Baseline Testing of the EV Global E-Bike

Dennis J. Eichenberg, John S. Kolacz, and Paul F. Tavernelli
Glenn Research Center, Cleveland, Ohio
Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the Lead Center for NASA’s scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA’s institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- **TECHNICAL PUBLICATION.** Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA’s counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- **TECHNICAL MEMORANDUM.** Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- **CONTRACTOR REPORT.** Scientific and technical findings by NASA-sponsored contractors and grantees.

- **CONFERENCE PUBLICATION.** Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- **SPECIAL PUBLICATION.** Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.

- **TECHNICAL TRANSLATION.** English-language translations of foreign scientific and technical material pertinent to NASA’s mission.

Specialized services that complement the STI Program Office’s diverse offerings include creating custom thesauri, building customized data bases, organizing and publishing research results . . . even providing videos.

For more information about the NASA STI Program Office, see the following:

- E-mail your question via the Internet to help@sti.nasa.gov

- Fax your question to the NASA Access Help Desk at 301-621-0134

- Telephone the NASA Access Help Desk at 301-621-0390

- Write to:
 NASA Access Help Desk
 NASA Center for AeroSpace Information
 7121 Standard Drive
 Hanover, MD 21076
Baseline Testing of the EV Global E-Bike

Dennis J. Eichenberg, John S. Kolacz, and Paul F. Tavernelli
Glenn Research Center, Cleveland, Ohio

National Aeronautics and Space Administration

Glenn Research Center

January 2001
BASELINE TESTING OF THE EV GLOBAL E-BIKE

Dennis J. Eichenberg, John S. Kolacz, and Paul F. Tavernelli
National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio 44135

SUMMARY

The NASA John H. Glenn Research Center initiated baseline testing of the EV Global E-Bike as a way to reduce pollution in urban areas, reduce fossil fuel consumption and reduce operating costs for transportation systems. The work was done under the Hybrid Power Management (HPM) Program, which includes the Hybrid Electric Transit Bus (HETB). The E-Bike is an inexpensive approach to advance the state of the art in hybrid technology in a practical application. The project transfers space technology to terrestrial use via non-traditional partners, and provides power system data valuable for future space applications. The E-Bike is a state of the art, ground up, hybrid electric bicycle. Unique features of the vehicle’s power system include the use of an efficient, 400 watt, electric hub motor, and a 7-speed derailleur system that permits operation as fully electric, fully pedal, or a combination of the two. Other innovative features, such as regenerative braking through ultracapacitor energy storage, are planned. Regenerative braking recovers much of the kinetic energy of the vehicle during deceleration. A description of the E-bike, the results of performance testing, and future vehicle development plans is the subject of this report. The report concludes that the E-Bike provides excellent performance, and that the implementation of ultracapacitors in the power system can provide significant performance improvements.

INTRODUCTION

The NASA Glenn Research Center initiated baseline testing of the EV Global E-Bike as an excellent opportunity to transfer technology from the aerospace and military industries to a commercial venture. The project is seen as a way to reduce pollution in urban areas, reduce fossil fuel consumption and reduce operating costs for transportation systems.

The NASA Glenn Research Center provides overall project coordination and is responsible for testing the vehicle. This includes instrumenting the vehicle and developing instrumentation and control programs. Wherever practical, off-the-shelf components have been integrated into the test configuration.

TEST OBJECTIVES

Testing of the vehicle was performed at the NASA Glenn Research Center. Of particular interest are the following characteristics: range, vehicle speed, acceleration time, and performance over stop-and-go driving schedules. The performance of the various vehicle components, especially the motor, controller, energy storage system, and charger are also of interest.
TEST VEHICLE DESCRIPTION

The E-Bike is a state of the art, ground up, hybrid electric bicycle. The vehicle is shown in Figs. 1 and 2 and described in detail in Appendix A. The E-Bike is a parallel hybrid vehicle as shown in Fig. 3. As a parallel hybrid vehicle, power is provided to the drive wheel from an internal electric hub motor, or through the pedals via a 7-speed derailleur, or a combination of the two.

The energy storage system consists of two 12 volt, 12-amp hour sealed lead acid, deep discharge batteries to store electrical energy. The battery charger is built into the battery pack. The charger is rated at 24 volts, 3 amps DC. The complete battery pack including the charger is shown in Fig. 4. The battery pack is quickly removed from the vehicle if so desired. This permits the quick installation of another battery pack, as well as charging of the battery pack outside of the vehicle.

