Virtual Antiparticle Pairs, the Unit of Charge e
and the QCD Coupling α_s,

David Batchelor1

Nov. 6, 2000 Submitted to *International Journal of Theoretical Physics*

Apr. 12, 2001 Re-submitted in revised form

Suggested running head: Virtual Antiparticle Pairs, e and α_s

1 Science Communications Technology Branch, Mail Code 933, NASA's Goddard Space Flight Center, Greenbelt, MD 20771. Telephone: 301/286-2988.

E-mail address: david.batchelor@gsfc.nasa.gov
Abstract

New semi-classical models of virtual antiparticle pairs are used to compute the pair lifetimes, and good agreement with the Heisenberg lifetimes from quantum field theory (QFT) is found. When the results of the new models and QFT are combined, formulae for e and $\alpha_s(q)$ are derived in terms of only \hbar and c. The modeling method applies to both the electromagnetic and color forces. Evaluation of the action integral of potential field fluctuation for each interaction potential yields $\approx h/2$ for both electromagnetic and color fluctuations, in agreement with QFT. Thus each model is a quantized semi-classical representation for such virtual antiparticle pairs, to good approximation. This work reduces the number of arbitrary parameters of the Standard Model by two from 18 to 16. These are remarkable, unexpected results from a basically classical method.

Keywords: virtual, antiparticle, positron, QED, QCD
1. Introduction

It is well known that virtual pairs of elementary particles appear briefly as vacuum fluctuations and then annihilate each other [1]. Many effects of these Virtual Antiparticle Pairs (VAPs) are well understood — such phenomena as the screening of “bare” electric charge by vacuum polarization of virtual fermions [2].

The quantum states of normal material particles obey the Heisenberg Uncertainty Principle for energy \((\Delta \varepsilon \Delta t \geq \hbar/2)\) [3]. VAPs are ephemeral quantum states which can only exist so long as \(\Delta \varepsilon \Delta t \leq \hbar/2\). In general, the maximum lifetime of such a VAP (of any elementary particle species) is the Heisenberg lifetime

\[
t_H = \frac{\hbar/2}{2mc^2},
\]

where \(m\) is the mass of one of the particles (cgs units are used in this paper).

The goal of this paper is to point out that, if one adheres carefully to the semi-classical method, then it can be used to compute VAP lifetimes in good agreement with the Heisenberg lifetimes. This shows not only that semi-classical modeling corresponds unexpectedly well with QFT, but also offers the advantage that the coupling constants appear explicitly in the new resulting formulae, so that we may solve for their values (since we know \(t_H\) from QFT, too).

As a tool for further physical insight into VAPs, or a conceptual or teaching aid, it would seem natural to apply a semi-classical dynamical model to the VAP (analogous to the Bohr hydrogen atom), if it could be appropriately quantized. Semi-classical quantization is a well understood method [4]. The Bohr semi-classical model successfully yields so many physical properties of hydrogen and has such undisputed pedagogical value that it is still widely used in quantum mechanics texts. In addition, the semi-classical Bohr-Sommerfeld quantization method continues to produce new physical insights into quantum-mechanical problems, such as Brau’s recent success at modeling meson spectroscopy using a Bohr-Sommerfeld treatment of constituent quarks [5]. Comparison between the prediction of such a dynamical model for VAPs and the quantum
lifetime (Eq. 1) might be instructive about the differences between semi-classical and fully quantum mechanical physics of VAPs. This expectation is encouraged by Brau’s derivation of useful formulae for the dependence of some physical quantities on quantum numbers, which emerge from the semi-classical method but have not been obtainable from full quantum calculations. Curiously, there seems to be no trace in the literature of such a dynamical model of VAPs.

The test of usefulness of such a semi-classical model for VAPs should be whether the model successfully predicts the state’s lifetime in agreement with quantum theory. Of course we are aware that semi-classical methods have limitations, and depend upon classical dynamics, which is rigorously valid only for large quantum numbers; here we deal with vacuum states, so the results deserve to be interpreted with due consideration of how much reliability we are entitled to expect. One might argue that only order-of-magnitude agreement could result at best.

In this paper it is shown that semi-classical relativistic two-body theory can enable us to compute a good approximation of the Heisenberg VAP lifetimes t_H for the massive leptons, the quarks, and electroweak bosons. The agreement of the results with QFT is very good, but more importantly, the semi-classical models explicitly depend upon e and α_s for their dynamical timescales. Therefore, the agreements of the dynamical timescales with the Heisenberg lifetimes of the VAPs can be solved for good approximations of e and α_s in terms of more fundamental physical constants.

2. Virtual Massive Lepton Antiparticle Pairs

Let us first consider a virtual electron-positron pair (VEPP) unperturbed by any external forces, using classical electrodynamics. In second-order QED, processes described by the Feynman diagram in Fig. 1(a) occur [6]. An electron with four-momentum p, a photon with four-momentum k, and a positron of four-momentum $-p - k$ spontaneously appear from the vacuum at one spacetime point $x_1 = (t_1, x_1)$ and propagate to another spacetime point x_2, where they annihilate; energy and momentum
are conserved.

We shall take the Feynman diagram in Fig. 1(a) as the basis for a classical dynamical model (the usual semi-classical approach), and then assure that an appropriate quantization condition is met.

Of course it is not possible to model Fig. 1(a) perfectly in the classical framework. In the diagram, the particles and the timelike virtual photon are free, with the electromagnetic interaction only acting at the vertices at the top and bottom of the diagram. This is the usual perturbation-theory approach. In contrast, classical physics assumes that the particles move in a potential continuously over time; QED perturbation theory treats the interaction without reference to time dependence [8]. So we cannot expect the classical dynamical model to correspond with every feature of the diagram. Rather, the objectives here are to answer the following questions: (1) can such a VEPP appear, consistent with the classical principles? (2) what happens to the particles thereafter to determine their dynamics? and (3) is the system subject to reasonable quantization conditions as in the semi-classical method? The general viewpoint of this approach is that QED has led the way in showing us the occurrence of processes like Fig. 1(a) in nature; now that we know about these processes, we can investigate what non-perturbative theory might tell us about them – in this case, semi-classical non-perturbative theory.

Concerning question (1), antiparticle creation and annihilation have been reconciled with classical relativistic dynamics for a long time. The role of antiparticles in classical relativistic dynamics is sometimes misunderstood, because of the historical interpretation of negative-energy states in relativistic quantum mechanics as antiparticles. However, the natural appearance of antiparticles as particles in a state of motion such that $d\tau = -dt/\gamma$ (where τ is proper time and γ is the Lorentz factor) was realized by Stückelberg [9]; Costella et al. [10] give a clear exposition of the positive rest mass energy of antiparticles in classical relativistic theory (see also Trump and Schieve [11]). So
particle/antiparticle properties are well defined and consistent with the classical principles. In addition, classical pair creation has been studied, for example by Carati [12] in solutions of the well-known Abraham-Lorentz-Dirac equation. It should be clear that antiparticle pair creation and annihilation are accepted as consistent with classical relativistic dynamics in the way that the following model is developed.

