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COMPUTATIONAL AEROACOUSTICS BY THE SPACE-TIME CEISE METHOD 

Ching. Y. Loh* 
Taitech,l nc. 

Cleveland, Ohio 44135 

1 Introduction 
In recent years, a new numerical methodology for con­

servation laws - the Space-Time Conservation Element 
and Solution Element Method (CE/SE), was developed by 
Dr. Chang of NASA Glenn Research Center and collab­
orators [1-3]. In nature, the new method may be catego­
rized as a finite volume method, where the conservation 
element (CE) is equivalent to a finite control volume (or 
cell) and the solution element (SE) can be understood as 
the cell interface. However, due to its rigorous treatment 
of the fluxes and geometry, it is different from the existing 
schemes. The CE/SE scheme features: 

(1) space and time treated on the same footing, the in­
tegral equations of conservation laws are solved for with 
second order accuracy, 

(2) high resolution, low dispersion and low dissipation, 

(3) novel, truly multi-dimensional, simple but effective 
non-reflecting boundary condition, 

(4) effortless implementation of computation, no numer­
ical fix or parameter choice is needed; 

(5) robust enough to cover a wide spectrum of compress­
ible flow: from weak linear acoustic waves to strong, dis­
continuous waves (shocks), appropriate for linear and non­
linear aeroacoustics. 

Currently, the CE/SE scheme has been developed to 
such a stage that a 3-D unstructured CE/SE Navier-Stokes 
solver is already available. However, in the present paper, 
as a general introduction to the CE/SE method, only the 
2-D unstructured Euler CE/SE solver is chosen as a pro­
totype and is sketched in Section 2. Then applications of 
the CEJSE scheme to linear, nonlinear aeroacoustics and 
airframe noise are depicted in Sections 3,4, and 5 respec­
tively to demonstrate its robustness and capability. 

2 the 2-D Unstructured CEISE Scheme 
The CE/SE scheme can be used with either structured or 

unstructured grids. Here, the unstructured CE/SE is used 
as a prototype for introductory description. 

'e-mail:fsloh @turbot.grc.nasa.gov 
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2.1 Conservation Form of the Unsteady Euler 
Equations 

Consider a dimensionless conservation fom1 of the un­
steady Euler equations of a perfect gas . Let p, U, v, p, and 'Y 
be the density, streamwise velocity component, transversal 
velocity component, static pressure, and constant specific 
heat ratio, respectively. The 2-D Euler equations then can 
be written in the following vector form: 

(1) 

where x, y, and t are the streamwise and transversal coor­
dinates and time, respectively. The conservative flow vari­
able vector U and the flu x vectors F and G , are given by: 

with 

Fl = U2, F3 = U2U3/ U1 , 

F2 = b - I )U4 + [(3 - 'Y)Ui - b - I )UiJ /2U1 , 

F4 = 'YU2U4/U1 - ('Y - I )U2 [Ui + UiJ /2ul, 

G1 = U3 , G2 = U2 U3/U1, 

G3 = b - I )U4 + [(3 - 'Y)Ui - b - I )Un /2U1 , 

G4 = 'YU3U4/Ul - b - I )U3 [ui + Un /2Uf. 

By considering (x, y, t) as coordinates of a three­
dimensional Euclidean space E3 and using Gauss' diver­
gence theorem, it follows that Eq. (1) is equivalent to the 
following integral equation: 

1 H m · dS = 0 , 
J S(V) 

m=I,2, 3, 4, (2) 

where S (V) denotes the surface around a volume V in E3 
and H m = (Fm, Gm, Um) , m = 1, 2, 3, 4. 



2.2 Unstructured CEISE 
The CE/SE scheme is naturally adapted to unstructured 
triangle grids. Each triangle center (0 in 6. ABC ) 
and its 3 neighboring triangle centers (D , E , F) form 3 
conservation elements or C Es (quadrilateral cylinders -
ADBO ,BECO and CFAO), as shown in Fig. 1. These 
triangle centers are the nodes where the unknowns U , U x , 

U y are defined. 
Assume that at the previous time level n (Fig. 1), U , and 

its spatial derivatives U x , U y are given at all the nodes 
(triangle centers), the CE/SE time marching is based on a 
'tripod ' mode, i.e ., U, U x , U y at the new time level n + 1 
(e.g., the shaded circle 0' in Fig. 1) are computed from 
their data at its sUlTounding neighboring nodes at time level 
n (e.g. , D in Fig. 1, note that 0 itself is not used). 

