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Chapter 1

Introduction

Inelastic behavior of materials is a subject that has fascinated engineers and researchers over

many decades. Sustained interest in this topic is due to its direct relevance in numerous

engineering applications. The real challenge is to accurately predict inelastic deformation

when the material is subjected to thermal transients and complex mechanical loading. Gas

turbine engines, power generation systems, and automotive engines are just a few examples

of where materials experience complex thermo-mechanical loading. In these situations,

the material is subjected to multiaxial states of stress, different loading rates and variable

temperature conditions. The accurate representation of stress, strain and temperature fields

within the structural components depends strongly on the mathematical representations or

constitutive equations of the inelastic behavior of these materials at various temperature

levels. Further, to be generally applicable, the constitutive equations must be expressed in

tensorial form.

The total strain in the material can be separated into elastic and inelastic parts. Clas-

sical decomposition of the inelastic component into time independent (plastic) and time

dependent (creep) contributions facilitates modeling of material behavior. The plastic com-

ponent is considered to be history dependent, i.e., the current plastic strain depends on the

loading history. The creep component is treated as time dependent and is responsible for

deformation when the external loads and the temperature are held constant.

At elevated temperatures, however, the classical decomposition into plastic and creep strains

NASA/CR 2001-210715 1



breaksdown. In structural alloyscreepandplasticstrainsoccursimultaneouslyandinter-

actively.This suggeststhat weneeda unifiedconstitutivemodelto representdeformation

of metalsat elevatedtemperatures.Manysuchmodelshavebeendevelopedin the last few

decades(e.g.Walker[1981],Bodner [1987],Hellingand Miller [1987],Robinsonand Duffy

[1990],FreedandWalker[1995],Arnoldet al [1996]).Mostconstitutivetheoriesuseinternal

variablesand appropriateevolutionaryequationsfor simultaneouslytreating all aspectsof

inelasticdeformationincludingplasticity,creepand stressrelaxation.Thesetheoriesare

basedon thermodynamicsof irreversibleprocessesandwill beelaboratedon in Chapter 3.

1.1 Materials for high temperature applications

Safety is a primary concern in aerospace applications. Thus, all substructures must remain

structurally sound during all phases of flight. For gas turbine engine components, materials

having good strength properties over a wide range of temperatures are required. Metal-

matrix composites (MMCs) and superalloys possess this quality and hence are suitable

for this application. Owing to its complexity, the fabrication of MMCs is expensive and

time consuming. Hence, superalloys like Inconel 718 (a Nickel-based alloy) and Haynes 188

(a cobalt-based alloy) are more popular than MMCs in the aerospace industry for engine

applications. Aged Inconel 718 is strengthened by precipitate hardening, in which fine

particles of a second phase are dispersed throughout the grains, thereby slowing down the

movement of dislocations. The physical mechanisms responsible for strengthening of this

alloy are explained in Chapter 2.

1.2 Objective of the present research

Inconel 718 is a wrought nickel-based alloy that is precipitation hardenable to obtain high

strength and is the material to be investigated in the present research.

Recent experiments on Inconel 718 indicate that the yield stress and subsequent flow stress

are significantly higher in compression than in tension (Gil et al [1999b]). This phenomenon,

known as the strength differential (SD), is observed for a wide range of temperatures as

NASA/CR--2001-210715 2



shownin Figure1.1.Figure1.1(a)showshigheryieldandpost-yieldstressesin compression

at 650°C.Yield loci at 23°Cand 650°C,shownin Figure1.1(b),clearlyshoweccentricity

in the compressivestressdirection.TheSDeffectcanbemathematicallydefinedas

x 100 (1.1)
T_t

where ac and at are yield strengths in uniaxial compression and uniaxial tension, respec-

tively At the initiation of yielding the SD has a high value; it then decreases, and finally

reaches a constant value at higher inelastic strains.

A yield function, based solely on the second invariant of deviatoric stress (J2) is not able

to correctly represent a material with a SD. Thus, the goal of the current work is to

generalize a viscoplastic model, currently based solely on J2, to account for the

strength differential effect.

1.3 Generalization of Plasticity Theory

Having established the need to generalize the yield function to capture the SD effect, it

is worthwhile to look at some yield functions and flow rules used by other researchers,

that deviate from J2 plasticity theory. This section starts with some basic elements of -/2

plasticity followed by instances where deviations from the classical approach are required

to capture material behavior.

1.3.1 Metal Plasticity

(Hill [1950], Mendelson [1983], Lubliner [1990], Chen [1994], Khan and Huang [1995])

At the continuum level, the initial material behavior is taken to be linear elastic up to

the yield point. The yield surface delineates the current elastic region in stress space. For

an elastically isotropic metal, yielding depends on stress, temperature, and internal state

(described by hardening or internal state variables). Under isothermal conditions, initial

NASA/CR--2001-210715 3
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yieldingdependsonly onthestressstate,whichisoftendescribedby threestressinvariants:

I1 -- _ii

1 S
J2 =

1

J3 = 5S_jSjkSki

where I1 is the first stress invariant, J2 and J3 are the second and third deviatoric stress

invariants respectively, a_j and Sij denote the Cauchy and deviatoric stress components

respectively. The yield function can be expressed as

f(aij) = f(I1, J2, J3) = 0. (1.2)

Physically, I1 represents the hydrostatic stress and J2 represents the distortional energy in

the material. Though no definite physical quantity is attributed to J3, it can be treated as

a weighting parameter that induces asymmetry in yield and flow behavior between tension

and compression.

Based on the work of Bridgman [1952], yielding in most metals (e.g. mild steel, copper,

aluminum) was found to be relatively insensitive to hydrostatic pressure. This suggests

that I1 is unimportant in the definition of yield. Also, for many metals the tensile and

compressive flow behavior are identical (e.g. aluminum, titanium, unaged maraging steel,

unaged Inconel 718), making J3 unimportant. Hence the yield function depends only on J2

and the yield surface is an infinite cylinder in the principal stress space with its axis along

the hydrostatic stress line. The von Mises yield criterion takes the form of a cylinder with

a circular cross-section, resulting in

3X/_2 = a_ (1.3)

where ay is the uniaxial tensile yield strength.

When applied to these materials, Drucker's stability postulate (Drucker [1951] and [1959])

results in the inelastic strain rate vector being normal to the yield surface. Thus, the yield

function can be treated as a plastic potential and the inelastic strain rate can be determined

by use of an associated flow law,

•t _ Of (1.4)
eiJ _- 0aij
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where_ is a scalarthat is determinedfrom the consistencyconditiondiscussedin Chapter

3. Henceclassicalplasticitytheory,whenappliedto metals,suggeststhat theyield function

is basedonly onshearstressand that the flow law is associative.

1.3.2 Deviations from classical plasticity

Though many metals follow the von Mises (J2 based) yield criterion and associative flow

law, there are some that deviate from either or both. In this section, we present some

instances where these deviations are observed. By doing so, we further emphasize the need

for the proposed investigation.

Starting from the middle 1960s, experimental results were published which show that yield

and flow stresses in tension and compression are different for some high strength steels (e.g..

Leslie and Sober [1967]; Kalish and Cohen [1969]; Rauch and Leslie [1972]; Chait [1972];

Spitzig et al [1975]). The physical mechanisms that can cause a SD were reviewed by Hirth

and Cohen [1970] and Drucker [1973]. For an elastically isotropic material exhibiting SD,

a yield function that only depends on J2 will not give an accurate representation of the

material behavior.

Experiments on iron single crystals (Spitzig [1979]) showed that contrary to Schmid's law

(Schmid [1924]), the normal stress on the slip planes affects the dislocation interactions.

The results suggest that the predominant effect of hydrostatic pressure is to retard the

generation of mobile dislocations, resulting in an increase in dislocation density which in

turn causes an increase in volume. This suggests that application of hydrostatic pressure

affects inelastic behavior of the material, indicating that flow is dependent on/1.

The above examples are a few instances where a J2 based yield description falls short in

representing the material behavior. Chapter 3 reviews more instances where a generalization

of the yield function is needed.

NASA/CR--2001-210715 6



1.3.3 Modified Yield Functions

Some researchers have extended J2 plasticity theory to account for deviations from classical

plasticity. Drucker [1949] compared Osgood's [1947] experimental data on aluminum alloy

tubes to classical Tresca and yon Mises yield criterion. While neither the Tresca criterion,

nor the Mises criterion, agreed well with the experimental data, a function of the form

f(J2, J3) = j3 _ 2.25 J_ - 1, (1.5)

did fit the data well. This was one of the first functions to go beyond the J2 representation

of yield for metallic materials.

For materials exhibiting SD, J2 plasticity theory needs to be generalized. Yield functions

for such materials must be represented by an odd power of I1, an odd power of J3, or a

combination of the two. Dependence on I1 requires pressure sensitivity, while dependence

on J3 (and not 11) requires pressure insensitivity. Spitzig et al [1975] superimposed tensile

and compressive loads on hydrostatic pressure for different materials. The results clearly

showed that the flow stress is pressure dependent. In many cases, the flow stress appears

to be linearly related to hydrostatic pressure, suggesting the use of a Drucker-Prager yield

criterion (Drucker and Prager [1952]);

f = (_ I1 + X/_2- k (1.6)

where c_ and k are experimentally determined constants. In other cases, the relationship

was not truly linear suggesting that either a Ja term or a different function of I1 is required.

Spitzig et al [1975] had good success using a Drucker-Prager type yield criterion of the form:

= c- a I1 (1.7)

where a and c axe both strain dependent, but their ratio a/c(= ol) is shown to be independent

of strain. The SD predicted by equation 1.7 is simply 2a.

Use of an associated flow law with a pressure dependent yield function results in a predicted

permanent volume change approximately 15 times greater than that determined by pre_test

and post-test density measurements and strain gage measurements (Spitzig et al [1975,1976];

Spitzig and Richmond [1980], Richmond and Spitzig [1984]). This suggests the use of a non-

associated flow law with pressure dependent yield representations for these materials.

NASA/CR--2001-210715 7



1.4 Method of Generalization

The generalization of classical plasticity theory lies in not ignoring the dependence of flow

on the stress invariants I1 and J3- This necessarily complicates the mathematics and raises

the issue of what functional form of the stress invariants best represents inelastic flow.

A general approach for determining the inelastic flow dependence on each of the thr_ stress

invariants would be to follow stress paths where only one of the three invariants varies. Two

classical experiments that do this are: a hydrostatic pressure test, where only I1 varies; and a

pure torsion test, where only J2 varies. There are many other stress paths that are possible.

Unfortunately, these stress paths generally require three-dimensional stress states, which

are difficult to obtain in the laboratory. For experimental expediency, tests involving axial-

torsional loading of thin-walled tubes are to be used in determining the significance of the

first and third stress invariants, I1 and J3, respectively.

Once the form of the threshold function is determined for IN718, characterization is done to

quantify the material parameters in the model. Characterization experiments include shear

tests and uniaxial (tensile and compressive) tests. Multiple combinations of stress invariants

in the threshold function can result in an equally good correlation with the uniaxial test data.

Experimental validation is required to help choose the proper combination of invariants.

This is done by following load paths that extremize the differences between the predicted

responses, based on the chosen threshold functions and by comparing the experiments with

predictions. This approach can be applied to any material exhibiting a SD, e.g. martensitic

steels, and intermetallics like titanium aluminide.

1.5 Overview

Various mechanisms of deformation in IN718 are discussed in Chapter 2. Also reviewed are

the strengthening mechanisms in metallic alloys and the mechanisms responsible for SD in

metals. By comparing and contrasting different mechanisms, an attempt is made to identify

the ones that could be responsible for the observed SD effect in IN718.

Theoretical background, explaining the fundamentals of rate-independent and rate-dependent

NASA/CR--2001-210715 8



plasticity with emphasison metal plasticity, is presentedin Chapter3. Thermodynamic

considerationsleadingto the useof internal statevariablesto accountfor variousaspects

of time dependentinelasticdeformationareexplainedtherein. Relatedwork on various

aspectsof inelasticdeformation,viz. yieldandflow is alsoreviewed.

The viscoplasticmodelto be usedfor this investigationis proposedin Chapter4. Start-

ing with the proposedthresholdfunction, the flow and evolutionlawsarederived. The

requirementof convexityof the yield function is discussed.The experimentalprogramfor

determinationof thematerialparametersin the proposedmodelisdiscussedin Chapter5.

A brief reviewof experimentalwork in metalplasticity is followedby a descriptionof the

experimentalsetupto be usedin the presentresearch.Testmatricesfor characterization

and validationexperimentsaredeveloped.

Experimentalresultsand the correlationbetweenmodeland experimentsareprovidedin

Chapter6. Six materialparametersetsthat fit the characterizationdata arepresented.

Choiceof the right parametersetfor Inconel718 by correlating the predicted responses to

biaxial validation tests and hydrostatic pressure tests is discussed in detail. This is followed

by concluding remarks and suggested future work in Chapter 7.
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Chapter 2

Microstructure and deformation

Mechanisms

In this chapter, a detailed review of the microstructure and strengthening mechanisms in

Inconel 718 is presented. Also documented are the mechanisms responsible for the SD

effect in metallic materials in general. The effect of these mechanisms on the macroscopic

behavior of metals is reviewed. Finally, by comparing and contrasting various mechanisms,

an attempt is made to identify the ones responsible for the SD in Inconel 718.

Numerous structural studies on Inconel 718 have been carried out in an attempt to correlate

its properties to microstructure and heat treatment. This alloy has a large number of

phases that form in a specific temperature range and have a characteristic morphology.

The following is a list of different phases that are formed during various stages of heat

treatment:

1. MC phase: discrete particle phase formed on solidification and is stable up to 1200°C.

2. Laves phase: round, island shaped particles that form on solidification in the high-

niobium areas and are stable up to 1175°C.

3. _ phase: needle-like/plate-like that form on cooling during solidification in high nio-

bium areas and are stable up to 1010°C in wrought alloys, and up to 1120°C in cast

alloys, precipitating from 840°C to 980°C.
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Table2.1:Material Composition of Inconel 718

Element Content (wt.%)

Ni

Cr

Mo

(Nb+Ta)

Ti

A1

Co

C

S

Mn

Si

B

Cu

P

Fe

53.58

17.52

2.87

5.19

0.95

0.57

0.39

0.034

0.002

0.12

0.07

0.004

0.05

0.006

Bal.

