Volterra Series Approach for Nonlinear Aeroelastic Response of 2-D Lifting Surfaces

Piergiovanni Marzocca and Liviu Librescu
Virginia Polytechnic Institute & State University, Blacksburg, VA 24061

Walter A. Silva
NASA Langley Research Center
Hampton, VA 23681

42st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
April 16-19, 2001 / Seattle, WA
VOLTERRA SERIES APPROACH FOR NONLINEAR AEROELASTIC RESPONSE OF 2-D LIFTING SURFACES

Piergiovanni Marzocca* and Liviu Librescu*
Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0219,

Walter A. Silva†
NASA Langley Research Center, Hampton, VA 23681-2199.

ABSTRACT

The problem of the determination of the subcritical aeroelastic response and flutter instability of nonlinear two-dimensional lifting surfaces in an incompressible flow-field via Volterra series approach is addressed. The related aeroelastic governing equations are based upon the inclusion of structural nonlinearities, of the linear unsteady aerodynamics and consideration of an arbitrary time-dependent external pressure pulse. Unsteady aeroelastic nonlinear kernels are determined, and based on these, frequency and time histories of the subcritical aeroelastic response are obtained, and in this context the influence of geometric nonlinearities is emphasized. Conclusions and results displaying the implications of the considered effects are supplied.

NOMENCLATURE

\(a \) Dimensionless elastic axis position measured from the midchord, positive aft
\(c \) Chord length of 2-D lifting surface, \(2b \)
\(c_i, c_a, K_{i,}, K_{a} \) Damping and stiffness coefficients in plunging and pitching (i=1,2,3 - linear, quadratic, cubic), respectively
\(C_{L_o} \) Lift-curve slope
\(C(k), F(k), G(k) \) Theodorsen's function and its real and imaginary counterparts, respectively
\(h, \xi \) Plunging displacement and its dimensionless counterpart, \((h/b) \), respectively
\(h_n, H_n \) n-th order Volterra kernel in time, and its Laplace transformed counterpart, respectively
\(I_a, r_a \) Mass moment of inertia per unit wingspan and the dimensionless radius of gyration, \((I_a/mb^2)^{1/3} \), respectively
\(I_o, m_o \) Dimensionless aerodynamic lift and moment, \((L_o/b/mU_o^2) \) and \((M_o/b^2/I_aU_o^2) \), respectively
\(L_o, M_o \) Total lift and moment per unit span
\(L_o, b \) Overpressure signature of the N-wave shock pulse and its dimensionless counterpart, \((L_o/b/mU_o^2) \), respectively
\(m, \mu \) Airfoil mass per unit length and reduced mass ratio, \((m/\rho pb^2) \), respectively
\(N \) Load factor, \(1+h'/g \)
\(P_o, \phi_o \) Peak reflected pressure amplitude and its dimensionless counterpart, \((P_o/b/mU_o^2) \), respectively
\(r \) Shock pulse length factor
\(s_j, \mathcal{L} \) Laplace transform variable and Laplace operator, respectively, \(s_j = ik, i^2 = -1 \)
\(S_o, X_o \) Static unbalance about the elastic axis and its dimensionless counterpart, \(S_o/mb \), respectively
\(t, \tau, \tau \) Time variables and dimensionless counterpart, \((U_o/b) \), respectively
\(\tau_p, \tau_p \) Positive phase duration, measured from the time of the arrival of the pulse, and its dimensionless value, respectively
\(TF \) Transfer function
\(U_o, V \) Freestream speed and its dimensionless counterpart, \((U_o/b\omega_o) \)
\(x(t) \) Time-dependent external pulse (traveling gusts and wake blast waves)
\(y(t) \) Response of the considered degree of freedom (pitch \(\alpha \) and/or plunge \(h \))
\(\alpha \) Twist angle about the pitch axis
\(\zeta_o, \zeta_o \) Structural damping ratios in plunging \((c_o/2I_o\omega_o) \), and pitching (\(c_o/2I_o\omega_o \)).

* Post Doctoral Associate.
† Professor of Aeronautical and Mechanical Engineering, Department of Engineering Science and Mechanics.
‡ Senior Research Scientist, Senior Aerospace Engineer, Aeroelasticity Branch, Structures Division, Senior Member AIAA.

Copyright © 2001 The American Institute of Aeronautics and Astronautics
subjected to an external pressure pulse. Surfaces exposed to an incompressible flow field and formulations of nonlinear two-dimensional lifting aeroelastic governing equations have to be considered in this investigation concerns the time and frequency range, and in the vicinity of the flutter boundary, the behavior of the aircraft in the subcritical flight speed catastrophic. Undamped oscillations may appear at velocities case the flutter is benign, as well as the conditions in which undamped oscillations may appear at velocities below the flutter velocity, in which case the flutter is catastrophic. Due to the strong implications of various nonlinearities on the highly flexible lifting surfaces, their related aeroelastic phenomena cannot longer be analyzed solely within the standard linearized aeroelasticity theory. Aircraft wing structures often exhibit nonlinearities, which affect their aeroelastic behavior and performance characteristics and flutter boundaries. In order to investigate the aeroelastic behavior of the aircraft in the subcritical flight speed range, and in the vicinity of the flutter boundary, the aeroelastic governing equations have to be considered in nonlinear form. This investigation concerns the time and frequency formulations of nonlinear two-dimensional lifting surfaces exposed to an incompressible flow field and subjected to an external pressure pulse.

