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ABSTRACT: The Project Integration Architecture (PIA) implements a flexible, object-oriented, wrapping architecture

which encapsulates all of the information associated with engineering applications. The architecture allows the progress

of a project to be tracked and documented in its entiret3_ By being a single, self-revealing architecture, the ability to

develop single tools, for example a single graphical user interface, to span all applications is enabled. Additionally, by

bringing all of the info#vzation sources and sinks of a project into a single architectural space, the ability to transport

it!fom_ation bem,een those applications becomes possible. Object-encapsulation further allows information to become in

a sense self-aware, knowing things such as its own dimensionality andprovidingfunctionality appropriate to its kind.

1 Introduction 1.1 Goals

In the late 1980's, the Integrated CFD and Experiments

ICE I project [ 1, 2] was carried out with the goal of provid-

ing a single, graphical user interface (GLrl) and data man-

agemcnt environment for a variety of CFD codes and re-

laied experimental data. The intent of the ICE project was
Io ea,_" the difficulties of interacting with and intermingling

these disparate information sources. The project was a suc-
ces_ on a research basis; however, on review it was deemed

inappropriate, due to various technical limitations, to ad-

vance the effort beyond the successes achieved.

A re-engineering of the project was initiated in t996. The
effort was first renamed the Portable, Redesigned Inte-

grated CFD and Experments (PRICE) project and then, as

the _'ide applicability of the concepts came to be appre-

ciated, the Project Integration Architecture (PIA) project.

Two key re-engineering decisions were made: the C lan-

guage used by the ICE project would be abandoned in favor
of the now-available C++ object-oriented extension to that

language and the graphical user interface would be elimi-
nated as a product element of the project.

During the intervening years, work has proceeded and

an operational demonstration of the PIA project has been
achieved.

Put in simple terms, the basic goal of the PIA effort is to

capture in its entirety the usage of any engineering applica-

tion in a single, useful, well-defined form. This capturing

is not limited to the simple output of the application itself,
but further includes coordinating information and the engi-

neer's own insights into the meaning of the information.

The nature of an 'engineering application' is, by project

design, nebulus: it is considered to be any computer-
realized 'thing' which provides or generates useful infor-

mation about an engineering project. This may include

CAD information, design code predictions, experimental

data, engineering analysis and simulation, and more.

By bringing all of the information of the engineering pro-
cess into one architectural design, a number of advantages

are expected to (and, it is believed, do) accrue.

1. The information about the information (referred to in

some conceptions as the meta-data) is encapsulated
with the information itself.

2. A common tool set for the use of engineering applica-

tions is possible.
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3.

4.

.

6.

.

Browsers and search engines may be implemented to
peruse information in detail and convert it into infor-

mation in general for end consumers.

Object encapsulation allows information to become

self-aware. For example, a measurement may know

its dimensionality and provide its value appropriately

converted to whatever system of measurement a re-

quest is made in.

By wrapping every application in a well-defined ,ar-

chitecture, it is now possible to code the knowledge to

acquire information automatically from other applica-

tions. Such coded knowledge is based upon the kind

of information desired, rather than upon the applica-

tion generating that -kind of information.

Wrapped applications coded to obtain information

based upon its kind may then be combined in a di-

rected application graph to build, in effect, super-

applications. Applications of differing fidelities and

disciplines may be mixed together as appropriate to
the project.

The building of super-applications enables project-

wide optimization, sensitivity analysis, and other such

techniques to be conducted.

1.2 Self Revelation

Perhaps the key technology that enables the goals above is
that of self revelation, the ability of a thing to reveal to oth-

ers its own nature. Such a capacity can be implemented by

many different techniques; however, it is a natural element

of object-oriented technology.

1.2.1 Self Revelation of Kind

The revelation of kind identifies the essential character of

the revealing entity. In the object-oriented implementation
of PIA, this sets expectations as to the kind of information

and functionality a particular object has.

The revelation of kind is effected in two ways: an inter-

rogative form and a declarative form. In the interrogative

form, a predicate of kind is posed to the object and either
affirmed or denied. In the declarative form, an inquiry is

made of the object and a simple coded value is returned

declaring the type of the object.

Because of the derivational nature of object technology,

both of these revelational forms support the concept of

depth. That is, an object may be of a particular kind at
some derivational depth but, because of further derivation,

may not appear to be of that kind on its surface. The ex-

amination of such layers of meaning is referred to (within

this project at least) as ecdysiastical revelation. (From the

Greek ekdysis, from ekdyein, to get out of, strip off.)