4. _" phase: disc shaped precipitates form during cooling or heat treatment between

730°C and 900°C. During cooling these precipitates tend to become smaller.

5. 7 _ phase: spheroidal precipitates form when cooling or heat treatment is in the range,

720 ° C-620 ° C.

2.1 Microstructure of Inconel 718

Wrought Inconel 718 alloy was obtained in the form of extruded 31.8 mm bars, all from

the same heat treatment. The weight composition of the alloy is listed in Table 2.1. The

machined samples were solutioned at 1038°C in argon for one hour and then air cooled.

Then they were aged at 720°C in argon for eight hours, cooled at 55°C/hour to 620°C and

held for eight hours, then air cooled to room temperature.
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0.10 mm

Figure 2.1: Optical Micrograph of aged Inconel 718

Gil et al [1999b] performed metallography on this alloy by polishing and etching using

Tucker's reagent (45 ml HC1, 25 ml H20, 15 ml HNO3, and 15 ml HF) to reveal the grain

structure a_s seen in Figure 2.1. The grain structure consisted of equiaxed grains having

an ASTM size of 4 (90 #m in diameter). Carbide particles were observed throughout the

microstructure. Microhardness was measured to be Vicker 440 / Rockwell C of 45.

Transmission electron microscopy showed a fine dispersion of "7" precipitates with preferred

orientation within a particular grain. This is shown in Figure 2.2 (samples prepared by C.

Gil, observed by P. Howell, Earth and Mineral Sciences, PSU). The precipitate particles

were observed to be platelets approximately 10-15 nm in length. Texture analysis (by M.

Angelone, Material Characterization Lab, PSU) showed that there is no preferred grain ori-

entation. Thus the preferred orientation of the precipitates within the grain is not expected

to cause anisotropic behavior.

2.2 Mechanisms of deformation in metals

This section reviews some of the physical mechanisms that occur during inelastic deforma-

tion in metallic materials. Strengthening mechanisms in aged Inconel 718 and the interac-

tion between the applied stress and microstructure are discussed next.
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Figure 2.2: Transmission Electron Microscopy of aged Inconel 718 showing ")" precipitates

At low temperature, slip is the most common mechanism of deformation. Slip occurs on

the plane of highest atomic density in the direction closest to the planes of maximum shear

stress. These planes and directions differ depending on the crystallographic structure of the

metal and the direction of the applied load.

During inelastic deformation most materials exhibit a resistance to slip called strain harden-

ing. Hardening occurs due to interaction of dislocations with precipitates, grain boundaries,

or other dislocations and is often a manifestation of dislocation pileups. Dislocation inter-

action may result in internal stress, causing a resistance to further deformation. However,

upon reversal of loading, the dislocations will propagate more easily and may cause yielding

to occur at much lower applied stress level, resulting in the Bauschinger effect (Khan and

Huang [1995]).

Another important factor that affects hardening behavior is the grain size. For a coarse

grain material, slip is restricted to the grain boundaries. However, for a fine grain material

like Inconel 718, slip systems are also activated in the interior of the grains causing higher

dislocation interaction in the material. This results in higher strain hardening.
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2.2.1 Strengthening mechanisms in Inconel 718

Generally, strengthening in metals is achieved by slowing the movement of dislocations. In

a precipitate hardened material, the precipitates are dispersed throughout the grains. Dis-

locations are pinned at these precipitates causing dislocation pileups. In order to overcome

the precipitates the dislocations either climb over or shear through them, both of which

require additional shear stress.

Strengthening Phases

Paulonis et al [1969] showed that the major strengthening phase in aged Inconel 718 is the

disc-shaped 7"(DO22) precipitates rather than the spheroidal 7' (L12) phase found in most

nickel superalloys. The unit cells showing ordering for the body-centered tetragonal (bct)

7 r_ and the face-centered 7' are shown in Figure 2.3. They observed that fully heat treated

and deformed saznples of Inconel 718, both at room and elevated temperatures, exhibited

planar deformation banding, a slip mode characteristic of nickel-based superalloys. They

pointed out that the alloy exhibits good tensile strength between cryogenic temperature to

about 705°C, even with as low as 20% by weight of the strengthening 7" phase. Excellent

weldability was attributed to sluggish precipitation kinetics of the 7" phase. They found

that the rapid deterioration of the tensile and creep strengths from 650-760°C was primarily

due to rapid coarsening of the 7" phase and partial solution of the -)} phases with concurrent

formation of stable orthorhombic Ni3Nb. Nevertheless, 7" forms coherently and tends to

remain so throughout the coarsening period. Coherency of the precipitate is a significant

factor that contributes to the strength of the alloy.

Deformation Mechanisms

Analysis of deformed samples is difficult because the combination of high particle density,

coherency strain contrast, and dislocation strain contrast results in extremely complicated

electron micrographs (Paulonis et al [1969]). Compression at room temperature causes { 1

1 1} planar slip banding. Tensile loading at elevated temperature results in heterogeneous

slip which is confined to planar bands. Precipitate shearing within the slip bands is also
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Figure 2.3: Unit cells showing ordering: (a) bct (7") structure (b) fcc (3") structure

observed during tensile deformation.

Oblak et al [1974] observed that since 7" particles produce a tetragonal distortion of the

matrix, the specific variants of 3f' can be controlled by the application of stress during

aging. To restore order in the D022 phase, atoms have to displace differently in different

directions. Also, dislocation movement to restore order in different variants of 7" is different.

Hence order strengthening is a complex interplay between the stress axis, Burgers vector of

dislocations and the variant present in the microstructure. Aging the material under tensile

and compressive loads suppresses or enhances the formation of a particular variant of DO22.

This results in a stronger material when aged under tensile load and a weaker material when

aged under compressive load. This suggests that different variants of 7" interact differently

with the applied stress field and this could be a possible cause of the SD.

While no evidence was found for a stacking fault mode of shear, motion of dislocation pairs

seemed to cause shear (Oblak et al [1974]). Smaller particle sizes result in dislocations being

arranged in quadruplets rather than in pairs. While the lowest energy mode of deforma-

tion is the motion of dislocation quadruplets, the comparison with experimental data on

increase in critical resolved shear stress (CRSS) points towards deformation by motion of

dislocation pairs. For these reasons, it is felt that while order ensures the pairwise motion of

dislocations, the principal obstacles to these pairs are not the ordered particles per se, but
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rather their coherencystrainfields.Hence,acoherencystrengtheningseemsmoreprobable

than orderstrengthening.Also, the temperaturedependenceof CRSSis better predicted

by coherencystrengtheningmodel. A possiblerole of the 7_phasemay be to inhibit de-

formationby stackingfault modeof shear.Hence,extremelystablemicrostructurescanbe

obtainedby formationof compound3'"-'Y'precipitateparticles.

Small and Large Deformation Effects

Amongst other mechanisms in Inconel 718, the possibility of shearing ordered precipitates

by deformation twinning is discussed by Sundararaman et al [1988] for room temperature

deformation. Circular dislocation loops were found near _,_and a large number of dislocation

pairs were found near "y_ phase in samples deformed to 2% strain. Some dislocations were

observed to split up into partial dislocations on entering "y_' precipitates. Offset produced

on 3,_ particles due to the passage of the deformation bands indicates that these precipitate

regions contain multi-layered stacking faults. Also observed were two sets of deformation

bands, lying on two different {1 1 1} plane variants.

For large strains (19%), Sundaxaraman et al [1988] observed similar deformation bands in

the material. In addition, the presence of deformation twins was seen within these bands.

The flow stress required for deformation twinning is less than that required for precipitate

bypassing and hence twinning is favored. Deformation of samples aged for longer periods

resulting in coarser precipitates showed that the 3P particles had apparently fragmented

into slices along {1 1 1} planes. Deformation twinning of ")," precipitates conserves order

within the twin bands, hence the matrix-precipitate lattice correspondence for the twinned

regions is the same as that for the twin-free regions. Some matrix twin segments appeared

to propagate through a few 3,_' precipitates. Offsets caused by the deformation twinning

leads to rotation of the macroscopic "y_'habit plane. Each precipitate variant is associated

with a favored twin-plane (of the type {1 1 1}), the selection of which is presumably dictated

by the relative orientation of the stress axis. Again, deformation twinning is not seen in

samples with very fine sized "y" precipitates.

NASA/CR--2001-210715 17



Work Hardening

The work hardening rate in precipitate hardened alloys generally increases abruptly as the

precipitate size grows beyond a certain critical value (Sundararaman et al [1988]). This

effect is attributed to the transition from precipitate shearing to the precipitate bypassing

mechanism regime where the deformation results in the accumulation of dislocations in the

vicinity of the non-deformable precipitates. In Inconel 718, however, a drop in the work

hardening rate is observed when the precipitate radius is greater than 10 nm. This strongly

suggests that precipitate bypassing mechanisms, like Orowan, are not active. The passage

of shear through the precipitate particles by deformation twinning does not increase the

dislocation density to any significant extent and consequently this deformation mechanism

is not expected to increase the work hardening rate. The stress required to nucleate defor-

mation twins in the precipitate particles is larger than that required for the growth of such

twins. Thus, nucleation is immediately followed by easy propagation of deformation twins

across the precipitates. This brings down the work hardening rate when precipitate size is

greater than 10 nm.

Effect of Strain Rate and Temperature

The effect of strain rate and temperature on the thermo-mechanical behavior of Inconel

718 was investigated by Zhou et al [1993] to understand the relationships between the dy-

namic restoration process and the flow stress-strain curves. Also, changes of microstructure

associated with different degrees of reduction during compression processing were investi-

gated. Study of stress-strain response shows higher peak stresses at lower temperatures.

The flow stress is mildly sensitive to strain rates between 0.1-0.05 sec -1, but this sensitivity

increases with temperature. Dynamic recovery and dynamic recrystallization are observed

in the microstructure throughout the range of the experiments. Nucleation of dynamically

recrystallized grains occurs at strains corresponding to peak stress (referred to as peak

strain) and the dislocation density in the deformed region is considerable at this strain.

The fraction of the recrystallized grains increases with temperature. Preferred nucleation

sites for the recrystallized grains are the strained grain boundaries. Dynamic recovery is

a slow process and hence the dislocation density can increase considerably before dynamic
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recrystallization initiates at peak strain.

A critical dislocation density, which depends on the condition of deformation, must be

exceeded before recrystallization can proceed. An increase in temperature leads to an

increase in grain boundary mobility and a decrease in the critical dislocation density for

dynamic recrystallization, which in turn results in a decrease in peak strain. The strain

rate has the opposite effect. The fraction of dynamically recrystallized grains increases with

temperature, and the fully recrystallized microstructure is obtained at temperatures greater

than 1050°C and a strain of around 0.7. Beyond this peak strain, more dislocations are

generated which is a driving force for further nucleation and grain growth.

2.2.2 Mechanisms Causing Strength Differential Effect

Several hypotheses were proposed to explain the strength differential (SD) effect. These

include microcracking, residual stresses, internal Bauschinger effect, particle-dislocation in-

teractions, and volume expansion during inelastic deformation. In this section a brief history

of these investigations is presented. Comparing and correlating these with the deformation

mechanisms in Inconel 718, an attempt can be made to qualitatively arrive at the most

probable cause of the SD.

Volume Expansion Hypothesis

Leslie and Sober [1967] were among the first to observe SD in martensitic steels. They found

that untempered carbon martensite is significantly stronger in compression than in tension.

The SD effect appeared to increase with increasing carbon content. Radcliffe and Leslie

[1969] were the first to attribute SD effect to volume expansion during inelastic deformation,

which would theoretically lead to larger stress in compression than in tension. The volume

expansion hypothesis is also supported by Drucker [1973] for plastics and granular media.

In some cases the effect of hydrostatic stress is to cause an increase in dislocation density,

which can result in permanent volume expansion. However, some hydrostatic pressure de-

pendent materials do not exhibit a permanent volume change during deformation. Spitzig

et al [1975] have reported that the yield strength of quenched AISI 4310 and 4330 steels
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increasesevenlyinboth tensionandcompressionwith increasinghydrostaticpressure.Fur-

thermore,theydetecteda permanentvolumechangeproportionalto inelasticstrain. They

suggestedthat the changein volumeis dueto a largeincreasein the dislocationdensity.

Consequently,SDof 6%is observedfor both steels,whichremainedconstantwith increase

in inelasticstrain and hydrostaticpressure.They proposeda modifiedyield function to

accountfor this SD (seeequation3.43).

Precipitate Dislocation Interaction

Rauch [1975] speculated that a significant generation of dislocations would lead to a volume

change, especially in aged materials where pre-existing dislocations are immobilized by

precipitates. However, their experimental results for tempered AISI 4310, 4320 and 4330

steels disagree. No evidence of permanent volume expansion was observed. SD appeared

to increase with decreasing temperature.

Rauch et al [1975] point out that though the initial density decrease (volume increase)

in as-quenched AISI 4310, 4320, and 4330 steels can be attributed to transformation of

retained austenite, the rate of density change continues to be high even at large strains.

Thus SD at large strains can be better explained by increase in dislocation density during

flow. According to them, the volume expansion hypothesis is a potential explanation for SD

effect. Pinning of transformation dislocations by carbon and rapid mobilization of newly

created dislocations result in volume increase during deformation. This is consistent with

no SD effect in unaged maraging steels, which have no precipitates. All this points to

hydrostatic stress dependence of yield and flow in martensitic steels.

Nonlinear Elastic Interaction Hypothesis

Another theory for the SD effect was proposed by Hirth and Cohen [1970]. They ruled

out: (1) microcracks, because ultra fine grained martensitic steels have enhanced fracture

toughness, are resistant to microcracking, and yet exhibit SD; (2) residual stresses, be-

cause at sufficiently high strains, residual stresses are overcome and yet the SD persists;

(3) retained anstenite; and (4) internal Banschinger effect, because of randomness in the
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orientationof the martensiteplates.Theyattribute the SDeffectto the solute-dislocation

interaction. The barrier for the dislocationsegmentsnear an interstitial carbonatom is

influencedby the normalstressacrosstheglideplanethat is increasedby compressionand

decreasedby tension. Severedistortion of the iron lattice aroundthe interstitial carbon

atomleadsto localelasticstrainsthat becomenon-linear.This inevitablyalterstheatomic

forc_displacementrelationshipssuchthat they aredifferent in tensionand compression.

This hypothesissuggeststhat a significantportion of the SDphenomenonmaybe dueto

nonlinearelasticinteractions.Theywereableto accountfor a SDof up to 3-6%usingthis

hypothesisin martensiticsteels.