Based on Volterra’s functional series approach, important information about the effects of nonlinearities on either the aeroelastic response in the subcritical flight speed regime, and their implication on the benign or catastrophic character of the flutter boundary are supplied. The advantage of the technique based on Volterra’s series and indicial function (Librescu, Bisplinghoff, Marzocca et al.) consists, among others, on the possibility to investigate, within a rigorous theoretical basis, the aeroelastic systems featuring a wide class of structural nonlinearities. First of all, based upon the first order Volterra kernel the study of the aeroelastic stability of the systems can be carried out. Moreover, this methodology can encompass the case of an arbitrary number of degrees of freedom and at the same time is conceptually clearer, computationally simpler and can provide more accurate and realistic results as compared to the conventional techniques used in nonlinear aeroelastic systems based on perturbation and multiple scale methods. Toward the end of determining the nonlinear unsteady aeroelastic kernels, the harmonic probing algorithm, referred to as the method of growing exponentials advanced by Bedrosian and Rice, and the multidimensional Laplace transform will be used. In addition to the aeroelastic response and determination of the flutter instability boundary, Volterra Series will be used to study the conditions rendering the flutter boundary a benign or a catastrophic one. In addition to the aeroelastic response and determination of the flutter instability boundary, Volterra Series will be used to study the conditions rendering the flutter boundary a benign or a catastrophic one (Librescu, Librescu and Gern, Librescu and Na, Van Trees, Chua and Ng). The advantage of the technique based on Volterra’s series and indicial function (Lomax, Bisplinghoff) consists, among others, on the possibility to investigate, within a rigorous theoretical basis, the aeroelastic systems featuring a wide class of structural nonlinearities. With the so-called Volterra Kernel identification scheme the modeling of an aeroelastic system using this approach becomes feasible. However, this methodology requires determination for each specific flight conditions of the appropriate nonlinear kernel of the Volterra’s series. For this reason, in order to define the appropriate aerodynamic loads, the recent interest in the modeling of unsteady nonlinear aerodynamics by this approach has been focused on the identification of Volterra’s kernels in the time domain (Silva, Tromp and Jenkins) and in the frequency domain (Marzocca et al., Tromp and Jenkins). A number of fundamental contributions related with Volterra’s series, developed by outstanding mathematicians (Volterra, Wiener) and used mainly in electrical engineering, are already available.
The original studies on functional series by Volterra4, have been continued in the works by Volterra himself, of those of famous physicists and mathematicians as Rugh6, Schetzen7, Boyd8. These concepts have been used in nonlinear system theory, in general, and in the modeling of nonlinear aeroelastic systems, in particular (Silva20). Very few applications of this method have been done in the aeroelasticity discipline.

Originally, the method of Volterra series and Volterra kernel identification were developed to identify the nonlinear behavior in electrical circuits. In the aerospace field, the fundamental contributions were brought by Silva, who has shown that the method is also applicable to aeroelastic systems (aerodynamic reactions and forced structural model). Silva’s pioneering work20,23, in this area has opened a very promising way of modeling and approaching nonlinear aeroelastic systems.

BASIC CONCEPTS AND LIMITATIONS OF THIS APPROACH

Having in view the fact that for nonlinear systems the superposition principle is not applicable, and having in view the different types of responses induced by unsteady aerodynamic loads and the external excitation, a combination of transfer functions is used. These transfer functions for the nonlinear aeroelastic systems and the time-histories response in time and frequency domains are determined by taking the multi-dimensional Laplace transform of the Volterra kernels of the related aeroelastic system via a Mathematica© code developed by these authors25.

Our approach intended to address the subcritical response of the nonlinear aeroelastic governing equations, is based on its exact representation as an infinite sum of multidimensional convolution integrals, the first one, (i.e. the linear kernel) being the analogous to the linear indicial aeroelastic function. The full nonlinear aeroelastic response will be composed of additional higher-order contributions. In the frequency domain, if the nonlinear function governing a system is 'smooth', then for small inputs the system must be asymptotically linear6. One of the key issues is to determine, corresponding to the considered type of structural and aerodynamic nonlinearities, the pertinent Volterra's kernels. When also the active control is implemented the corresponding Volterra's kernel should also be derived.

THE THEORY

In an attempt to make the paper as self-contained as possible, several elements associated with Volterra's series as applied to aeroelastic system, as well as with the indicial functions will be supplied here.