During the time marching, the above flux conserva­
tion relation (2) in space-time is the only mechanism 
that transfers information between node points. A con­
servation element C E, or computational cell, is the fi­
nite volume to which (2) is applied. Discontinuities are 
allowed to occur in the interior of a conservation ele­
ment and nowhere else. A solution element SE associ­
ated with a node (e.g., D , E , F in Fig. 1) is here a set of 
interface planes in E3 that passes through this node (e.g . 
planes DAA' D' , DBB' D' , DBOA associated with node 
D). Within a given solution element SE(j , n), where j , n 
are the node index,and time step respectively, the flow vari­
ables are not only considered continuous but are also ap­
proximated by linear Taylor expansions: 

U *(x, y, t ;j ,n) = Uj + (U x)j(x - Xj) + 

(U y)j(y - Yj) + (U t)j(t - tn ) , (3) 

F*(x , y, t;j , n) = Fj + (Fx)j(x - Xj) + 

(Fy)j(Y - Yj) + (Ft)?(t - tn
), 

G*(x, y , t ; j, n) = G? + (G x)j(x - Xj) + 

(Gy)j(Y - Yj) + (GdJ(t - tn
), 

(4) 

(5) 

where j is the node index of D , E or P , the partial 
derivatives of F and G can be related to the correspond­
ing one of U by using the chain rule and U t can be 
obtained from ( 1) . These Taylor expansions are used 
to accurately evaluating fluxes on SE's e.g., on planes 
DAA'D' ,DBB'D' or DBOA. 

In principle, the number of equations derived from 
these flux conservation laws (each CE provides 4 scalar 
equations and the total number of scalar equations is 12) 
matches the number of unknowns (here 12 scalar un­
knowns). All the unknowns are solved for based on these 
relations. No extrapolations (interpolations) across a sten­
cil of cells are needed or allowed. 

In practice, there is no need to solve a 12 x 12 equation 
system. In the space-time E3 space, (2) is applied to the 
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hexagon cylinder ADBECF - A' D' B' E'C' F' . U at the 
hexagon center at the new time level is first evaluated and 
then , U at the center 0' of triangle A' B' C' is obtained 
by Taylor expansion. Since the evaluation of U x and U y 

involves application of artificial damping and some form 
of limiters (weighted average), the reader is referred to the 
Oliginal papers [1-3] of Chang et alfor details. 

C' 

RI--{+---=:t:~ B' 

I 
I 
I 
I 
I 
I II C 
I F _-'''-_ ,.- >;.11",----. 

I ,/ j " 
/ // ..... (j-- " \ 
y:-:::...... ..... - .... - ..... :.' ..... \, 

A --- ---___ -::~ B 
time level n 

D 
hexagon cyliner AOBECFA - A'O'B'E'C'F'A' and 
its 3 CEs, OAOB-O'A 'O'B', OBEC-O'B'E'C', 
OCFA - O'C'F'A ' 

Figure 1: CE/S E unstructured grid, showing 3 C Es and 
the hexagon cylinder in E3 . 

2.3 Non-Reflecting Boundary Conditions 
In the CE/SE scheme, non-refl ecting boundary conditions 
(NRBC) are constructed so as to allow fluxes from the inte­
rior domain to smoothly exit to the exterior of the domain. 
Some variants of the NRBC frequently employed in CE/SE 
schemes are: 

(1) Type I - 'steady NRBC' : 
For a ghost grid node (j, n) lying outside the domain at 

the top (or bottom) of the domain the NRBC requires that 

while Uj is kept fixed at the initially given steady bound­
ary value. 

--- -- -- - -- --- -- ---- ------- ----- -------' 



--- ---- ._-

(2) Type II - ' outflow NRBC': 
At the downstream boundary, where there are substan­

tial gradients in y direction, the NRBC requires that 

(u )n = 0 un = U~- I /2 (U )n = (U )~-1 /2 
x J ' J J' Y J Y J' , 

where j' is the index of an interior node closest to the 
boundary ghost node j and Uj and (U y) j are now dell ned 
by simple extrapolation from the interior. This NRBC is 
valid for either supersonic or subsonic flows . It should be 
noted that although these RBC's bear similarity to those 
used in finite difference schemes, the role they play is very 
different. It can be shown that the above NRBC's alIow 
fluxes to smoothly exit to the exterior of the domain. 