KalishandCohen[1969]suggestthat displacementof ironatomsaresolargethat associated

elasticstrainsaxenonlinearandthe interstitial-dislocationbindingenergybecomesgreater

in compressionthan in tension.Coherencystrainsaroundthe precipitatedparticlesresult

in greaterdislocationinteractionundercompressionthan undertension. This suggestion

is supportedby Chait [1973],who testedthree titanium alloys in the agedcondition and

foundthat coherentprecipitationcontributesto strengthdifferentialeffect. Two of these

alloysthat exhibitedlargeSD,possessedcoherenta -/3 phase, while one alloy showed very

small SD due to a phase in it being not coherent. Chait attributed the SD effect in Zircalloy

to formation of deformation twins, which is more difficult in compression than in tension.

Similar results in titanium alloys are reported by Winstone et al [1973]. The SD effect is

much smaller in alloys in which the precipitates are not coherent with the matrix.

Pampillo et al [1972] add to the theory of Hirth and Cohen [1970] by suggesting that the

nonlinear elastic behavior leads to a change in elastic moduli at sufficiently large elastic

strains. The change occurs such that the elastic modulus decreases in tension and increases

in compression. As a result, the internal stress, which depends on the interaction between

the long range stress fields of the dislocations and that of the precipitates, decreases in

tension and increases in compression, and this causes a SD. This theory explains the effect

of carbon concentration and dislocation density for martensitic steels. Also, it explains the

increase in SD at low temperatures. It is also consistent with the observation of Rauch

and Leslie [1972], who reported that the elastic modulus of maxtensitic AISI 4320 steel was

consistently 1-3.5% less in tension than in compression.

NASA/CR 2001-210715 21



Gil et al [1999a]observedan increasein instantaneousstiffnessof agedInconel718in com-

pression.Theyspeculatedthat this stiffening could be associated with nonlinear interaction

between precipitates and dislocations. However, stiffening was not observed in tension.

Effect of Interface Decohesion

Olsen and Ansell [1969] proposed a different theory for the SD effect in two phase alloys. TD-

Nickel with 2% by volume dispersion of spherical ThO2 particles tested at room temperature

showed a 0.2% offset yield strength that was 30% higher in compression than in tension.

The dislocations bypassed the ThO2 particles both in tension and compression and hence

is not the cause of SD. They suggested that voids form at the particle matrix interface as a

result of interface decohesion during tensile loading prior to yielding. Interface decohesion

prevents build-up of residual dislocation loops and high shear stress on particles, permitting

a sufficient amount of dislocations to bow between particles to give macro yielding at lower

stress level. This is not seen in compression. Thus, the mechanism in tension is bowing

of dislocations and that in compression is shearing of precipitate particles, for which the

required stress is greater and hence the SD.

This theory applies to two-phase alloys with a weak bond between the particles and the

matrix. Olsen and Ansell [1969] also studied A1-A1203 which is known to exhibit very good

bonding characteristics. Here, no decohesion was seen and this results in no SD. Contrary

to this, Mannan and Rodriguez [1973] observed that the SD in zirconium alloy increased

with increasing interstitial content, even though no decohesion was observed. Here, the SD

is due to the differences in the long range internal stress. This supports our contention that

the SD phenomenon is due to different mechanisms in different materials.

Stress Interaction with Precipitates

Plietsch and Ehrlich [1997] studied the strain-controlled tension/compression behavior of

pseudoelastic shape memory alloys of Ni-Ti type. They proposed an explanation of SD

based on the generation of stress induced martensite (SIM) during loading. For a given

stress axis, the largest possible transformation strains in tension loading can be more than

NASA/CR---2001-210715 22



twiceashighasthe respectivecompressivestrains.Theystudiedaustenitic,pseudoelastic,

and purelymartensiticsamples(pseudoelasticsampleswereobtainedby specialthermo-

mechanicalconditioningand arecapableof completelyrecoveringdeformationstrainsup

to 8%by reversibletransformation).Theausteniticsamplesshowedno SD.In martensitic

samples,martensiteis presentas12variantsthat are internally twinned. During tension

or compressionloading,thesevariantsarealteredby successivetransformationsto a single

variantthat is capableof compensatingfor the appliedstressmosteffectively.The strain

inducedby martensitictransformationis muchlarger in tensionthan in compressionfor

the samestresslevel. This resultsin a moderateSD. Pseudoelasticsampleson the other

hand,exhibitedmaximumSD.This isbecausethevariantgroupformedin compressioncan

deliveronly a smalltransformationstrain. Thisresultsin a muchsteeperrisein stressand

resultsin a largeSD.

2.3 Effect on Macroscopic Response

At this point, the strengthening mechanisms in aged Inconel 718 and other mechanisms

that result in a SD effect in metals, are reviewed. It is required to relate these mechanisms

to the macroscopic response (experimentally observable).

Drucker [1973] ruled out the possibility of microcracks or residual stresses being the cause

for SD effect. According to him, it is the inhibiting influence of compression normal to

the slip plane or twin plane which causes SD. Thus, it is most critical to verify whether or

not the application of hydrostatic pressure (which adds equal compression normal to each

plane) raises the magnitude of yield or flow strength in shear, tension or compression. For

a material exhibiting a SD, a permanent volume change is a necessary accompaniment to

inelastic deformation if the normality flow rule is applied. Generation of dislocations as well

as vacancies in metals is associated with a volume increase and so might lead to similar

macroscopic behavior. Stability at a material point implies convexity of the yield surface

and for convexity to hold, the effect of added hydrostatic pressure on solid materials is

limited by the theoretical strength. Drucker concludes that the most critical experiment

to understand the SD is a tension test or a compression test in the presence of hydrostatic

pressure.
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The pressuredependencyof flowresultsfrom the fact that the basicfloweventslike dislo-

cationglidearepressuredependent(Spitzig[1979],SpitzigandRichmond[1984]).Spitzig

[1979]showedthat the normalstresson the slip planesaffectsthe dislocationinteractions

in iron singlecrystals.The resultssuggestthat hydrostaticpressureretardsthegeneration

of mobiledislocations.Jung[1981]presenteda thermodynamicsbasedmodelwhichshows

that pressureshouldincreasethe interactionbetweendislocations. He usedthis model

to explain dislocationannihilationand showthat the pressureinducedfriction impedes

dislocationmotionand completelycompensatesfor the increasedinteractionbetweendis-

locations.Spitzigand Richmond[1984]wereableto directly relateequation1.7to Jung's

modeland concludethat thepressuredependenceof theflowstressdoesnot comefrom the

plasticdilatancyasrequiredby the associatedflow law. Rather,it comesfrom theeffectof

pressureondislocationmotion.

Jesserand Kuhlmann-Wilsdorf[1972]foundthat the dislocationstructureof commercially

pure Nickel is not alteredby hydrostaticpressure.They concludethat pressurecausesa

strong rise in frictional stress,which is associatedwith the Peierls-Nabarrostressbeing

pressuredependent.They relate the pressuredependenceto the extra volumethat the

atomsin the dislocationcoreoccupy.

2.4 Possible mechanisms causing SD in Inconel 718

As mentioned earlier, microstructural analysis of deformed samples is difficult due to high

particle density, coherency, and dislocation strain contrast. Thus, it is worthwhile to identify

the possible mechanisms that cause SD in Inconel 718.

From the above discussion of SD, the experimental results on different materials suggest that

a microstructure containing precipitate particles is a prerequisite for SD effect. The exact

mechanism responsible for a SD differs depending on the microstructure of the material.

Theories such as the internal Bauschinger effect and microcracking hypothesis, suggest that

the SD will increase with increasing inelastic strain, which was not observed in experiments.

Interface decohesion between the _/" precipitates and the matrix can be ruled out because

the "y" platelets remain coherent up to large strains and also during coarsening. Thus, this

NASA/CR---2001-210715 24



is not the causefor a SDin agedInconel718. Thereis no significantdifferencebetween

the elasticmoduli in tensionand compression.SD persistsat strainsbeyond2%where

the inelasticstrainsaredominantand nonlinearelasticinteractionsare negligible.Thus,

nonlinearelasticinteractionisnot thesolecause of SD. Gil et al [1999a], however, identified

this mechanism ms a cause for stiffening in compression, which occurs at the onset of yielding

where the inelastic strains are low in comparison with the nonlinear elastic strains.

Differential formation of deformation twins in tension and compression does not seem to

be a primary cause for a SD. The effect of loading on different variants of .),_i precipitate,

which have different favored twin planes, can cause a difference in response under tension

and compression. Though no definite evidence has been seen for or against this possibility,

deformation twinning seems to be a secondary effect and is not likely to be a dominant

cause for SD in Inconel 718.

Two theories that seem more convincing are: (1) volume expansion hypothesis; and (2) the

particle-dislocation interaction hypothesis. In most cases, both of these underestimate the

observed SD effect, suggesting that both of these mechanisms contribute to this effect. It

remains to be seen whether hydrostatic pressure has an influence on the SD in Inconel 718.

As suggested by Drucker, tensile and compressive experiments under varying hydrostatic

pressure are planned on aged Inconel 718. In general, hydrostatic pressure impedes the

motion of dislocations causing an increase in dislocation density which in turn causes a

volume expansion.

In the event of hydrostatic pressure-independence, the most probable cause for SD in aged

Inconel 718 appears to the interaction between coherency strain fields around the .ylr precip-

itates and the dislocations. It appears that the precipitate-dislocation interaction causes an

increase in the dislocation density, the coherency strains seem to cause greater dislocation

interaction under compression than under tension. If the material is hydrostatic pressure-

dependent, the SD can be attributed in part to the particle-dislocation interaction and in

part to the volume expansion.
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Chapter 3

Continuum Plasticity

Starting with the definitions of stress invaxiants, this chapter presents the basic elements of

rate-independent (classical) plasticity theory, viz. yield criterion, flow law, hardening law,

and loading criteria. Then, the internal variable approach to rate-dependent plasticity is

presented which leads into the internal variable theory of viscoplasticity. Finally, a review of

general yield functions and flow laws that go beyond classical plasticity theory, is provided.

Any material deforms when subjected to external forces. The deformation is elastic if it

is reversible and time-independent, viscoelastic if it is reversible and time-dependent, and

plastic if it is irreversible or permanent. Brittle materials like glass and concrete exhibit

very little inelastic deformation before fracturing. On the other hand, metals can undergo

significant inelastic deformation before failure and therefore are ductile materials.

The theory of plasticity deals with the stress-strain and load-deformation relationships

for a ductile material beyond the elastic limit. The establishment of these relationships

generally follows two steps: (1) the experimental observation and (2) the mathematical

representation. The stress states that are normally achieved in an experiment are uniform,

but the ultimate goal of any plasticity theory is a general mathematical formulation that

can predict the inelastic deformation of materials under complex loads.

The theories of plasticity can be established in two categories: (1) mathematical theories and

(2) physical theories. Mathematical theories are formulated to represent the experimental
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observationsas generalmathematicalformulations. Thesetheoriesdo not requiredeep

knowledgeof physicsof plasticdeformationand axebasedonhypothesesandassumptions

from experimentalresults. Therefore,the mathematicaltheoriesare referredto as phe-

nomenological theories. The physical theories on the other hand, attempt to quantify the

plastic deformation at the microscopic level and explain why and how the plastic deforma-

tion occurs. The movements of atoms and the deformation of single crystals and grains are

important considerations. Here, metals are viewed as aggregates of single crystals or poly-

crystals and their response to applied loads are derived from their building blocks, namely

single crystals and grains (Khan and Huang [1995]).

Most applications, such as metal forming or structural design, are based on macroscopic

quantities. Any plasticity theory must therefore contain mathematical variables that can

be measured during experiments at the macroscopic level. To make reasonable hypotheses

and assumptions on the basis of experiments and to fully understand the meaning and

limitations of a proposed theory, knowledge of material structure and physics of inelastic

deformation is very helpful.

3.1 Invariants of the stress tensor

The stress state at any material point may be represented by the stress tensor aij. Its

components in the cartesian coordinate system can be represented by a matrix of second

aij =

order

O'xx &xy O'xz

ayx (Tyy O'y z

(T zx (T zy Grzz

(3.1)

Since the stress tensor is symmetric, only six stress components azz, axu,axz, ayy, ayz, azz

axe independent. Thus, six independent stress components determine a stress state uniquely

and visa versa. Using the above stress tensor, the three principal stresses can be determined

using the characteristic equation

la y-a  jl =o (3.2)
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whichcanbeexpandedto

a 3 - Ila 2 + Isa - 13 -= 0 (3.3)

where 5ij is the Kronecker delta, 11, 12, and /3 are the invariants of the stress tensor. In

terms of the principal stresses, al, as and aa, the invariants are

[1 : al + a2 + a3

I2 = alas + a2a3 + a3al (3.4)

I3 _--- ala2a 3.

In plasticity theory, it is customary to decompose the stress tensor as

aij : am_ij -t- Sij (3.5)

where a m is the hydrostatic stress given by

1 1 1
a m = 5aii = 5(axx + ayy +azz) = 5(al + a2 + a3) (3.6)

and Sij is the deviatoric stress tensor. Using the deviatoric stress tensor, the deviatoric

stress invariants can be defined as

J1 = S i=0

1Js = -SqXij = g[(at - as) 2 + (as - a3) s + (a3 - at) 2] (3.7)

J3 = !SqS]kSk{ ----SISsS3.
3

The threeinvariants,If,J2 and J3 were discussedin Chapter I.Invariantsof the ei_ective

stresswhich are used inthe proposed mode] axe definedin a similarmanner (Chapter 4).

3.2 Rate Independent Plasticity

In this section, the fundamental aspects of classical or rate-independent plasticity are ex-

plained. The three basic elements of classical plasticity are yield criterion, flow rule and

hardening rule.
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3.2.1 Yield Criteria

In a uniaxial stress state, the elastic limit is defined by the yield stress. Under combined

stresses, the elastic limit is defined by a surface in stress space. Mathematically, the elastic

limit, for a general anisotropic material is expressed as

f(aij) = 0. (3.8)

Invariant representation of yield

For an isotropic material, the orientation of principal axes is immaterial and hence the

principal stresses, al, a2 and a3 are sufficient to uniquely describe the state of stress. The

principal stresses form the integrity basis (Spencer and Rivlin [1962]). It is customary to

use 11, J2, and J3 as an integrity basis. Hence, the yield function becomes

f(I1, J_, J3) = 0. (3.9)

As a further refinement to this criterion, evolution of material state can be incorporated in

the integrity basis to represent the flow behavior.

