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Executive Summary

Piezohydraulic actuation is tile use of fluid to recti_" the motion of a piezoelectric actuator for

the purpose of overcoIning the small stroke limitations of tile material. In this work we study

a closed piezohydraulie cirmfit that utilizes active valves to rectify tile motion of a hydraulic

end affector. A linear, lumped parameter model of the system is developed and correlated

with experiments. Results demonstrate that the model accurately predicts tile filtering of the

piezoelectric motion cruised by hydraulic compliance. Accurate results are also obtained for

predicting the unidirectional motion of the cylinder when the active valves are phased with

respect to the piezoelectric actuator. A time delay associated with the mechanical response

of the valves is incorporated into the model to reflect the finite time required to open or ch)se

the valves. This time delay is found to be the primary limiting factor in achieving higher

speed and greater power flom the piezohydraulic unit. Experiments on the piezohydraulic

unit demonstrate that blocked forces on the order of 100 N and unloaded velocities of 180

itin/sec are achieved.
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1 Introduction

Piezohydraulic actuation is the use of fluid m order to amplify oi rectify the motion of a

piezoelectric actuator. Piezoelectric devices are low displacement, high force actuators that

often require motion amplification for use in aptflications which require strokes m the millinm--

ter and centimeter range. The fundamental problem is the maximum strain of piezoelectric

materials is on the order of 0.1%-0.4%, thus limiting the displacelnent of direct actuation

devices. Typical fl'ee displacelnents of piezoceramic actuators operated in the daa mode is

10-100 pro.

The low stroke output of piezoelectric devices has Inotivated the development of novel

actuator tedmologies that nmchanically ampli_ the displacement at the expense of reduced

force output. In a comprehensive overview of the technology to the mid-1990s, Near (1996)

demonstrates that piezoelectric actuators are available in a wide range of force and stroke

levels.

A concept that has recently gained atte_ltion is the use of frequency rectification to in-

crease the stroke output of piezoelectric devices. Frequency rectification is the transformation

of high-ftequency, low-stroke motion to low-frequency, high-stroke motion. The concept of

frequency rectification is not new. It is the operating principh; of piezoelectric ultrasonic

motors, electrohydraulic actuation systems, anti, more generally, the fundamental concept

behind AC-DC power conversion. Several patealts exist utilizing the concept as the basis of

inventions involving fluid-moving devices using piezoelectric materials. The recent interest

in this concept for piezoelectric devices is derived from the realization that, high-ftequency
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operation mm_:imizes tile power density and specific power of piezoelectric actuators. Tile

challenge is to rectify the high-fi'equency, high prover motion of the piezoelectric actuator to

lower frequency without incurring significant losses in the overall system.

The concept of frequency-rectified, piezohydraulic actuation has been studied recently by

several researchers. Probably the most significant demonstration of high-fi'equency operation

is the work by Hagood, et al., on the development of micro-hydraulic transducers (Roberts

et al., 2000; N.W. Hagood, et al, 2000). Macro-scale piezoelectric pumps have been developed

by Mauck and Lynch utilizing a piezoelectric stack actuator and a valve-controlled hydraulic

circuit (Mauck and Lynch, 1999, 2000).

Both micro-scale and macro-scale puInps require a hydraulic end affector to transform the

fluid motion to mechanical work. In ore paper, we consider the modelling and characteriza-

tion of a complete piezohydraulic actuation system that consists of a piezoelectric, actuator,

a hydraulic transmission, and a hydraulic cylinder that t,ransforms the hydraulic power to

mechanical power. The goal of the paper is to develop a model which accurately predicts

the mechanical response of our piezohydraulic actuation system under varying operating

conditions.
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The results for each of these aspects of the contract are summarized below.

Concept Development and Benchtop Verification

Tile piezohydraulic system shown in Figure 1 was designed, built, and tested during the

period of performance for this contract. The system performance was measured to be 180

pm/sec velocity and a blocked force of 105 N. The primary linlitations to achieving greater

output power were determined to be the limited speed of response of the active valves and

the comphance introduced by the mechanical structure of the actuator.

Piezohydraulic system modeling

A lulnped parameter inodel of the piezohydraulic system was developed and implelnented in

Matlab@. The model was correlated to exqaerimental data and found to accurately predict

the dynamic response of the hydraulic circuit and the unidirectional motion of the output

cylinder.

Efficient power electronics design and fabrication

The power electronics shown in Fignlre 2 were desigmed and built by Dynamic Structures

and Materials, LLC, and tested by Virginia Tech. Both ainplifiers were switching topologies

designed to minimize the internal power dissipation.
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Recommendations for Future Work

Recominendations ff_r fllture work include

A more detailed design of the actuator and pmnping chamber to minilnize mechanical

colnpliance. This will result in and increase in the output force.

• The design and fabrication of piezoelectric active valves to increase tile operating speed

of the system.

Report Overview

The remainder of this report summarizes the modeling of the piezohydraulic actuation systeln

and the tests for correlating the model with the experimental setut). The final section

sununarizes the performance of the benchtop system and discusses filture improvements for

obtaining increased power output.