According to the Feynman diagram, the electron and positron are each created at the origin of the center-of-mass (CM) coordinate system. At the exact instant of the particles’ creation, both are at \(r = 0 \). In the CM frame the leptons then travel apart along a radial line with some initial velocity \(v_0 \) (Fig. 1b), with a separation \(R(t) = 2r \). This motion is consistent with the usual theory, since the particles are off mass shell and momentum is conserved. Because the electromagnetic potential is singular at \(R = 0 \), it appears at first as if the pair would be inseparable, due to infinite attraction and couldn’t escape from the origin unless \(v_0 = c - \delta v \) where \(\delta v \) is infinitesimal. Let us assume that each particle appears at some finite distance from the origin so that their initial separation is \(R_{\text{init}} \), and for the moment let us ignore this obstacle. (We shall find later that \(R_{\text{init}} \) may be taken to zero in the computations.)

Sometimes the appearance of a VAP is regarded as a violation of the conservation of energy on a timescale too brief to observe. That is true of the particles’ rest mass energy, but since the particles are off mass shell and energy is conserved, the total energy of the particle-field system must be zero in QED (it was zero for \(t < t_1 \)). In this semi-classical model also, we must consider energy conserved (including rest mass), and assume that after the leptons’ emission from the origin, the sum of their rest mass energy and kinetic energy is the negative of the electromagnetic binding energy at the separation \(R = 2r \) of the particles, requiring the two-body system energy equation

\[
\varepsilon_e = 2\gamma m_e c^2 + U(R) = 0
\]

where \(\gamma = 1/\sqrt{1-(v(r,t)/c)^2} \) is the Lorentz factor (as \(v \to c, \gamma \to \infty \); as \(v \to 0, \gamma \to 1 \)), and \(U(R) \) is the potential energy function of the electron and positron’s mutual elec-
The definition of energy baseline in Eq. (2) captures in a classical way the energy debt that would have to be paid in order for these leptons to be escalated into free particles. As expressed by Greiner [14]: if a virtual pair is separated during the interval t_H and if it has gained more energy than $2mc^2$, then the particles become real. The quantum system evolves almost as if it were in a potential energy well of depth $2mc^2$, and Eq. (2) is a classical analogue of that.

We shall ignore radiation reaction, since in QED these particles are not capable of emitting radiation (and if the particles radiated, then we would be modeling some other, more complex process than Fig. 1(a)). We impose conservation of angular momentum, so that the spins of the particles are such that they sum to zero net angular momentum (the virtual photon is only a carrier of energy, but not of momentum or net angular momentum). Then the spin angular momentum of the electron must be antiparallel to that of the positron, and the magnetic moments μ_e^- and μ_e^+ must be parallel.

What forces determine the dynamics of these particles? With zero orbital angular momentum in the system, there are only the electrostatic and magnetic spin-spin forces in play (gravity can be ignored). In the rest frame of each lepton, the electrostatic potential is $-e^2/R$ and the magnetic spin-spin potential is the magnetic field gradient potential energy U_B [15], which gives the familiar field gradient force $\nabla(\mu \cdot B) = \nabla(-U_B)$ – which is conventionally not assumed in discussing the diagram in Fig. 1(a). But it should be noted that this creates no conflict whatever between the present model and QED, because diagrams like Fig. 1(a) do not contribute to any observable effect in QED [2]; other diagrams in which VAPs interact with real particles lead to the observable effects.
What are the relative magnitudes of the two electromagnetic forces? To answer this, we need to estimate the maximum separation vector between the electron and positron. Conventionally, an upper bound is calculated for the separation of the electron and positron, which cannot move apart faster than c, the speed of light. Then an upper bound on their separation [16] is ct_{He}, with t_{He} given by (recall Eq. 1)

$$t_{He} = \frac{\hbar/2}{2m_ec^2} \approx 3.2 \times 10^{-22} \text{ s}.$$

Then $ct_{He} = \hbar/(4m_ec) \approx 10^{-11} \text{ cm}$.

Let us consider first the case in which the electron and positron separate along the direction of μ_e. The absence of torques ensures that the motion is purely one-dimensional. At maximum separation, the potential energy of the spin-spin interaction is $U_B = -\mu \cdot B = -2\mu_e^2/R^3$, where

$$\mu_e = \frac{ge}{2m_ec^2} \frac{\hbar}{2} \approx 2ect_{He}, \quad (3)$$

and g is the Landé factor ≈ 2 for fermions. Then the ratio of the potentials is

$$\frac{U_B}{V_e} = \frac{2\mu_e^2 R}{R^3 e^2} = \approx 8 \left(\frac{ct_{He}}{R} \right)^2.$$

For $R = ct_{He}$, the magnetic force is dominant.

Perhaps it should be noted for comparison that a VEPP is a very different bound state of the electron and positron from positronium [17]; an electron and positron in a positronium state are in a stationary state with spatial extent of order $a_0 \approx 0.53 \times 10^{-8} \text{ cm}$ (Bohr radius), whereas the leptons in a VEPP are not. The much smaller scale of the VEPP and the $1/R^3$ dependence of the spin-spin force are the reasons that the spin-spin force dominates, although it is usually a small perturbation.

Let us assume that the leading term in the potential is the spin-spin force between the leptons, and solve for the dynamics using this term alone; we will then check to verify whether this assumption is accurate.
As the particles separate, the electromagnetic attraction between the leptons will slow their motions until they reach a maximum separation R_{max} where the velocity and kinetic energy are zero. While the particles move, we must perform a Lorentz transformation from the lepton rest frame to the CM frame, so $U(R) = -2\mu_e^2/(\gamma R)^3$ (Jackson [18] explains how this introduces a change from R to γR for this one-dimensional motion). When the particles come to rest at the turning points, it is easy to solve the energy equation (2) because $\gamma = 1$, and obtain

$$R_{\text{max}} = \left(\frac{\mu_e^2}{m_e c^2}\right)^{1/3} = \left(\frac{r_e \lambda_c^2}{16 \pi^2}\right)^{1/3} = \left(\frac{e^2 \hbar^2}{4c}\right)^{1/3} \frac{1}{m_e c} \approx 4.70 \times 10^{-12} \text{cm},$$

where $r_e = e^2/(m_e c^2) \approx 2.82 \times 10^{-13} \text{ cm}$ is the "classical electron radius", and $\lambda_c = \hbar/(m_e c) \approx 2.43 \times 10^{-10} \text{ cm}$ is the Compton electron wavelength.

We see that $R_{\text{max}} \approx c t_{He}/2$, which is quite consistent with the conventional upper bound on the leptons' separation derived from QED, and mentioned previously.