Pressure independent yield criteria

Since yielding of most metals is found to be insensitive to hydrostatic pressure, it follows

that shear stresses must control the yielding of such materials. There are several shear

stress based yield criteria. Traditionally, Tresca and von Mises criteria are widely used for

defining yield in metals.

1. Tresca Yield Criterion states that yielding occurs at a material point, when the

maximum shearing stress at that point reaches a critical value k. In three dimensional

principal stress space, the yield surface is a regular hexagonal cylinder with its axis

along the hydrostatic stress axis.

2. yon Mises Yield Criterion states that yielding occurs when the strain energy of

distortion in a material reaches a critical value. In three dimensional principal stress
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space,the yield surfaceis an infinite circular cylinderwith its axisalignedwith the

hydrostaticstressaxis.

TheTrescaandMisesyield functionsareindependentof: I1, implying hydrostatic pressure-

independence; and J3, meaning no asymmetry between tensile and compressive stresses (no

SD).

Pressure-dependent yield criteria

Geological materials such as soils, rocks and concrete are hydrostatic pressure sensitive.

Hence, their yield representation must involve I1. Some metallic materials are also pressure

sensitive and require a different yield representation compared to the conventional Tresca

or Mises criterion (Drucker [1973], Spitzig [1975]). The simplest and most popular two-

parameter models are those of Mohr-Coulomb and Drucker-Prager.

Mohr-Coulomb Criterion

Mohr's criterion is based on the assumption that the maximum shear stress is the decisive

measure of yielding. It states that yielding occurs when the radius of the largest principal

circle touches the yield envelope, which are straight lines in the (a, T) space as shown in

Figure 3.1. Mathematically, this can be expressed as

I_l = c- a tan¢ (3.10)

in which c is the cohesion and ¢ is the angle of internal friction; both are material constants

determined by experiments. In special cases of frictionless materials, for which ¢ = 0,

equation 3.10 reduces to the Tresca criterion. In terms of the stress invariants, the criterion

can be written as

1

f(I1, J2, O) = _Ilsin¢

where O depends on J2 and J3 as

+ V J 2[si (o + 5) + eos(O+ - c cos¢ = 0

3_/_ J3
3_"

cos(30) 2 j_

Graphically, this criterion is shown in different stress planes in Figure 3.1.

(3.11)
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Figure 3.1: The Mohr-Coulomb Yield Criterion

Drucker-Prager Criterion

The Drucker-Prager criterion is a simple modification of the von Mises criterion to include

the effect of hydrostatic pressure on yielding. Mathematically,

f(I1, g2)=0_I1 -]- _2- k = 0 (3.12)

where a and k are material constants. When c_ is zero, it reduces to the von Mises criterion.

The yield surface here, is a right circular cone in the principal stress space, as shown in

Figure 3.2.

Unlike the Mohr-Coulomb hexagonal yield surface, the Drucker-Prager surface is smooth.

This facilitates its application in plasticity theory because it becomes easy to calculate the

normal vector to the yield surface numerically.
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Figure 3.2: The Drucker-Prager Yield Criterion

3.2.2 Flow Law

Plastic Potential Theory

The general mathematical treatment of the constitutive equation for plastic deformation

was proposed by von Mises in 1928. He noticed that in elasticity theory, the strain tensor

was related to the stress through an elastic potential function, the complementary strain

energy Uc such that

ouc
£ij -- Oaij" (3.13)

By generalizing and applying this idea to plasticity theory, Mises proposed that there exists

a plastic potential g(aij), such that the inelastic strain rate _[j could be derived from the

following flow rule:

•I j_ Og (3.14)
eiJ = Oaij

where A is a proportional positive scalar factor which can be determined from the yield

criterion. Plasticity theory based on the above flow rule is called plastic potential theory.

The following remarks should be noted about the above flow rule:

1. Geometrically, the plastic potential g(aij) = 0, represents a surface in the stress space

and _[j can be represented by a vector in this space. The inelastic strain rate vector

is normal to g(aij) = O. Therefore, equation 3.14 is also referred to as the normality

flow rule in plasticity theory.
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2. If inelasticflow is hydrostaticpressureindependent,and thus incompressible,the

correspondingplasticpotentialsurfacein theprincipalstressspacemustbecylindrical

(not necessarilywith a circular crosssection)with al = a2 = a3 as its axis. _ilj is

perpendicular to this axis representing only shape changes of the surface. This is not

the case for hydrostatic pressure-dependent materials.

3. A common approach in plasticity theory is to assume that the plastic potential func-

tion g(aij) is the same as the yield function f(aij), so that the flow law can be written

ei_ = j_o_--_j (3.15)

and the inelastic strain rate vector is normal to the yield surface. This is called the

associated flow rule. On the other hand, if g # f, the flow rule is called nonassociated.

4. In general, experimental observations show that inelastic deformation of metals can

be characterized quite well by an associated flow rule, but for some porous materials

a nonassociated flow rule provides a better representation of inelastic deformation.

Prandtl-Reuss Incremental Stress-Strain Relations

The Prandtl-Reuss flow theory is based on the following three assumptions:

1. The principal axes of the inelastic strain increment are coincident with those of the

current stresses.

2. The inelastic strain increments are proportional to the deviatoric stress tensor.

3. No volume change occurs during inelastic deformation.

4. Initial response is isotropic.

In contrast to the deformation theory, the stress-strain relation in the flow theory is given

in an incremental form. Here, the inelastic (deviatoric) strain increments are given by

de/j = d)_ Sq (3.16)
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Figure 3.3: Graphical Representation of Flow Rule

where dA is a positive scalar factor. This relation is called the Prandtl-Reuss relation. An

interesting observation is that the associated flow law for the Mises yield function is the

Prandtl-Reuss relation. This means that the Prandtl-Reuss relations are associated with

the Mises yield criterion. The flow rule is graphically shown in Figure 3.3.

Subsequent Yield Surface

For an elastic-perfectly plastic material, the subsequent yield surface is the same as the

initial yield surface since there is no increase in stress carrying capacity of the material

beyond the yield stress. But, for hardening materials, the two surfaces are different and

there are various models to describe how the initial surface evolves into the subsequent yield

surface. Before discussing these models, the criteria for loading and unloading should be

defined.

Loading criteria

For a hardening material, if the stress state tends to move out of the yield surface, we have

a loading process and elastic-plastic deformation is observed. Additional plastic strains are

produced and the configuration of the current yield or loading surface changes, so that the

stress state always stays on the subsequent loading surface. If the stress state tends to move

into the yield surface, we have an unloading process. Only elastic deformation occurs and

the loading surface remains unchanged. The other possibility of stress change from a plastic
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Figure 3.4: Loading Criterion for a Work-Hardening Material

state is that the stress point moves along the current yield surface. This process is called

neutral loading. Mathematical expressions for classifying these criteria are called loading

criteria, and may be expressed by:

f = 0 Of daij > 0 : Loading
' Oaij

f = 0 Of daij = 0 : Neutral loading (3.17)
' Oaij

f = O, °-ff-_-Jclaij < 0 : Unloading.
Oaij

The gradient vector, nij(=Of/Oaij) is the outward normal to the yield surface f = 0. These

criteria are illustrated schematically in Figure 3.4.

Consistency Condition

During inelastic deformation, the elastic region has to change so that the stress state remains

on the yield surface. Mathematically, this condition is expressed as

f(a + da,,_ + d,_) = 0 (3.18)

where _ is the hardening parameter. In incremental form, it may be rewritten as

_a Of d'_da + _ = 0. (3.19)

This equation is known as the consistency condition, and lends itself to the determination

of the magnitude of plastic strain increment. The consistency condition ensures that the

NASA/CR--2001-210715 36



plasticloadingpathbeginsat the currentyieldsurfaceandendsat thesubsequentsurface,

andthat changesin thesizeandlocationof theyieldsurfaceareconsistentwith theadopted

hardeningrule.

Hardening Laws in Plasticity

For work hardening materials, stress states can exist beyond the initial yield surface and the

yield surface evolves such that the current stress state always lies on it. There are various

models describing this evolution of the yield surface. These are called hardening models.

Isotropic Hardening

This is the simplest hardening model and is based on the assumption that the yield surface

expands uniformly without distortion, as the inelastic flow occurs, as shown in Figure 3.5(a).

If the yield surface has the form f(aij) = k2(ep), the size of the yield surface is governed

by the value of k 2, which depends upon either effective inelastic strain or plastic work.

Isotropic hardening can be observed in materials with forest dislocations.

Since the loading surface expands uniformly(or isotropically), it can not account for the

Bauschinger effect exhibited by most structural metals. Hence, it will not lead to realistic

results when complex loading paths involving significant changes in the direction of stress

vector are considered.

Kinematic Hardening

The kinematic hardening model assumes that during inelastic deformation the yield surface

translates as a rigid body in the stress space, keeping its shape, size, and orientation the

same as that of the initial yield surface. Kinematic hardening is often associated with

dislocation pileups in a material. This model has the form

f(a,j - _ij) - k S = 0 (3.20)

where k is a constant and _ij are the coordinates of the center of the yield surface, which

changes as inelastic deformation progresses. This is shown graphically in Figure 3.5(b).
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Figure 3.5: Hardening Rules: (a)Isotropic; (b)Kinematic

Mixed Hardening

A combination of isotropic and kinematic models leads to a more realistic mixed hardening

model whose loading function can be expressed as

f ((xij - -_ij) - k2(ep) = 0. (3.21)

In engineering application for metals, the concept of mixed hardening is attractive. The

loading surface translates and uniformly expands in all directions; i.e. it retains its original

shape. With mixed hardening, different levels of Bauschinger effect can be simulated.

Drueker's Stability Postulate

Drucker [1959] defined a stable material as one which satisfies the following conditions:

1. The work done by an external agency during the application of an added set of forces

on the change in displacement it produces, is positive.

2. The net work performed by the external agency over the cycle of application and

removal of the added set of forces on the changes in displacements it produces is

nonnegative.
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Thesecriteria axecalled Drucker's Stability postulate. The first is for a work increment

during loading and is called stability in small and the second is for a work increment after

full load/unload cycle, and is termed stability in cycle. Mathematically, these reduce to

cla& > 0 loading; (3.22)

d_de I > 0 complete cycle. (3.23)

Stability in a complete cycle leads to the following:

* "I

(aij -- aij)_ij > 0 (3.24)

where aij is a stress state on the yield surface and ai*j is any possible stress state inside or

on the yield surface. This is called maximum plastic dissipation postulate.

Convexity and Normality

If the plastic strain coordinates are superimposed upon the stress coordinates, as shown in

Figure 3.6, equation 3.24 can be interpreted geometrically as the scalar product of the stress

increment vector (aij -ai*j) with the strain increment vector delj. A positive scalar product

indicates an acute angle between these two vectors. The stability postulate therefore lea_ls

ht7

- -_del

ider'

>0
e 1

)

Figure 3.6: Stability in Cycle: Stress Path ABC produced by External Agency

to the following consequences for work hardening materials (Drucker [1960]):

1. Convexity: The initial yield surface and all the subsequent yield surfaces must be

convex.
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2. Normality: The inelasticstrain incrementvector,delj must be normal to the yield

surface at a smooth point and must lie between adjacent normals at a corner.

3.3 Rate Dependent Plasticity

One way that loading history affects the constitutive relation is through rate sensitivity;

the deformation produced by a slow loading rate is different, almost invariably greater than

that produced by rapid stressing. A particular manifestation of the time dependence is the

fact that the deformation will in general, increase in time at a constant stress; called creep.

Relaxation, on the other hand is the decrease in stress with time for a given strain.

Many physical and chemical processes in metals are thermally activated and hence the

dependence of material behavior on temperature. For most metals, creep is thermally

activated if the temperature is higher than 30% of the melting temperature. Creep can

cause failure, either due to excessive deformation or creep rupture. These processes axe

often governed by the Arrhenius rate equation, which has a general form

_ss = A e AE/kT (3.25)

where _ss is the steady state creep rate, AE is the activation energy, k is Boltzmann's con-

stant and T is the absolute temperature. The rate sensitivity of a work-hardening material

itself increases with temperature. The above equation permits, in principle, the simul-

taneous representation of the rate sensitivity and the temperature sensitivity of metallic

materials.

An alternative way of representing the dependence of material response on temperature and

rate is by assuming that the strain, in addition to stress and temperature, depends on an

array of variables, _Z. These variables are called internal, or hidden variables, that usually

take on scalar or second rank tensor values. The strain is accordingly given by

= T, (3.26)

Another important effect observed in metals is creep which depends on stress level and

temperature. Rate independent plasticity does not represent these effects. This section
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starts with generalprinciplesin mechanicsthat lead to the internal variabletheory of

plasticity.

3.3.1 General Principles in Mechanics

Beforewediscussthe internalvariablesapproach,it is necessaryto lay out the universal

lawsthat mustbe obeyedduringanyprocess,regardlessof the propertiesof the material

whichisundergoingtheprocess.Therearefivesuchprinciplesto beconsideredin plasticity

theory (KhanandHuang[1995]).

Conservation of Mass

According to the law of conservation of mass, no mass can be created or destroyed in a

given volume v of the material, which leads to

p dv = constant (3.27)

where p is the material density.

Conservation of Momentum

The rate of change of total momentum of any given set of particles equals the vectorial sum

of all the forces acting on this set of particles. For a set of particles that currently occupies

a spatial volume, v, with surface traction and the body forces acting on it, this law leads to

aij,j + pbi = pal (3.28)

where bi's are the body forces per unit volume and ai's are the components of the acceler-

ation of the body. Equations 3.28 are also known as the local equations of equilibrium.

Conservation of Angular Momentum

This principle is also a generalization of Newton's second law of motion for continuum

mechanics. It states that the rate of change of moment of momentum for any given set
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of particlesequalsthe vectorialsumof the momentsacting on it. Mathematically,the

principleof conservation of angular momentum can be stated as

_v(P eijk rj ak)dv = /R(eijk rj tk)dS + fv(p eijk rj bk)dv (3.29)

where eijk is the alternator, ti is the traction force vector and r_ is the position vector of

the body (volume v enclosed by surface R) under consideration. This, along with equation

3.28, establishes the symmetry of the stress tensor, i.e. a_j = aj_.