Efficient Hybrid Actuation using Solid-State ArtllRtoI's 6 

Recommendations for Future Work 

Recommendations for future work include 

• A more detailed design of the actuator and pumping chamber to minimize mechanical 

compliance. This will result in and increase in the output force. 

• The design and fabrication of piezoelectric active valves to incre3.c'ie the operating speed 

of the system. 

Report Overview 

The remainder of this report summarizes the modeling of the piezohydraulic actuation system 

anel the tests for correlating the model with the experimental setup. The final section 

summarizes the performance of the benchtop system and discusses future improvements for 

obtaining increased power output. 



Efficient Hybrid Actuation using Solid-State Actuators 7

3 Lumped Parameter Modeling of Piezohydraulic Sys-

tems

In a lumped paraIneter model, tile fluid system is divided into lumped elements, with each

element having mass and average pararneters such as velocity and pressure. Then, the system

equations are obtained by applying conservation of mass and Newton's Law to tile element

of fluid. This type of analysis is the approach taken by Doebelm (1972) and in similar

derivations found in other texts, and it uses the fluid system elements of fluid resistance,

capacitance (compliance) and inductance (inertance). The derivation of these elements fl'om

the governing equations of a fluid system ix performed in Nasser Nasser (2000), and the

various set of assumptions used to derive the lumped elements of fluid resistance, capacitance,

and inertance are highlighted. Then these elements are used together to model one lump

of fluid. As e:q)lained in detail in Nasser Nasser (2000), the model is expected to represent

the dynamics of the fluid pipeline only when the density changes around an operating point

are small. Furthermore, even though the system is essentially incompressible, the capacitive

effect cannot be neglected as the operation or the excitation of the fluid is performed under

high frequencies. Finally, the model is shomi to accurat, ely represent tile dynamics of the

piezohydraulic system developed.

The fluid elements of capacitance, resistance and inductance are obtained through the

simplification of the governing equations of a fluid system and the comparison of the resulting

equations with an analogous electrical system. In many cases electrical, mechanical and fluid

systems can t)e described with equiwdcnt differential equations arid equivalent or analogous
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Table 1: Force-Voltage Analog;.

Mechanical Electrical Hydraulic

M (mass) L (inductance) // (inductance)

b (damping) R (resistance) R I (resistance)

K (stiffness) 1/C (1/capacitance) 1/C I (1/compliance)

x (displacement) Q (charge) V (volume)

±, (velocity) i (current) q (flowrate)

F (force) AV (voltage) AP (pressure difference)

variables. The result is that analogous systems have similar solutions and it is an additional

tool that can be used to extend the solution of one particular system to all the analogous

systems. This is clone by using the same differential equations along with the corresponding

analogous variables. However, there are two types of analogous systems. The force-current

analogy "relates tile analogous through- and acros>variables of tile electrical and mechanical

systems", as described in Doff and Bishop (1995). The second type of analogy is known as

tile force-wfltage analogy, and it relates the w,'locity and current variables of a system.

Once the elements of fluid resistance, fluid inertance or inductance, and fluid compliance

or capacitance are derived, then they are used to develop an equix"alent electrical circuit to

a lump of fluid. This equivalency is based on the force-voltage analysis, and tile relationship

between the analogous variables is shown in Ta.ble 1.

The analogous variables can then be used to construct equivalent differential equations

among the analogous systems. Starting with the known components of the mechanical

elements of damping, stiffness and inertia (mass), it is possible t,o obtain equivalent equations
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in the electrical and fluid system with the use of tile analogous variables. Tile result is

shown in Table 2. Finally, tile syst.enl analog7 is used to obtain a mechanical system that is

analogous to tile electrical representation of a lump of fluid.

From the derivations performed in Nasser (2000), the fuid elements of capacitance, r_

sistance, and inductance are defined and related to the mechanical variables in the following

IIlanller:

RI

Al 1

B ,

12Sp,/ (1 + D E (l/d).) _ b
71-O 4

"-' ?Tt

.,2 - (2)

rn Kg]
rl_ 3 .._

m2 _ (3)

These fluid elements are obtained through the use of tile continuity equation, tile ener_

equation and tile equation for the conservation of nmmentum. By applying a certain set of

assumptions for each case, each governing equation can be reduced to the form of the set of

hydraulic equations shown in Table 2, where the constants are a flnlcl;ion of pressure (P), and

either the flowrate (q), it,s integral (J q dr), oi" its derivative (dq/dt). These constants are thml

defined as either tile fluid capacitance, fluid resistance or the fluid inductance. It is the fact,

that the capacitance, resistance and inertance are constant that makes a lumped parameter

model linear. It approxiumtes the behavior of the fluid around an operating point. Otherwise,

the analysis of a fluid under general circumstances and not around a specific operating point

would require a model incorporating a varying capacitance resistance and/or inductance.

Using a local control volume, the general conservation of momentun_ equation is
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would require a model incorporating a varyiug capacitance, resistance and/or inductance, 

Using a local control volume, the general conservation of IlIOIUent.lll1l equation is 
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Table 2: System Analogy

Resistance/ Capacitance/ Inductance/

System Damping Stiffness Mass

;I,¢ dXMechanical F == C0 ± F k x F ==..i 7

di
1 ]'idt AV=LetElectrical AV -- Ri AV _.