1.2.2 Self Revelation of Content

The revelation of content identifies the extent to which ex-

pectations based upon the revelation of kind are, in fact,

fulfilled. In such situations the expectation of content is

nebulus by design and a well-defined method of further ex-

position is defined.

As an example of self revelation of content, consider the

PacAppl application class which is to be discussed shortly.

That class is defined has having a map of PacOp-derived

operations objects; however, the map may be empty and, if

it is not empty, it is unpredictable exactly which operations

objects will, in fact, populate it. Thus, an expectation of

content is defined, but the precise extent of content is left

open with a defined method for further exploration.

2 Application Architecture

Building upon the concept of self revelation, an application

architecture as depicted in Figure 2.1 has been devised.

An application presented in the image of PIA begins with

a central application object, labeled PacAppl in the upper

center of the figure, which is the root structure from which

all further components emanate. Four principal compo-

nents are currently provided by the PacAppl object:

1.

.

.

4.

A set of operations that the application is willing to

perform,

A mass of data which the application currently con-
tains,

A structure by which the contained data is identified,
and

An ecdysiastical sorting of the information-bearing
objects in the application.

The first three components are depicted in the figure in the

upper left, the upper central to lower left diagonal, and the

central right, respectively. The fourth component is not de-

picted due to its structural complexity. Each of these com-

ponents is taken up in its own subsection below.
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Figure 2.1: PIA Application Architecture

2.1 Application Components

2.1.1 Parameter Configurations

Parameter objects (the objects which hold application data

of all forms) are held in configuration objects, labeled Pac-

Cfg in the figure. A configuration is considered to be a

distinct set of input and output data for the application.

A configuration is further considered to parallel the vari-

ous investigated designs of an engineering project so that

synchronization of the engineering process is maintained

across the entirety of the project.

Configurations are arranged as an n-ary tree and inherit
missing parameters from their ancestors, the most immedi-

ate ancestor taking precedence for a given parameter. Thus,

repetition of unchanging parameters is avoided.

Parameters often exist in structural forms which may be re-

peated within an application. To avoid the needless replica-

tion of unchanged parameters simply to indicate parametric

structure, individual parameters are identified by a fully-

qualified name in which their structuralization is encoded.

2.1.2 Parameter Identification

The parameter identification structure (built of objects be-

ginning with the label Pid in the figure) is the mechanism

by which the structuralization of parameters is revealed.

This parameter identification element of the application

architecture is, again, arranged as an n-ary tree. The fully-

qualified name of a parameter is developed by concatenat-

ing the names of each of the tree elements leading to the

final identification of that parameter.

2.1.3 Operations

Applications not only hold data, but usually operate on that

data, turning inputs into outputs. To reveal these opera-

tions, the architecture provides for a map of operational

objects (labeled Op followed by a name in the upper left

of Figure 2.1) sorted by operation name.

Some operations may require specific interaction with
the researcher. For this purpose, a GUI call-back class,

PacGUI, is defined which provides a known set of inter-

actions. Such an object must be supplied to each operation

each time that operation is invoked.

2.1.4 Object Sorting

A fourth structure has been defined and implemented, but it

is not shown in the figure due to its complexity. The struc-

ture provides a ecdysiastically-exhaustive sorting of objects

of the application by their derivational heritage. The need
for this sorting arises because applications are permitted to

specialize parameters beyond the level that is well known.

By means of this sorting, applications seeking particular
parameters by their well-known types may be quickly di-

rected to those parameters, even though those parameters
are customized at their derivational surface.
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2.2 Operating Context

The parameter identification and application operation ob-

jects both operate in the context of a selected parameter

configuration, a concept shown in the figure by the sweep-

ing curves from those kinds of object to a single config-

uration. These object kinds offer IsVisible and IsEnabled

member functions, respectively, which indicate whether or

not the functionality is active within the context of the se-

lected parameter configuration. This feature allows, for ex-

ample, the internal parameters of an optional analysis com-

ponent to be made invisible when that component has been

disabled in a particular configuration, even though those

parameters might exist in, or be inherited by, that configu-
ration.