It should be noted that any structure in the pointlike electron or positron is known to be smaller than 10^{-15} cm, as determined from high-energy scattering [19], so the scale of our model is more than three orders of magnitude larger than any of the constituent particles' structure, justifying our treating the leptons as points. (We now explicitly assume $R_{\text{init}} \ll R_{\text{max}}$.)

At the scale R_{max}, the strength of the electrostatic potential $V_e(R) = -e^2/R$ is small relative to $U_B(R)$. Their ratio is $U_B/V_e \approx 33$ at $R = R_{\text{max}}$ (and greater for $R < R_{\text{max}}$). The lepton motion is governed by the spin-spin force, and the electrostatic potential is negligible in determining the dynamics.

After the leptons separate and reach their turning points, we then expect that the electron and positron each retrace their motions in reverse and annihilate one another when they collide at the origin. The motions of the particles can be computed by integrating the energy equation (2), and we can compare the dynamical result (which we shall call t_{ue}) with the quantum mechanical maximum timescale for this process of creation and annihilation in the presence of no external forces (the Heisenberg lifetime),
\(t_{He} \). There is a considerable literature of attempts to solve rigorously the classical problem of colliding relativistic charged particles [20]; no results are found in the literature for the problem considered here.

Let us also address one conceivable objection to the physical applicability of this model. It is well known that a free electron cannot be localized in a wave packet smaller than \(\Delta x_Z \sim \lambda_Z / 2\pi \), due to the Zitterbewegung [21] (oscillations in \(x \) with frequency \(\omega_Z = 2mc^2/\hbar \approx 1.5 \times 10^{21}\text{sec}^{-1} \)). Although \(R_{max} \ll \Delta x_Z \), the period of Zitterbewegung oscillations is \(4.2 \times 10^{-21}\text{ s} \gg t_{He} \), so in QED the Zitterbewegung does not have time to delocalize the VEPPs before they annihilate; we shall see below whether the same is true in our dynamical model.

Let us calculate the dynamical timescale for the VEPP creation-annihilation process, using the energy equation (2) as an equation of motion. We can rewrite the energy equation as

\[
\gamma^4 = \left(\frac{R_{max}}{2r} \right)^3.
\]

To simplify the derivation, let us define \(\zeta = R/R_{max} \). Taking the square root of both sides of the energy equation, we obtain

\[
\gamma^2 = \left(\frac{R_{max}}{R} \right)^{\frac{3}{2}} = \zeta^{-\frac{3}{2}}.
\]

Invert both sides and expand \(\gamma \):

\[
1 - \frac{v^2}{c^2} = \zeta^\frac{3}{2}
\]

Solve for \(v \):

\[
v = c\sqrt{1 - \zeta^\frac{3}{2}} = \pm \frac{dr}{dt}
\]

\[
dt = \pm \frac{dr}{c\sqrt{1 - \zeta^\frac{3}{2}}},
\]

an equation of motion which may be integrated.
Let the total time for the formation, separation and re-annihilation of the virtual e^+e^- pair be denoted t_{ve}, the dynamical lifetime. Then t_{ve} is twice the time for the particles to separate and reach the turning points, since the path is approximately time-symmetric. (If we were to rigorously include field retardation effects, then the problem would no longer be perfectly time-symmetric). For the purpose of this calculation, we can let $R_{init} \to 0$ without encountering a singularity. Then

$$t_{ve} = \frac{1}{c} \int_0^{R_{max}/2} \frac{dr}{\sqrt{1 - \left(\frac{2r}{R_{max}}\right)^2}} = \frac{R_{max}}{c} \int_0^1 \frac{d\zeta}{\sqrt{1 - \zeta^2}}.$$

The integral may be found in ref. [22]; substituting its value yields the dynamical VEPP lifetime

$$t_{ve} = \frac{R_{max}}{c} \left(\frac{\sqrt{\pi} \Gamma(\frac{3}{2})}{6 \Gamma(\frac{7}{6})}\right) \approx \frac{R_{max}}{c} (1.7247) = \left(\frac{e^2 \hbar^2}{4c}\right)^{1/3} 1.7247 \approx 2.70 \times 10^{-22} \text{ s}.$$

Let us compare this dynamical lifetime with the Heisenberg lifetime for such an electron-positron pair, $t_{He} = \hbar/(4m_e c^2) \approx 3.2 \times 10^{-22} \text{ s}$ above. The dynamical computation is only 16% lower. Since $t_{ve} \approx t_{He}$, there is clearly no difficulty for the model posed by Zitterbewegung, in agreement with QED.

We were trying to obtain the maximum lifetime of such a dynamical system, and the reader may wonder whether t_{ve} is in fact a maximum. If the electron and positron separated along some trajectory different from the torque-free axis of their angular momenta (which we used in the above calculation), what would the lifetime be? Let us refer to Fig. 2. Let us suppose that the electron and positron initially separate along a line with a direction at an angle θ relative to the μ vector. If $\theta = 90^\circ$, then $U_B = -\mu \cdot B > 0$ and the energy equation (2) does not have solutions because the potential is repulsive, not attractive. The semi-classical model suggests that VEPPs do not exist with motions along these trajectories. The cones such that $\theta \approx 54.7^\circ$ define the surface outside which $U_B > 0$, as shown in Fig. 2. Inside the cones, as θ decreases $\mu \cdot B$
becomes positive (U_B becomes negative) and it becomes possible to satisfy Eq. (2) iff $\mu \cdot B > 2m_e c^2$.

The dynamics of the VEPP are more complex for $0 < \theta < 54.7^\circ$ than in the $\theta = 0$ case, which we already treated. Let us consider an electron near the vertical axis, as pictured in Fig. 2, such that $0 < \theta < 54.7^\circ$. There is now a torque on the magnetic dipole moment of the electron, given by $\tau = \mu \times B$. Classically this causes the magnetic moment to precess about B. But by symmetry (and conservation of angular momentum) the positron experiences the same torque due to the electron's magnetic field, and hence both magnetic moments precess equally and remain always parallel. Because μ and B are no longer parallel, $|\mu \cdot B|$ is reduced. If the trajectories of the electron and positron are still close to the vertical axis, R in the particle frame still is approximately γR in the CM frame, and we can use $U_B = -\mu_e^2 (3 \cos^2 \theta - 1)/(\gamma R)^3$ in Eq. (2) [23]. This leads to smaller values of R_{max} and t_{ve}, and thus we see that the values for these parameters computed first above are indeed maximal as desired.

We see that the conservation laws uniquely determine the dynamical model that yields t_{ve} classically, giving us another derivation of t_{He} to good approximation. It will be demonstrated below that the agreement of t_{ve} and t_{He} is no coincidence, but results from valid physical relationships.