The electric traction motor shown in Fig. 5 is a 400-Watt DC brushed electric hub motor. This is a direct drive system with no drive train losses. A pulse width modulated motor controller allows for efficient speed control over a wide speed range. The motor controller includes cruise control to maintain constant speed.

The vehicle incorporates Department of Transportation specified safety features including lights, mirror, and horn.
Fig. 1 – EV Global E-Bike on Dynamometer
Fig. 2 – EV-Global E-Bike on Dynamometer with Fairing Removed

Fig. 3 – E-Bike Schematic Diagram

PARALLEL HYBRID SCHEMATIC DIAGRAM
Fig. 4 – Battery Pack

Fig. 5 – Hub Motor
INSTRUMENTATION

The E-Bike was instrumented to measure vehicle speed, distance, and load. These data were sent to an off-board digital data acquisition system, sampled continuously and stored on a desktop PC. Additional channels measured the battery voltage and current, as well as the following temperatures: traction motor, motor controller, battery, and the ambient temperature. These data were sent to an off-board digital data acquisition system and stored on a laptop PC. Power for the data acquisition system, was derived from the Building 86 utility system. The instrumentation configuration is described in Appendix B.

Battery charging power requirements were determined from measuring the battery charger voltage and current. The battery temperature was also monitored. These data were sent to an off-board digital data acquisition system, sampled once a minute and stored on a laptop PC.

TEST PROCEDURES

The tests described in this report were conducted on a dynamometer at the NASA Glenn Research Center in Cleveland, Ohio. A description of the dynamometer is given in Appendix C. The tests were conducted in accordance with the test matrix provided in Appendix D.
TEST RESULTS

Vehicle Performance

Twenty-seven tests were conducted to determine vehicle performance, per Table 1:

Table 1 – Performance Tests Conducted on the E-Bike

<table>
<thead>
<tr>
<th>Test Number</th>
<th>Grade (%)</th>
<th>Vehicle Mode</th>
<th>Top Vehicle Speed</th>
<th>Driving Cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>Normal</td>
<td>5 mph</td>
<td>Range test.</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>Normal</td>
<td>10 mph</td>
<td>Range test.</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>Normal</td>
<td>Maximum</td>
<td>Range test.</td>
</tr>
<tr>
<td>4</td>
<td>+2</td>
<td>Normal</td>
<td>Maximum</td>
<td>Range test.</td>
</tr>
<tr>
<td>5</td>
<td>+4</td>
<td>Normal</td>
<td>Maximum</td>
<td>Range test.</td>
</tr>
<tr>
<td>6</td>
<td>+6</td>
<td>Normal</td>
<td>Maximum</td>
<td>Range test.</td>
</tr>
<tr>
<td>7</td>
<td>+8</td>
<td>Normal</td>
<td>Maximum</td>
<td>Range test.</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>Normal</td>
<td>Maximum</td>
<td>Acceleration test.</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>Economy</td>
<td>Maximum</td>
<td>Acceleration test.</td>
</tr>
<tr>
<td>10</td>
<td>+2</td>
<td>Normal</td>
<td>Maximum</td>
<td>Acceleration test.</td>
</tr>
<tr>
<td>11</td>
<td>+2</td>
<td>Economy</td>
<td>Maximum</td>
<td>Acceleration test.</td>
</tr>
<tr>
<td>12</td>
<td>+4</td>
<td>Normal</td>
<td>Maximum</td>
<td>Acceleration test.</td>
</tr>
<tr>
<td>13</td>
<td>+4</td>
<td>Economy</td>
<td>Maximum</td>
<td>Acceleration test.</td>
</tr>
<tr>
<td>14</td>
<td>+6</td>
<td>Normal</td>
<td>Maximum</td>
<td>Acceleration test.</td>
</tr>
<tr>
<td>15</td>
<td>+6</td>
<td>Economy</td>
<td>Maximum</td>
<td>Acceleration test.</td>
</tr>
<tr>
<td>16</td>
<td>+8</td>
<td>Normal</td>
<td>Maximum</td>
<td>Acceleration test.</td>
</tr>
<tr>
<td>17</td>
<td>+8</td>
<td>Economy</td>
<td>Maximum</td>
<td>Acceleration test.</td>
</tr>
<tr>
<td>18</td>
<td>0</td>
<td>Normal</td>
<td>Maximum</td>
<td>3 stops.</td>
</tr>
<tr>
<td>19</td>
<td>0</td>
<td>Economy</td>
<td>Maximum</td>
<td>3 stops.</td>
</tr>
<tr>
<td>20</td>
<td>+2</td>
<td>Normal</td>
<td>Maximum</td>
<td>3 stops.</td>
</tr>
<tr>
<td>21</td>
<td>+2</td>
<td>Economy</td>
<td>Maximum</td>
<td>3 stops.</td>
</tr>
<tr>
<td>22</td>
<td>+4</td>
<td>Normal</td>
<td>Maximum</td>
<td>3 stops.</td>
</tr>
<tr>
<td>23</td>
<td>+4</td>
<td>Economy</td>
<td>Maximum</td>
<td>3 stops.</td>
</tr>
<tr>
<td>24</td>
<td>+6</td>
<td>Normal</td>
<td>Maximum</td>
<td>3 stops.</td>
</tr>
<tr>
<td>25</td>
<td>+6</td>
<td>Economy</td>
<td>Maximum</td>
<td>3 stops.</td>
</tr>
<tr>
<td>26</td>
<td>+8</td>
<td>Normal</td>
<td>Maximum</td>
<td>3 stops.</td>
</tr>
<tr>
<td>27</td>
<td>+8</td>
<td>Economy</td>
<td>Maximum</td>
<td>3 stops.</td>
</tr>
<tr>
<td>28</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Battery charging test.</td>
</tr>
</tbody>
</table>