3 The Base Object

Vet3 ' nearly all of the object classes involved in implement-
ing the PIA application architecture described above are de-

rived from a common base class, PacBOhj. Among other

things, this base class provides several key features:

1. The ability to be described,

2. The ability to transmit declared events, and

3. The ability to traverse upward through the application
slructure.

3.1 Descriptive Capabilities

The abilitx to be described brings a good deal of useful

function to the entirety of the architecture. A wide variety

of dc,,criptions, such as access controls, descriptive texts,

dmicnsionality, and others, are implemented. Indeed, vir-

tualb any sort of descriptive element can be devised and

added to the repertoire. Because not all objects will nec-

essarily have descriptive elements and certainly not all ob-
jects will have all descriptive elements, the descriptive sys-
tem is one of minimal overhead.

The only limitation of the descriptive system is that, within

a descriptive set, at most one instance of any particular con-
trolling descriptive type is permitted. This limitation is off-

set by the fact that the descriptive system is implemented
in a layered, hierarchial manner in parallel with the deriva-

tional class hierarchy and that distinct descriptive sets may

exist at each such level. Within this descriptive hierarchy,

the top-most description (that is, the description of the most

derived class level) of any kind is considered to be the pre-

ferred description; however, the facilities exist to reveal the

entirety of the descriptive hierarchy should it be desired.

3.1.1 Engineering Logs

A multi-line, descriptive text form is provided as the possi-

ble basis of an engineering log facility. Here an indefinite,

expandable number of text string elements in an ordered

list can be associated with any PacBObj derived object.

3.1.2 Change Histories

A change history descriptive form is provided. It provides

an implicitly time-stamped, ordered, multi-line descriptive

form. This form is implicitly used by the PacPara (pa-
rameter) base class to record parameter modifications as

previous value texts. All currently implemented parame-

ter classes utilize this capability in their corresponding Set-
Value services.

3.1.3 Access Controls

An access control descriptive complex is implemented.
Any PacBOhj-derived object can attach access control de-

scriptions throughout its descriptive hierarchy. This allows

per-user read, write, execute, and delete controls to be ap-
plied on an object-by-object basis.

3.2 Declared Events

A simple subscribe/pubfish event facility is provided by the

PacBObj base class. This facility allows utilizing entities

to attach one or more objects of PacEvent derivati0n to
a PacBObj-derived_object_ The PacEventbase _c!ass d_e-

finesa number of different event types-but, asabase Class,
provides only a default response should the event be de-

clared. The PacBObj base class implements correspond-
ing event functions which, if invoked, will identify each

attached event object and transmit the event declaration to
it.

Utilizing code is responsible for developing and attaching

derived event class forms which do something meaningful
should an event be declared. There is no artificial limita-

tion on the number of event objects that may be attached

to a particular PacBObj object, nor upon the number of

PacBObj objects that may be attached to a particular event
object.

3.3 Upward Reference

The basic direction of the application architecture is down

from encompassing components to more specific compo-

nents. In implementation, though, it is frequently necessary
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totraverseintheoppositedirection.Thisneedismetbya
pointermemberandsupportingcodeinthePacBObjclass
whichreferencesthenexthigherlevelelementoftheappli-
cationstructure.Implementedfunctionalityallowstraver-
salofthisupwardchainofreferenceuntilanobjectof a
particular,specifiedkindis found.Thus, code can be in-

sensitive to the exact placement of its presenting object in
the architectural hierarchy.

4 Parameters

Information is encapsulated in a derivationally-rich set of

parameter objects. The parameter derivational structure is
based upon the PacBObj base class and, thus, all of the

capabilities of that foundation are inherited.

4.1 Dependent Parameters

The parameter base class utilizes the directed graph capa-

bilities inherited by it to implement a dependent parameter

mechanism. Each successor (dependent) in such a graph is

informed of any change in any of its predecessor (benefac-

tor) parameters. This dependency mechanism is accounted

for during the act of parameter replication, causing the
replication of dependent parameters as needed.

4.2 Infusion of Semantic Meaning into Parameter Ob-

jects

The self revelation of kind mechanism is used by the pa-

rameter object hierarchy to infuse semantic meaning into

parameters [3]. The first derivations of parameter ob-

jects specialize parameters by their basic structural forms;

scalar, vector, matrix, organizational, and the like. Further

derivation then associates an atomic kind, long, double,

Boolean, string, and the like, with these forms as appro-
priate.

A further specialization of double parameter kinds declares

them to be dimensional in nature, that is being a measure-

ment in a specified system of measurement. (The concepts

of dimensionarity are discussed in greater detail in [4].)