Hydraulic A P = R I q P = ?!2 .f q dt AP = I I dqdt

0
(4)

and by assuming that density and velocity are uniform within a lump, that changes in density

with t.inle are small around the operating point, and by assuming one dimensional flow, then

the equation can be expressed as:

P.__ - P_. Rl q,,. + -- --
p 1 d%

A dt

where, n stands for the rl th lump in a fluid t)ipetine. Using the definition of fluid inductance

and dropping the subs(:rit)ts for t,he r/h lump, then the previous equation can be stated as:

dq
AP --: Rf q + If -_t (G)

Furthermore, by using tile torce-voltage analogD, displayed in Tal)le 1, the flowrate q is

equiwdent to a current i, and tile pressure difference AP is anah)gous to a voltage (trot) AV.

Then tile t)revious equation l)ecomes tile total voltage drop a,eross a resistor and an inductor

in series (a,s shown in Figure 3a):
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where n stands for the nih lump in a fluid pipeline. Using the definition of fluid inductance 

and dropping t.he subscript.s for the nth lulUP, t.hen the previous equation can he stat.ed as: 

(6) 

Furthermore, by llsmg t.he f()rce-voltage analogy displayed in Table 1, the flowrate q is 

equivalent to a current i. and the pressure clifferenc(~ ~p is analogous to a voltage drop ~ V. 

Then the previous equation becomes the total voltage drop across a resistor and an inductor 

in series (as shmvn in Figure 3a): 
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i = dQ/dt Rf Lf

t-- I
(a)

i_ = dQ_/dt i2 = dQJdt

V1 _, L Vz

_t T _ i_ = dQJdt

(b) -_- -

Figure 3: Model of a lump of fluid: (a) non-capacitive, and, (b) capacitive.

di

/',v = Rs i + L, (7)

This electrical circuit is valid for some fluid systems, where tile storage due to compliance

can be neglected. For example, this is tile case when we consider tile flow of fluid through

a rigid pipe in a system where transients or minor changes fi'om an average output does

not matter. If we remember that the current is analogous to the flowrate, we see that t,he

flowrate in, is equal to the flowrate out (which agrees with the simplified continuity equation

when we assume negligible compliance).

In order to account for the coinpliance in a system, il; is necessary to use a capacitor in

the way it is shown in Figure 3b. This type of configuration has been used to model a lump

of several fluid pipeline systems, such as water pipes, oil ducts, and arteries, among others.

References include Streeter Streeter (1961) and Doebelin Doebelin (1972).

In Figure 3b, tile current out, i2, is not necessarily the same as the current in, il. It could

be lower or even higher, depending oi1 the charging or discharging of the capacitor. Thus, in

tile presence of compliance (modeled with a capacitor) there is some energy storage and/or

release, and therefore tile flowrates in and out of the lump are not equal. Nonetheless, it

is important to realize that this model (Figure 3b) is different than the first one (Fign_re 3)
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This electrical circuit is valid for some fluid systems, where the storage due to compliance 

can be neglected. For example, this is the case when we consider the flow of fluid through 

a rigid pipe in a system where transients or minor changes frolll an average output d.oes 

not matter. If we remember that the current is analogous to the flowrate, we see that the 

flowratc in, is equal to the flowrate out (which a6'Tces with the silllplified cont.inuity equat.ion 

when we assume negligible compliance). 

In order to account for the compliance in a system, it is necessary to use a capacitor in 

the way it is shown in Figure 3h. This typf~ of configuration has been used to model a lump 

of several fluid pipeline systems, such as writ.er pipes, oil ducts, and arteries, among others. 

References include Str~'eter Streeter (1961) and Doebelin Doebelin (1972). 

In Figure 3b, the current out, i 2 , is not necessarily the sallie as the current. in. i j . It. could 

be lower or even higher, depending on the charging or discharging of the capacitor. Thus, ill 

the presence of compliance (modeled with a capacitor) there is sOllie energy storage and/or 

release, and therefore the flowrates in and out of the lump are not equal. Nonetheless, it 

is important to realize that this model (Figure 3b) is different than the first one (Figure 3) 
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in one aspect. The first model is derived from the equation of conservation of monmntmn

and satisfies the continuity equation. The second model results flom the addition of the

capacitive effect in order to simulate the compliance represented by the first term of the

continuity equation. In addition, and as mentioned earlier, recall that the derivation of the

fluid element of capacitance had a different set of assumptions than those used to obtain the

fluid resistance and inductance (refer to Nasser (2000)). Thus, the result is a model that

approximates the lump of fluid and the fluid dynamics in a pipeline.

Following the model of a lump of fluid (Figure 3b) then a hydraulic pipeline can be

modeled as shown in Figure 4. The current source represents a flow source, and it is analogous

to the case of an oscillating piston (which defines the flowrate through the pipeline).

R1 L1 Ro Lz R:4 L:,

ooo

Figure 4: Analogous electrical model of a fluid pipeline.