Indical Theory and Aerodynamic Loads

Using the aerodynamic indicial functions corresponding to transient aerodynamic reaction to a step pulse, the aerodynamic forces and moments induced in any maneuver and any flight regime can be determined. Aerodynamic forces and moments acting on a rapidly maneuvering aircraft are, in general, nonlinear functions of the motion variables, their time rate of change, and the history of the maneuvering (Tobak & Chapman26). However, in this study, the linear aerodynamic theory is adopted.

Once the response of the system to a step change in one of the disturbing variables (i.e. the indicial response) is known, the indicial method permits the determination of the response of a system to an arbitrary schedule of disturbances. There is a critical value of the flight speed above which the steady motion becomes unstable. In a nonlinear aeroelastic system the flutter phenomenon corresponds to the instability known as the Hopf bifurcation, resulting in finite amplitude oscillations, in the case of supercritical Hopf bifurcation, and in oscillations with increasing amplitudes, even if the system operates before reaching the flutter speed, in the case of the subcritical Hopf bifurcation27-29.

We need to mention that a nonlinear indicial theory30, asserts that the response of a nonlinear system to an arbitrary input can be constructed by integrating a nonlinear functional, that involves the knowledge of the time-dependent input and the kernel response. Whereas, within the linear indicial theory the linear kernel or linear impulse response can be convolved with the input to predict the output of a linear system, the nonlinear indicial theory constitutes a generalization of this concept. It can also be shown that the traditional Volterra-Wiener theory of nonlinear systems constitutes a subset of nonlinear indicial theory. It should also be mentioned that the nonlinear unsteady aerodynamics valid throughout the subsonic incompressible/compressible, transonic and supersonic flight speed regimes can be used and determined via the use of nonlinear indicial functions31 in conjunction with the Volterra's series approach.

Volterra Functional Series Theory

As it was shown (Rugh6, Schetzen7) within Volterra's series approach the full response in the time domain, $y(t)$, of the nonlinear systems with memory can be cast as:

\[
y(t) = \sum_{k=0}^{\infty} y_k(t),
\]

(1)

where, $y_k(t)$ is expressed as:

\[
y_k(t) = \int_{-\infty}^{t} \int_{-\infty}^{t_k} \int_{-\infty}^{t_{k-1}} \cdots \int_{-\infty}^{t_1} h_k(t-t_k, t-t_{k-1}, \cdots t-t_1) \prod_{i=1}^{k} x(t_i) \, dt_i
\]

(2)

By a change of variables, it is possible to express Eq. (2) in contracted form as:

\[
y(t) = \sum_{k=0}^{\infty} y_k(t).
\]

(3)
\[y_i(t) = \sum_{k} h_k(t_i, t_2, \ldots, t_k) \prod_{j=1}^{k} x(t_j) dt_j \]

(3)

It is assumed that \(x(t) = 0 \) for \(t < 0 \) implying that the system is causal.

With this restriction, all the integrals in the subsequent discussions are different from zero over the time range \((0, \infty)\). Restricting the development of Eq. (3) to the first three terms one obtains:

\[y(t) = \int h(t_i, t_2, \ldots, t_k) x(t) dt_i + \int h(t_i, t_2) x(t) dt_2 + \int h(t_i) x(t) dt_i + \ldots \]

(4)

On the other hand, the response of the system can be expressed also in the frequency domain.

The Volterra series is essentially a polynomial approximation of the system, extension of Taylor series to systems with memory, while Volterra's kernels \(h_i(s) \) are a direct extension of the impulse response concept of the linear system theory to multiple dimensions (Volterra, Rugh, Schetzen, Boyd). Consequently, a multidimensional analogue of the impulse response can be used to characterize a nonlinear system (Silva).

Having in view that the aeroelastic systems memory is not infinite and, at the same time, the time-dependent external excitations, such as impulse, gust, blast and sonic-boom pressure signatures are non-persistent but their effect will diminish as time unfolds, it is possible to characterize a nonlinear aeroelastic system via Volterra series. This fact is reflected in the interpretation of the Volterra kernels as higher order impulse response functions, i.e. \(h(t_1, \ldots, t_k) \to 0 \) as \(t_1, \ldots, t_k \to \infty \).

We will use the definition of the nonlinear transfer function or higher-order impulse response functions namely:

\[H_s(s_1, s_2, \ldots, s_k) = \int \ldots \int h(t_1, t_2, \ldots, t_k) e^{-s_1 t_1} e^{-s_2 t_2} \ldots e^{-s_k t_k} dt_1 dt_2 \ldots dt_k \]

(5)

as well as of its inverted counterpart:

\[h_s(s_1, s_2, \ldots, s_k) = \left(\frac{1}{2\pi} \right) \int \ldots \int H_s(s_1, s_2, \ldots, s_k) e^{s_1 t_1} e^{s_2 t_2} \ldots e^{s_k t_k} ds_1 ds_2 \ldots ds_k \]

(6)

Once the Volterra's kernels are known the response of the nonlinear aeroelastic system can fully be identified. As demonstrated in the Schetzen works, without loss of generality, the kernels will be taken as symmetric.