From this point a great majority of engineering parameters

may then be derived.

By setting the dimensional elements to null values, di-

mensional parameters are further specialized to be non-

dimensional. By doing this, non-dimensional parameters
may be freely intermixed with their dimensional counter-

parts in dimensionally-sensitive operations. From this base,

non-dimensional engineering parameters are then derived.

4.2.1 Related Parameters

A related-parameter descriptive mechanism is utilized to

associate other parametric information with semantically-

defined parameter objects. For example a grid of informa-

tion may identify a parameter giving the positions of its grid

coordinates through the related parameter mechansism.

5 Persistence

Saving the state of an encapsulated application was a self-

evident requirement. To achieve this, an object serialization

capability was implemented. Object contents are written
out to or read back from an archive file under the control of

a Serialize function. An archive object keeps track of what

objects have been serialized or de-serialized so that redun-

dant references to an object are appropriately handled.

The drawback of this serialization is also its strong point: a

Serialize function must be manually coded for every class

that might participate in such an operation. For the most

part such coding amounts to mere tedium; however, it is

in this coding that the groundwork for evolutionary change

can be laid. If one takes the precaution of serializing an

archive version number as the very first step of object se-
rialization, then conditional code for the de-serialization of

old object versions can be generated when object revisions

are defined. By this means, old objects may be recovered

even as object coding evolves.

6 Information Propagation

The infusion of semantic meaning into parameter objects
through derived class specialization and self revelation

forms the basis for the interapplication transfer of informa-

tion by allowing one application to 'look' at parameters of
another application and discern the semantic nature of the

observed parameter objects. This basic technology enables

a number of interapplication information transfer modes.

The propagation of parametric information throughout an

application graph is the first form of information transfer

implemented by the PIA project [5]. The goat is to arrange

disparate applications into a cooperative graph whose oper-

ation carries out all of the analyses relevant to an engineer-

ing project as a whole.

The graph of applications is currently constructed by op-

erations of the testbed GUI. The first application created

through the GUI is always made the initial node of an ap-

plication graph. A right crick on that application (or upon

any application subsequently added to the graph) pops up a
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menuwithapickforaddingasuccessorapplicationtothe
right-clickedapplication.Thestandardselect-application
dialogisthenexecutedandtheapplication-graphmember
added.

A basicconceptualviewbehindthearrangementofanap-
plicationgraphis thattherealwaysexistssomesourcedef-
initionof a proposedconfigurationof theprojectwhich
thenfeedsasinputto variousanalysesof thatconfigura-
tion. Thoseanalysesthenproduceresultswithtwopo-
tentialaspects:intermediatevalueswhichareof usefor
furtherformsofanalysisandfinalanswerscontributingto-
wardajudgementoftheengineeringmeritofthedesign.

Anotheraspectimplicitin thisviewofinformationpropa-
gationthroughoutdirectedapplicationgraphsis thatsuch
applicationsoperateinamodeinwhichasingleoperation
(fromanexternalviewpoint)reliablyturnsinputinforma-
tionintooutputinformation,asopposedtoa scenarioin
whichthepropagationactmustbeiterativelyperformed
untilparametricvalues,insomesense,reachabalanceor
converge.Note,though,thatsuchaniterativepropagation
formisnotprecludedbythePIAarchitecture,butisonly
inoppositiontotheassumptionsoftheinformationpropa-
gationformfirstimplementedforstudy.

Informationpropagationaspresentlyimplementedalso
forcesthesynchronizationofparameterconfigurations.By
this,theconceptof aprojectconfigurationismademore
realand,it isexpected,theproblemofmismatchedconfig-
urationswithinaprojectanalysiswillbeeliminated.

Thepropagationimplementationalsorecognizesthatnot
all applicationsareentirelyreliablein theiroperation.To
dealwiththis,thesupportutilizestheeventmechanism
builtintothePaeBObjbaseclasstoallowinappropriate
operationstoalertsupposedlycorrectiveentities.Thereis,
thus,theabilitytoapplycorrectivemeasuresandre-attempt
aparticularoperationin theoverallpropagationactivity.
Failingsuchcorrectiveactions,theinformationpropaga-
tionsystemwillmarktheaffectedparameterconfigurations
asbeingdefectiveandwillpreventfurtherpropagativeacts
baseduponthoseconfigurations.