A similar set of plots have been included in Appendix E for each of the vehicle tests:

a. Vehicle speed and vehicle power vs. elapsed time.
b. Vehicle battery voltage, current, and power vs. elapsed time.
c. Component temperatures vs. elapsed time.

The battery-charging plot indicates the charging ac voltage, current and power, as well as the ambient and battery temperatures.

A summary of the test results is shown in Table 2 at the end of this section.
Maximum Speed

The maximum speed of the vehicle was measured to be 12.1 mph with no grade under full power. Figure 6 indicates the maximum speeds achieved at various grades, as well as the various powers that were obtained.

Fig. 6 – Maximum Speed for Various Grades

Acceleration

The average acceleration, a_n, of the vehicle is computed as a change in vehicle speed as a function of time.

$$a_n = \frac{v_n - v_{n-1}}{t_n - t_{n-1}}$$

Acceleration times are given in Table 2.
Range

The range of the vehicle was determined from the dynamometer tests under full electric operation. This yields a range of 34.8 miles for no grade in the normal mode with an initial speed of 5 mph. As seen in Figure 8, there is some inconsistency in range at various grades due to the effects of power and speed upon the vehicle control system.

Fig. 7 – Range in Normal Mode with 0% Grade
Fig. 8 – Range in Normal Mode with Various Grades

Range Distance

- **Distance in miles** @ max Speed
- **% Grade**

Range Time

- **Time in Hours** @ max Speed
- **% Grade**
Summary

An overall summary of the vehicle testing is shown in Table 2.