Conservation of Energy: The First Law of Thermodynamics

Extensive experimental observations indicate that energy can never be created or destroyed

in the universe, but can only be transformed from one form to another. For a closed system

the total rate of work done on the system by all the external agencies must equal the rate

of increase of the total energy of the system. This principle is also called the first law of

thermodynamics. If we consider only mechanical and thermal energy in a closed system,

the first law can be written as

pQ -: aij_ij q- D r -- qi,i (3.30)

where z2 is the internal energy per unit volume, r is the internal heat source per unit

volume, qi,i is the heat flux out of the system through its boundaries, and aij_ij represents

the mechanical work done by the external forces that is not converted into kinetic energy.

Clausius-Duhem Inequality: The second Law of Thermodynamics

The second law of thermodynamics limits the direction of the energy transformation. When-

ever a transformation occurs, the energies involved must obey the first law. It has been

experimentally observed that while some energies transform from one type to another, there

are other types of transformations that are impossible. For example, heat flow can occur

from a warmer system to a colder system, but the reverse heat flow can never occur. The

kinetic energy of a moving body can be converted into heat by friction, but the heat caused

by friction can never be converted into kinetic energy. While the first law cannot describe

these observations, it is the second law that governs this directional phenomenon observed

in the energy transformation processes.
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The secondlaw postulatesthat thereexistsa statefunctioncalledthe entropy;the change

in entropyis givenby

2 dQ for reversible/_S = $2 - S1 _-- T
a process

2 dQ for irreversibleAS = $2-S1 > T
an process

where dQ is the heat input during the process, T the temperature, and indices 1 and 2

denote the starting and ending points of the process. It can be seen that the change in

entropy of a system can never be negative; it is zero for a reversible process and positive for

an irreversible process. If only mechanical and thermal energies are considered, the second

law can be written as

qi

PS - PT + (T)i -> 0 (3.31)

where s is the specific entropy. This relation is called Clausius-Duhem inequality.

equation 3.30, r can be eliminated and we get

Using

1
pTi - pit + Oij£'_j -- -_qiTi > O. (3.32)

By introducing a thermodynamic potential H, called the Helmholtz free energy, given by

H = u - sT, we can rewrite equation 3.32 ms

(3.33)1 T
--p_I -- psT _- _ij¢ij - -_qi ,i >- O.

In thermodynamics, the internal energy u, entropy s, heat flux q and the stress a axe

all considered state functions that can be determined by the state variables using state

equations or constitutive equations.

3.3.2 Internal Variables: General Theory

In thermoelasticity, internal energy u, entropy s, and heat flux q, can be fully described by

the current value of stress and temperature. The situation becomes more complex when

deformation is inelastic. Here, in addition to the current values of the state variables, the

history of the deformation is also important. This requires identifying more state variables

to describe the deformation history. It is very hard to enumerate all of the relevant state
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variables from macroscopic observations alone. Microscopic deformation considerations are

needed and some assumptions have to be made to use certain macroscopic (observable)

variables as representatives of the microscopic phenomenon. After the state variables are

chosen, the mathematical forms of the constitutive equations should be determined. This

involves experimental evaluation and mathematical formalization, which at times are very

complex (Lubliner [1990]).

In thermomechanics, the state variables are identified by using the concept of internal

variables. It is postulated that the current state of an inelastically deformed solid can

be determined by the current values of stress, temperature, and a set of internal variables.

The history of deformation is indirectly included in the evolution of these internal variables.

Mathematically, this can be stated as

u = u(aij,T, ols)

s = s(aij,T, az)

q = q(aij,T, az)

(3.34)

where aZ, i=l,2,...,n are internal variables which can be scalars, vectors or tensors. These

variables can be considered in two categories; (1) physical variables describing the aspects

of local physico-chemical structure which may change spontaneously, and (2) mathemat-

ical constructs or phenomenological variables, in which case the functional dependence of

stress(or strain) on the internal variables, and their rate equations, is assumed a-priori.

Thermomechanical Aspects

An equilibrium state of a system is a state that has no tendency to change without a change

in external controls. The local state (a, T, _) may be called a local equilibrium state if

the internal variables remain constant at a constant stress and temperature. This can be

mathematically stated as

& = gi(a,T,_) = O, i= 1,2,...n. (3.35)

In an elastic continuum, every local state is an equilibrium state, though the continuum

need not be globally in equilibrium. On the other hand, existence of non-equilibrium states
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is an essentialfeatureof rate-dependentinelasticcontinua. Suchstatesevolve in time

by meansof irreversible processes, of which creep and relaxation are examples. Hence,

the thermomechanics of inelastic continua belongs to the domain of thermodynamics of

irreversible processes (Lubliner [1990]).

3.3.3 Generalized Flow Potential

A general concept of the flow potential is due to Rice [1970,1971]. First, a generalized flow

potential is defined which is assumed to depend on the the stress, temperature and a set of

internal variables. The flow and evolution laws can be obtained by simply differentiating

this potential.

For a strain formulation, generally the Helmholtz free energy, H(_ij, T, Qj, A_) is used as the

generalized potential. This potential is convex and the mechanical and thermal quantities

can be obtained as follows:

OH OH OH

aij- c_cej , S- 0T' aZ- 0A_" (3.36)

For a stress formulation, Gibb's complementary free energy ((I)), given by

dP(O'ij , T, o_) = o'ij£ij - H (3.37)

is used as the generalized potential, from which the state variables can be obtained as

0(I) 0(I) 0(I)

¢ij -- Oaij' S -- OT' A_ - OaZ" (3.38)

Further, the evolution is governed by the dissipation potential, _(aij,T,_z) as

(3.39)
O0"i j ' OOl _ "

3.3.4 Internal Variable Theory of Viscoplasticity

Most researchers use the term viscoplasticity in the classical sense, that is, to denote the

description of rate-dependent behavior with a well defined yield criterion, but this usage is

not universal. Others, following Bodner [1968], use the term for highly non-linear behavior,
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without a well defined yield, that is characteristic of metals, especially at higher tempera-

tures. These are unified models. Nevertheless, both of these are subclasses of the internal

variable models (Lubliner [1990]).

Classical Viscoplasticity

Suppose we have a continuous function f(a, T, a) such that there exists a region in stress

space where f(a,T,a) < 0 and _j = 0, then f(a,T,a) = 0 is the threshold surface in

the stress space and the elastic region forms its interior. This definition does not require

simultaneous vanishing of all the internal variable rates (&¢) in the elastic region. Hence,

phenomenon like strain-aging, which require evolution of local structure while the material

is stress-free, can be represented. However, this is of importance only for processes whose

time scale is comparable to the relaxation time for strain-aging.

The dependence of the threshold function on the internal variables aZ describes the hard-

ening properties of the material. During hardening, the threshold function decreases from

a positive value toward zero at a constant stress and temperature, that is ] < 0. Similarly,

softening is characterized by ] > 0. In the limiting case ] = 0, i.e. f is independent of aZ

and the material is perfectly plastic material.

Unified Viscoplasticity

According to Bodner [1968], yielding is not a separate or independent criterion but is a

consequence of a general constitutive law of the material behavior. Since the 1970's, several

constitutive models for the rate-dependent inelastic behavior of metals have been formulated

without a formal hypothesis of threshold surface. These models can successfully represent

creep especially under high temperature without a decomposition of strain into plastic and

creep strains. They have consequently come to be known as unified viscoplasticity models,

and are particularly useful for the description of bodies undergoing significant temperature

changes.

Perhaps the simplest unified model is due to Bodner and Partom [1972,1975] in which the
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flowequationsaregivenby

where

= ¢ (3.40)

¢ = ¢(Do, n, Z) (3.41)

and Do, n are material parameters and Z depends on the inelastic power (lfidi). The rate

equation is

W_ : _j_[j : 2J2¢(W_,J2). (3.42)

Here, temperature dependence is achieved through temperature-dependent material param-

eters.

More recently, sophisticated unified viscoplastic models, that describe many features of the

behavior of metals at elevated temperatures have been developed. Arnold and Saleeb [1994]

developed a Generalized Viscoplastic model with Potential Structure (GVIPS). In GVIPS,

the total strain is decomposed into elastic and inelastic strains. However, it is still unified in

the sense that the inelastic strain in not further decomposed into plastic and creep strains.

It is a fully associative, multiaxial, non-isothermal, non-linear kinematic hardening model

that accounts for most aspects of temperature and rate-dependent inelastic deformation.

This is the baseline model that is modified in the current work and will be presented in

detail in Chapter 4.

3.4 Review of Related Work

It is clear that the SD cannot be represented by the classical Mises yield criterion with

an associated flow rule. This prompts us to look at more general constitutive models that

can better represent the yield and flow behavior of the materials that exhibit a SD effect.

Reviewed here are some forms of threshold functions, definitions of flow, and flow rules that

have been used to capture different aspects of flow behavior in materials.
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3.4.1 General Threshold Functions

One of the first general yield functions for metals was proposed by Drucker [1949] as de-

scribed in equation 1.5. A function based on J2"J3 was better than either Tresca or yon

Mises functions in correlating yield surface data for the aluminum alloy. Further, he proved

that the deformation theory of plasticity falls short in representing a general state of stress

in a material and is not compatible with the J2-J3 representation of yield.

Spitzig et al [1975] proposed a generalized yield function to account for the observed SD

effect in tempered AISI 4310 and 4330 steels.

rl/2 .1/3
f ="2 -a ll-b J3 -c (3.43)

where a, b, and c are material constants. To be able to correctly predict the observed

volume expansion during inelastic deformation, they suggested the use of a non-associated

flow law.

Lee and Ghosh [1996] addressed the problem of expressing the non-coaxiality of stress path

in constitutive modeling. Due to shear banding, all the stress increments in a given stress

path do not have the same principal axes. This is referred to as non-coaxiality and is

attributed to the rigid body rotations associated with pure shear, compressibility due to

Poisson effect and plastic dilation. To account for non-coaxiality and shear banding com-

monly observed in deforming metals, they proposed the inclusion of J3 in the constitutive

model. To this end_ they proposed two modifications to the Drucker-Prager criterion; one

for materials weak in shear and another for those weak in tension.

Lissenden et al [1999] developed a method for determining rate dependent flow surfaces for

Inconel 718. Inadequacy of J2 based models to represent the asymmetry in yield (between

tension and compression) led them to use the following forms for the yield functions:

rl/2
f = aIl+b_2 -1 (3.44)

f = b3j3/2+cJ3-1

where a, b, and c are material constants that fit to the experimental data. These functional

forms fit the yield surface data very well and the outward normals to the surfaces were

found to be consistent with the experimentally determined directions of the inelastic strain
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rate vectors.

In orderto characterizetheviscoplasticbehaviorof geologicalmaterials,Desaiand Zhang

[1987]proposeda generalizedyield functionof the form

f = J2 - (-a I'_ + 7 I_)[exp(fl It) - fl S,-]m (3.45)

rl/3/rl/2
where c_, %/_, n, and m are response functions and Sr = o3 /_2 . This yield function is

continuous in stress space. It permits hierarchical development to incorporate progressive

complexities such as associative and non-associative responses, anisotropic hardening, strain

softening and fluid pressure.

Mandl and Luque [1970] analyzed a fully developed shear flow of frictional granular material.

They justified the use of Mohr-Coulomb criterion for planar elements that have normals in

the flow plane to describe yield in this situation. They rewrote the criterion in cartesian

coordinates as

f= axx +ayy sinp+ccoso- (_xx-_yy)2 2 (3.46)

Functions based on Internal Variables: Threshold Functions

Wegener and Schlegel [1996] studied the suitability of different yield functions for approx-

imation of subsequent yield surfaces to capture various effects of distortional hardening.

They chose a yield function of the form

f = f(f, zk, k = 1...) (3.47)

where Y is the effective shear stress, Zk are the internal variables that are tensorial in nature.

They compared four experimental yield surfaces corresponding to different load paths from

the work of Phillips and Tang [1972] and found that a sixth order tensor for zk gave a good

representation of the subsequent surfaces for all the cases.

Chaboche [1977] used inelastic strain(J) and strain like symmetric second-rank tensor A as

internal variables. The thermodynamic force conjugates to these variables are the stress-like

variables, R and o_ij, respectively, and the assumed threshold surface is

=
R

ko = 0 (3.48)
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where

1
,]2 = -_(sij -- aij ) ( sij - aij ) (3.49)

aij being the deviator of o_ij and ko is the yield strength in shear. The yield surface is

of Mises type, capable not only of expansion (as mea._ured by R) but also of translation

represented by aij which marks the center of elastic region. The invariants used in the yield

function are effective deviatoric stress invariants.

Robinson and Ellis [1986] assumed the following form for the dissipation potential:

[1/ ]a = k -_ FndF + --_ a'mdG ' (3.50)

where #, R, H, n, m, k are material constants. The threshold function F depends on J2

and J3 and has its origin in Drucker's form (equation 1.5).

F( J2, J3 ) = ( j3 - c']_)1/3
K2 - 1 (3.51)

and the function G' depends on the corresponding invariants of the internal stress (J_ and

as

= (g 3- c42)1/3
K2 (3.52)

The effective and internal stress invariants are defined in Chapter 4. The threshold function

reduces to the Mises criterion for c=O, and Drucker's model for c=-1.75.

Hopkins [1990] developed the flow and the evolutionary laws for the above model. He

arrived at the limits on the value of c using material stability criterion. He also determined

functional forms for F and G' for non-monotonic loading conditions like stress reversals.

Janosik and Duffy [1997] pointed out that ceramic materials exhibit complex rate dependent

thermo-mechanical behavior. To account for the SD effect and the sensitivity of these

materials to hydrostatic pressure, they introduced ]1 and J3 in the definitions of F and G'

in the Willam and Warnke model [1975]. These functions were in turn used in Robinson's

model to develop the constitutive laws for ceramics.
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3.4.2 Flow Definitions

At elevatedtemperatures,metallicalloysexhibit strongtim_dependentbehaviorand the

conceptof yieldsurface,in theclassicalsense,generallybreaksdownaswemoveinto the

realm of viscoplasticity.However,analogousgeometricallyand thermodynamicallybased

conceptssuchassurfacesof constantstrain rate (SCISP_s)andsurfacesof constantdissipa-

tions (SCDs)havebeenpostulatedto play thesamecentralrolein viscoplasticconstitutive

theoriesasyield surfacesdo in classicalplasticity. Physicalquantitiesusedto definethe

amountof inelasticflow in a materialaredefinedmathematicallymsfollows:

1. Inelastic power is the product of the stress and the inelastic strain rate.

2. Dissipation represents the rate of work that cannot be recovered in a process and

mathematically is the difference between inelastic power and the product of internal

stress and internal strain rate.