Let the numerical factor involving the ratio of Γ functions in eq. (5) be designated $f_s \approx 1.72$. Note that for the ratio

$$\frac{t_{He}}{t_{ve}} = \frac{\hbar}{4} \frac{1}{f_s} \left(\frac{4c}{e^2 \hbar^2} \right)^{1/3} \approx 1.16$$

m_e cancels out, so this form of VAP lifetime derivation works for all of the massive lepton pairs (electron-positron, muon-anti-muon and tau-anti-tau leptons), irrespective of their masses (as it must to be valid). The muon and tau lepton, of course, have smaller values of R_{max} and t_e because of their larger masses, and $t_{\nu_\mu} \approx t_{H\mu}$, $t_{\nu_\tau} \approx t_{H\tau}$ to the same relative precision. (See Table I.)
Since we know the value of t_{He} from QFT, we may equate it with the result in Eq. (5) to derive approximations for two familiar fundamental physical constants, the electric charge quantum e and the fine structure constant $\alpha = e^2/(\hbar c)$, in terms of \hbar and c only – a very interesting result. If we approximately equate $t_{He} \approx t_{ee}$, then we find easily that

$$e \approx \left(\frac{\hbar c}{16 f^2}\right)^{1/2} \approx 6.2 \times 10^{-10} \text{ esu.}$$

This is only 30% high, compared with the usual measured value, 4.8×10^{-10} esu. It is closer to the "bare" charge – what it would be if it were not "dressed" by the screening of vacuum fluctuations [24, 25]. In fact, we should have expected that this calculation was likely to yield a result larger than the usual observable charge e because $R_{max} \ll \lambda_c$, the characteristic scale of the screening cloud of VEPPs which surrounds any free electron or positron. Different calculating methods lead to different estimates for the magnitude of the bare charge: ref. [24] gives a calculation suggesting that $e^2_{bare} \approx 1.08 e^2$, but ref. [25] presents an argument based on the photon propagator, showing that the QED perturbation theory fails and e_{bare} could be infinite. If the semi-classical model in the present paper had led to a value for e less than the observable 4.8×10^{-10} esu, then the model would appear unphysical; however it is hard to determine whether the semi-classical approximation should be expected to hold to such precision. The value for e derived from this model is consistent with e_{bare} from QED, given present theoretical uncertainties. (And if our expression for e gives the bare charge, then the 16% difference from the usual value is not an approximation error.)

We can also easily derive $\alpha \approx 1/(16 f^2) \approx 1/83$; this is 66% larger than the well-known $1/137$ value for α. As pointed out in the preceding paragraph, our model derives the bare value of α, not the usual observed value for distances large relative to λ_c from a free electron.

These results show that this semi-classical model gives remarkable agreement with the QFT parameters of VEPPs, in view of the model’s simplicity (only point mag-
netic dipole particles interacting via a potential function in one dimension). But the reader may wonder whether this is coincidental. And what about the quantization that is necessary to make it really "semi-classical" rather than entirely classical? Next the quantization will be addressed, and an independent physical derivation of the VEPP quantization will be presented.

The Bohr model was quantized using conditions on the angular momentum of the orbiting electrons in a non-relativistic case [26]. In the present model, however, the orbits have vanishing angular momentum and angular momentum conservation has already been imposed to determine the orientations of the μ_e- and μ_e^+. Hence the Bohr approach is not exactly applicable in this VEPP model.

Let us consider the quantization of the electromagnetic field in the VEPP. The well-known zero-point field energy of the electromagnetic field is $\varepsilon_{em} = \frac{1}{2} \hbar \omega$. That is, for any wave mode of angular frequency ω, there is a vacuum fluctuation energy ε_{em}. Another way to view this fact is that there is a quantization of any zero-point fluctuation mode ω such that its energy is proportional to the action $\frac{\hbar}{2}$. (Quantization of action is a fundamental connection from classical mechanics to quantum mechanics, and was actually used to derive the Schrödinger equation from the principle of least action by Feynman [27].) Since the VEPP induces an electromagnetic vacuum fluctuation, let us calculate the action associated with the electromagnetic field in the VEPP over its cycle from creation to annihilation.

The expression for the action associated with a potential U acting on a particle is given (for the relativistic case) by Lanczos [28]

$$A = \int_{t_1}^{t_2} U \frac{ds}{c},$$

where $ds = c \frac{dt}{\gamma}$. It follows that the action integral of the VEPP electromagnetic field is (recall the time symmetry relative to the turning point at $t_{ve}/2$):

$$A = -2 \int_0^{t_{ve}/2} \left(-\frac{2\mu_e^2}{c\gamma^3 R^3} \right) c \frac{dt}{\gamma} = 4\mu_e^2 \int_0^{t_{ve}/2} \frac{dt}{\gamma^4 R^3} = 4\mu_e^2 \int_0^{R_{max}/2} \frac{dr}{c \gamma^4 R^3 \sqrt{1 - \zeta^{3/2}}},$$
\[
\frac{4\mu_e^2}{c R_{\text{max}}^3} \int_0^1 \frac{d\zeta}{\sqrt{1 - \zeta^3/2}} = \frac{2\mu_e^2 c R_{\text{max}}^2}{c R_{\text{max}}^3} \int_0^1 \frac{d\zeta}{\sqrt{1 - \zeta^3/2}}
\]

\[
= \frac{2m_e c}{R_{\text{max}}^2} \frac{\mu_e^2}{m_e c^2} \int_0^1 \frac{d\zeta}{\sqrt{1 - \zeta^3/2}} = 2m_e c^2 R_{\text{max}} f_s = 2m_e c^2 t_{ve} = 2 \left(\frac{e^2 \hbar^2}{4c} \right)^{1/3} f_s.
\]

This final result is approximately \(4.4 \times 10^{-28}\) erg s, only 16% less than \(\frac{1}{2} \hbar\).

This action integral for our model VEPP potential equals the conventional zero-point field action, to good approximation. Thus the model is inherently quantized (to within the 16% difference in \(t_{ve}\)), and is a physically valid semi-classical candidate to represent VEPPs in the way the Bohr atom approximately models the hydrogen atom.

N.B: if \(t_{ve}\) exactly equalled \(t_{He}\), then \(A\) would exactly equal \(\frac{1}{2} \hbar\). And we showed above that regarding the \(e\) in our expressions as \(\epsilon_{bare}\) would imply \(t_{ve} = t_{He}\).

The value of \(A\) implies that there is not just a fortuitous coincidence between the \(t_{He}\) and \(t_{ve}\) timescales. Rather, the VEPP model matches the expected action integral for a vacuum fluctuation, and this is undoubtedly because it reflects the physical process in a valid way. This agrees with standard QED, in which vacuum fluctuations of the positron-electron field generated by the electromagnetic field are the virtual creation and annihilation of VEPPs, and the fluctuations of the electromagnetic field generated by the VEPPs are the virtual emission and absorption of photons, as Schwinger explained [29].