Table 2 – Summary of Test Results for the EV Global E-Bike

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Test Results</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 mph Initial Speed</td>
<td>0% Grade, Normal Mode</td>
<td>34.8 miles</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.70 hrs</td>
<td></td>
</tr>
<tr>
<td>10 mph Initial Speed</td>
<td>0% Grade, Normal Mode</td>
<td>30.0 miles</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.68 hrs</td>
<td></td>
</tr>
<tr>
<td>12 mph Initial Speed</td>
<td>0% Grade, Normal Mode</td>
<td>23.2 miles</td>
<td>Maximum speed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.35 hrs</td>
<td></td>
</tr>
<tr>
<td>Top Speed</td>
<td>0% Grade, Normal Mode</td>
<td>12.1 mph</td>
<td></td>
</tr>
<tr>
<td>Acceleration Times</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 mph</td>
<td>0% Grade, Normal Mode</td>
<td>1 sec</td>
<td></td>
</tr>
<tr>
<td>10 mph</td>
<td>0% Grade, Normal Mode</td>
<td>8 sec</td>
<td></td>
</tr>
<tr>
<td>12 mph</td>
<td>0% Grade, Normal Mode</td>
<td>15 sec</td>
<td>Maximum speed.</td>
</tr>
<tr>
<td>Battery Charging</td>
<td></td>
<td></td>
<td>Battery charged</td>
</tr>
<tr>
<td>Time</td>
<td>122.7 VAC Line</td>
<td>4.3 hrs</td>
<td>to cutoff (18 VDC) by E-Bike.</td>
</tr>
<tr>
<td>Maximum AC Current</td>
<td>122.7 VAC Line</td>
<td>1.24 amps</td>
<td></td>
</tr>
<tr>
<td>Maximum AC Power</td>
<td>122.7 VAC Line</td>
<td>150 watts</td>
<td></td>
</tr>
<tr>
<td>Total Energy</td>
<td>122.7 VAC Line</td>
<td>0.405 kWh</td>
<td></td>
</tr>
</tbody>
</table>
CONCLUDING REMARKS

The EV Global E-Bike as tested and described in this report is a commercially available vehicle that is fully prepared for the mass market. The vehicle exhibited no problems under the rigorous test conditions that it was exposed to. The performance of the vehicle proved to be excellent.

The range performance of the vehicle was extraordinary. The range of 34.8 miles that was achieved with an initial speed of 5 mph with no grade is almost twice the advertised range of 20 miles. The vehicle operated for 5.7 hours under these conditions. At an initial speed of 10 mph with no grade, a range of 30.0 miles was achieved. The vehicle operated for 3.68 hours under these conditions. At maximum throttle with no grade, a range of 23.2 miles was achieved. The vehicle operated for 2.35 hours under these conditions.

The top speed of the vehicle with no grade and full throttle was 12.1 mph, which was a bit under the advertised 15-mph, but perfectly adequate for most riding, and provided excellent economy. A higher performance model with a 36-volt battery pack will be available soon, and is expected to provide a higher top speed. The acceleration of the vehicle was excellent.

The baseline testing of the E-Bike was the first step in the process. Future plans for the E-Bike calls for the testing of the vehicle with regenerative braking. Ultracapacitors will be used for regenerative braking, because of their superiority to batteries in accepting high braking currents, allowing for less usage of the mechanical brakes. A photovoltaic charging station will be assembled and tested, to permit the effective use of the E-Bike in remote locations with no dependence upon the utilities.

The E-Bike provides an inexpensive approach to advance the state of the art in hybrid technology in a practical application. The project transfers space technology to terrestrial use via non-traditional partners, and provides power system data valuable for future space applications.
APPENDIX A