3. Equivalent inelastic strain rate is the square root of the self product of strain rate.

Battiste and Ball [1986] used SCISRs and Clinard and Lacombe [1988] used SCDs to describe

the dissipation potentials at elevated temperature for monolithic materials. Lissenden et

al [1997a] pointed out that SCISRs and SCDs need not represent the same surfaces under

all conditions and hence needs careful consideration. A good example of this would be the

dissipation potential in equation 3.50. For this potential, the two surfaces are different and

become identical only if the J3 dependence is removed. Of all the surface definitions that

represent inelastic flow, the SCDs are most meaningful from the thermodynamics viewpoint.

An important issue is that the SCDs are not experimentally measurable. At best, ex-

periments can measure the surfaces of constant inelastic power (SCIPs) as explained by

Lissenden et al [2000]. Hence, it is important to correlate SCIPs that can be experimentally

determined, to SCDs that axe theoretically meaningful. This subject was addressed by Iyer

et al [2000a].
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3.4.3 Inelastic Behavior

In the inelastic region, the flow law relates the incremental stress to incremental inelastic

strain. The associated flow law, which is widely used in classical plasticity theory, was

described earlier. Here, the focus is on the non-associated flow laws that are required for

describing inelastic flow in some materials.

Mroz [1963] pointed out that the vector of incremental plastic strain can rotate significantly

for small inhomogeneity, even for a smooth yield surface, thereby leading to a non-associated

flow rule. This inhomogeneity is caused by plastic deformation at the microscale and is a

function of grain size, temperature, and elastic and plastic properties of the grain. Accord-

ing to him, the separation of total strain into elastic and plastic parts is difficult due to

inhomogeneity, which affects hardening characteristics and laws of plastic deformation.

Spitzig et al [1975] used the yield function in equation 1.7 for describing flow in marten-

sitic steels. An associated flow law overpredicted the volume expansion by a factor of 15.

They proposed the use of non-associated flow law for accurate prediction of volume expan-

sion during inelastic deformation. In Robinson's model the flow law is associative but the

evolution law is non-associative.

Frantziskonis et al [1986] attributed the non-coaxiality of the plastic strain increment and

the stress increment in granular materials to intergranulax friction and changes in the phys-

ical state of the material during deformation. They proposed a correction to the yield

function in equation 3.45 based on the deviation of the plastic strain increment from nor-

mality.

F = f + h(Ji, _) (3.53)

where h is the correction function that depends on the three invariants Ji, i--1 to 3, and

_, which is a hardening parameter. The use of F for the yield function leads to a non-

associated flow law, which is able to capture the effects such as volume change and stress

path dependence.

Mandl and Luque [1970] found that the internal kinematical constraints cause the direction

of the principal macrostress to deviate from the direction of strain increment, though the

granular material is assumed to be completely isotropic. This non-coaxiality is perfectly

NASA/CR--2001-210715 52



compatiblewith materialisotropyandhasonly minor consequenceson the mathematicsof

classicalplasticity.Theyfoundtheangleof deviationto be thehalf angleof internalfriction

for a critical void ratio. Drucker'sstability postulateis not satisfiedin the overallsense.

Theydecomposethe stresstensorinto two parts; onecapableof performinginelasticwork

and the othernot capableof performingwork. The inelasticstrain incrementis coaxial

with the workingpart of stress,therebyindicatingthat a weakenedform of the stability

postulateholds.

Anotherinstanceof applicationof non-associatedflow lawsis by Kangand Willam [1999]

whouseda yield functionthat dependson all the threestressinvariantsandis continuous

in stressspaceexceptat thepoint of equitriaxial tension.Applicationto concreteresulted

in satisfactorypredictionof brittle failure modein tensionandcompressionfailure in pure

shearwith volumetricconstraint.
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Chapter 4

Proposed Viscoplastic Model

In this chapter, a viscoplastic model capable of predicting a SD is proposed and subse-

quently specialized for aged IN718 at 650°C. This model is an extension of the Generalized

Viscoplastic Model with Potential StrucCure (GVIPS), developed by Arnold and Saleeb

[1994]. First, a background relating to the internal variables used in GVIPS is presented.

This is followed by the theoretical framework of GVIPS and constitutive equations. The

proposed modifications to GVIPS to account for the observed SD are presented and the

resulting formulation is derived, giving the flow and evolutionary laws. Finally, a detailed

procedure to estimate the material parameters in the model is proposed.

4.1 Background

Inelasticity exhibited by the thermomechanical response of engineering materials is related

to irreversible thermodynamic processes. These involve energy dissipation and material

stiffness variations due to physical changes in the microstructure. Consequently, thermo-

dynamic arguments have often been utilized in the internal variable approach in the for-

mulation of phenomenological constitutive laws (Coleman and Gurtin [1967]; Rice [1971];

Lubliner [1972,1973]; Lemaitre and Chaboche [1990]).

Thermodynamic admissibility restrictions associated with various dissipative mechanisms

underlying the above models reduce to the well-known Clausius-Duhem or dissipation
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inequality. The thermodynamically based constitutive equations in these models are dis-

cussed with respect to the above restriction. Mathematical constructs of flow or dissipation

potential and the associated normality conditions are introduced for convenience in satis-

fying the above constraints based on simple properties of non-negativeness and convexity

of these functions (Ponter and Leckie [1976]; Rice [1970]; Ponter [1976], Onat and Leckie

[1988]; Robinson and Duffy [1990]; Lemaitre and Chaboche [1990]; Freed et al [1991]).

Such forrns however, do not automatically imply the existence of total or integrated forms

of thermodynamic potentials; for example, the Helmholtz free energy or the Gibb's com-

plementary free energy. If the latter is assumed a-priori, the corresponding formulation

is termed a complete potential-based structure; on the other hand, those derived from an

assumed dissipation potential form are referred to as incomplete potential-based models.

The complete potential-based class of inelastic constitutive equations possesses a number

of distinct and important attributes:

1. They constitute the cornerstone of numerous regularity properties and bounding the-

orems in plasticity and viscoplasticity (Ponter [1976,1979,1980]).

2. They result in sufficiently general variational structure, whose properties can be ex-

ploited to derive a number of useful material conservation laws (Eshelby [1951,1956];

Rice [1968]).

3. The discrete form of the assumed Gibb's potential is numerically advantageous in the

development of efficient algorithms for finite element implementation (Saleeb et al

[1990]; Saleeb and Wilt [1993]; Maier and Novati [1990]).

A number of variables have been used to describe the evolution of the internal structure,

as inelastic deformation occurs. The ones usually used in sophisticated unified theories are

defined here.

1. Internal Stress represents the inner stress field associated with immobile dislocations.

It is smaller than the applied stress.

2. Effective Stress is the difference between applied and the internal stresses.

NASA/CR---2001-210715 56



3. Drag Stress is based on the dislocation motion. Increase in drag stress decreases the

inelastic strain rate and thus increases the size of the elastic region, similar to isotropic

hardening.

GVIPS uses two variables; the drag stress which is non-evolving, and the internal

st_ss, which is tensorial and evolves with inelastic deformation.

4.2 Theoretical Framework

GVIPS applies to an initially isotropic material. It is limited to small deformations and the

initial state of the material is assumed to be stress-free. Gibb's thermodynamic potential

function (qS) is assumed to depend on stress, temperature, and an array of internal variables

(Coleman et al [1967]; Lubliner [1972,1973]).

In its differential form, the Gibb's potential, O(aij,aZ, T), is written as follows (Lubliner

[1973]; Ponter [1979]):

dg2 = - eijd_rij - SdT - A_da_ (4.1)

where S denotes the entropy, a_ the internal state variables, AZ the thermodynamic affinities

corresponding to aZ, eij the total strain and (xij the stress tensor. It follows fi'om equation

4.1 that

eij = Ocri;

S -
b_
O_

A_ -

(4.2)

are defined ms the equations of state (Malvern [1969]; Lemaitre and Chaboche [1990]) and

ffij, old, and T are force-like thermodynamic state variables while eij, A_, and S are the

corresponding conjugate displacement-like variables. The most general expression for the

total strain rate is obtained by differentiating the first of the above equations as

• d( 0eg. 02_ . 02_ 02_ .
eij = _-0-_/j)- OaijOarsars OaijO_Z&Z OaT_T. (4.3)

Two options are available for describing the flow and evolutionary equations. The first

option assumes a fully coupled form, i.e., the inelastic strain rate is intimately linked to
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the thermodynamicinternal state,henceits functionaldependenceis completelydefined

once4)is assumed.This form is too restrictive,in that it requiresproportionalitybetween

the inelasticstrain andthe rate of changeof internal state(Arnoldand Saleeb[1994]).As

a result, the classicaldefinitionof steadystate creepwhichrequiresan evolvinginelastic

strainat aconstantinternal state,cannotbeattainedusingthiscoupledform. This leadsus

to thesecondoption; a decoupled Gibb's form, in which the selected internal state variables

are grouped a priori by separation of the inelastic strain as an independent state parameter

and suppressing all stress dependency of the remaining associated internal state groups in

the selected 4) function. This form indeed allows the classical steady state creep.

4.2.1 Decoupled form

In the decoupled form, the evolution of inelastic strain is independent of the internal forc_

like state variables, c_Z, associated with material inelasticity. It is this separation that

allows for inclusion of the classical notation of steady state creep. The Gibb's potential for

an isothermal case is expressed as

4) = E(aij) - aijelj + H'(aZ) (4.4)

where E is negative of the elastic strain energy, the second term is inelastic work, and H _

is a material function.

Differentiating equation 4.4 with respect to stress, gives the total strain rate as a sum of

two components; elastic (or reversible) (_ej), and inelastic (Jj).

where

04) .e .I (4.5)
_ij - Oaij -eij +eij

[ ]0 rs (Trs
(4.6)

•I is defined separately.and inelastic strain rate, eij,

For an isothermal process, the energy balance requires that the external work rate be equal

to the sum of the internal work rate and the dissipation, i.e.

= a(a j, a s) +  zhe.
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Thesecondlawstatesthat the changein entropyis positive.For an isothermalprocess

This is calledthe dissipation inequality.

- a_hZ > 0. (4.7)

The inelastic strain rate _1j is defined such that the dissipation inequality is satisfied. Dif-

ferentiating the dissipation potential Ft with respect to (Tij and a_ we get the flow and

evolution laws,

• I 0_'_ (4.8)
eiJ -- Oaij

AZ - O_ (4.9)
0o_

respectively. Using the Gibb's potential, the evolution law can also be written as

h_ = _ - = Q_

where

(4.10)

02(I )

q_t -- 0a_0az (4.11)

relates the internal force-like variables to the internal displacement-like variables and is

called the internal compliance operator. This operator is completely defined once q) is

chosen. It is interesting to note that this operator provides information about the curvature

of the Gibb's potential as well as the relaxation trajectories in the associated stress space

(Arnold [1987]). The evolution law for the internal variable is

Oft (4.12)
a_ = _ [%-1]0_.

The Gibb's and dissipation potentials are directly linked through the internal state variables.

Clearly, this framework provides a structure in which the flow and evolutionary laws are

fully associative and hence easily integrable.

4.3 Generalized Viscoplastic model with Potential Structure

Using the above framework, Arnold et al [1996] developed a multiaxial, potential based,

fully associative, isothermal, unified viscoplastic model. This model possesses one tensorial

internal state variable, the internal stress ((_ij) that is associated with dislocation motion.
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Theformsofthe Gibb'spotential (¢) andthedissipationpotential(12)arechosenasfollows

(SaleebandWilt [1993]):

1 _2f_)HG_+I (4.13)0 ---- _aijeij (1 +

= _2 1 (F) n+l + R (G) m+_+l ] (4.14)
2. + 1) H

where _, it, n(> 1), m(_> _ + 1/2), _, R, and H are positive material parameters. The first

three are associated with the flow law and the rest with the evolution equation. The scalar

function F depends on the effective stress and G depends on the internal stress invariants.

The McCauley brackets are such that

(F} = F if F > 0

= 0 otherwise

(G) = G if G>ao

= Go otherwise.

This ensures use of different forms of F in different regions of the state space to account for

stress-reversals, cyclic-loading and dynamic recovery effects. Also, Go is the cut-off value of

G, which is a small constant that helps fit the experimental data and prevents singularity

in the numerical solution when G tends to zero.

In the spirit of von Mises and owing to the deviatoric nature of the inelastic deformation,

only the quadratic invariants axe considered in the definitions of the potentials for this

model. Hence the definitions of F and G are as follows:

22
F- 42 1 (4.15)

t_ 2

where J2 is the effective deviatoric stress invariant defined as

J2 = _EijEij

(4.16)

(4.17)
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and J_ is the internal deviatoric stress invariant given by

1
J_ = -_aijaij

and the effective deviatoric stress is

(4.18)

Eij = Sij -- aij. (4.19)

The function F, acts like a threshold surface because no inelastic strain will occur if F < 0.

The size of this surface is dictated by the shear strength (g) and its location is determined

by _ij. Following the above framework and using these potentials (equations 4.13 and 4.14),

the flow law is derived as

_i_j = Fn
2# Eij (4.20)

and the evolution equations for the internal stress axe

" ( fl aijakl)(_-_ll - RGmakl) (4.21)Oqj = \Iijkl G(1 + 2fl)

where Iijkt is the fourth order identity tensor.

The above equation consists of two terms that represent competing mechanisms in the

material; (1) a hardening term (associated with H, 8) that accounts for the strengthening

mechanisms, and (2) a recovery term (associated with R, m) that accounts for the softening

mechanisms and is called strain-induced recovery or dynamic recovery. These competing

terms in the evolution equations are consistent with the assumption about the nature of

internal mechanisms in the material (Miller [1987]; Freed et al [1991]).

4.4 Proposed Model

The model described in the previous section is J2-based, which is suitable for many metals

like titanium (Arnold et al [1996]). It cannot, however, account for the SD phenomenon

which is observed in aged Inconel 718. To do so, we need to generalize the above model.