In the following sections, the 2-D CE/SE Euler (Navier­
Stokes) scheme is tested to demonstrate its capability and 
robustness for aeroacoustics computations. Several se­
lected problems in linear and nonlinear aeroacoustics com­
putations are presented. The numerical results, which 
cover a wide spectrum of waves, from linear and nonlin­
ear acoustic waves to discontinuous waves (shocks), are 
then compared to available exact solutions or experimental 
ones. 

3 2-D Linear Aeroacoustics Test Problems 
Three typical linear aeroacoustics exanlples are consid­

ered in this section. More details can be found from the 
appropriate references. 

3.1 Acoustic Pulse, Entropy Wave, and Vorticity 
Wave Propagation 

This problem [5] is one of the benchmark problems of the 
first CAA Workshop (Category 3, Problem 1) [4]. The 
computational domain in the x-V plane is a square with 
-100 ~ x ~ 100, and -100 ~ Y ~ 100. A uniform 
201 x 201 grid is used with .6.x = .6.y = 1 . Initially, 
a Gaussian acoustic pulse is located at the center of the 
domain (x = y = 0) and a weaker entropy/vorticity distur­
bance is located off center (x = 67, Y = 0), with a mean 
flow of Mach number M = 0.5. The corresponding non­
dimensional pressure, density, and streamwise and trans­
verse velocity components are given by 

1 (2 2) P = _ + 8e-0'1 x +y , 
'Y 

P = 1 + 8[e-0'1(x2
+ y 2) + 0.18e-0'2[(x -67)2+y2]], 

u = M + 0.048ye-0'2[(x - 67)2+y2] , 

v = -0.048(x - 67)e-0'2[(X -67)2+y2] , 

where al = In 2/9, a2 = In 2/25, and 6 is an ampli­
tude factor. By choosing a small 8 = 0.001, the Euler 
equations are practically linearized. During the computa­
tion, the NRBC of Type-I described above is enforced at all 
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Figure 2: Propagation of an acoustic pulse with a vortic­
ity/entropy disturbance, and comparison to exact solution. 

boundaries. Fig. 2 illustrates the density contours at differ­
ent time steps. It also shows that the simple NRBC is effec­
tive. Comparison of perturbed density distributions along 
the centerline y = 0 with the exact solutions at t = 60 and 
t = 100 are demonstrated in Plots (a) and (b) respectively. 
The numerical results agree well with the theoretical ones, 
with no visible dispersion error. 

3.2 Linear Instability of a Free Shear Layer and 
Vortex Roll-Up 

In the 2nd example [5] , the inviscid linear and nonlinear 
instability properties of a free shear layer is studied. The 
numerical results are compared with linear results obtained 
by the normal mode approach. 

The background mean flow consists of a fast (super­
sonic) stream on the top half domain and a slow (subsonic) 
stream at the bottom half, with the two parallel streams 
connected by a shear layer of hyperbolic tangent shape. 
The nondimensional flow states are given as: 

UI = 1, VI = 0, PI = 1/3.15, PI = 1, 

U2 = .7391304 V2 = 0, P2 = 1/3.15, P2 = 0.5405405. 

The computational domain spans between 0 ~ x ~ 300 
and -10 ~ y ~ 10, with a uniform structured grid of 
601 x 101 (1201 x 201 for fine grid), with time step size 
.6.t = 0.15. The computation is carried out until t = 390 
when the spatial instability is fully developed. A small har­
monic perturbation (anlplitude 8 = 0.001) at the most un­
stable frequency f = 0.062 is enforced at the inlet bound­
ary. Fig. 3 shows the power spectrum Pn of the computed 
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- 20.0 
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Figure 3: Power spectra at x = 050, 100, 150, and 250 
with forcing at the most unstable frequency according to 
linear theory; (coarse grid) 

u ' (perturbed u) in natural log scale at the stream wise sta­
tions x = 50, 100, 150, and 250, which correspond to 
about 3.5, 7 wavelengths and so on. At x = 50, there 
is a clearly discernable peak centered about the forcing 
frequency f = 0.062. At about x = 100, second and 
third harmonics start to emerge. Further downstream, more 
harmonics appear and eventually the fundamental satu­
rates. The streamwise evolution of the disturbance anlpli-

-2.0 

- 4.0 

ln lu'l 
-6.0 

- 8.0 '----'----'----'------'----'-----' 
o. 100. 200. 300. 