VEHICLE SUMMARY DATA SHEET

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Vehicle Manufacturer</td>
<td>EV Global Motors Company</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Los Angeles, CA</td>
</tr>
<tr>
<td>2.0</td>
<td>Vehicle</td>
<td>E-Bike Touring Model</td>
</tr>
<tr>
<td>3.0</td>
<td>Vehicle Configuration</td>
<td>Parallel Hybrid</td>
</tr>
<tr>
<td>4.0</td>
<td>Traction Motor</td>
<td>DC brushed</td>
</tr>
<tr>
<td></td>
<td>4.1 Traction Motor Configuration</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.2 Traction Motor Power</td>
<td>400 watts</td>
</tr>
<tr>
<td></td>
<td>4.3 Traction Motor Cooling</td>
<td>Air cooled</td>
</tr>
<tr>
<td>5.0</td>
<td>Drivetrain</td>
<td>Direct Drive</td>
</tr>
<tr>
<td></td>
<td>5.1 Traction Motor Drivetrain</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.2 Pedal Drivetrain</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.1.1 Transmission Type</td>
<td>7-speed Shimano derailleur</td>
</tr>
<tr>
<td></td>
<td>5.1.2 Front Chain Ring</td>
<td>33 teeth</td>
</tr>
<tr>
<td></td>
<td>5.1.3 Rear Cluster</td>
<td>14, 16, 18, 20, 22, 24, 28 teeth</td>
</tr>
<tr>
<td></td>
<td>5.1.4 Gear Ratio</td>
<td>0.42, 0.48, 0.55, 0.61, 0.67, 0.73, 0.85</td>
</tr>
<tr>
<td></td>
<td>5.1.5 Crankarm</td>
<td>6.7 in (170 mm)</td>
</tr>
<tr>
<td></td>
<td>5.1.6 Chain</td>
<td>_ x 3/32 x 110 L</td>
</tr>
<tr>
<td>6.0</td>
<td>Vehicle Dimensions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.1 Wheel Base</td>
<td>41.8 in (1062.3 mm)</td>
</tr>
<tr>
<td></td>
<td>6.2 Frame Size (center to top)</td>
<td>16.5 in (419 cm)</td>
</tr>
<tr>
<td></td>
<td>6.3 Head Tube</td>
<td>6.4 in (163 mm)</td>
</tr>
<tr>
<td></td>
<td>6.4 Headset Stack Height</td>
<td>1.30 in (33 mm)</td>
</tr>
<tr>
<td></td>
<td>6.5 Headset Dimensions</td>
<td>25.4 mm x 34 mm x 30 mm w/seal</td>
</tr>
<tr>
<td></td>
<td>6.6 Fork Steerer Tube</td>
<td>1-1/8 in</td>
</tr>
<tr>
<td></td>
<td>6.7 Fork Travel</td>
<td>65 mm</td>
</tr>
<tr>
<td></td>
<td>6.8 Stem 1</td>
<td>40 degrees, 110 mm extension</td>
</tr>
<tr>
<td></td>
<td>6.9 Stem 2</td>
<td>28.6 mm x 25.4 mm x 150 mm with quill</td>
</tr>
<tr>
<td></td>
<td>6.10 Handlebar Width</td>
<td>620 mm</td>
</tr>
<tr>
<td></td>
<td>6.11 Handlebar Rise</td>
<td>30 mm, 10 degrees</td>
</tr>
<tr>
<td></td>
<td>6.12 Handlebar Handle</td>
<td>200 mm</td>
</tr>
<tr>
<td></td>
<td>6.13 Seat Post</td>
<td>350 mm x 27.2 mm O.D.</td>
</tr>
<tr>
<td></td>
<td>6.14 Seat Post Spacer</td>
<td>100 mm x 27.3 I.D. x 34.9 mm O.D.</td>
</tr>
<tr>
<td></td>
<td>6.15 Tires</td>
<td>26 x 1.95 in</td>
</tr>
<tr>
<td></td>
<td>6.16 Rims</td>
<td>26 x 1.5 in, 14G x 36H, double wall</td>
</tr>
<tr>
<td></td>
<td>6.17 Spokes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.17.1 Front</td>
<td>266 mm, 14G stainless with brass nipples</td>
</tr>
<tr>
<td></td>
<td>6.17.2 Rear</td>
<td>219 mm, 14G stainless with brass nipples</td>
</tr>
</tbody>
</table>
6.18 Bottom Bracket
6.19 Base Curb Weight
6.20 Total Weight (as tested)

7.0 Energy Storage

7.1 Battery Pack

7.1.1 Configuration
7.1.2 Battery Type
7.1.3 Battery Energy Rating
7.1.4 Battery Voltage Rating
7.1.5 Charger Input
7.1.6 Charger Output
7.1.7 Dimensions
7.1.8 Weight

Two in series with integral charger
Deep discharge, sealed lead acid
12 amp hours each
12 volts each
115 volts ac, 60 Hz, 2 amps
24 volts dc, 3 amps
15 in x 4 in x 4 in
23 lb

127 mm cartridge
67 lb
267 lb
APPENDIX B

DESCRIPTION OF THE INSTRUMENTATION SYSTEM

A block diagram of the instrumentation system is shown in Fig. B-1.

The vehicle dynamometer has an integral instrumentation system that monitors vehicle speed, distance, and power. These data are sampled at 3 Hz and transmitted to the desktop PC via a serial interface. The PC logs the dynamometer data.

All other measurements were obtained with a Hewlett Packard data acquisition system, sampling at 100 Hz. Type K thermocouples were used for all temperature measurements. Hall effect transducers were used for all current measurements. These data are transmitted to the laptop PC via a serial interface. The PC logs the data.