If we focalize the attention on the linear system, the Laplace transform \(\mathcal{L} \) of the first term of Eq. (4) yields the familiar Laplace domain expression \(Y(s) = H(s)X(s) \) where \(Y(s), H(s), X(s) \) are the Laplace transforms of \(y(t), h(t), x(t) \), respectively, and \(H(s) \) is the transfer function of the system; either the first transfer function or the first kernel in time \(h(t) \) encode all the information about the aeroelastic system, that is, of course, exact only for the linear system. Moreover, as is well known, if the system is linear, i.e. superposition principle holds valid, and is time invariant, the external load is uniquely related to the response by a convolution integral. With the use of functional series, i.e. the Volterra series, this functional representation can be extended to nonlinear systems. The comparison between the prediction of the linear aeroelastic responses of 2-D lifting surface in incompressible flow field based on the Volterra's series approach (using Theodorsen's function) and on the exact solution, based on convolution integrals (using Wagner's function) is presented in Fig. 1.

The excellent agreement of these two predictions shown here, assess both the accuracy of the aeroelastic model and also the power of the methodology that combines Volterra's series and indicial function.

MATHEMATICAL FORMULATION

General theory for 2-D lifting surfaces including structural nonlinearities

The aeroelastic governing equation of motion for 1 and 2 DOF including structural nonlinearities that include the damping and the stiffnesses can be analyzed in the following way. Two systems will be analyzed here: a 1 DOF lifting surface (i.e. plunging only) and a 2 DOF lifting surface featuring structural and aerodynamic coupling in plunging \(h \) and pitching \(\alpha \). As
previously mentioned, the unsteady aerodynamic is considered linear. A harmonic time dependent external concentrated load is also applied. This configuration for example, can be considered to correspond to an engine mounted on an aircraft wing. As a result, a harmonic type loading due to the engine oscillations has to impact the motion of the wing.

As a characteristic of this approach, the transfer functions of the system would exist and be the same for any excitations, (namely for random, sine, impulse). This is due to the fact that transfer functions are a characteristic of the system itself and are independent of the input to the system.

As a reminder, the validity of this method is based on the use of continuous polynomial type nonlinearities. For nonlinear ordinary differential systems, there are in general, an infinite number of Volterra kernels. In practice, one can handle only a finite number of terms in the series, which leads to the problem of truncation accuracy. However, Wiener suggest that the first terms of the series may be sufficient to represent the output of a nonlinear system if the nonlinearities are not too strong.

The use of the multidimensional Laplace transform as a function of several variables is a tool useful in stationary nonlinear system theory. The multivariable convolutions can be represented in terms of products of Laplace transforms.

It is well known that the nonlinear aeroelastic systems cannot be described by a simple transfer function for two main reasons: a) the response has different trends as compared to the unsteady aerodynamic loads and the external excitation and, b) in the nonlinear case the superposition principle is not applicable. It is also well known that any time-dependent external excitation, i.e. periodic or otherwise, can be represented, to an arbitrary degree of accuracy, by a sum of sinusoidal waves. In this context, if the external load is expressed in term of the plunging degree of freedom h, only:

$$L_n(t) = -C_{i} h(t) + k_n h(t) - L_b(t) = L_n(t). \quad (8)$$

where k_n, c_n, m are the stiffness, damping and mass parameters, respectively.

In Eq. (8) the related unsteady aerodynamic lift is represented as a function of the plunging degree of freedom h, only:

$$L_n(t) = -C_{i} h(t) + k_n h(t) - \frac{1}{2} \rho C_{i} U_s^2 h(t). \quad (9)$$

The non-circulatory component present in Eq. (9) has been represented in term of convolution integral of the indicial Wagner’s function.

In order to explain how this methodology works, let us to determine, in terms of Volterra series, how a system responds to a harmonic or periodic time-dependent load. Let consider a periodic external excitation in the form:

$$L_n(t) = \sum_{j=1}^{N} X_j \cos^{(j)} t. \quad (10)$$

As is well known, the information acquired by the case of the response to a harmonically time-dependent load can be used to obtain the response to any time-dependent excitation. In fact, considering the case of a concentrated load arbitrarily located in the x, y-plane of the wing, we have:

$$u(x, y, t) = A \delta(x-x_0, y-y_0) e^{i\omega t}, \quad (11)$$

where $\delta()$, x_0, y_0, A, ω denote Dirac’s distribution, location of the load, its amplitude and excitation frequency, respectively. Once determined the transfer function (labeled as TF) corresponding to a given excitation frequency, its counterpart in the time domain can be obtained as the inverse Laplace transform \mathcal{L}^{-1}:

$$TF(x, y, t) = \mathcal{L}^{-1}[TF(x, y, s)] = \frac{1}{2\pi} \int_{-\infty}^{\infty} \mathcal{L}^{-1}[TF(x, y, s)] e^{i\omega t} ds$$

In addition to the direct role in the determining of the response, the transfer function TF has then the role in determining the response to arbitrary time-dependent external excitations.