Theprocessofinformationpropagationascurrentlyimple-
mentedproceedsinthefollowinggeneralmanner.

1. Theprocessisbegunbydeliveringapropagationcom-
mandcitingaparameterconfigurationtoanapplica-
tionobjectwhichis,typically,theinitialnodeof an
applicationgraph.Theeventis typicallydelivered
fromanexternal,organizingentity,forexampleaper-
soncontrollingtheoverallprocessthroughaninter-
actingGUI.

2. Theapplicationobjectconvertsinputstooutputsafter
itsmanner.

. The application then passes the propagation operation

on to each of its immediate successors in the graph.

The configuration is passed on in this act.

4. Each receiving application establishes or creates a cor-

reponding configuration.

. Each receiving application then examines each of the

parameter objects available in the source configuration

and, based upon the semantic meanings revealed by

those parameters, acquires such information as it may.

Each receiving successor application is free to exam-

ine the extended predecessor applications of its own

propagating immediate predecessor application for in-
put information.

6. When each successor has-recelved a propagation act

from each of its own immediate predecessors, it then

operates to convert its own inputs into outputs and

then passes the propagation act on to its immediate
successors.

7. The propagation of information continues in this man-

ner throughout the graph until terminal nodes of the

graph are reached and return the propagation act back

up the graphical chain to the originator of the act. UI-"

timately, this rolls up to a single return of control to

the original initiator of the propagation act, indicating

that the operation is complete.

It should be remembered in all of this that it is the technol-

ogy of self-revelation exposing infused semantic meaning

that makes the implementation of information propagation

tenable. Applications wrappers need only be coded to look

for the kinds of information they desire to acquire during

propagation. It is not necessary to code for connection to

a specific source application to obtain an expected kind of

information, nor is it necessary to code for specific topo-

logical arrangements of applications.

7 Documentation

Complete, class-by-class, member-by-member documenta-

tion has been generated in Hyper-Text Markup Language

(HTML) format and placed on a central server at the Glenn
Research Center. The root URL for this documentation is

http:llwww.lerc.nasa.gov/WWWIpriceOOO_ndex.html
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Figure 9.1: GUI Opening Application Query

It must be strongly emphasized that these pages are the in-

formal generation of the researcher involved and do not, in

any way, shape, or form, represent an official statement of
the Government of the United States.

8 Experience

To date, three applications have been wrapped in the C++

implementation of the PIA Application Architecture: a pre-

sentation of experimental data from an inlet unstart ex-

periment for the High Speed Research project (known as

HIU), a presentation of flowpath geometry information
from Computer Aided Design (CAD) sources accessed

through the Computational Analysis Programming Inter-
face (CAPRI) cross-vendor package [6], and an operational

wrapping of the Large Perturbation Inlet (LAPIN) analysis
code [7]. Propagation of geometry information from the

CAPRI/CAD wrapper to the LAPIN wrapper is currently

being demonstrated.

9 Testbed GUI

Although a GUI is not considered to be a product of the

overall project, such a tool is nevertheless necessary for

testing purposes. Indeed, a GUI is the most expedient way
to see that the concepts described above do, in fact, work.

The first demonstration of the architecture is shown in Fig-

ure 9.1. This is a screen capture of the application selection

dialog box implemented by the GUI. The dialog allows the

user to select one of the available application types through

a mutually-exclusive radio button interaction.

The remarkable thing about the application selection dialog

is that it is generated on-the-fly by the GUI, rather than by a

static coding of the dialog. At the time of dialog initializa-
tion, a scan is done of all PIA classes, isolating those that

are derived from the type PaeAppl. (The class PaeAppl it-
self is excluded from this set.) A radio button is generated

for each such identified application class, drawing the name
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Figure 9.2: Display of Two Independent Applications Con-

nected in a Graph

text from the supporting class information. Thus, the figure

shows that, at the time this dialog was captured, three ap-

plications were supported: the CAPRI cross-vendor CAD

geometry (CapriGuiAppl) application, the HSR Inlet Un-
start (HiuAppl) application, and the LAPIN (LapAppl)

application.

Figure 9.2 illustrates nearly all the rest of the features of the
architecture as exercised by the testbed GUI. The window

labeled PaeAppll:l views a CAPRI application choosen

from an application selection dialog in the course of GUI

startup. The window labeled PacApplh2 views a second

application, in this case a LAPIN application, that has been
created as a successor to the CAPRI application in the ap-

plication graph.

