Mitigating the APC Threat - a work in progress

Ralph A’Harrah

APC Workshop
DFRC
6-8 April 1999

My Perspective

- What I would do if I was responsible for
 - Research
 - Design & Development
 - Flight Test
 - Certification
 - Airline Safety
 - Accident Investigation
... relative to mitigating the APC threat
Mitigating the APC Threat - CAT

Cat. II APC Research

• Task Identification
 - e.g., a large ("over driving") correction to an upset, followed by closed-loop control to get back on original flight path

• Subject Identification
 - e.g., APC evaluation results from naïve "line" pilots compared with experienced test pilots

• Vehicle Identification
 - Variable stability aircraft, or ground based flight simulator, or actual aircraft

Mitigating the APC Threat - CAT

Cat. II APC Research, continued

• Design and demonstrate a control system that is free from Cat. II APC characteristics for a wide range of surface rate limits (e.g., from 1% to 100% of the maximum achievable surface rate)
Mitigating the APC Threat - CAT

Design & Development

- Incorporate favorite PIO criteria into Mark Tischler’s Conduit* Program to address Cat. I
- Minimize the actuator energy metric (cost function) in Conduit (Control Designer’s Unified Interface)
 - to reduce probability of “over driving” beyond rate limits, a Cat. II condition
 - to increase actuator life
- Utilize tactile control feedback\(^1\) on primary controls to warn of approach to rate and/or position limiting, with active stops to preclude “over driving” continues

\(^1\)analogous to NRC’s collective limit curving. AvWk, p.53. 22Feb99

Mitigating the APC Threat - CAT

Design & Development, continued

- Backup tactile control feedback on primary controls design with adaptive filtering\(^1,2\) to compensate for time delay caused by “over driving”
- Isolate pilot controlled surfaces and actuators from non-pilot controlled surfaces and actuators
 - Reduce erosion of pilot control response and authority from non-piloted intrusion

\(^1\)Hanke, Dietrich. Phase compensation: a means of preventing APC caused by rate limiting. Forschungbericht 98-15

\(^2\)Runqudwist, Lars. Phase compensation of rate limiters in JAS-39 Gripen. AIAA Paper 96-3368
Mitigating the APC Threat - CAT

Ground/Flight Test
- From ground calibration tests, determine the cockpit controls to surface response time delay and hysteresis characteristics for inputs up to the maximum input rate & deflection capability of the pilot.
- If values exceed expectations/guidance/specifications, evaluate options for improvement.
- Alternately, evaluate on variable stability aircraft while performing off-set landing, large upset correction, etc., Cat. 2 APC maneuvers to define criticality of the problem.

Note: The issue here is the consistent ability of line pilots to accommodate the change in time delay and hysteresis characteristics that may be experienced as part of a "hair-raising" experience such as a large upset, or an eminent in-flight...

Certification
- Continue APC exposure/training of certification pilots, using a variable stability aircraft.
- Emphasize the determination of evaluation tasks for Cat. II APC that are both safe and effective.
- Evaluate in flight APC Cat. I characteristics using existing FAA APC testing benchmark tasks.
- Would not attempt Cat. II in-flight evaluation until safe and effective test technique is identified.

continues...
Mitigating the APC Threat - CAT

Certification, continued
- From ground calibration tests, determine the cockpit controls to surface response time delay and hysteresis characteristics for inputs up to the maximum input rate & deflection capability of the pilot

continues

Mitigating the APC Threat - CAT

Certification, continued
- If time delay or hysteresis values exceed expectations/guidance/specifications, evaluate on variable stability aircraft while performing off-set landing, large upset correction, etc., Cat. 2 APC maneuvers

Note: The issue here is the consistent ability of line pilots to accommodate the change in time delay and hysteresis characteristics that may be experienced as part of a “hair raising” experience
Mitigating the APC Threat - Airline Safety

Airline Safety

- For the cockpit primary control inputs and the resulting control surface outputs, record at data rates of 20 Hz or greater on the QAR.
- Initial APC Precursor
 - Monitor QAR data for the time lapse between reversal of the cockpit control rate and the associated reversal of the surface rate as APC precursor.
 - Flag occurrences with $t_D > 100$ msec.
 - Flag & record values of t_D when $t_D > 150$ msec.
- Involve APC specialist for consistent flags, or values of $t_D > 150$ msec.

Growth APC Precursor

- Utilize 20 Hz. or greater data rates on primary controls, primary control surfaces, aircraft accelerations, and warning, such as “stall” and “over-speed”.
- Utilize QAR data to support Conduit as a monitor.
 - Flag occurrences violating Level 1 criteria.
 - Flag & record values of t_D when $t_D > 150$ msec., and Level 2 criteria.
 - Involve APC specialist for consistent flags, or values of $t_D > 150$ msec.