Fig. B-1 – Vehicle Instrumentation System
APPENDIX C

DESCRIPTION OF VEHICLE DYNAMOMETER

The vehicle dynamometer used to conduct the tests described in this report is the CompuTrainer Pro Challenge PC1 Model 8001. It is a high performance, microprocessor controlled, indoor dynamometer designed for bicycle use. The electronic load generator is capable of creating resistance loads from 50 to 1500 watts to simulate road grades to 15%. The dynamometer is shown in Fig. 2.

Tests documented in this report were conducted with the dynamometer programmed to meet the test matrix requirements.

APPENDIX D

DESCRIPTION OF TEST CYCLES

Testing of the vehicle was based on the test matrix shown in table D-1.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceleration</td>
<td>To maximum speed at 0%, 2%, 4%, 6%, and 8% grades in the normal and economy modes of operation.</td>
</tr>
<tr>
<td>Range</td>
<td>To maximum speed at 0%, 2%, 4%, 6% and 8% grades in the normal mode of operation. To 5 mph and 10 mph at 0% grade in the normal mode of operation.</td>
</tr>
<tr>
<td>Top Speed</td>
<td>To maximum speed at 0% grade in the normal mode of operation.</td>
</tr>
<tr>
<td>Stop</td>
<td>To maximum speed at 0%, 2%, 4%, 6%, and 8% grades in the normal and economy modes of operation. Three stops.</td>
</tr>
<tr>
<td>Battery Charging</td>
<td>From battery discharged to 18 volts, to full charge.</td>
</tr>
</tbody>
</table>
APPENDIX E

VEHICLE PERFORMANCE TEST RESULTS

A complete set of plots of the test results are included here. Table 1 identifies the tests that were conducted.
Range Test @ 8 Grade Max Speed

Accel Test @ 0 Grade Normal Mode

Accel Test @ 0 Grade Economy Mode
Stop Test @ 0 Grade Economy Mode

Stop Test @ 2 Grade Normal Mode

Stop Test @ 2 Grade Economy Mode
Test 1: Range Test, 5mph Initial Speed, 0% Grade, Normal Mode
Test 2: Range Test, 0% Grade, 10 mph Initial Speed, Normal Mode

![Graph of Battery Voltage (V) and Battery Current (A) vs Time (hrs)]

![Graph of Motor Temperature, Ambient Temperature, Battery Temperature, and Controller Temperature vs Time (hrs)]
Test 3: Range Test, 0% Grade, Maximum Initial Speed, Normal Mode
Test 4: Range Test, +2% Grade, Maximum Initial Speed, Normal Mode
Test 5: Range Test, +4% Grade, Maximum Initial speed, Normal Mode
Test 6: Range Test, +6% Grade, Maximum Initial Speed, Normal Mode

Time (hrs)

- Bat Volt (V)
- Bat Cur (A)

Time (secs)

- Mtr Temp (C)
- Amb Temp (C)
- Bat Temp (C)
- Cntrl Temp (C)
Test 7: Range Test, +8% Grade, Maximum Initial Speed, Normal Mode
Test 8: Acceleration Test, 0% Grade, Maximum Initial Speed, Normal Mode

Time (secs) vs. Bat Volt (V)

Time (secs) vs. Bat Cur (A)

Time (secs) vs. Mtr Temp (C), Amb Temp (C), Bat Temp (C), Ctrl Temp (C)

NASA/TM—2001-210569 34
Test 9: Acceleration Test, 0% Grade, Maximum Initial Speed, Economy Mode
Test 10: Acceleration Test, +2% Grade, Maximum Initial speed, Normal Mode
Test 11: Acceleration Test, +2% Grade, Maximum Initial Speed, Economy Mode
Test 12: Acceleration Test, +4% Grade, Maximum Initial Speed, Normal Mode

Time (secs):

0 10 20 30 40 50 60 70 80

Bat Volt (V)
Bat Cur (A)
Test 13: Acceleration Test, +4% Grade, Maximum Initial Speed, Economy Mode

Time (secs)

0 10 20 30 40 50 60 70 80 90

Bat Volt (V)
Bat Cur (A)

101(C)
102(C)
103(C)
104(C)
Test 14: Acceleration Test, +6% Grade, Maximum Initial Speed, Normal Mode
Test 16: Acceleration Test, +8% Grade, Maximum Initial Speed, Normal Mode
Test 17: Acceleration Test, +8% Grade, Maximum Initial Speed, Economy Mode
Test 18: Stop Test, 0% Grade, Maximum Initial Speed, Normal Mode