x 

Figure 4: Streamwise evolution of disturbance amplitude 
with forcing at the most unstable frequency according to 
linear theory (f = .062) . Squares: total urms , coarse grid; 
triangles: total u rms , finer grid; circles: U rms at forcing 
frequency, coarse grid; crosses: U rms at forcing frequency, 
finer grid; solid line: linear growth. 

tude along the horizontal centerline y = 0 is illustrated 
in Fig 4. Numerical results for both the coarse and fine 
grids are presented and compared to the theoretical linear 
growth. It is seen that for 0 ~ x ~ 100 (about 7 wave­
lengths) the coarse-grid and fine-grid computations yield 
good agreement both between themselves and with the lin­
ear result. Further downstream, nonlinear effects become 
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important, the growth rate is reduced from the linear value, 
and ultimately the fundanlental saturates. Both numerical 
results agree reasonably well with each other also in this 
nonlinear region. Fig. 5 shows the stream wise evolution of 

45.0 

8jn 

x 

Figure 5: Streamwise evolution of disturbance phase with 
forcing at the most unstable frequency according to linear 
theory (f=.062). Circles: coarse grid; crosses: finer grid; 
solid line: linear result. 

the disturbance phase. The numerical results for both the 
coarse and finer grids are compared to the corresponding 
result from linear theory. The agreement is surprisingly 
good until well into the nonlinear region. Fig. 6 compares 

9.0 

3.0 

y 

- 3.0 

- 9.0 4!!---'---'---'----'---'----'----'---.J 
0.00 0.25 0.50 0.75 1.00 

I u' l 

Figure 6: Transverse mode shape at x = 100 with forc­
ing at most unstable frequency according to linear theory, 
finer grid. Squares: total U rms ; circles: U rms at forcing 
frequency ; solid line: linear eigenfunction (modulus). 

the normalized Iu'l profile across the shear layer flow with 
the eigenfunction from linear stability theory at the stream­
wise station x = 100, which is located towards the end of 
the linear growth region. The agreement is excellent. The 
phase variation across the shear layer of the disturbance at 
the sanle station is depicted in Fig. 7. Fig. 8 shows the 
contours of the flow variables for the finer-grid computa­
tion. This figure clearly demonstrates the effectiveness of 

J 
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Figure 7: Transverse phase variation at x = 100 with forc­
ing at most unstable frequency f = .062 according to lin­
ear theory, (fine grid). Circles: U rms at forcing frequency; 
solid line: linear eigenfunction (phase). 

the NRBC's at the top, bottom and outlet. It should be em­
phasized that the domain shown in the figures is exactly the 
computational domain, no buffer zones, cut-offs or other 
numerical fixes are applied. 

3.3 Mach radiation of a fully expanded 
axisymmetric jet 

Another interesting linear or quasi-linear wave phe­
nomenon is the Mach radiation from a fully expanded su­
personic jet. In the following examples, a perturbation (or 
forcing) is provided by a right-hand-side source term in the 
energy equation, the 4th component of Eq. (1) , located at 
the origin (0, 0) inside the jet core: 

_ 0_ exp[-B (x2 + y2)] cos (wt ), 
, -I 

where 0 is a small number (0.00005 < 0 < 0.001), w = 
27rSt , and the constant B = 8. 

3.3.1 Mach radiation from a supersonic ax­
isymmetric jet In this test example [6] , a fully ex­
panded supersonic jet with Mach number M j = 2.0 is 
considered. The computational domain spans between 
o ~ x ~ 33D and 0 ~ y ~ 19D, with a non-uniform 
structured grid of 350 x 281 nodes, where D is the diame­
ter of the jet at the nozzle exit. More grid points are packed 
around the shear layer. The perturbation source strength 
o = 0.001. The computation of the unsteady jet flow is 
carried out to t = 100 when the spatial instability is fully 
developed. Fig. 9 illustrates the isobars and v-velocity 
contours in the near and intermediate field . The Mach ra­
diation flow pattern agrees qualitatively with experimental 
[14] and other computational [15] results. 

3.3.2 Mach wave system inside the jet (M=1.2) 
It was found that, as analyzed by Tam and Hu [7], the 
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rho 

.00 

Figure 8: Flow variable contours at t = 390, fine grid 

Figure 9: Type I Mach radiation of a supersonic jet at 
!vI j = 2.0 and Strouhal number St = 0.2, domain size 
33Dx19D, non-uniform grid. 