In the following sections it will be seen that when the same semi-classical method of modeling is applied to quark-antiquark virtual pairs, the same agreement in the quantum mechanical and semi-classical timescales results, as well as the action integral.

3. Virtual Quark Antiparticle Pairs

The method of Sec. 2 can be applied to quark-antiquark virtual pairs. A process analogous to Fig. 1(a) exists in Quantum Chromodynamics (QCD), but with a
gluon replacing the timelike photon [30]. The energy equation is of the same form,

$$\varepsilon_q = 2 \gamma m_q c^2 + U(R) = 0,$$

except that the dominant force is the “color” force instead of the spin-spin electromagnetic attraction. The potential function $U(R)$ has been inferred from decades of high-energy scattering experiments. Mesons like the J/ψ particle are bound states of a quark and its anti-quark, and high-energy particle collision experiments have established phenomenological forms of $U(R)$. These experiments have revealed that a useful empirical form of the potential is the so-called “Cornell funnel potential” [31]

$$V(R) = -\frac{\kappa}{R} + aR,$$

where $\kappa \approx \frac{4}{3} \alpha_s$, and the QCD strong coupling strength $\alpha_s \sim 0.2$ in “natural units” (units such that $\hbar = c = 1$), and $a \approx 0.25 \text{ GeV}^2$. Converted to cgs units used herein, $\kappa \sim 8.6 \times 10^{-18} \text{ erg cm}$. The second term, aR, is only significant for $R > 10^{-13} \text{ cm}$, so we will not need to consider it, since the first term with the Coulomb-like dependence will strongly dominate the potential for the range of R_{max} of quark VAPs. The Coulomb-like term is due to exchange of a vector gluon between the quark and antiquark [32].

The QCD coupling coefficient α_s is not constant, but is a “running coupling” because of its variation with 4-momentum transfer q of the interacting particles [33]. This can be allowed for in our semi-classical model. However, it is important to be clear about what this two-body model can be expected reasonably to correspond with in QCD. The QCD coupling strength $\alpha_s(q)$ has been calculated to four-loop order [34], including a series of processes (diagrams) with numerous topologies. But the present semi-classical model only consists of the spacetime structure of a single-loop process. Hence it is not applicable to processes in which more than one loop is involved. It makes sense to compare the two-body model here only with lowest-order QCD (and corrections with the same spacetime diagram, such as spin-spin or electrostatic corrections). By the same
token, in QFT a quark VAP doesn’t include those multiple-loop processes, so QFT logic prohibits using multiple-loop processes to compute t_{Hq} for quarks also.

First, to demonstrate the basic physical model, let us take $\alpha_s = 0.20$, sometimes called the “canonical” value [31], derived from a fit of the charmonium system. Let us calculate the dynamical timescale for a charm quark-antiquark VAP using this single value of α_s. After that, we will then generalize the model to account for the running of α_s as a function of q.

Here is the semi-classical dynamical timescale calculation: including a Lorentz factor γ appropriate for the $1/R$ function (because the motion is relativistic for part of the trajectory [18]), the potential in Eq. (2') becomes

$$U(R) = -\frac{\kappa}{\gamma R}.$$

As in Sec. 2, we can solve (2') for R_{max} at the turning point:

$$2m_q c^2 = -U(R_{\text{max}}) = \frac{\kappa}{R_{\text{max}}}$$

$$R_{\text{max}} = \frac{\kappa}{2m_q c^2}.$$ \hspace{1cm} (4')

For the charm quark constituent mass of $1.5 \text{ GeV}/c^2 = 2.7 \times 10^{-24} \text{ g}$, we find the charm quark VAP has an $R_{\text{max}} = 1.8 \times 10^{-17} \text{ cm}$. This means that the quarks are deep in the color-Coulomb part of the potential, and the linear part of the function is insignificant in magnitude. The dynamics are determined by the single vector gluon exchange, not the multi-gluon exchange of confinement in the linear region, in agreement with QCD [32].

For the dynamical timescale, we rewrite the energy equation (2') as $\gamma^2 = \zeta^{-1}$, with $\zeta = R/R_{\text{max}}$, and find

$$t_{vq} = 2 \int_0^{R_{\text{max}}/2} \frac{dr}{c\sqrt{1-\zeta}} = \frac{R_{\text{max}}}{c} \int_0^1 \frac{d\zeta}{\sqrt{1-\zeta}}$$

$$= \frac{R_{\text{max}}}{c} \sqrt{\pi} \frac{\Gamma(1)}{\Gamma(\frac{3}{2})} = \frac{R_{\text{max}}}{c} f_c = \frac{f_c \kappa}{2m_q c^3}.$$ \hspace{1cm} (5')
where we label the ζ integral's value as $f_c \approx 2.0$. For the charm quark, with $m_q \approx 2.3 \times 10^{-24}$ g, we $t_{vq} \approx 1.4 \times 10^{-25}$ s.

For comparison, the Heisenberg lifetime of the charm quark is $t_{Hq} \approx 1.3 \times 10^{-25}$ s, only about 8% lower.

Considering the quantization of the color force potential field in a virtual charm quark anti-quark pair, we compute the action

$$A = -2 \int_0^{t_{vq}/2} \left(-\frac{\kappa}{c\gamma R} \right) \frac{c}{\gamma} \int_0^{R_{mass}/2} \frac{dr}{\gamma^2 R \sqrt{1 - \zeta}}$$

$$= \frac{\kappa}{c} \int_0^1 \frac{d\zeta}{\zeta^{-1} \sqrt{1 - \zeta}} = \frac{\kappa}{c} \int_0^1 \frac{d\zeta}{\sqrt{1 - \zeta}}$$

$$= \frac{\kappa}{c} f_c \approx \frac{2\kappa}{c} \approx 5.7 \times 10^{-28} \text{erg s} \approx 0.55 \times \hbar$$

This action integral is a good approximation to the zero-point fluctuation action, $\frac{1}{2} \hbar$, and means that this version of the model, too, is inherently quantized just as the electromagnetic case was in Sec. 2. N.B: if t_{vq} exactly equalled t_{Hq}, then A would exactly equal $\frac{1}{2} \hbar$.

The above results illustrate the basic application of the model to a quark VAP for which α_s was determined from experiments with real (non-virtual) bound states of that quark. But to make the model realistic for quarks in general, the running coupling $\alpha_s(q)$ must be included in the model, not just one universal value of α_s. We can develop the model to account for the running coupling if we can include a characteristic q for the VAP of each quark flavor.

The QCD running coupling is a function of momentum transfer $Q^2 = -q^2$.

A standard way to incorporate asymptotic freedom is to let α_s depend on the quark masses and use $-q^2 = (m_1 + m_2)^2$, with the m_i the quark masses [32]. Then we may use Richardson's expression [35]

$$\alpha_s(q) \sim \frac{12\pi}{33 - 2n_f \ln(-q^2/\Lambda^2)} ,$$

(7)
where n_f is the number of quark flavors with masses much less than $m_1 + m_2$ and Λ is the QCD scale energy, approximately 0.22 GeV.