The easiest way to analyze this circuit (for programming purposes) is to apply Kirchoff's

voltage law (KVL). By applying KVL to each loop and expressing each wfltage drop in terms

of the charge, Q, then the following set of equations is obtained:

d2Ol _ dQ1L1 d_- ? + (Q, -- (_2) -[- RI--_--- : 0 (8)

d2Q,) 1 1 d(22
+ . - - - (9)
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The easiest way to analyze this circuit (for programming purposes) is to apply Kirchoff's 

voltage law (KVL). By applying KVL to each loop and expressing each voltage drop in terms 

of the charge, Q, then the following set of equations is obtained: 

(8) 

(9) 
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Ld2Qa _ 1+ (Q:_ - Q,,) + _(Q:_ - Q,_) + R:_ _t :: 0 (10)'37

Note that the current source, which represents the flow source, appears ill tile equation as the

term dQ1/dt. By using the force-, voltage analo_r shown in Table 1 it is possible to write an

equivalent set of mechanical equations in terms of the elements of mass, spring aim damping:

ml _ + kl (xl - :r2) + bl % ....0 (11)

(12)

(13)

Then, by inspection of these equations, it is possible to construct a mechanical system that is

analogous system to the electrical circuit model shown in Figure 4. Tile analogous mechanical

system is shown in Figure 5.

Note that the input to the. system, which ret)resents the, flow source, is ±I, the velocity

of the first lump (flom the Inechanical system standpoint), tlecall that fl'om the forc_

voltage analogy, a given flowrate is analogous to a given velocity in a mechani(:al system.

Nonetheless, once the mechanical system is defined, then the int)ut to the system may also be

ext)ressed in terms of a dist)lacement , such as zl, instead of the velocity, a:l. Also n()te that

if further lumt)s are to be added, then the next mass would be. coupled to tile stiffness ka.

Otherwise, tile spring corresponding to the last lump (in this case the 3 _'zlump) would be also

coupled to ground. Thus Figllre 5 represents a Ine(:hanical hlmp(xt t)aranleter model of a fluid

pil)elilm, with the elenlents of stiffness, dalnping and mass related to the electri(:al analogies

of capacitalw, e, resistance and inductance, respectively. Therefore, fiom equations (1), (2)
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and (3), and fl'Olil tile force-voltage analogy shown in Table 1, tile analogous stiffness,

damping and mass for each lump of fluid is defined as:

1 AB
k = A 2 -

c� 1

b = A 2 R/ 8 rrp. (1 + D Z (l/d)eq)

m = A 2 I/= pAl , (16)

Note that for equations (2) and (15) an area of A = 4 D2 has been assumed.

In summary tile definitions stated in the set of equations (14), (15) and (16), along with

tile set of differential equations (11), (12) and (13), that describe the mechanical syste.m

shown in Figure 5, represent a three-lump model of the fluid system shown in Figmre 6.

Piezoelectric Actuator Model

For this work we will assume that the piezoelectric actuator is linear, that tile electric

field is applied only along one axis, and that the elongation of the stack is occuring in the

same direction as the applied electric field. Under these assumptions, the electromechanical

dxl/dt ____o_..._ _-t_ xl kl _ t_xz _-I_ x3

O0 0

Figme 5: Analogous mechanical model of a fluid t)ipeline.
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The rearranged constitutive equation (19) relates tile force exerted by tile piezo stack and

its displacement to the voltage applied on it. Then equation (17) relates these parameters to

the resulting charge. In fact, these equations represent a voltage controlled stack, meaning

that. it is controlled with a voltage input. It is the most general form of these expressions.

Nonetheless, for a current controlled or a charge controlled system it is necessary to express

equation (19) in terms of tile charge across the piezo stack, Qp_t. In order to do so, it is

useful to solve equation (17) for the voltage across the piezoelectric stack:

l/_t := Qp_'' - :to F_,_t (22)

Then by the substituting this expression into equation (19):

l_pzt (Qp_, :r,,Fp_,)
. 2

k,,:r.,, 1_,,:<, Fp_t k.
G_-, <)p_' + _ - """'

and fluther manipulation yields to:

(23)

(24)

where the term C.:t. - ka:a%2 is also known as the blocked capacitance of the piezoelectric

stack, or Ct,l_:a. Also, fllrther substitution of the coefficients F1 and F,e tor the coefficients of

the previous equation, will reduce tile expression to:
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Then by the substituting this expression into equation (19): 

(23) 

and further manipulation yields to: 

(24) 

where the t.erm Cpz1 - ka:r~ is also known as t.he hlocked capacitance of the piezoelect.ric 

stack, or C/)LA:d' Also, furt.her substitntion of the coefficients F1 and F2 for the coefficient.s of 

tlw previons equation, will reduce t.he expression to: 
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(25)

where

vl -- c_z,_a:o.2o ,

k_Cp_t [N] (27)

Thus, equations (25) and (22) represent the set of constitutive equations for a dmrge

controlled piezoelectric stack. Expressing the set of constitutive equations in terms of the

force and the input variable (as done in equations (17) and (18)) then the charge controlled

equations for a piezoelectric stack become:

*"_' \c,,_,] o,,:,- g_ ) u,,zt (29)
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(25) 

where 

FI 
ka :.ro [~J (26) 