A window viewing an application lists from top to bottom

1. The parameter identification tree (which is only par-

tially expanded in either window of the figure for rea-

sons of space),

2. The parameter configuration graph,

3. The operation tree,

4. The application graph predecessor list (except in the
case of the PaeAppll:l window which views the ini-
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tialnodeofthegraphwhich,bydefinition,hasnopre-
decessors),and

5. Theapplicationgraphsuccessorlist.

Comparingthedifferencesbetweenthe two windows, for

example the different operations lists, shows the self-

revealing nature of applications within the architecture.

The PacAppll:l window lists the two CAPRI operations;
the selection of a CAD file from which an internal CAPRI

archive of information will be produced, and the selection

of such an archive from which a geometry parameter set in

the selected configuration will be produced. Meanwhile,

the PacAppih2 LAPIN window lists an entirely differ-

ent set of operations; the creation of LAPIN paranaeters,

the loading of LAPIN parameters fromtraditional Fortran

namelist input, the running of LAPIN, and the validation of

the parameter set as input to a potential LAPIN run.

The two viewing windows also reveal the connection be-

tween the two applications as participants in an application

graph. The PaeAppil:l window views the initial node of
the application graph, as witnessed by the absense of a Pre-

decessor Applications element in its view. The Successor

Applications list of that view shows the LAPIN application
viewed by the PacAppll'2 window as its successor. The

LAPIN application, in turn, lists the CAPRI application of

the PacAppll:l window as its predecessor.

The effect of information propagation throughout the appli-

cation graph is also illustrated by Figure 9.2. The param-

eter configuration graph of the CAPRI application viewed

through the PaeAppll:l window has been expanded be-

yond its default single-patriarch form to include two child

configurations and a grandchild configuration attached to

the second child. By the act of information propagation

citing the root parameter configuration of the CAPRI appli-

cation (effected by first selecting the root parameter config-

uration of that application and then double-clicking the ap-

plication element of the viewing window), that parameter

configuration graph is replicated in the successor LAPIN

application. This is further confirmed by the fact that the

default parameter configuration object names generated in

the CAPRI application as the configuration graph was ex-

panded (for example, PacCfg:02E10760) are, in fact, repli-

cated in the configuration graph of the LAPIN application.

This is precisely as expected by the act of information prop-

agation as a result of its effort to keep parameter configura-

tions synchronized between cooperating applications.

This illustration of information propagation is somewhat
overextended in order to demonstrate features of the at-

chitecture that reach beyond current realities. In fact, no

CAPRI/CAD data source with multiple configurations ex-

isted at the time of this writing. Thus, the descendent con-

figurations are, in fact, empty. They exist to demonstrate

the configuration bookkeeping aspects of the architecture.

Another aspect of this information propagation figure is

also not fulfilled at the time of writing in that no actual

information was transferred between applications as a re-

sult of the act that produced the display. This is due to two

factors. First, there were still bugs in the program which

were being tracked down and corrected at the time of writ-

ing. Second, no sematically correct CAD file for the sample

problem, the inlet flow path of the Rocket Based Combined

Cycle engine being developed at the Glenn Research Cen-

ter, was available at the time of writing. It is believed and

represented in good faith that both these difficulties will be
overcome in the near future.

10 Future Directions

At this point, the road ahead for the PIA project seems rel-

atively clear. The key technology of self-revelation and its

ability to enable common tools, information propagation

throughout an application graph, and the like can be con-
sidered well demonstrated. Further work now must center

on two areas: making the application architecture practica-
ble by moving it to a distributed object environment, and

filling in the many semantic gaps of the parameter object

set so as to have a fully populated set of information forms.

Work has already begun on the migration to a distributed
object environment based upon the Common Object Re-

quest Broker Architecture (CORBA). At this point, all

foundation classes have been migrated to this environment

and operationally demonstrated. Work on application-level

classes and concepts is now beginning.

11 Summary

An abstract, highly flexible, object-oriented application ar-
chitecture has been defined. The architecture has been im-

plemented in C++ and real applications have been wrapped

according to that architecture. Dimensional parameter ob-

jects wrapped in this architecture are self-aware of their di-
mensionaility and automatically convert their values to a

requested unit system. Applications wrapped in this ar-

chitectttre have been connected into directed application-

graphs and the automatic propagation of information from
source application to consumer has been demonstrated.
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