The general procedure to identify the aeroelastic kernels of various order $(1, n)$, is to consider a general input in the form of Eq. (10) and to equate coefficients of $X_1 X_2 \cdots X_{i-1} X_i e^{i\omega t}$ to $X_i e^{i\omega t}$. As an example, the first aeroelastic Volterra’s kernels that describes the linear system in the aeroelastic governing equations, obtained by neglecting the nonlinear terms, is obtained by considering the input load as $L_n(t) = X_i e^{i\omega t}$ (which in dimensionless form is expressed as $l_n(t) = [b/m U_s^2] X_i e^{i\omega t}$), the response of the system is postulated in the form $h(t) = H_i(s) X_i e^{i\omega t} + h_{0} t$. Substituting $h(t)$ and its

Pure Plunging Airfoil

The nonlinear equation of motion of an airfoil featuring plunging motion can be expressed as:

$$m h(t) + \sum_{j=1}^{N} c_n h(t) - L_n(t) = L_b(t). \quad (8)$$

The non-circulatory component present in Eq. (9) has been represented in term of convolution integral of the indicial Wagner’s function.

In order to explain how this methodology works, let us to determine, in terms of Volterra series, how a system responds to a harmonic or periodic time-dependent load. Let consider a periodic external excitation in the form:

$$L_n(t) = \sum_{j=1}^{N} X_j \cos^{(j)} t. \quad (10)$$

As is well known, the information acquired by the case of the response to a harmonically time-dependent load can be used to obtain the response to any time-dependent excitation. In fact, considering the case of a concentrated load arbitrarily located in the x, y-plane of the wing, we have:

$$u(x, y, t) = A \delta(x-x_0, y-y_0) e^{i\omega t}, \quad (11)$$

where $\delta()$, x_0, y_0, A, ω denote Dirac’s distribution, location of the load, its amplitude and excitation frequency, respectively. Once determined the transfer function (labeled as TF) corresponding to a given excitation frequency, its counterpart in the time domain can be obtained as the inverse Laplace transform \mathcal{L}^{-1}:

$$TF(x, y, t) = \mathcal{L}^{-1}[TF(x, y, s)] = \frac{1}{2\pi} \int_{-\infty}^{\infty} \mathcal{L}^{-1}[TF(x, y, s)] e^{i\omega t} ds$$

In addition to the direct role in the determining of the response, the transfer function TF has then the role in determining the response to arbitrary time-dependent external excitations.

The general procedure to identify the aeroelastic kernels of various order $(1, n)$, is to consider a general input in the form of Eq. (10) and to equate coefficients of $X_1 X_2 \cdots X_{i-1} X_i e^{i\omega t}$ to $X_i e^{i\omega t}$. As an example, the first aeroelastic Volterra’s kernels that describes the linear system in the aeroelastic governing equations, obtained by neglecting the nonlinear terms, is obtained by considering the input load as $L_n(t) = X_i e^{i\omega t}$ (which in dimensionless form is expressed as $l_n(t) = [b/m U_s^2] X_i e^{i\omega t}$), the response of the system is postulated in the form $h(t) = H_i(s) X_i e^{i\omega t} + h_{0} t$. Substituting $h(t)$ and its
derivatives in the governing equation of motion, one determines the coefficient of $X_1 e^{i\omega t}$.

In a linear aeroelastic system, the system is completely characterized by a transfer function $H_1(s)$ that contains the aerodynamic term as follow:

$$H_1(s) = \left(k_{a1} + m s^2 + c_{a1} s + s \rho C_{la} b U C[-i s b / U] \right) \cdot \left(b^2 \right)^{1/3}.$$

Herein the Theodorsen's function C, connected with the Laplace's transform as $C(-is) = \int_0^\infty \phi(\tau) e^{-is\tau} d\tau$, has been included in the formulation. The terms underscored by the solid line correspond to the unsteady aerodynamic loads component (circulatory term), while the dotted line identifies the terms corresponding to the effect of the added mass. When the aerodynamic loads are neglected and for $s = i\omega$, this result coincides with that of the linear FRF, derived via the conventional Modal Analysis.

For purely mechanical systems, in the frequency domain, the response analyses via Volterra series have been carried out by several authors. In the present study an alternative procedure, based on the multivariable kernel transforms referred to as Higher-order Transfer Functions (HTFs) is pursued. The two above mentioned approaches can be correlated each other, and this is shown also in this work. Assuming zero initial condition, the frequency response functions (FRFs) are obtained from the transfer functions TFs, by replacing the Laplace transform variable s with $j\omega$ where ω is the frequency of the excitation, (Worden et al.3).