Mach radiation attenuates exponentially outside the jet 
shear layer, while the Mach wave system is trapped inside 
the jet and forms a cross-hatch pattern. Here the jet shear 
layer plays the role as a 'wave guide' . 

The computational domain is 0 ~ x ~ 3D and 0 ~ 
y ~ 1D, with a non-uniform grid of 331 x 101 nodes, 
where ao-ain D is the dianleter of the jet at the nozzle exit. 

/::> 

The perturbation source strength 8 = 0.00005, with a high 
Strouhal number St = 2.0. A time step size !:It = 0.0015 
is chosen. The computation of the unsteady jet flow is car­
ried out for 12000 steps to ensure that the spatial instability 
is fully developed. 

Fig 10 clearly demonstrates the cross-hatch pattern of 
the Mach wave system inside the 'wave guide' -the jet 
core. The Mach waves are repeatedly reflected because 
they do not penetrate the annular shear layer. The pat-



jet 
core 

p 

Mj=1.2, 3Dx1 0, 300x100 grid, St. =2. dt=.0015,ee=.00005; 

showing cross-hatching Mach wave system. 

Figure 10: Mach wave system within a supersonic jet of 
M j = 1.2 at high Strouhal number St = 2.0, isobars show 
the cross-hatch pattern. 

tern qualitatively agrees with the analysis of Tanl and Hu 
[7]. At a low supersonic Mach number M j = 1.2, at the 
outer surface of the shear layer, the local phase velocity 
can hardly exceed the local speed of sound and hence prac­
tically no exterior Mach radiation occurs. 

4 2-D Non-linear aeroacoustics Test problems 
In thi s section , two examples of non-linear aeroacous­

tics involving shocks are considered. For the first example, 
more details can be found from [5]. 

4.1 Multiple Interaction of a Strong Vortex and 
Shocks 

Vortex-shock interaction has been considered a 'difficult ' 
problem for CAA. However, the CE/SE Euler scheme can 
solve the problem in an effortless way, without any numer­
ical trick or fix [5] . As seen in Fig 11 , a uniform structured 
grid of 401 x 101 nodes is employed in the rectangular do­
main with ~x = ~y = 1. The inflow boundary condition 
is given as a supersonic flow with a Mach number of 2.9: 

Uo = 2.9, Vo = 0, Po = 1/1.4, Po = 1. 

The boundary condition at the top is an inclined flow: 

Ut = 2.6193 , Vt = -0.50632 ,Pt = 1.5282, Pt = 1.7000. 

The outflow boundary condition is the type-II NRBC and 
the bottom is a solid reflecting wall. Then, a steady oblique 
shock is formed with 290 inclination and reflected at the 
bottom wall. The flow with shocks is pre-calculated until 
a steady state is reached. It is then used as the background 
mean flow for further computation. 

At t = 0, a strong Lamb's vortex is placed at x = 
22 , Y = 60. With ~t = 0.2, 900 time steps were run. 
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Fig. 11 demonstrates the shock-vortex interaction at the 
different times t = 2, 20, 38, 56, 74, 92, 110, 128, 146, 
and 1 0, and shows how the nonlinear acoustic waves are 
generated, and how they pass through the shocks and con­
vect downstreanl. 

isobars for a vortex passing through shocks, with 
acoustic waves generated. 

Figure 11: Multiple interactions of a strong vortex and 
shocks producing nonlinear acoustic waves. 

4.2 Screech tone noise of an underexpanded jet 
In nature, the screech noise is caused by an acoustic feed­
back loop between the jet nozzle exit lip (or nearby solid 
surfaces) and the shock cell structure. At the low super­
sonic jet Mach number NI j = 1.19, the overall motion in 
the experiment [8] is in an axisymmetric mode, and the use 
of axisymmetric 2-D scheme is appropriate. 

The Navier-Stokes CE/SE solver with LES (large eddy 
simulation) is applied to a triangular unstructured grid of 
88300 elements (cells) . The geometry of the computa-

Figure 12: Geometry of the computational domain. 

tional domain is shown in Fig 12. Both Type I and II 



; 

NRBC's are applied appropriately to all boundruies except 
at the nozzle solid walls where no-slip solid wall bound­
ary condition is employed, and at the nozzle exit where the 
following inflow condition is applied: 

_ [1 + ~ b - 1)MJ ] 1'::'1 

Pe - Po 1 + ~ b - 1) ) 

_ 1'_ 

[
1 + l ( - 1)M2] 1'- 1 

Pe = 0.5 b + 1)po 1 ~ ; b _ 1) J , 

_ (_2_)1/2 _ 
U e - b + 1) ) Ve - 0. 