- Bat Volt (V)
- Bat Cur (A)

Time (secs)

- Mtr Temp (C)
- Amb Temp (C)
- Bat Temp (C)
- Ctrl Temp (C)
Test 19: Stop Test, 0% Grade, Maximum Initial Speed, Economy Mode

Test 20: Stop Test, +2% Grade, Maximum Initial Speed, Normal Mode

![Graph showing voltage and current over time for a test with specified conditions.](image-url)
Test 21: Stop Test, +2% Grade, Maximum Initial Speed, Economy Mode

![Graph showing various parameters over time](image-url)

- **Bat Volt (V)**
- **Bat Cur (A)**
- **Mfr Temp (C)**
- **Amb Temp (C)**
- **Bat Temp (C)**
- **Cntnl Temp (C)**

Graph Parameters:
- **Y-axis:** Various measurements (e.g., volts, current, temperature)
- **X-axis:** Time (seconds)

Measurements:
- **Bat Volt (V):** 3.00E+01
- **Bat Cur (A):** 2.50E+01
- **Mfr Temp (C):** 2.00E+01
- **Amb Temp (C):** 1.50E+01
- **Bat Temp (C):** 1.00E+01
- **Cntnl Temp (C):** 5.00E+00

Time (secs): 0 20 40 60 80 100 120 140 160 180
Test 22: Stop Test, +4% Grade, Maximum Initial Speed, Normal Mode
Test 23: Stop Test, +4% Grade, Maximum Initial Speed, Economy Mode

![Graph showing test results](image)
Test 24: Stop Test, +6% Grade, Maximum Initial speed, Normal Mode

Graph showing data over time with various labels:
- Bat volt (V)
- Bat Cur (A)
- Mtr Temp (C)
- Amb Temp (C)
- Bat Temp (C)
- Ctrl Temp (C)
Test 25: Stop Test, +6% Grade, Maximum Initial Speed, Economy Mode

Graph 1: Bat Volt (V)

Graph 2: Bat Cur (A)

Graph 3: Mtr Temp (C), Amb Temp (C), Bat Temp (C), Ctrl Temp (C)
Test 26: Stop Test, +8% Grade, Maximum Initial speed, Normal Mode
Test 27: Stop Test, +8% Grade, Maximum Initial Speed, Economy Mode
Test 28: Battery Charging Test

Amb Temp (C)
Bat Temp (C)
AC Power (W)

Time (Hrs)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

1.60E+02
1.40E+02
1.20E+02
1.00E+02
8.00E+01
6.00E+01
4.00E+01
2.00E+01
0.00E+00
Baseline Testing of the EV Global E-Bike

Dennis J. Eichenberg, John S. Kolacz, and Paul F. Tavernelli

National Aeronautics and Space Administration
John H. Glenn Research Center at Lewis Field
Cleveland, Ohio 44135–3191

National Aeronautics and Space Administration
Washington, DC 20546–0001

Unclassified - Unlimited
Subject Categories: 31, 33, and 37
Distribution: Nonstandard

Available electronically at http://gltrs.grc.nasa.gov/GLTRS
This publication is available from the NASA Center for AeroSpace Information, 301–621–0390.

The NASA John H. Glenn Research Center initiated baseline testing of the EV Global E-Bike as a way to reduce pollution in urban areas, reduce fossil fuel consumption and reduce operating costs for transportation systems. The work was done under the Hybrid Power Management (HPM) Program, which includes the Hybrid Electric Transit Bus (HETB). The E-Bike is a state of the art, ground up, hybrid electric bicycle. Unique features of the vehicle’s power system include the use of an efficient, 400 W electric hub motor, and a 7-speed derailleur system that permits operation as fully electric, fully pedal, or a combination of the two. Other innovative features, such as regenerative braking through ultracapacitor energy storage, are planned. Regenerative braking recovers much of the kinetic energy of the vehicle during deceleration. The E-Bike is an inexpensive approach to advance the state of the art in hybrid technology in a practical application. The project transfers space technology to terrestrial use via nontraditional partners, and provides power system data valuable for future space applications. A description of the E-bike, the results of performance testing, and future vehicle development plans is the subject of this report. The report concludes that the E-Bike provides excellent performance, and that the implementation of ultracapacitors in the power system can provide significant performance improvements.