In the present nonlinear aeroelastic system, toward the estimation of higher order frequency response functions (HO FRFs) that are defined as the multi-dimensional Fourier Transform (MDFT) of the Volterra’s kernels, a sequence of transfer functions are employed. The concept of higher order of FRFs, independent of the input to the system, defined from the Volterra series, will also be included.

By the use of the linear frequency-response-function $H_1(s)$ the behavior of the linear system is easily determined. It will be necessary to find a complete set of Volterra kernel transforms $H_n(s_1, s_2, \ldots, s_n)$ for nonlinear systems and for this, in practice, we will use a convergent truncated series.

However, probing the system with a single harmonic yields only the information about the value of the transfer functions terms on the diagonal line of the plane $s_1 = s_2$ in the Laplace transformed space, where $s_1 = s_2$. However, in order to obtain information elsewhere in this space, one should use multi-frequency excitations.

In the same way, the second order Volterra Kernel can be determined applying a load depending on two different frequencies expressed as: $L_n(t) = X_1 e^{i\omega t} + X_2 e^{i\omega t}$. In this case we can express the plunging response in the form:

$$h(t) = H_1(s) X_1 e^{i\omega t} + H_2(s, s_2) X_2 e^{i\omega t} + \ldots + H_n(s_1, s_2, \ldots, s_n) X_n e^{i\omega t},$$

where $H_n(s_1, s_2, \ldots, s_n)$ is the nth order Volterra Kernel in the Laplace transformed space. Substituting Eq. (13) in Eq. (8) and equating the terms containing $X_1 X_2 e^{i\omega t}$, the second order aeroelastic Volterra Kernel in the Laplace transformed space is obtained:

$$H_2(s_1, s_2) = -k_{a1} c_{a2} + k_{a2} X_1 X_2 e^{i\omega t},$$

where:

$$H_1(s_1 + s_2) = \left(k_{a1} + (s_1 + s_2)^2 m + c_{a1} (s_1 + s_2) \right) + \frac{1}{2} \rho C_{la} b U C\left[-i (s_1 + s_2) b / U \right],$$

and $H_1(s_1 + s_2)$ is the first order Volterra Kernel in the Laplace transformed space at the frequency $\omega + \omega$. Following the same steps, applying the load $L_n(t) = X_1 e^{i\omega t} + X_2 e^{i\omega t} + \ldots + X_n e^{i\omega t}$, the expressions in the form $X_1 X_2 X_3 e^{i\omega t}$; remembering that:

$$H_1(s_1 + s_2 + s_3) = \left(k_{a1} + (s_1 + s_2 + s_3)^2 m + c_{a1} (s_1 + s_2 + s_3) \right) + \frac{1}{2} \rho b^2 C_{la} (s_1 + s_2 + s_3)^2,$$

the expressions for the third order Volterra Kernel in the Laplace transformed space can be cast as:

$$H_3(s_1, s_2, s_3) = \frac{1}{2} \left(H_1(s_1) H_1(s_2) X_1 X_2 e^{i\omega t} + X_3 e^{i\omega t} \right) + \ldots + \frac{1}{2} \left(H_1(s_1) H_1(s_2) X_1 X_2 e^{i\omega t} + X_3 e^{i\omega t} \right),$$

Notice that the constants k_{a2} and c_{a2} multiply the whole expression for H_3, and this term vanishes if the quadratic term is absent in the aeroelastic governing equation of motion. As one of the general properties of Volterra’s series, if all nonlinear terms in the equation of motion for the system are odd powers of x and \dot{x}, then the associated Volterra series have no even-order kernels. As a consequence it will possess no even-order TFs. It is also a general property of systems that all higher-order TFs can be expressed in terms of H_1. The expressions are function of the system and can be obtained using the harmonic probing algorithm.
The governing aeroelastic system of an airfoil featuring plunging-twisting coupled motion, exposed to a harmonic time dependent external excitation is:

\[
m\ddot{h} + S_n \dot{\alpha} + \sum_{j=1}^{m} \left(c_{nj} \dot{h}^j + k_{nj} h^j \right) - L_n = L_n^e, \tag{19}
\]

\[
S_n \ddot{h} + I_n \dot{\alpha} + \sum_{j=1}^{m} \left(c_{nj} \dot{\alpha}^j + k_{nj} \alpha^j \right) - M_n = 0. \tag{20}
\]

Following the steps adopted for 1 DOF, applying a load depending on one frequency \(L_n = X_1 e^{i\omega t} \), and expressing the plunging and pitching displacements in terms of transfer functions as:

\[
h(t) = X_1 H_1(s, \omega) e^{i\omega t} + A_1 e^{i\omega t} + A_2 e^{i\omega t}
\]

\[
\alpha(t) = X_2 H_2(s, \omega) e^{i\omega t} + X_3 H_3(s, \omega) e^{i\omega t} + X_4 H_4(s, \omega) e^{i\omega t}, \tag{21}
\]

the relative kernels and the aeroelastic responses can be determined.