The starting point here is the choice of Gibb's and the dissipation potentials which have the

same form as equations 4.13 and 4.14 respectively. The threshold function is generalized

and then the flow and evolutionary laws are derived.
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Table4.1: Material parameters for various threshold functions

Source Threshold (Yield) Function m a b c

Mises v/-_-k 1/2 0 1/k 0

Drucker-Prager all+v/-_-k 1/2 a/k 1/k 0

r3 012 b6 1/k6 _9/(4k 6)Drucker _2 "_ o3 "_ 3 0

4.4.1 Modified Threshold Function

As mentioned before, an elastically isotropic material that exhibits a SD must be represented

by a threshold function that depends on an odd power of/_1 or ']3 or a combination of

both. Pressure sensitivity requires dependence on I1 while pressure insensitivity requires

dependence on ']3 (and not il). Here, the threshold function is generalized to include all

the effective stress invariants as follows:

~ _2rnl

_2,n, + b J_21 + c J3 3 - 1 (4.22)F=--a_ 1

where a, b, c, and rnl are constants to be fit to the experimental data. The invariants ]1

and ']3 are defined as

1 _ Gii -- C_ii

•]3 = _EijEjkEki.

This form is convenient to use because it is an additive combination of all three effective

stress invariants. Initially, when the internal variables are zero, the invariants depend on

the external deviatoric stresses only, and the threshold function F is the yield function.

There are several advantages of choosing such a form of threshold function.

1. It is most general in that it incorporates all the three effective stress invariants.

2. The polynomial form is convenient for differentiation which is required to derive the

flow and evolution laws.

3. Equation 4.22 can be easily reduced to some of the classical yield functions by choosing

suitable values for a, b, c, and ml as shown in Table 4.1.
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4. Forpureshearloading(]1=J3=0), theabovefunctionalform reducesto

F=bJ2-1

which has the same form as the baseline GVIPS model. This feature will be useful in

characterizing the model, which is detailed in subsequent sections.

Further, for better flexibility of data fitting, the above threshold function is modified as

F : [a "l_2rn'+ b 3_2 , +c j3 ] rnl -1. (4.23)

Notice that threshold function in the equation 4.23 also reduces to the baseline GVIPS

model for pure shear loading (Ii=Ja=0).

4.4.2 Flow and Evolution laws

Function G, which depends on the internal variables is chosen to have the same form as F

and can be written as
1

G = [aI_2ml + bJ_'m+ cJ_ 3 j (4.24)

where a, b, c, and ml are same as those in equation 4.23. The invariants I_ and J_ are

defined as

I[ = O_ii

1

J_ = -_aijajkaki.

Using these functions in the Gibb's and the dissipation potentials (equations 4.13 and 4.14),

and by appropriate differentiation of the potentials, we can derive the flow and evolution

laws. In this section, only the final formulae are given. Detailed derivation is given in

Appendix A.

Flow Law

The associated flow law (equation 4.8) is used to derive the flow law. Using gt (equation

4.14) the inelastic strain rate tensor is obtained as

_.2Fn(F + 1) l-re' Tij (4.25)
"I

eiJ = Zp
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where

Equation4.25is theflow law for the proposedmodel.

Evolution Law

The evolution equations for the internal variables can be obtained in a similar manner using

equation 4.12 as follows:

OOlij

_;2R G(l+_+m_ml )l_)i j= _i/
H

(4.26)

where

---- -- _co2o 3- )oij + bJ_ -laij + _cd 3 aiqajq

where aij is the internal deviatoric stress tensor. Equation 4.26 is the evolution law for the

proposed model.

Internal Constitutive Equation

The internal compliance tensor Qijkl is obtained by differentiating @ (equation 4.13).

02@ _ O[G_ _-d_]°a

QijkZ = - Oo_ijOakl H Oaij
(4.27)

The internal constitutive rate equation is

&ij = LijklAkl (4.28)

where Aij are displacement like variables that are conjugate to internal stress tensor (_ij)

and Lijkl is the internal stiffness tensor (= Q_). Using G in equation 4.24 and differentiating
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weget

Qijkl = (4.29)

G(l+__ml)[(2a(2ml _ 1)I_2m_-_ b j, ml-1 8c 2 2

+b(mt - 1)j_ml-2aijakl + bJ_ ml-15ik_jl

2C _rnl-1 2 2 1 2_+ - + (5ml - 1) (a qajqa pazp a qajq k ))

4c,,._m,-1,,2 J; (1+ _-ml)®ijOkt].-- 1)_3akpalp_i j + akl(_ij) + Gm 19 J3 t(_ml 2

This compliance tensor, when inverted and substituted in equation 4.28, will completely

define the evolution of internal stress. It is seen from equation 4.27 that the internal

compliance is not constant. It depends on the deviatoric and mean internal stresses. Thus

equation 4.28 is highly non-linear and rate dependent. A key difference between this model

and the baseline GVIPS model is the internal constitutive rate equation. Here, the total

internal stress rates are related to the internal strain rate (h_j), while in the baseline model

the deviatoric variables are employed.

4.5 Characterization of Material Parameters

The model now has eleven independent material parameters that need to be determined for

aged Inconel 718 at 650°C. These parameters are summarized below.

1. Flow law parameters (a, it, n): a is the threshold stress in pure shear, # is associated

with the viscosity of the material, and n is an exponent.

2. Hardening parameters (H, _): These are responsible for work hardening of the material

during plastic deformation.

3. Recovery parameters (R, m): These parameters are associated with the recovery mech-

anism that competes with the hardening mechanism in the material.

4. Threshold function parameters (a, b, c, ml): Parameter a scales the mean stress

invariant I1 while c scales J3, and ml is an exponent.
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The parameterb is set to 1/_ (2ml) SO that for a pure shear loading the threshold function,

and hence the flow and evolution equations will reduce to the baseline GVIPS model.

The methodology for characterizing the remaining ten material parameters is as follows:

1. Conduct pure shear experiments on aged Inconel 718. Fit the parameters associated

with flow and evolution laws (GVIPS parameters), n, #, n, m,/3, R and H to these

data using optimization. Since Ii=J3=0 the parameters a, c, and ml will not affect

the prediction of GVIPS parameters.

2. Conduct axial tension and axial compression experiments on aged Inconel 718. Use

the GVIPS parameters (obtained from step 1) to fit the parameters a, c, and ml to

these data.

3. Ensure that a, b, c, and ml are such that the resulting initial threshold surface is

convex, thereby satisfying Drucker's stability postulate at a material point.

These steps are necessary, in part, due to limitations with the current characterization tools,

which are explained in detail in the following subsections.

4.5.1 Parameters associated with flow and evolution

GVIPS parameters are fit to the pure shear experimental data on Inconel 718. This is done

using the Constitutive Material Parameter Estimator (COMPARE), a software package de-

veloped by Saleeb et al [1998]. COMPARE was run on a NASA-GRC computer system.

Material parameters are determined by minimizing the errors between the experimental data

and the predicted response. It uses both optimization and constitutive model (J2 based)

analysis, casts the estimation as a minimum error weighted, multi-objective optimization

problem, and then solves the optimization using a sequential quadratic programming tech-

nique. It has three main parts that are summarized below.
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Primal Analysis

This moduleis responsiblefor numericallysimulatingthe loadpaths usedin the experi-

ments. It is similar to nonlinearfinite elementcodebuilt upona singlefour nodeplane

stresselementwith materialnonlinearitycapability.A fully implicit backwardEulerscheme

with correspondingalgorithmic(consistent)tangentstiffnessmatrix is usedbecauseof its

robustnessandsuperiorstability andconvergenceproperties.

Sensitivity Analysis

Sensitivity analysis involves the calculation of parameter sensitivities to the predicted r_

sponse. The sensitivity analysis is of the direct type performed on the basis of an explicit

recursive form associated with the above integrator. The sensitivities are naturally derived

from exact expressions in conformity with the underlying integration scheme. The advan-

tage of this approach is the improved computational efficiency, while the disadvantage is the

necessary analytical derivation of sensitivities that at times become complicated. However,

the former outweighs the accompanying complexity.

Optimization

The multi-objective optimization problem is formulated in COMPARE and solved using

a sequential quadratic nonlinear programming technique (Schittkowski [1981]). Its salient

features are:

1. Design variable formulation that includes component synthesis, i.e. active/pa_ssive

design variables. During optimization, the active design variables are modified and

the passive ones are not.

2. General scaling of objective functions as well as design variables for numerical sim-

plicity.

3. Formulation of a single design optimization problem through a weighted objective

function.
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The weightedobjectivefunction9v(§) for p tests is minimized to find n variables §. Here

_'(§) is expressed as

P

7(§) = (4.30)
i=l A°

where

and

1 up n_ ( Rk_2 ?2E i-V j
j=l k--1

P

Ao= Z W Jf,o(§)l.
i=1

Wi is the weighted parameter for the i th test such that

P

_-_Wi = 1.
i=1

fi(§) is the objective function for the i th test with initial value rio(§), np is the number

of measurement stations along a load history. Re and P_k are the k th components of

response from analysis and test, respectively, nR is the number of measured components at

a particular jth station.

The input requirements and procedure followed for using COMPARE to estimate these

material parameters are detailed in Chapter 6.

4.5.2 Determination of threshold function parameters

After the seven parameters associated with flow and evolution law are determined and

having set b = 1/_ 2ml , it remains to determine the parameters a, c, and ml. Material

response to a general loading path that results in non-zero stress invariants /_1 and J3

is required to determine these parameters. Data from uniaxial tension and compression

experiments (which result in non-zero/:1 and J3) are to be used for this.

The J2 model (a -- c --0) will predict identical responses in tension and compression and

thus will not capture the SD effect. By suitably choosing the values for a, c, and mr it

is possible to match the predicted responses in tension and compression with experimental
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data. This is doneiteratively. Multiple setsof parameters(a, c, ml) can be found that

may fit the data equally well, resulting in I1J2, J2J3, and I1J2J3 models. The procedure for

determining the proper combination of (a, c, rnl) for Inconel 718 is explained later. This

will determine whether the SD phenomenon is caused by the effect of hydrostatic pressure,

or by influence of J3, or both.

4.5.3 Convexity Requirement

Convexity of the yield surface is a consequence of Drucker's stability postulate. This means

that the values of a, b, c, and ml are not completely arbitrary. Thus, for a given ml,

though multiple combinations of a and c may fit the axial experimental data in tension and

compression, only those combinations that satisfy the convexity requirement are acceptable.

Outlined here is a procedure to verify convexity of any given function in three-dimensional

space (Iyer and Lissenden [2000b]). Using this procedure, we can determine the limits that

the convexity requirement places on the threshold function parameters.

The basic requirement for convexity of a thr_-dimensional surface is that its curvature

must be non-negative everywhere on the surface. That is, the curvature of the function

in two mutually perpendicular directions in the tangent plane at any given point on the

surface, must be non-negative. Mathematically, this requires that the curvature tensor be

positive definite.

An arbitrary vector ui and the tangent plane to the threshold surface are shown in principal

stress space in Figure 4.1 . The components of this vector in the normal and tangential

directions to the threshold surface are also shown. Since ui is arbitrary, all vectors that lie

in the tangent plane are given by (_ij - ninj)uj, where ni denotes the unit outward normal

to F. The unit vectors in the tangent plane are _ij - ninj. Orthonormalizing this vector

gives a set of three basis vectors, two of which lie on the tangent plane, the third being the

unit normal vector itself.
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Figure 4.1: Basis vector determination

The curvature in the tangential plane is given by

_pq --_

Hi1 H12 H13

H21 H22 H2a

H31 H32 H33

U11

U12

V12

U22

U2a

(4.31)

where Hij is the Hessian of F given by

02F

Hij- cga_cOaj (4.32)

where ai is the principal stress vector. U consists of two basis vectors that lie in the plane

tangent to F in the principal stress space.

Using the above procedure, material parameters associated with flow and evolution laws

(g, #, n, /_, m, R, H) and prescribed combinations of threshold surface parameters (a,

c, ml) will be determined. To find the right combination of (a, c, ml) that describes

the material behavior accurately, we need to consider material response for load paths

other than pure shear and uniaxial loadings. These are validation experiments that will

be detailed in subsequent chapters. Uniaxial testing under hydrostatic pressure will be an

added advantage. These will help us to confirm the importance of I1 (value of a) for this

material.
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Chapter 5

Experimental Program

This chapter starts with a brief review of relevant experimental work on inelastic defor-

mation of metals. Next, the details of the test system and specimens used in the present

investigation are presented. A detailed section on the design of experiments follows, which

establishes a method to isolate the effect of each stress invariant on deformation in three

dimensional principal stress space. The method is then simplified for axial-torsional space.

Finally, the test matrix for the characterization tests of Inconel 718 is presented.

Experimental evMuation is an important step in the development of multiaxial viscoplastic-

ity models. In general, three types of experiments are necessary to support the development

of any potential based models (Robinson [1985]) for high temperature structural materials.

These are as follows:

1. Exploratory tests: These tests guide the development of the theoretical framework

and help examine the mathematical a_spects of the framework. For a potential based

framework, they help in developing the functional forms of the Gibb's and the dissi-

pation potentials.

. Characterization tests: These tests provide the required database for determining the

specific functional forms and the parameters that represent a specific material for a

specific temperature range. Usually these are simple tests like tension, compression

and shear on relatively simple specimen geometries.
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. Validation tests: These tests provide the ultimate test of the constitutive model by

comparing actual structural component response with analytical predictions based on

the proposed model. For most cases, simple specimen geometries are used and the

loadings are complex enough to rigorously test the model.

Tensile and compressive tests with superimposed hydrostatic pressure provide information

about the significance of I1 in describing the flow and evolution laws for the material. In

the present investigation, these tests are intended to be used qualitatively to validate the

models that include I1 in the threshold function.

5.1 Review of experiments

Plasticity experiments have been conducted on metals to study their yield and flow behavior.

Volume expansion during inelastic deformation was the emphasis in many investigations.

Both uniaxial and multiaxial loadings have been reported. Such experiments date back to

Lode [1926] who tested thin walled metal tubes in tension and internal pressure. There

was a discrepancy between experimental data and the Mises yield criterion, which led

Taylor and Quinney [1931] to further investigate the effect of biaxial (axial and torsional)

loadings on tubular specimens of copper, aluminum and steel. In general, their work showed

good agreement with Mises yield criterion for these materials. They also performed large

deformation uniaxial tensile tests on these materials and monitored the changes in internal

volume of the specimens. They found large changes in internal volume that could not be

accounted for by small density changes and attributed it to the anisotropy induced during

inelastic deformation.