We now can use $m_1 = m_2 = m_q$ in the expression for α_s and compute κ more realistically for a running coupling. The value of n_f varies such that there are n_f quarks with masses much less than $2m_q$; for this paper n_f will be the number of quarks with masses of $2m_q/10$ or less. This criterion seems consistent with the fact that we are using an effective field theory obtained by integrating out all quarks heavier than the typical energy under consideration [36]. The results for this running color-Coulomb force model, with $\alpha_s(q)$ given by Eq. (7), appear in Table I (marked with the symbol © to indicate "Color Only").

We see that the semi-classical lifetimes $t_{\nu q}$ of the quark VAPs all agree with the Heisenberg lifetimes t_{Hq} from QFT to within a factor of about 2.2, and much better for the strange, charm and bottom quarks. While this isn't agreement as good as for the lepton VAPs in Sec. 2, the semi-classical model is still in rough agreement with QCD, to much better than an order of magnitude. The color-Coulomb potential from QCD, when taken as a classical force strength, leads to dynamical timescales of VAPs that correspond surprisingly well with the QFT lifetimes for the VAPs. In addition, the values of R_{max} are consistent with VAP size scales that are deep within the color-Coulomb part of the potential function (not out in the linear region). This needn't be a total surprise in view of Brau's [5] recent success modeling mesons semi-classically, but the present work is the first semi-classical treatment of quark VAPs.

The modeling of quark VAP lifetimes can be taken as a qualified success, but it is possible to go further with this model and include the effects of spin-spin interactions between the quark-antiquark pairs. As noted by Lichtenberg [37], the spin-spin interaction between quarks is the source of electromagnetic mass splittings among hadron isospin multiplets. In the present semi-classical model, because the quark VAPs have sufficiently small R_{max} values, the spin-spin energy is comparable with the color-
Coulomb potential for the heavier quarks in which asymptotic freedom reduces $\alpha_s(q)$.

Let us include the spin-spin potential in the quark VAP energy Eq. (2') and examine the effect on $t_{\nu q}$:

$$U(R) = -\frac{\kappa}{\gamma R} - \frac{2\mu_q^2}{(\gamma R)^3},$$

where

$$\mu_q = \frac{g_{Qq} \hbar}{2m_q c^2}$$

is the magnetic moment of a quark with charge Q_q. The energy equation becomes

$$\varepsilon_q = 2\gamma m_q c^2 \left(\frac{\kappa}{\gamma R} - \frac{2\mu_q^2}{(\gamma R)^3} \right) = 0. \quad (2'')$$

Again we can derive the turning point separation R_{max} by letting $\gamma \rightarrow 1$. This is easily done by defining ζ in terms of the scale length from the previous case which considered only the color-Coulomb force:

$$\zeta = \frac{R}{\kappa/(2m_q c^2)}.$$

With this substitution, the energy equation with $\gamma = 1$ becomes

$$\zeta_{\text{max}}^3 - \zeta_{\text{max}}^2 - \Delta = 0 \quad \text{with} \quad \Delta = \frac{2(Q_q\hbar c)^2}{\kappa^3}. \quad (4'')$$

The parameter Δ is a measure of the importance of the spin-spin potential relative to the color-Coulomb potential; $\Delta \rightarrow 0$ recovers the previous case of color-Coulomb potential dynamics only. There is only one real root of the cubic equation, and it is solved for $\zeta_{\text{max}}(\Delta) \geq 1$ where Δ is found from $\kappa = \frac{4}{3} \alpha_s$. The values of α_s are tabulated in Table I.

To obtain the VAP dynamical lifetime in the case that both color-Coulomb and spin-spin potentials are significant, the general energy equation is

$$\gamma^4 \zeta^3 - \gamma^2 \zeta^2 - \Delta = 0,$$

which is a simple quadratic in γ^2 with solutions

$$\gamma^2 = \frac{1}{2\zeta} \left(1 \pm \sqrt{1 + \frac{4\Delta}{\zeta}} \right) = \frac{1}{1 - \beta^2}.$$
Only the positive root is physically significant. This leads to

\[1 - \beta^2 = 2\zeta \left(1 \pm \sqrt{1 + \frac{4\Delta}{\zeta}}\right)^{-1} \]

\[\beta = \sqrt{1 - \frac{2\zeta}{1 + \sqrt{1 + \frac{4\Delta}{\zeta}}}} = \frac{v}{c} = \frac{1}{c} \frac{dr}{dt} \]

\[dt = \frac{dr}{c} \frac{1}{\sqrt{1 - \frac{2\zeta}{1 + \sqrt{1 + \frac{4\Delta}{\zeta}}}}} . \]

The only difference in the limits of integration from the color-Coulomb-only case is that the upper limit becomes \(\zeta_{max} \geq 1 \) instead of just 1. The dynamical timescale then becomes

\[t_{vq} = \frac{\kappa}{2m_q c^3} \int_0^{\zeta_{max}} \frac{d\zeta}{\sqrt{1 - \frac{2\zeta}{1 + \sqrt{1 + \frac{4\Delta}{\zeta}}}}} . \]

This expression reduces to the previous one (Eq. (5')) when \(\Delta = 0 \).

For each of the six quarks, one computes \(\Delta(\alpha_s) \), the value of the dimensionless turning point separation of the quarks \(\zeta_{max} \) from the root of Eq. (4''), and then \(t_{vq} \) is given by the above expression with \(\zeta_{max} \) as the upper limit of integration. The integral is simple to perform numerically (a short C program for this is available from the author upon request). The results are tabulated in Table I.

It can be seen that the spin-spin interaction has insignificant effect for the light down, up and strange quarks. Because of asymptotic freedom the QCD coupling weakens for the heavier quarks, however, and the spin-spin correction comes into play, increasing \(R_{max} \) over what it would be in the case of the color-Coulomb potential alone. The top quark VAP, with \(\Delta \approx 4.7 \), is dominated by the spin-spin potential rather than color-Coulomb. The net effect of including both potentials is to improve the agreement.
of \(t_{vq} \) with \(t_{Hq} \) significantly for the heavy quarks. The model lifetimes \(t_{vq} \) for charm, bottom, and top quark VAPs only differ from the Heisenberg values by 8\%, 17\%, and 20\%, respectively. Including spin-spin attraction has insignificant effect on the model lifetimes for the down, up, and strange quarks, which differ by factors of 2.20, 2.20, and 1.52 respectively from the Heisenberg values.