The aeroelastic governing system including the blast pressure signatures can be expressed in the Laplace transformed space as:

\[
s^2 \ddot{\xi} + \chi_n s^2 \dot{\alpha} + 2 \zeta_n s \dot{\xi} + \frac{\bar{\alpha}}{V} + \frac{\bar{\alpha}}{\bar{V}} = \left(\frac{\bar{\alpha}}{V} \right) \dot{\xi}
\]

\[
+ \frac{\mu}{2} \left(s^2 \ddot{\alpha} + 2 \zeta_n s \dot{\alpha} + \frac{\bar{\alpha}}{\bar{V}} \right) \phi(s)
\]

\[
+ \left(s \ddot{\alpha} + \zeta_n \dot{\alpha} + \frac{\bar{\alpha}}{\bar{V}} \right) \phi(s)
\]

\[
+ \left(\frac{1}{\mu} \right) s^2 \ddot{\alpha} + s^2 \dot{\alpha} + \frac{\bar{\alpha}}{\bar{V}} \phi(s)
\]

\[
+ \left(\frac{1}{\mu} \right) s^2 \ddot{\alpha} + s^2 \dot{\alpha} + \frac{\bar{\alpha}}{\bar{V}} \phi(s)
\]

\[
X_1 \left(\frac{1}{\mu} \right) \ddot{\alpha} + 2 \left(\frac{1}{\mu} \right) s \dot{\alpha} + \left(\frac{1}{\mu} \right) \frac{\bar{\alpha}}{\bar{V}} \phi(s)
\]

Herein \(\dot{\xi} = \xi(\dot{\xi}(t)) \) and \(\dot{\alpha} = \alpha(\dot{\alpha}(t)) \)

Following the same steps, applying the loads \(L_n(t) = X_1 e^{i\omega t} + X_2 e^{i\omega t} \) and \(L_n(t) = X_1 e^{i\omega t} + X_2 e^{i\omega t} + X_3 e^{i\omega t} \), equating the terms in the forms \(X_1 e^{i\omega t} + X_2 e^{i\omega t} \) and \(X_1 X_2 e^{i\omega t} \) the expressions for the second and third order Volterra Kernel in the Laplace transformed space can be obtained.

RESULTS AND DISCUSSIONS

To assess the versatility and provide a validation of this methodology, a comparison of the predictions of the aeroelastic response of nonlinear 2-D lifting surface using three approximations are shown in Figs. 2.

\[
y(t) = \sum_{n=1}^{k} \sum_{i=1}^{m} \sum_{j=1}^{n} H_n(s_{i1}, s_{i2}, \ldots, s_{in}) e^{i(s_{i1}+s_{i2}+\ldots+s_{in})t}. \tag{25}
\]

The presence of nonlinearities causes harmonic excitations and sums of harmonics to appear in the response of the aeroelastic system. Due to the nonlinear formulation, different frequencies can be expected as well.

From the energetic point of view, we can observe that \(H_1(s) \) produces a single frequency output in response to the simple input \(e^{i\omega t} \). However, because the system is nonlinear, \(H_2(s, \omega) \) takes into account the terms that produce an output energy corresponding to the sum of frequencies \(\omega_1 + \omega_2 \), or in other words to the input \(e^{i(\omega_1+\omega_2)t} \). Similarly, the third order nonlinear aeroelastic kernel, will inject a mix of three input frequencies into the total system output.

Fig. 2 Convergence study involving the first three kernels and comparison with the “exact” nonlinear aeroelastic response to (a) 1-COSINE gust pulse and (b) to triangular blast load, as shown in the inset

7

American Institute of Aeronautics and Astronautics
The excellent agreement of the predictions, assess both the accuracy of the aeroelastic model and also the power of the methodology based on the Volterra series and indicial function approach. The first, the second and the third approximations of the aeroelastic response to the two loads \(1\text{-COSINE}\) gust load and triangular blast load are plotted for different parameters, together with the "exact" response of the aeroelastic system as obtained through digital-computer solution of the nonlinear aeroelastic governing equations. Both figures reveal the rapid convergence of the approximation. The parameters in use for the simulations, unless otherwise specified, are chosen as: \((m = 1, a = -0.2, c_1 = 10; k_n = 10^4, c_2 = 10^2, c_3 = 10^3; \ c_1 = 10^2, k_n = 10^7, c_2 = 10^3; \ c_1 = 10^5, k_n = 10^7, c_2 = 10^2, c_3 = 10^3; \ b = 1; \ p = 0.125; \ U = 0.4U, \ \ C_l = 2\pi)\). For the 2-D lifting surface encompassing pure plunging, the first three aeroelastic kernels in magnitude and phase are depicted in Fig. 3 as a function of the frequency, considering that \(\omega = \omega_0 = \omega_2\), i.e. the representation is given along the diagonal of the plane \(\omega_0, \omega_2\). As is clearly seen, a reduced influence on the response of the third kernel is experienced.