Opzt - ka x~ 

F2 
ka Opzt [:J (27) o k :1-2 pzt - 'U () 

Thus, equations (25) and (22) represent the set of constitutive equations for a charge 

controlled piezoelectric stack. Expressing the set of constitutive equations in tenus of the 

force and the input variable (as done in equations (17) and (18) ) then the charge controlled 

equations for a piezoelectric stack become: 

( 
1 ) ( :r() ) -0 Qpzt - -0 Fpzt 
pzt pzt 

(28) 

(29) 
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4 Piezohydraulic System Modeling

Tile lmnped parameter modeling technique developed in tile previous section is used to

model two operating conditions for tile piezohydraulic actuation system. The first operating

condition is called one-,sided operation. In this operating condition one of tile active valves is

closed and the other is open, allowing fluid to flow in only one direction through the hydraulic

circuit. Exciting the piezoelectric actuator with an oscillatory input in this configuration

results in oscillatory output of the hydraulic cylinder. One-sided operation is used to verify

the parameters of the piezohydraulic model. Tile second operating Coildition is called two-

stage operation. Two-stage operation occurs when the opening and closing of the actiw_

valves are timed with respect to the piezoelectric motion to produce unidirectional motion

in the hydraulic cylinder. Tile direction of the motion is determined by tile phasing of the

valves relative to the piezoelectric actuator motion. The numerical models for these two

operating conditions will be described in the following sections.

The lumped parameter techniques described in the previous section are used to deter-

mine a mass-spring-damper model for each component of tile piezohydraulic syst.em. The

individual conlt)onents are the stack and tmnq)ing chamber, side A of the hydraulic circuit,

side B of tile hydraulic circuit, and the hydraulic end affector. Lulnped parameter modeling

of each COml)onent yields a second-order equation of motion, as listed below:

Stack and Chalnber

SideA

SideB

MA:_) + Baia + KAZA 0

MB:/)_ + BRx'S + KBx_ 0

(30)

End Affector M, ix_;.f - 0
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This set, of equations can be combined into one nmtiix expression

Twhere k = xsc

(31)

xTA x T xYl] r At this point in tile analysis the equations are conlpletely

uncoupled. The coupling between the different components is introduced through a trans-

formation into a reduced set of coordinates. Defining the coordinates x as the coordinates

of the coupled system, we can write a transformation between the x and k as

= T.r (32)

where T is the t,ransforlnation matrix between the uncoupled coordinates and the coordinates

of the coupled system. As such, the order of x will be less than the order of _ aim the

transformation will be a nonsquare matrix. The equations of motion for tile coupled svstem

can be found by applying the coordinate transformation,

M_ + BJ: + Kx - FQ_,_ (33)

where M - TTA;IT, B -7q'f3T, K TTI(T, and F Tr/_. A complete derwation of this

procedure is included in Nasser Nasser (2000).

Modeling of the One-Sided Operation

One-sided operation is defined as tile case in whidl one wdve is ahvays open and tile other

valve is always closed. In this mode of operat, ion, the boundary condition is reflected in tile

translorlnation matrix T and a set of secon(l-order differential equations like those shown in

equation (33) are used to siImllate the motion of the en(l a.ff(_ctor to an input, waveform. As
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discussed in the previous section, the amplifier electronics for the piezohydraulic system are

current controlled. For any input flequency, the current across the stack is a constant wdue

for the first half of the period and zero for the second half of the period. Thus, the waveforin

for the charge is a triangular wave at the same frequency.

Simulations are performed by placing the second-order equations into first-order form

[0 ,1[0]z; _AI_IK _AI_IB z + M_IF Qv_t

y = Cz + DQv_t

(34)

where y is a set of outputs, C is the output matrix, and D is a direct transmission matrix

between the input charge and the outputs.

Modeling of the Two-Stage Operation

The two-stage cycle operation uses two different one sided models in order to sinmlate tile

operation of tile t)iezohydraulic unit. Assuming that for the firsl; stage valve B is ot)en while

valve A is closed, then the corresponding one sided model (Afodel B) ix develot)ed and

excited. Afterwards, a second one sided model is developed for the second stage (Afodel A),

where valve A is open and valve B is closed. Notice that the models used in each stage have

the same strllCtUte but they differ fl'om one other. Thus, tile set. of states in the vector a_"

for the first stag(; model is different than those for the second stage model. The input charge

signal (which is proportional to tile displacement of the piezoelectric stack) is also considered

in two stages, one for the forward or forward stroke, and the ()ther for the t)ackward stroke.

After two-stages, one cycle is comt)leted. By this time, tile piston of the output cylinder

has moved an ainount Am, and therefore the volume of fluid contained in each side ()f the
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operation of the piezohydraulic unit. Assuming that for the first stage valve B is open while 

valve A is closeci, then the corresponding one sided model (Af ndel B) is developed and 

excited. Afterwards, a second one sided model is developed for the second stage (Af ndel A), 

where valve A is open and valve B is closed. Notice that the models used in each stage have 

the smne structure but they differ from one other. Thus, the set of states in the vector L 

for the first stage model is different than those for the second stage model. The input charge 

signal (which is proportional to the displacement of the piezoelectric stack) is also considered 

in two stages, one for the forward or forward stroke, and the other for the backward stroke. 

