Reconfigurable Array Antenna Using Microelectromechanical Systems (MEMS) Actuators

Rainee N. Simons
Dynacs Engineering Company, Inc., Brook Park, Ohio

Donghoon Chun and Linda P.B. Katehi
University of Michigan, Ann Arbor, Michigan

Prepared for the 2001 AP-S International Symposium and USNC/URSI National Radio Science Meeting sponsored by the Institute of Electrical and Electronics Engineers Boston, Massachusetts, July 8-13, 2001

Prepared under Contract NAS3-98008

National Aeronautics and Space Administration
Glenn Research Center

April 2001
This report contains preliminary findings, subject to revision as analysis proceeds.

Available from

NASA Center for Aerospace Information
7121 Standard Drive
Hanover, MD 21076
Price Code: A02

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22100
Price Code: A02

Available electronically at http://gltrs.grc.nasa.gov/GLTRS
RECONFIGURABLE ARRAY ANTENNA USING
MICROELECTROMECHANICAL SYSTEMS (MEMS) ACTUATORS

Rainee N. Simons
Dynacs Engineering Company, Inc.
NASA Glenn Research Center
21000 Brookpark Road, Mail Stop 54–8
Cleveland, Ohio 44135

Donghoon Chun and Linda P.B. Katehi
University of Michigan
Radiation Laboratory, EECS Department
Ann Arbor, Michigan 48109–2122

Abstract: The paper demonstrates a patch antenna integrated with a novel microelectromechanical
systems (MEMS) actuator for reconfiguring the operating frequency. Experimental results
demonstrate that the center frequency can be reconfigured by as much as 1.6 percent of the nominal
operating frequency at K-Band. In addition, a novel on-wafer antenna pattern measurement technique
is demonstrated.

I. INTRODUCTION
Recently there has been tremendous interest in planar antennas capable of dynamically reconfiguring the
radiation pattern to provide horizon-to-horizon scan coverage over a wide frequency range, through
graphic reconfiguration [1]. These capabilities are possible through the use of microelectromechanical
systems (MEMS) based switching and actuating devices or circuits. The MEMS devices offer the
following advantages over semiconductor devices first, significant reduction in insertion loss. Second,
they consume insignificant amount of power during operation. Third, higher linearity hence lower signal
distortion. Typical examples of MEMS based antennas are reported in [2], [3], and [4].

In this paper, we present a new frequency reconfigurable patch antenna via use of integrated
microelectromechanical systems (MEMS) actuators. The key features of this approach is, that it does not
increase the antenna element dimensions, thus allowing for use in planar phased arrays. Second, each
actuator requires only a single bias line for control, which implies greatly simplified construction and
operation. In addition, the paper also demonstrates a novel on-wafer pattern measurement technique. The
advantage of this technique is that there is no need to dice and separate the individual antennas on the
wafer, thus resulting in tremendous savings in cost and time.

II. MEMS ACTUATOR DESIGN AND FABRICATION
A Patch antenna with two independent MEMS actuators is illustrated in Fig. 1. The antenna is fabricated
on high resistivity silicon wafer (ε, = 11.7, h = 400μm) with spin-on-glass (SOG) (εr1 = 3.1, h1 ≈ 1.5μm)
as the dielectric support layer. Each actuator consists of a moveable metal overpass suspended over a
metal stub and supported at either ends by metalized vias which are electrically connected to the patch
antenna. The metal strip of length L and width W attached to the metal stub behaves as a parallel plate
capacitor. The patch antenna operates at its nominal frequency as determined by the dimension b when
the actuator is in the OFF state. The actuator is in the ON state when the overpass is pulled down by the
electrostatic force due to the bias, and the capacitance of the metal strip appears in shunt with the input
impedance of the patch antenna. This capacitance tunes the patch to a lower operating frequency.
III. EXPERIMENTAL RESULTS AND DISCUSSIONS

The measured return loss for the two states of the actuators are shown in Fig. 2. When both the actuators are in the OFF state, the patch resonates at its nominal operating frequency (f₀) of about 25.0 GHz. When both actuators are in the ON state, the f_ON is 24.6 GHz. The 400 MHz shift is about 1.6 percent of f₀. To measure the E- and H-plane radiation patterns of the patch antenna, the RF probe station is modified to accommodate a small horn antenna. The horn antenna is attached to a Plexiglas™ fixture and is driven along an arc by a stepper motor. Thus the horn can measure the relative field intensity of the patch as a function of the angle from boresight. The experimental setup is shown in Fig. 3. The measured E- and H-plane radiation patterns are shown in Fig. 4. At the present time, these actuators are being integrated into a 2x2 patch antenna array shown in Fig. 5. The array characteristics will be presented at the symposium.

IV. CONCLUSIONS

A novel frequency reconfigurable patch antenna with integrated MEMS actuators is presented for the first time. This patch can be dynamically reconfigured to operate at frequencies separated by about 1.6 percent of the nominal operating frequency. In addition, a novel on-wafer antenna pattern measurement technique is demonstrated.

REFERENCES


Figure 1.-Frequency reconfigurable patch antenna element with two independent MEMS actuators, L = 580 μm, W = 50 μm, a = 2600 μm, b = 1500 μm.
Figure 2.- Measured return loss demonstrating frequency reconfigurability with integrated MEMS actuators while maintaining good impedance match.

Figure 3.- Computer controlled on-wafer radiation pattern measurement set-up for MEMS actuator based patch antennas (surrounding microwave absorber panels have been removed).
Figure 4.- Measured E and H-plane radiation patterns of the patch antenna.

Figure 5.- Schematic showing a 2x2 patch antenna array with MEMS actuators and DC bias line for control.
The paper demonstrates a patch antenna integrated with a novel microelectromechanical systems (MEMS) actuator for reconfiguring the operating frequency. Experimental results demonstrate that the center frequency can be reconfigured by as much as 1.6 percent of the nominal operating frequency at K-Band. In addition, a novel on-wafer antenna pattern measurement technique is demonstrated.