In Figs. 4 the Volterra's kernels for the lifting surface featuring plunging - pitching coupled motions are depicted. Also in this case in the plots include the magnitude and phase for the kernels in plunging \(H_i^p\) and pitching \(H_i^p\), in which \(i\) identifies the order of the kernel.
A 3-D plots of the magnitude and phase of the second order kernel vs. the two frequencies ω_1 and ω_2 are displayed in Fig. 5. The contour plots reveals the symmetry of this kernel respect to the diagonal represented by $\omega_1=\omega_2$. In a 3-D plot, the third order Volterra kernel for the case in which $\omega_3=\omega_1$ are depicted in Figs. 6.

Response in Time and Frequency Domains

Determination of subcritical aeroelastic response to any time-dependent externally applied load is useful in the design of wing structures and of the associated feedback control systems. In certain types of nonlinear analysis we are only interested in the special case considering of $\tau_1=\tau_2=\cdots=\tau_n=\tau$. This case can be represented as:

$$g(t)=h_n(\tau,\tau,\cdots,\tau)$$ \hspace{1cm} (26)

This has a corresponding Laplace transform $G(s)$ (so called associated transform) in the single-dimensional Laplace transform space: $G(s)=\mathcal{L}\{g(t)\}$. The response in time can be obtained from $H(s_1,s_2,\cdots,s_n)$ to find $G(s)$ first and evaluate the single dimensional inverse Laplace transform $g(t)$.

This approach is called association of variable. The nonlinear aeroelastic response in the time domain is depicted in Figs. 7 for a 2-D lifting surface featuring the plunging degree of freedom. In this figure the first plot represents the linear impulse response that corresponds to the convolution integral for the linear analysis. The other three plots represent the components of the response due to the second and the third order kernels and the total response as a combination of the three partial responses. The aeroelastic response will be presented and validated. The influence of the linear and nonlinear stiffness and the damping coefficients on the response, not displayed in this paper, reveals that, an increase in the damping coefficient contributes to the decrease of the response amplitude. An increase of the nonlinear damping or of the stiffness coefficients contributes to the decrease of the magnitude of the kernels and consequently, of the response amplitude. This shows that the nonlinearities in the stiffness and damping play a beneficial role on the subcritical aeroelastic response.

Figure 8 highlights the effect of the speed parameter $V=-U/b_{\omega_n}$ on the lifting surfaces subjected to sonic-boom pressure signature as shown in the inset.

Nonlinear Aeroelastic Responses – Time Domain

![Fig. 7 Time-history of the nonlinear aeroelastic response](image-url)
Herein τ_p denotes the positive phase duration of the pulse measured from the time of impact of the structure; r denotes the shock pulse length factor. For $r = 2$ the N-shaped pulse degenerates into a symmetric sonic-boom pulse, in the sense that its positive phase has the same characteristics as its negative one, and for $r = 1$ a triangular pulse that corresponds to an explosive pulse is obtained. It becomes apparent that the amplitude of the response time-history (that have been evaluated for practical use with three kernels) increases with the increase of V. Moreover, in a certain range of speeds, as time unfolds, a decay of the amplitude is experienced, which reflects the fact that in this case the subcritical response is involved. However, for the dimensionless speed parameter V greater then the flutter speed (this one was determined using the linearized aerelastic system), the response becomes unbounded implying that the occurrence of the flutter instability is impending. Also in this case the nonlinear stiffness and damping coefficients play a beneficial role on the subcritical aerelastic response.

CONCLUSIONS

Several issues that concern the nonlinear aerelastic response via Volterra's series approach have been presented. It was also shown that, the method based on Volterra series opens large opportunities to approach in an unified and efficient way problems of nonlinear aerelastic response and flutter. In addition, following the same approach, the character of the instability boundary, i.e. benign or catastrophic will also be addressed. This analysis will be done by using the concept of the first Liapunov quantity as developed by Bautin. Moreover, this approach can be extended as to include also active control capabilities. In spite of this, few of these potentialities have been explored yet. Comparisons of results carried out via Volterra series in conjunction with indicial functions approach and classical approach have been provided in Fig. 1 for the linearized model. It should also be stressed that aerodynamic indicial functions (for incompressible/ compressible flow fields) considered in conjunction with Volterra's series approach can be used as a powerful analytical tool for developing unsteady aerodynamic models and a unified nonlinear aerelastic model. To the best of the authors’ knowledge, with the exception of this paper, the problem of the aerelastic response of lifting surfaces to external pulses via Volterra’s series and indicial function approach was not yet addressed in the literature.

ACKNOWLEDGMENT

The partial support of this research by the NASA Grants NAG-1-2281 and NAG-1-01007 is acknowledged.

REFERENCES

25. Withoff, D., Austin, W., Wolfram Research, private communications.