After two-stages, OIle cycle is completed. By this time, the piston of the output c.)rlinder 

has moved an amount Llx, and therefore the volume of fluid contained in each side of the 



Efficicnt Hybrid Actuation using Solid-Statc Actuators 21

cylinder changes in proportion to this am(rant. Thus, after one cycle, tile geometry of the

lurnps of fluid contained within the cylinder is updated and then the elements of mass,

stiffimss and damping are calculated again. This updating could be done after every stage,

but it, was not, implemented in order to avoid further complexity in the prograln. Thus, the

time-variance of the fluid system is modeled with a time-in'variant lumped model, where the

coefficients of the matrix equations change after one full cycle. Furthermore, the analysis of

tile dynamics of the entire systeln at, both extreme cases, when the piston is at one end of

the cylinder and then at the other end, revealed no considerable change. The poles, which

represent the roots of the characteristic equation or the eigenvalues of the A matrix, are

a good indication of the dynamics of tit(' system. When analyzed for both of the cases

mentioned previously, their change in magnitude was less than 1%. This indicates that even

though the dynamics associated with the cylinder itself do change (due to the displacenmnt

of tile piston), tile ow;rall effect, oil the entire system coupled together is small and can be

neglected.

Finally, since each stage consists of two different models, and therefore a different set of

states, then at the 1)eginning of each simulation for each state, a zero initial condition is used.

Therefore, the initial condition response has been neglected and thus only tile forced response

is taken into account. This approach does not affect the correct prediction of the two-stage

operation with a double-ended cylinder. The experiInental measurements showed that tile

linear dist>lacelnent of the hydraulic cylinder does not vary with time nor d()es it depend

on tile starting position of the piston itself. This is not the case though, for single-ended

cylinders, for which flnther analysis is performed in Nasser Nass(:r (2000).
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lumps of fluid contained within the cylinder is updated and then the elements of mass, 

stiffness and damping are calculated again. This updating could be done after every stage, 

but it was not implemented in order to avoid further complexity in the program. Thus, the 

time-variance of the fluid system is modeled with a time-invariant IUIIlped model, where the 

coefficients of the matrix equations change after one full cycle. Furthermore, the analysis of 

the dynamics of the entire system at both extreme cases, when the piston is at one end of 

the cylinder and then at the other end, revealed no considerable change. The poles, which 

represent the roots of the characteristic equation or the eigenvalues of the A matrix, are 

a good indication of the dynamics of t.he system. When analyzed for bot.h of the cases 

mentioned previously, their change in magnit.ude was less than 1 %. This indicates that even 

t.hough t.he dynamics associat.ed wit.h t.he cylinder itself do change (due to the displacement 

of the piston), the overall effect on the entire system coupled t.ogether is slllall and can be 

neglected. 

Finally, since each stage consists of two different. models, and therefore a differcnt set of 

states, then at the beginning of each simulation for each st.ate, a zero initial condition is used. 

Therefore, the initial condition respOIlse has been neglected and thus only thc forced response 

is taken into account.. This approach does not affect the correct predict.ion of t.he two-stage 

operatioIl with a double-ended cylinder. The experimental measurements shmved that the 

linear displacement. of t.he hydraulic cylinder does not vary wi t.h t.ime nor does it. depewl 

on t.he st.art.ing position of the pist.on itself. This is not the case t.hough, for single-ended 

cylinckrs. for which fmther analysis is performed in Nasser Nasser (2000). 
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5 Numerical Analysis and Experimental Correlation

Two sets of experiments were performed to correlate the smmlations of tile piezohydraulic

system with experimental results. The model of one-sided operation was verified by excit-

ing tile stack with an oscillatory signal and measuring tile displacen,ent of tile hydraulic

cylinder. The measured displacement was compared to tile displacelnent predicted by the

numerical simulation. The second set of experiments consisted of a two-stage operation of

the piezohydraulic system for the purpose of veri_ing the ability of tile model to predict the

unidirectional motion of the hydraulic cylinder. Again, the displacement of the cylinder was

measured and comt)ared to tile displacement predicted by the numerical model.

One-sided Operation

Tile model of one-sided operation was verified by exciting the piezoelectric stack with oscil-

lating waveforms of varying fiequency and comparing tile predicted response of the cylinder

with its measmed rest)onse. Current limitations on tile amplifier precluded excit, ations above

100 Hz, therefore tile h'equency range of the studies was 5-100 Hz.

Figure 7 is a comparison of the measured and simulated response for 10, 50, and 90 Hz. At.

low fl'equencies we see that tile response is t)redominantly a triangaflar wave with some ripple

due to noise and external disturbances. We also see that the model accurately predicts 1)oth

the shat)e and tile peak-to-peak amplitude of the cylinder nlotion. Increasing the frequency

to 50 Hz produces a distorted triangnflar wave. Tile correlation t)etween tile experimental

and sinmlated data is still good but the model is not as accurate at this fl'equency as it
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5 Numerical Analysis and Experimental Correlation 

Two sets of experiments were performed to correlate the simulations of the piezohydralllic 

system with experimental results. The model of one-sided operation was verified by excit

ing the stack with an oscillatory signal and measuring the displacement of the hydraulic 

cylinder. The measured displacement was compared to the displacement predicted by the 

numerical simulation. The second set of experiments consisted of a two-stage operation of 

the piezohydraulic system for the purpose of verifying the ability of the model to predict the 

unidirectional motion of the hydraulic cylinder. Again, the displacement of the cylinder was 

measured and compared to the displacement predicted by the numerical model. 

