicial function

-_in_the compressible flight speed remmes (see dotted

lines in Figs. 4.c and 4.d).

2 1.3. Hypersomc thht Speed Regime

The supersonic flight speed regimeis comp[eted with

~ that of the hypersonic flight speed regime, and in this

5
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context, piston theory acrodynamics is used (Fig. 5).

.. \_

v PistonTheory Aerod

— PresentTheory . . .
60 80 100

Fig. 5 Acroelashc response time-history in the
hypersonic flight speed regime to blast loads, as
prescnted in inset. Comparison of prediction of
responses based on the present and piston theory

gerodynamics (Ref. 16).



2.2. Sonic-Boom and Blast Pressure Signatures

The blast and sonic-boom overpressure signature

(referred to as the N-wave shock pulse) see Fig. 6, can

be represented mathematically in an unified waSlﬂzTS

0w w % - _ 3
T E[a ) +m W_Sv?z—_l‘a(yJ):Lh(y‘,), (ga)
3% dtw d%e
IS G- M=e O

1-—

1-—

(Fig. 6):
Lh(’)zH(’)Pm( tt }_H(l_ﬂp)Pm[

Herein, H(r) is the Heaviside step function; P, denotcs

the peak reflected pressure in excess to the ambient one
(Ref. 3-4); 1, denotes the positive phase duration of the

() ®
)

— For the cantilevered wing, the related boundary

pulse measured from the time of impact of Lhc

structure; » denotes the shock pulse length factor.

conditions are:

W(y,z)=a“’({"’)=0(>‘xt _o. and  (10a)
dy ¥=0
Iy _ w0 200G _. (10b)
oy’ o’ dy ‘f:l
~ Use of shapes functions, yields the aeroelastic

governing cquauons in dimensionless form. In the right

of these equations, L, (y r) denotes

he external time- &penaénmrwa" acting on the rigid

—wing counterpart that can correspond to a blast, sonic-
boom, giist or shock-wave pulse. Considering this load
“as uniformly distributed in the chordwise direction, o

moment contribution M, (3,7) is generated in Eq. (9).

The aeroelastic governing equation can be converted in

the Laplace transformed space and solved for the
unknowns, £ (= ;C(g )) and @ (=L (¢)); inverted back in
time domain one obtain the plunging and pitching time-
histories and the load factor time-history due to the
sonic-boom pressure pulse. This inversion has been
performed numerically via Mathematica® routine'’, and
the results are depicted in the Figs. 7 — 10.

- “3. RESULTS AND D -

Thc 'éﬁﬁmﬁi'ﬁg 7 - 8 depict the dimensionless

1 N l“=1
N B
~ BER =
05 h
~ N
0. B -
t=0 T,
-05
-1 '
Lo
-5 0 5 10 15 20 25
Time [s]
1! b r=2
05 h -
T Te rT,
0 ~— .
t=9
~ :
-05 < ! S
~ b
-1 N
5 "0 ‘“7»‘45»»‘*"1‘(7)‘ . 15‘ 20 25
Time [s]

~factor N and the pitching dlsplacement [74 of a swept

Fig. 6 Blast and sonic-boom pressure signatures.

For r=1 the N-shaped pulse degenerates into a
triangular pulse which corresponds to an explosive
pulse, and for r=2a symmetric sonic-boom pulse is
obtained.

2.3. Subcritical Aeroelastic Response of an Aircraft
Wing Featuring Plunging-Pitching Coupled Motion

Determination of subcritical aeroelastic response of
swept lifting surfaces flying in a compressible flow
field and exposed to time-dependent external pulses is
useful in the design of wing structures and of the
associated feedback control systems. The aeroelastic
governing system of a swept metallic wing featuring
plunging-twisting degrees of freedom and subjected to

a blast pulse can be expressed as™:

6

1.2== wing to a blast load in compressiblc subsonic and

supersonic flow fields. In Fig. 7 the solid lines
correspond to the coupled plunging-pitching motion of
a 2 DOF model in the incompressible flight speed
regime (M =0).

The plunging-pitching coupling contributes to the
reduction of the amplitude of the aeroelastic response.
The load factor N has its maximum for 1= 0, when the
first impulse due the blast load occurs.

In Fig. 9 a three-dimensional plot depicting the
dimensionless plunging and pitching deflection time-
histories & of a swept aircraft wing (/\ :]5") to blast
pressure signatures vs. the normalized spanwise
coordinate y and the dimensionless time 7T is supplied.
"The evolution of the acroclastic system can be
crraphncally llluslrated by examining its motion in the

phase — space, rather than in the rcal space, and

recognizing that the trajectory depicted in this space
represents the complete time history of the system.

American Institute of Aeronautics and Astronautics
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loads, as presented in inset T
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Punging Deflection

the

depicting
dimensionless plunging ¢ and pitching a deflections

Fig. 9 Three-dimensional plots
time-histories of a swept aircraft wing (/\ = |5°) to blast
pressure signature, vs. the normalized spanwise

coordinate y and the dimensionless time 7 (M = 3).

Corresponding to the condition resulting in the flutter

V=15

Fig. 10 Phasc-plane (gg) portraits depicting the

instability (Fig. 10b and 11b), that coincides with that
obtained from the eigenvalue analysis, the trajectory of
motion describes an orbit with constant amplitude
(center). For V, < Vr (Fig. 10a and Ila) as time
unfolds, a decay of the amplitude is experienced, which
reflects the fact that in this case a subcritical response is
involved (stable focal point), while for V, > Vi (Fig.
10c and 1lc) the response becomes unbounded,
implying that the flutter instability has occurred

dimensionless plunging deflection time-history of a
swept aircraft wing to a blast pulse, for selected values
of the flight speed.

The critical value of the flutter speed obtained from the
cigenvalue analysis of the homogencous system of
equations, and of that extracted from the aeroelastic
response coincide, being Vi = 2. On the basis of a
number of simulations, it can be concluded that the

(unstable focal point).
To avoid its occurrence there are two possibilitics,
namely, including a passive/active control methodology
or acting on the sweep angle A. In the latter case the

flutter predictions based on both methods arc in an
excellent agreement.

The way to determine the flutter speed from response
becomes clear from the phasc plane portrait, in which,

idea is to use the capabilities of the aircraft featuring
variable sweep angle (e.g. F-14 Tomcat) as to reduce

the severity of oscillations, and at the same time cxpand
the flight envelope.

8

for a certain restricted range of the flight speed (in the
vicinity of the flutter speed), a periodic response with
constant amplitude is experienced.

American Institute of Aeronautics and Astronautics
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4. CONCLUSIONS

_ The versatility of thc methodology presented here
consisting of the approach of both the subcritical
acroelastic responses and of the flutter instability for 3-
D swept aircraft wing in various flight speed regimes
has been illustrated. The acroelastic response has been
represented in both the classical way, by displaying the
time-histories of plunging — pitching motion and load
factor, and in an original phase — space context, that
provides full information about the behavior of the

-~ aeroelastic system.

Applications assessing the versatility of this approach
enabling one to treat both subcritical acroelastic

“¥ =19~ respomseand flutter instability were presented, and, as a

continuation of this study, the treatment of actively
controlled 3-D wing acroclastic problems s
contemplated to be achieved in the forthcoming
" developments.
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