Initially the entire field is set to the ambient flow: 

Po = 1, Uo = 0, Vo = 0, 
1 

Po =-. 
'Y 

In the numerical simulation, the initial impact of the 
boundary condition at the nozzle exit will stimulate the 
jet shear layer and trigger the feedback loop to form the 
self-sustaining oscillation that generates screech waves. 

Figure 13: Schlieren picture from experiment (panda), 
showing shock cells. 

Fig. 14 illustrates the radiating screech waves at the time 
level of212,800 steps. Since there is no forcing at all , these 
waves are a sure sign of the presence of a sustainable self­
excited oscillation. In the processing of the numerical data 
for this figure, the very high level isobar contours, corre­
sponding to hydrodynamic waves around the jet core area 
are 'cut off' and the 'colors ' are appropriately adjusted so 
that the acoustic waves are clearly displayed. The screech 
wavelength is about 1.6D, well in line with experimental 
results (e.g. [8]) and theoretical predictions (e.g. Seiner 
[10] , Tam [9]). The shock cell structure in Fig. 14 is com­
parable to the experimental Schlierens in Fig. 13. Fig. 15 
shows the PSD (power spectrum density) at the location 
(x = 2.0 Y = 6.0) . It is seen that the spikes at the funda­
mental frequency and the subharmonics shoot out against 
the background noise, despite the low resolution. The fun­
damental frequency is estimated to be about 8, 661 Hz in 
this case, comparable to the experimental case - 8,425 Hz. 
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screech waves shock-cel l s 

M_ j =1.19 axisym . jet, isob a r a t 
time step 212800, showing shock 
cell structure and screech waves 

Figure 14: Screech wave radiation and shock cell structure 
(numerical Schlierens). 

5 The Airfram e Noise Problems 
Airframe noise is an important noise source in aeroa­

COllStiCS. Several airframe tone noise problems are con­
sidered in this section to demonstrate the capability of the 
CE/SE scheme. 

5.1 T he subsonic cavity noise problem 
In this problem[11] , a M = 0.8 subsonic flow passes over 
a cavity of aspect ratio 6.5. Tonal oscillations occur in 
a feedback cycle in which the vortices shed from the up­
stream lip of the cavity convect downstream and impinge 
on the other lip, generating acoustic waves that in turn 
propagate upstream to excite new vortices (Fig 16). 

In the computational domain, 42,000 triangular ele­
ments are used in the unstructured grid, which is made 
from structured rectangu lar cells . Figure 17 depicts 
with isobars where the acoustic waves are generated and 
propagate in a series of snapshots (1-12) in the near field 
of the cavity. Each snapshot is 3.6 (720 steps) unit apart 
in time. Initially, the flow conditions are set to be identical 
to the ambient flow. The boundary conditions are the ap­
propriate types of NRBC except at the cavity walls, where 
slip, reflective wall boundary condition is applied. No vis­
ible reflections are observed at the non-reflecting bound-
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Figure 15: PSD at (x 
number. 

2.0 , y 6.0); x-axis: Strouhal 

impinging 
waves 

Figure 16: Sketch of the subsonic cavity noise problem. 

aries. At the inflow boundary, upstream propagating waves 
are well absorbed within 2 cells, without contaminating the 
interior domain. From an animation of the solution, the 
near field acoustic wave structure appears to be compli­
cated and chaotic. 

5.2 Auto-door gap noise 
Figure 18 illustrates the geometric configuration of the 
door gap noise problem, which represents a typical cav­
ity aeroacoustic feedback system. The problem is given 
as a benchmark problem at the 3rd CAA Workshop [12] 
(OAIINASA Glenn, Cleveland, OH, November, 1999). 2C 
(17.52mm) is chosen as the length scale and the speed of 
sound and density of the ambient flow are respectively the 
scales for velocity and density. In the current computa­
tion, there are 48,184 triangle elements for the unstruc­
tured mesh in the computational domain. These triangles 
are actually obtained by dividing a rectangular structured 
mesh cell into 4 pieces. The rectangular cell keeps a uni­
foml size of 6. x = 0.00625 and 6.y = 0.01136 around 
the area of the gap and the interior of the cavity, but grows 
larger near the boundaries. The mean flow follows the x­
direction with Mach number M = 0.1497, corresponding 
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Iso bar s nap s hots, showing generation of near field non-linear 
acoustic waves around the cavity. 