One-sided Operation 

The model of one-sided operation was verified by exciting the piezoelectric stack with oscil

lating waveforms of varying frequency and comparing the predicted response of the cylinder 

with its measured response. Current limitations on the amplifier precluded excitations ahove 

100 Hz, therefore the frequency range of the studies was 5-100 Hz. 

Figure 7 is a comparison of the measured and simulated response for 10, 50, and 90 Hz. At 

low frequencies \ve see that the response is predominantly a triangular wave with some ripple 

due to noise and external disturbances. We also see that the model accurately predicts hoth 

the shape and the peak-to-peak amplitude of the cylinder motion. Increasing the frequency 

to 50 Hz produces a. distorted triangular wave. The correlation hetween the experimental 

and simulated data is still good but the model is not as accurate at this frequency as it 
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is at 10 Hz. The distortion ill the waveform is attributed to tile filtering effect of the

hydraulic circuit between the piezoelectric stack and tile hydraulic cylinder. The hydraulic

line between tile stack and tile cylinder forlns a mechanical flter which attenuates higher

frequency components of the input signal. This conchlsion is supported by the results of

oscillating tile stack at 90 Hz. At 90 Hz tile displacement of the cylinder is predominantly

sinusoidal due to the filtering of the higher harmonics of tile input signal by tile hydraulic

circuit. The inodel accurately predicts this transition as well as tile peak-to-peak amplitude

of tile output. These results demonstrate that tile hnnped paralneter Inodel is able to

accurat, ely predict tile steady-state motion of the piezohydraulic systenl. Differences between

tile silnulated and measured response ea'e attributed to small inaccuracies of tile model

parameters, leading to errors in predicting tile frequency response of the hydraulic circuit.

Tile current experimental setup does not allow a frequency sweep with a sinusoidal excitation,

therefore it is not possible to measure the resonance flequency of tile piezohydraulic system.

Frequency responses obtained front the model indicate that tile resonance occurs at, 158 Hz

and the bandwidth of t.he actuator is approximately 240 Hz.

Two-Stage Operation

Tw(_stage operation was verified by operating tile piezoilydra,ulic systeln with the active

valves phased relative to tim excitation of the piezoceramic actuator. The displacement of the

hydrmllic cylinder with no load was measured aim compared to the distflacement predicted

by tile model. Tile same parameters that were used to model one-sided operation were used

to model the unidirectional motion of the cylinder. Figure 8 is a plot of the displacement of
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IS at 10 Hz. The distortion in the waveform is attrihuted to the filt.ering effect. of t.he 

hydraulic circuit. between t.he piezoelect.ric st.ack and t.he hydraulic cylinder. The hydraulic 

line bet.ween the st.ack and the cylinder forms a mechanical filter which at.tenuates higher 

frequency component.s of the input. signal. This conclusion is supported by the results of 

oscillat.ing the st.ack at 90 Hz. At. 90 Hz the displacement of the cylinder is predominantly 

sinusoidal due to t.he filtering of the higher harmonics of the input signal by the hydraulic 

circuit. The model accurately predicts this transition as well as the peak-to-peak amplitude 

of the output. These results demonstrate that. the lumped parameter model is able to 

accurately predict the steady-state motion of the piezohydraulic system. Differences between 

the simulated and measured response are attributed to small inaccuracies of the model 

parameters, leading t.o errOl'S in predicting the frequency response of the hydraulic circllit.. 

The current. experimental setup does not allow a frequency sweep with a sinusoidal excitation, 

therefore it is not. possible t.o measure the resonance frequency of the piezohydralllic system. 

Freqllency responses obt.ained from the model indicate that. t.he resonance OCCllrs at. 158 Hz 

ami t.he bandwidth of the actuator is approximately 240 Hz. 

Two-Stage Operation 

Two-stage operation was verified by operating t.he piezohydraulic system with the active 

valves phased relative to t.he excitation of the piezoceramic actuator. The displacement of the 

hydraulic cylinder with no load was measllred and compared to the displacement predicted 

by t.he model. The same paramet.ers that. \vere used t.o model one-sided operat.ion were llsed 

to model t.he ullidirectional motioll of the cylinder. Figure 8 is a plot. of t.he displacpment. of 
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movenmnt of the cylinder is almost completely canceled by the reverse motion caused by

wflve overlap.