The semi-classical model is successful at predicting \(t_{Hq} \) within 20\% or better for the heavy quarks, so it is obviously possible to reverse the derivation, start from \(t_{vq} \approx t_{Hq} \) and derive \(\alpha_s(q) \) in the one-loop approximation of Eq. (7) for \(|q| = 2m_qc \) in the cases of the charm, bottom, and top quarks (that is, \(|q| = 2.6, 9.4 \text{ and } 352 \text{ GeV/c} \)). This prediction of \(\alpha_s(352 \text{ GeV/c}) \) is an interesting one from semi-classical theory, in an energy domain not yet reached by particle accelerators. Although values of \(\alpha_s \) that would be derived at the light quark masses would be much rougher, they are still much better than order of magnitude.

4. Virtual Weak Bosons

The third class of elementary particles to which we can apply this model are the weak interaction gauge bosons \(W^\pm \) and \(Z^0 \). These particles are believed to be non-composite and point-like. It would be interesting if we could use the virtual weak boson-antiboson pairs to probe the weak interaction, but our model requires that we use as the potential the strongest force to which the particles respond; in this case, the weak bosons interact by the electromagnetic spin-spin force as well as the weak force (which is of order \(10^{30} \) times weaker than the electrostatic attraction of the antiparticles in low-energy interactions [38]). Consequently the potential that we will use is the spin-spin interaction between two massive bosons via their spin magnetic moments.

\[
\mu_W = \frac{ge}{2m_Wc} \hbar ,
\]

where the factor \(g \approx 1 \) can be assumed for bosons.
The form of Eq. (3') for the magnetic moment is therefore the same as Eq. (3), except for the substitution of the W or Z mass for a lepton's mass, and so the subsequent mathematics is the same as in Sec. 2. We find that the dynamical timescale $t_{\nu W}$ is again 16% less than t_{HW}. The computation of the action is also 16% less than $\frac{1}{2}\hbar$. Therefore, the third type of elementary point-like massive particle also can be described approximately by this semi-classical model. However, in this case a separate weak interaction force constant cannot be derived, even though we know $t_{\nu W} \approx t_{HW}$. In this case, though, $R_{\text{max}} \ll 10^{-14}$ cm, the electroweak unification scale [39]. The result here is then consistent with the Standard Model, given electroweak unification.

5. Composite Particles and the Breakdown of the Model

The models above were built around the dynamics of only two point-like bodies interacting through a simple potential. Consequently the models should not be expected to represent well the dynamics of composite particles like mesons and other hadrons. For instance, virtual pairs of anti-mesons comprise four quarks in toto, and this is no longer a two-body problem. Moreover, nucleons exhibit highly complex internal dynamics due to their comprising numerous valence quarks and virtual strange quarks [40]. If the two-body models that have been considered above do not describe such multi-body VAPs, then that is no failing of the models in this paper.

As a test example, let us consider the neutron-anti-neutron virtual pair. A neutron is an electrically neutral particle, but has a magnetic moment, so it is consistent with our previous work to model it using the method of Sec. 2. and the spin-spin potential. Its magnetic moment is not that of an elementary fermion, because the neutron is a bound system of three quarks. The neutron's magnetic moment is approximately $-1.91\mu_N$, where $\mu_N = e\hbar/(2m_p c)$ is the nuclear magneton ($\approx 5.06 \times 10^{-24}$ cgs units). If we substitute the neutron’s magnetic moment and mass into Eq. (4), we obtain $R_{\text{max}} \approx 4 \times 10^{-15}$ cm, and Eq. (5) gives $t_{\nu n} \approx 2.3 \times 10^{-25}$ s. This is approximately 35% greater than $t_{Hn} \approx 1.7 \times 10^{-25}$ s, significantly worse than for most of the
non-composite particles considered heretofore. The model is clearly better at character-
zizing leptons than composite particles, which experience additional forces and contain
particles that the model doesn’t represent (and this is a system consisting of six valence
bodies and numerous virtual bodies).

Another composite particle example is the proton, with magnetic moment \approx
$2.79\,\mu_N$. Using Eq. (4) again, we find $R_{\text{max}} \approx 5.1 \times 10^{-15}$ cm and Eq. (5) gives $t_{vp} \approx$
2.9×10^{-25} s. This is 66% larger than $t_{hp} \approx 1.78 \times 10^{-25}$ s. The model’s prediction is
even worse than for the neutron. Perhaps the neutron’s well-known anomalously small
charge radius [41], which is approximately 0.09×10^{-13} cm, much less than the proton’s,
is a reason for its better agreement with the two-body model. However, the neutron’s
charge radius is still more than twice its R_{max} above, so it is puzzling that the model
agrees so well with t_{Hn} for a nucleon that is not pointlike at the scale R_{max}.

6. Discussion

Let us summarize the results.

(1) The dynamical timescale t_v predicted from VAP motions due to the electro-
magnetic spin-spin force approximately equals the Heisenberg lifetime of the
VAP, t_H, within 16%, for the massive leptons.

(2) The action integral of the electromagnetic spin-spin potential over the dynamical
timescale approximately equals the zero-point field action, $\hbar/2$, within 16%,
for the massive leptons.

(3) The dynamical timescale t_v predicted from VAP motions due to the quark-
antiquark color-Coulomb force approximately equals the Heisenberg lifetime
of the VAP t_H, within 20% or better for the heavy quarks (charm, bottom and
top), and within a factor of about 2 or better for the light quarks (down, up
and strange).

(4) The action integral of the quark-antiquark color potential over the dynamical
timescale approximately equals the zero-point field action $\hbar/2$, within 8%, for
the charm quark.

(5) The dynamical timescale \(t_v \) predicted from VAP motions due to the electromagnetic spin-spin force approximately equals the Heisenberg lifetime of the VAP \(t_H \), within 16%, for the weak bosons.

(6) The action integral of the electromagnetic spin-spin potential over the dynamical timescale approximately equals the zero-point field action \(\hbar/2 \), within 16%, for the weak bosons.

Several points should be noted about the above results:

- (2) does not follow trivially from (1) – i.e., the close agreement between \(\sqrt[4]{4} \) and \(\hbar/2 \) has a different mathematical origin than the agreement of \(t_v \) with \(t_H \).
- (4) does not follow trivially from (3), similarly.
- (3) and (4) are independent of (1) and (2) because the color force potential is completely different in form from the spin-spin potential.
- (5) and (6) do not follow trivially from (1) and (2), because bosons and fermions have different spins which only lead to similar expressions for their magnetic moments incidentally.

There appears to be no way that these \(t_H \) and \(t_v \) values could all be so nearly equal by coincidence alone, much less for the field quantization conditions to magically come out satisfied by chance. The approximate equality of \(t_H \) and \(t_v \) for so many particle types suggests that in a fully quantum mechanical or better semi-classical theory, the two would indeed be identical. If \(t_H = \hbar/(4mc^2) = t_v \) exactly, then the VAP potential field action \(\mathcal{A} = \frac{1}{2}\hbar \) exactly (compare the definition of \(t_H \) and eqs. (6) and (6')). These near-equalities can hardly be coincidences, but rather they mean that the model represents well the dynamics of wave packets in VAPs, just as the Bohr model represents well the dynamics of electronic wave packets in hydrogen atoms.