Figure 17: Isobar snapshots of the subsonic cavity flow 
field . 

Airflow ----

A=lS.9mm, B=28mm~, ~~~~~ 
D=3.3mm 

A u to -d 00 r gap noise problem 

Figure 18: Sketch of the auto-door gap noise problem with 
actual sizes. 

t=5 t=17.5 t=30 

i sob a r s nap s hots at different time 

Figure 19: Isobar snapshots at various time steps in the 
flow field, showing formation of vortices. 
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Figure 20: PSD at the midpoint of the left wall of the door 
gap cavity; x-axis: Strouhal number, y-axis: PSD in log. 
scale. 

to the car speed of 50 .9m/ s . Initially, ambient flow con­
dition is imposed on the entire flow field. At the inflow, 
the M = 0.1497 flow is imposed. At the top and bottom 
the Type I NRBC is used while at the outflow, the Type II 
NRBC is specified. The domain shown in Fig. 19 is ex­
actly the computational domain, no buffer zone is used but 
still, the CE/SE NRBC is very effective. The generation of 
vortices and the generation of (nonlinear) acoustic waves 
by vortex- gap edge impingement, both inside and outside 
of the cavity, are clearly displayed. The computation is 
totaIly carried out for 225, 000 time steps. Starting from 
time step 60,000, when the unsteady flow is considered 
as fully developed, the pressure history at the mid-point 
of the left wall of the cavity is recorded and provides for 
FFT (fast Fourier transform) analysis . Fig. 20 displays the 
PSD (power spectrum density) in log. scale for the time 
series. The x - axis denotes the reduced frequency - the 
Strouhal numberSt. S t = 1 is equivalent to a frequency of 
19, 406 Hz. It is observed that there are several different 
tone spikes extending to very high frequencies. The fre­
quency at the lowest tone spike is at 1839 Hz. This agrees 
well with the experimental frequency data (1824 Hz) pro­
vided by the 3rd CAA Workshop. 

5.3 Blunt trailing edge noise 
In this last example, the noise generated by the von Kar­
man vortex street downstream of a rectangular blunt slab 
is computed. The flow Mach number is M = 0.3. Fig­
ure 21 illustrates the details of the computational domain. 
Initially, the entire field is set at the ambient flow. Then the 
inflow of M = 0.3 is imposed at the left boundaries. At 
the solid slab walls, no-slip condition is applied. The com­
putation is totally carried out for 390, 000 time steps. Time 
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isobars at t=390,000 steps, showing von Karman vortex street 
at the tra iling edges of a blunt slab 

( unstructured grid w. n ,600 triangles, dt=.005) 

Figure 21: Isobar snapshot, showing von Karman vortex 
street downsu'eam of the slab. 
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Figure 22: PSD at the FFT data point; x-axis: Strouhal 
number. 

history at the data point as shown in Fig. 21 is recorded for 
FFT analysis. The power spectrum density (PSD) is shown 
in Fig. 22. As before, the x- axis denotes the reduced fre­
quency - the Strouhal number St. S t = 1 is equivalent to 
a frequency of 13, 386 Hz if the thickness of the slab is 
assumed to be one inch. The frequency at the lowest tone 
spike is 784 Hz. Although there is currently no experimen­
tal data known to the author, this frequency doesn ' t seem 
to be in conflict with other experiments, e.g., a M = 0.2 
flow past a circular cylinder of diameter L9cm, with the 
frequency of f = 643 Hz ( the 2nd CAA Workshop, Cate­
gory 4 [13]). 

6 Concluding remarks 
Through numerous numerical examples, the capability 

of the new CE/SE schemes is demonstrated. The CE/SE 
scheme is a time-accurate conservative scheme for CFD 
and CAA. Its features include: 

(1) naturally adapted to unstructured grid, 



(2) high resolution, low dispersion, and low dissipation, 
despite its nominal 2nd order accuracy (in space and time) , 

(3) robust, treats the 'difficult ' problems in a simple, ef­
fortless way, particularly appropriate for near field, non­
linear aeroacoustics, 

(4) the novel NRBC is simple, effective and truly multi­
dimensional. 

In the near future, 3-D LES or turbulence modeling will 
be considered in the CE/SE scheme development. 
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