Tile net result of valve overlap is a decrease in tile operating speed of the hydraulic

cylinder. Figure 10a is a plot of tile measured speed of tile hydraulic cylinder as a function

of valve operating frequency. In the absence of valve overlap the speed would increase

linearly with valve operating frequency. As Figure 10a demonstrates, the cylinder velocity

does exhibit a linear increase fiom 1 Hz to 4 Hz. Above 4 Hz tile cylinder speed begins to

decrease due to overlap in the valves during two-stage operation. Tile inaximunt speed of

180 _m/sec is achieved at 6-7 Hz. A sharp decrease occurs at 8 Hz due to springback effect,

illustrated by Figure 91).

Tile question remains as to whether the lumped parameter model can accurately predict

tile effects of valve overlap on the operating speed of tile actuator. Here we introduce a model

of valve overlap that effectively reduces the time that tile stack is actuating tile hydraulic

cylinder. Valve overlap is modeled as a hulling of tile charge input during the transition of tile

wflve fl'om open to closed c,onfigmration. Figure 10b is a plot of tile predicted operating speed

using the hnnped parameter model that incorporates the effect of valve overlap. Colnt)aring

tile result to Figure 10a demonstrates that the lumped parazneter model with valve overlap

accurately predicts the decrease ill cylinder speed as a fimction of valve fi'equency. Tile curves

are parameterized ill terms of the transition tittle associated with tile valve. A parametric

study indicates that a transition time on tile order of G0 nlilliseconds accurately predicts the

decrease in operating speed for valve fl'equencies above 6 Hz. Tile model does not accurately

model tile sharp decrease that occurs when the valve fl'cquency increases to 8 Hz. This
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Illovement of the cylinder is almost completely canceled by the reverse motion caused by 

val ve overlap. 

The Ilet result of valve overlap is a decrease in the operating speed of the hydraulic 

cylinder. Figure lOa is a plot of the measured speed of the hydraulic cylinder as a function 

of valve operating frequency. In the absence of valve overlap the speed would increase 

linearly with valve operating frequency. As Figure lOa demonstrates, the cylinder velocity 

does exhibit a linear increase from 1 Hz to 4 Hz. Above 4 Hz the cylinder speed begins to 

decrease due to overlap in the valves during two-stage operat.ion. The maxiIllum speed of 

180 pIn/sec is achieved at 6-7 Hz. A sharp decrease occurs at 8 Hz due to springback effect 

illustrated by Figure 9b. 

The question remains as to whether the lumped parameter model can accurately predict 

the effects of valve overlap on the operating speed of t.he actuator. Here we introduce a model 

of valve overlap that effectively reduces the time that the stack is actuating the hydraulic 

cylinder. Valve overlap is modeled as a nulling of the charge input. during t.he transition of t.he 

valve from open to closed COnfi6'lUatioIl. Figure lOb is a plot of t.he predicted operating speed 

llsing the lumped parameter model that incorporates the effect of valve overlap. COIllparing 

the result to Figure lOa demonstrates that the lumped parameter model with valve overlap 

accurately predicts the decrease in cylinder speed as a timction of valve frequency. The curves 

are parameterized in t.erms of the transition time associated with the valve. A parametric 

st.udy indicates that a transition time on the order of GO Illilliseconds accurately predicts the 

decrease in operat.ing speed for valve frequencies above G Hz. The model does not accurately 

model the sharp decrease that OCCllrs when the valve frequency increases t.o 8 Hz. This 
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6 Final Results

The lumped parameter model of the piezohydraulic system is able to accurately predict

the steady-state motion and unidirectional motion of the output cylinder. Modeling the

hydraulic, mechanical, and electromechanical components separately and combining them

via a coordinate reduction technique is an efficient means of developing the coupled equations

of motion. Tile model is correlated to ex-perimental results for oscillatory motion of the

hydraulic cylinder with one valve closed and one valve open. These results demonstrate

that the model accurately predicts tile filtering effect of tile hydraulic circuit on the output

displacement of the hydraulic cylinder. The model is also verified using the piezohydraulic

system for unidirectional actuation by phasing the active valves relative to tile motion of

the piezoelectric actuator. Accurate predictions of the nmximmn speed (180 pm/sec) and

maximum operating frequency (7 Hz) are determined by incorporating a model of valve

overlap into tile coupled equations of motion. The transition time associated with the active

valves was determined to be tile limiting factor in achieving higher output velocities.
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6 Final Results 

The lumped parameter model of the pie?;ohydranlic system is ahle to accurately predict 

the steady-state motion and unidirectional motion of the ontput cylinder. IVlodeling the 

hydraulic, mechanical, and electromechanical components separately and combining them 

via a coordinate reduction technique is an efficient means of developing the coupled equations 

of motion. The model is correlated to experimental results for oscillatory motion of the 

hydraulic cylinder with one valve closed and one valve open. These results demonstrate 

that the modd accurately predicts the filtering effect of the hydraulic circuit on the output 

displacement. of the hydraulic cylinder. The model is also verified using the piezohydraulic 

system for unidirectional actuation by phasing the active valves relative to t.he Illation of 

the piezoelectric actuator. Accurate predictions of the rnaxinmm speed (180 pm/sec) and 

maximum operating frequency (7 Hz) are determined by incorporating a model of valve 

overlap into the coupled equations of motion. The transition time associated with the active 

valves \vas determined to be the limiting factor in achieving higher out.put velocities. 
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