The good agreement between \(t_H \) and \(t_v \) also shows that the semi-classical
model approximates the quantum mechanical process well, and suggests that it does so in a physically valid way. This outcome is remarkable, and at odds with prevailing beliefs that classical dynamics are no use in the quantum domain (e.g. Heisenberg [42], "...for even the simplest quantum-theoretical problems the validity of classical mechanics just cannot be maintained."). This work supports the view that semi-classical computations retain useful powers to add physical insight in quantum-mechanical problems, as in the recent success in meson spectroscopy modeling, noted before [5]. Of course quantum mechanics and QFT cannot be equalled by semi-classical methods, but all of these methods have distinguished roles in the understanding of physical problems.

It is quite intriguing that the quantum fluctuation action $\frac{1}{2}\hbar$ emerges naturally from these model calculations, because source-free considerations of the equations for the electromagnetic field are generally used to obtain the zero-point energy in each wave mode, $\frac{1}{2}\hbar\omega$; in contrast, in the present derivations, the particles are the zero-point field sources, as Schwinger showed in QED [29].

These dynamical calculations might be improved by using a dynamical model that includes the effect of field retardation. If the particles are separating at a substantial fraction of c, then the apparent source position of each particle (which determines its field strength as detected by the other particle) will be altered by the finite propagation time of fields. The calculations above have assumed instantaneous action at a distance. While v is a decreasing function of time, retardation delays cause the particles to experience the potential at earlier times, $U(t - \frac{R}{c})$, when they were moving faster and the relativistic suppression of attraction was stronger. This is the reason that the particles don't actually have an infinite attractive force to escape, because at the instant of emission from $r = R_{init}/2$, they are moving at v_0 sufficiently near c such that they only detect the retarded, Lorentz-attenuated attractive force from their antiparticles. (We have been able to let R_{init} be 0 in our computations, but it apparently must be greater than the Planck length.)
Another possible improvement is to reconstruct the models along the more elaborate lines of Oliver's detailed self-force treatment for the electron [43]. However, that would lead to mathematical developments beyond the scope of the present paper.

Another important approach to improvement would be to use the two-body Dirac equation to investigate the physical properties of VAPs.

Better calculations could be performed, taking some of these effects into account, but this simple calculation method of the dynamical timescale t_V clearly is quite successful at corresponding with the Heisenberg lifetimes of all of the massive, non-composite elementary particles. The models are inherently quantized for both the spin-spin potential field case of leptons and weak bosons, and for the color force potential field which is completely different in form. This semi-classical method deserves to be part of the toolkit for understanding of quantum theory of virtual particles.

Because the force constants e and κ can be expressed in terms of \hbar and c, the question arises: why do the electromagnetic and color forces have the strengths that they in fact have? Are other strengths conceivable for these forces in some hypothetical alternative universes, as has been suggested by proponents of the "anthropic principle?" [44]

It is risky to generalize from only two instances, but these semi-classical VAP models for electromagnetic and color force interactions have a clear common governing principle: the Heisenberg VAP lifetime must equal the dynamical VAP timescale. (The gravitational force is not amenable to such a model because the VAP models have the symmetry property that antiparticles attract but like particles repel; gravitation is different in that like particles attract as well as antiparticles.) We may derive both the electromagnetic and color force constants by means of the following program.

We know that any massive particles subject to a force will also appear in virtual antiparticle pairs as vacuum fluctuations. Consequently, whatever such a particle's mass m, it will occur in VAPs with Heisenberg lifetime $t_H = \hbar/(4m c^2)$. But this life-
time may be expressed also as the dynamical timescale for a VAP, \(t_v(\alpha_n) = t_H \) where \(\alpha_n \) is a force constant such as \(\epsilon \) or \(\kappa \), to be determined. We have seen in Secs. 2 and 3 two examples of the principle that for any potential \(U(R^n) \) there is a unique \(t_v(\alpha_n) \) – the particular cases \(n = -1 \) (color force) and \(n = -3 \) (electromagnetic spin-spin attraction). The value of \(n \) for each fundamental force must be established by physical principles such as Maxwell’s equations in the case of electromagnetism, and a more complex derivation of form of the color potential from one-gluon exchange in QCD [45]. Solving the resulting equation \(t_H = t_v \) in both cases leads to good, unique approximations for both \(\epsilon \) and \(\kappa \). This suggests that \(\epsilon \) and \(\kappa \) have their values because of this consequential link; no other values follow mathematically from the specification that \(U = \text{const.} \times R^{-1} \) or \(U = \text{const.} \times R^{-3} \).

The common governing principle of each of these two forces is, then, the requirement that they each must be just so strong that quantum fluctuations of their respective fields have dynamical lifetimes \(t_v(\alpha_n) \) corresponding to \(t_H \). In other terms, the product of \(h \) and \(c \) is the more fundamental quantity in nature, in that this product constrains both the electromagnetic and color forces to take on the strengths that they in fact take.

Finally, let us note that in the usual relativistic QFT calculations, the contribution of VEPPs to the vacuum energy diverges to infinity [46], but the calculations can be performed in spite of this divergence because the formalism treats the virtual pair probability amplitude contribution as only an overall phase shift in scattering and annihilation amplitudes, which is unobservable [6]. Eq. (2) would eliminate the divergent vacuum expectation values of VAP energy densities, a long-standing inconsistency between QFT and general relativity [47].

The author gratefully acknowledges helpful discussions of this work with C. J. Crannell, J. M. Hollis, R. G. Lyon, R. J. Drachman, M.L. Rilee and L. N. Foster. The suggestions of an anonymous referee also improved the paper, and are appreciated.
REFERENCES

7. F. Gross uses a different diagram convention in which time increases towards the left. Most authors (and Feynman) depict time advancing upward.

37. D. B. Lichtenberg, op. cit., p. 133.

FIGURE CAPTIONS

Figure 1. (a) Feynman diagram for VEPP life cycle. (Time advances in the upward direction in this figure [7].) The bottom vertex is spacetime point x_1, the top vertex is spacetime point x_2. The maximum extent of this process along the time axis is t_{He}.

(b) Semi-classical VEPP life cycle model. The magnetic moments $\mu_{e\pm}$ are assumed to point along the axis of separation. The time t_2 corresponds to $\frac{1}{2}t_{ve}$ in the case of a VEPP.

Figure 2. Magnetic field lines of a positron at the origin. The field is symmetric with respect to rotation about the vertical axis. An example location of a virtual electron is indicated by the vertical arrow, representing its magnetic moment μ_{e^-}, which must always be parallel with the magnetic moment of the positron because angular momentum is conserved. The dashed lines, which become a pair of cones when rotated about the vertical axis, define the volume where energy conservation permits virtual electrons to exist: within the cones electrons may move, but outside the cones this violates the energy equation (2).