Most biaxial testing was done using proportional loading (Phillips et al [1957,1961], Findley

et al [1962], Michno and Findley [1976]). Biaxial experiments on metals at high tempera-

tures (> 500°C) were difficult to perform owing to the complexity in experimentation and

the associated difficulty in accurate measurement of strains.

Dependence of inelastic deformation on hydrostatic pressure has been another topic of

investigation for metals. Contrary to the experimental findings of Bridgman [1952], some

metals have exhibited dependence of flow on hydrostatic pressure. Drucker [1973] pointed
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out that the SDphenomenoncan result asa consequenceof pressuredependentyielding.

Spitziget al [1975]haveshownthat severalhighstrengthsteels(tempered4310and 4330)

that exhibitedSDeffectindeedshowedpressuredependentyielding.Thevolumeexpansion

observedin thesematerialswasin accordwith the expectedincreasein dislocationdensity

duringdeformation,but did not agreewith the normalityrule predictions.

Anothertype of plasticity experimentis the determinationof initial and subsequentyield

surfaces.Comprehensivereviewsof theseexperimentshavebeenprovidedby Michnoand

Findley[1976]andHecker[1976].Mostof theseexperimentsinvolvedaxial torsionalloading

on thin walledtubular specimens.Theprosandconsof usingstrain andstresscontrolled

loadingswereinvestigatedby someresearchers.Phillips and Lu [1984]usedstressand

straincontrolledloadingsto determineyield surfacesfor purealuminumandfoundno ap-

preciabledifferencebetweenthe two. On the otherhand,someresearcherspreferredstrain

controlledloadingto stresscontrolledloadingand arguedthat the former leadsto more

accurateresults(Wuand Yeh [1971],Ellis et al [1983]). Dependenceof yieldingon tex-

ture wasdeterminedby Althoff and Wincierz[1972]by experimentson texturedbrassand

aluminum.Subsequentyieldsurfaceswerealsoafocalpointin manyexperimentalinvestiga-

tions (Nagdhiet al [1958],PhillipsandTang[1972],WilliamsandSvensson[1970,1971]).In

general,the inelasticstrain ratevectorwasfoundto benormalto theyieldsurface(Michno

and eindley [1974],Phillips and Moon [1977],Khan andWang[1993]).This suggeststhat

an associatedflow law is a goodapproximationfor mostmetals.

The shapeof flowsurfacesis stronglydependenton theflow definition(chapter3). There

hasbeensomeeffort in thedeterminationof flowsurfaces,bothsurfacesof constantinelastic

power(SCIPs)(Clinard andLacombe[1988])andsurfacesof constantinelasticstrain rate

(SCISRs)(Battisteand Ball [1986]). Theseflow surfacesare either determineddirectly

during experimentsor by usingpost experimentdata reduction techniques.For direct

determination,the inelasticstrain rate mustbecalculatedin realtime (Ellis andRobinson

[1985],Battiste andBall [1986],Lissendenet al [1997a]).

Gil [1999b]establishedanexperimentalprogramto determineyield and flow surfacesfor

solutionedandagedInconel718.Usingaxial-torsionalloadingSCISRsand SCIPsin axial-

shearstressplanewereconstructed(for temperaturesbetween23°Cand649°C).Hefound
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that the initial yield surfacesfor solutionedInconel718 at low temperatures fit the Mises

criterion. However, the yield loci for solutioned Inconel 718 at high temperature (> 350°C)

and the yield loci for aged alloy for all the temperatures investigated, showed an eccentricity

toward compressive stress direction (see Figure 1.1(b)). This is the SD phenomenon in

Inconel 718 and is the topic of present investigation.

In general, plasticity experiments on metals have dealt with determining yield surfaces (ini-

tial and subsequent) and finding the effect of loading (type of control, rate) on hardening

behavior. The effect of hydrostatic pressure on yield and flow is another topic of interest.

The present work involves loadings, both uniaxial and biaxial (axial-torsional), deep in the

inelastic region for aged Inconel 718 at 650°C. Elevated temperature experiments involv-

ing multiaxial loading are difficult to perform for two reasons; (1) difficulty in accurate

measurement of strains at elevated temperature and (2) the need for such experiments was

not felt because no systematic effort was made to determine the individual effects of stress

invariants on the inelastic flow of metals. Of course, in the present investigation there is

such a requirement in order to capture the SD phenomenon. A comprehensive technique to

capture the SD effect by investigating the effect of all the three stress invariants on inelastic

deformation is not reported to date.

5.2 Test equipment and Specimen details

An MTS axial-torsional test system was used for the uniaxial and biaxial experiments.

A gas based high pressure deformation apparatus was used for testing under hydrostatic

pressure. The specimens used for testing have different geometries for each of these systems.

5.2.1 MTS Axial-Torsional test system

The MTS test system (at NASA-Glenn Research Center) is a servo-hydraulic test machine

having an axial load capacity of 222500 N and a torque capacity of 2260 N-m. The specimens

are gripped by hydraulically actuated grips. Shown in Figure 5.1 is the complete test system

with all the required accessories. The top grip of the load frame is attached to an axial-

torsional load cell that in turn is attached to the cross head, which remains fixed during
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Figure 5.1: MTS Axial-Torsional test system at NASA Glenn Research Center

a test. The bottom grip is attached to an actuator capable of independent rotational and

vertical translational motions. The rotation of the actuator can be controlled in a closed

loop system by the angle of rotation, torque and shear strain while the vertical motion is

controlled by either displacement, load or axial strain. Kalluri and Bonacuse [1990] provide

additional details regarding the biaxial test machine.

The test machine is equipped with an adjustable coil (figure 5.2), 50 kW audio frequency,

induction heating system capable of generating specimen temperatures up to 800°C. For

this reason, the specimen grips axe water cooled. The temperature control is done by

one thermocouple spot welded to the the specimen at the gage section. The temperature

distribution in the gage section is determined by thermocouples which are spot welded to

the outer surface of the specimen in the gage section. The temperature variation is limited
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Figure 5.2: Close up showing the specimen, heating coil and extensometer

to 5=1% of the target temperature. An enclosure around the test machine limits the effects

of air currents. Axial and torsional stress and strain data are saved electronically.

Strain measurement

At high temperatures like 650°C it is not practical to use strain gages. On the other hand,

strain measurement with good resolution is required to accurately determine the initiation

of yield. At high temperatures extensometers are preferred to strain gages. The common

factors that make accurate strain measurement (using extensometer) at high temperatures

difficult are (1) presence of electronic noise and (2) coupling between axial and torsional

strain components.

A multiaxial extensometer (figure 5.2) that is capable of axial and torsional strain measure-

ments over a wide range of temperatures is used. The extensometer contains two alumina

rods spaced 25 mm apart. These are in contact with the specimen by means of indentations

on the specimen and spring loading provided by the mounting fixture. The top rod is free

to move only in the axial direction while the bottom rod is free to move only in the cir-

cumferential direction. Axial displacement 5 and angle of twist 0 are output voltages. The

axial strain is ell = _/lo and the shear strain is 712 = roO/lo, where ro is the outer radius

of the specimen and lo is the gage length (25 mm) of the extensometer.
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Figure 5.3: Gas based high pressure deformation apparatus

Test machine control

The MTS system is controlled by a microcomputer equipped with a digital-analog (D/A)

converter that provides independent controls over the axial az:d rotational motions of the

actuator. A 16-bit analog-digital (A/D) converter is used to acquire load, torque and

extensometer (axial and torsional) data. The D/A and A/D hardware is commanded 100

times per second by software that is customized using a FORTRAN program. Two tests

were performed using stress control. All other tests in this investigation were performed in

strain control.

5.2.2 Pressure test equipment

A schematic diagram for the gas based high pressure deformation apparatus (at Case West-

ern Reserve University (CWRU)) is shown in Figure 5.3. It utilizes a pressure intensifier

to generate pressure that is contained within the multi-walled pressure vessel. The volume

of the pressurized gas is kept as low as possible because of the danger associated with the

stored energy. Pressure is monitored using manganin coil pressure gage that is exposed to

the high pressure environment. These coils are used because of the highly reproducible and

linear manner in which the coil resistance changes with applied pressure.
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Figure 5.4: Dimensional details of tubular specimens (all dimensions in mm)

The specimen is first inserted in the load train assembly present in the pressure vessel

before gas pressurization and then tension or compression is applied at a desired level of

superimposed hydrostatic pressure. It is important to continuously monitor the pressure

during testing. It is required to accurately monitor the load and displacement during

deformation under pressure. For more details on the test system and test procedures, the

reader is referred to Lewandowski et al [1998].

5.2.3 Specimen details

Specimens used in the MTS system were thin-walled tubes, designed to achieve a plane state

of stress in the gage section. Also, the dimensions are such that loading the gripped ends of

the specimen results in a uniform stress distribution in the gage section. The dimensional

details of the specimen are given in Figure 5.4.

5.3 Design of Experiments

We have introduced the importance of stress invariants other than J2 to represent yield and

flow behavior for a class of materials that exhibit a SD effect. These invariants are brought

into the formulation by simply including them in the threshold function and then deriving

the flow and evolutionary laws based on it. Although the chosen form of the threshold

function in equation 4.22 is justified for its simplicity and easy reducibility to well known
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forms, it is only one of the many possibilities. The appropriate choice of the form may

depend on the material under investigation.

A traditional approach for metals would be to conduct hydrostatic tests ms suggested by

Bridgman [1952]. For pure hydrostatic state of stress (a), I1 = 3a and J2 = Ja = 0. Hence,

such a test will help determine whether Il affects flow behavior and causes permanent

volume change during inelastic deformation. If no permanent deformation is observed under

hydrostatic stress, the threshold function can be based on deviatoric invariants alone. Unlike

the threshold function for a J2 material, which can be quantified by pure tensile loading,

a simple uniaxial test will be insufficient to quantify a general threshold function. This

is because the general yield function has three unknown coefficients, the determination of

which requires at least three experiments.

5.3.1 Isolating the effect of invariants

For a general case where 11 and/or ,/3 must be considered, a multiaxial test program needs

to be adopted to quantify their relative importance in the definition of yield and flow. This

can be accomplished by following stress trajectories that have only one stress invariant that

is changing, or better yet, only one nonzero stress invariant. Some simple loadings (external)

such as hydrostatic pressure (/1 _ 0, J2 = ,]3 = 0) and pure shear (J2 # 0, 11 = ,]3 = 0)

can help describe the initiation of inelasticity. The internal state of the material does not

change during elastic deformation and hence/_1 = I1, _]2 = J2, and J3 = J3. During inelastic

deformation, however, the external loading that causes pure shear or hydrostatic tension are

not immediately known. This is because the invariants also depend on the internal stresses

which are nonzero during inelastic deformation giving ]1 ¢ I1, J2 ¢ J2, and J3 7_ J3.

For a general loading condition, stress paths having only one changing effective stress in-

variant can be obtained by following guiding vectors in the effective stress plane determined

by the cross product of the gradient of the other two invariants. Mathematically, this can
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beexpressedas

V.]2 x VJ3 : ]1 changing

V J3 × V]I : ,]2 changing

vii × v J2 : J3cha, ging

where I1, J2 and J3 are effective stress invariants defined previously.

(5.1)

Stress paths obtained by the above equations are greatly influenced by the starting point,

which is not required to be the zero stress condition. Effective invariants also depend on

the internal stresses, which are neither measurable nor controllable variables. Therefore,

computer modeling is necessary to determine what loading to apply in order to follow

the guiding vectors in equation 5.1. An additional complexity arises for non-proportional

loading for which the applied stress and effective stress directions are generally not the

same.

5.3.2 Stress trajectories in three dimensional stress space

Using equations 5.1, a number of stress trajectories can be derived depending on the starting

point in the stress space. Figure 5.5(a) shows two stress paths in the principal effective

stress space that have both J2 and J3 constant, while Figure 5.5(b) shows the change in I1

along the same stress paths. Note that path AB is hydrostatic tension while path CD is

not. However, both paths are straight and have the same direction. Similarly, the case for

varying J2 with constant I1 and J3 is shown in Figure 5.6. Again, the importance of the

starting point is clearly seen, path AB starts very near the origin and is pure shear while

path CD is not. Both AB and CD are straight and parallel but the increase of J2 along CD

is larger than that along AB.

Finally, paths for varying J3 with constant I1 and J2 are shown in Figure 5.7. They axe

neither straight nor do they intersect the origin. Both paths have a local extreme which is

expected to cause a distinct change in the inelastic response as the change from loading to

unloading occurs.
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Experimentation using three-dimensional stress states require complex laboratory equip-

ment such as that developed by Calloch and Marquis [1999]. Hence, a simpler alternative

approach would be to restrict the stress trajectory to a plane stress. Plane stress loading

can be readily applied to a thin-walled tube by axial force, torque, and internal pressure.

For a plane state of stress however, the invariants are related by

resulting in only two of the invariants being independent. Thus a different approach than

that for three-dimensional space is needed.

5.3.3 Plane stress experiments

Since J2 has the primary influence on the inelastic flow, it can be treated differently relative

to the other two invariants. It is thus proposed that the change in J2 be the same in each

of the two tests, one test having a varying/_1 and a constant J3 and the other test having a

varying J3 and a constant I1. These types of tests appear to be possible using axial-torsional

loading of a thin walled tubular specimen.

Simple load paths in the axial-torsional stress space that satisfy the above condition axe

shown in Figure 5.8 and Figure 5.9. If a pure tensile stress state is chosen as a starting

point for shear loading as in Figure 5.8, the result is a constant il and a changing J3- If a

combined compression-shear stress state is chosen as a starting point and the compressive

stress is reduced while the shear stress is increased as in Figure 5.9, J3 remains constant

and I1 increases. Though I1 approaches zero, this load path corresponds to loading since

the J2 rate is positive in the sense of increasing inelasticity.

The intent of these tests is to facilitate comparison with pure shear tests conducted at an

identical J2 rate. Differences in the inelastic strain response could then be attributed to

J3 for loading in Figure 5.8 and to I1 in Figure 5.9. This can be used to determine an

appropriate weighting of the material parameters a and c in equation 4.22.

Since proportional loading is easier to apply than non-proportional loading, it is worthwhile

to consider the proportional load paths shown in Figure 5.10. The loading rate can be

adjusted so that the J2 rate is the same for any loading direction, A1. For values of A1 of
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Figure 5.10: Effective stress invariants for two proportional load paths

0.0 and 0.2816, the changes in J3 happen to be almost identical while the change in _il is

not. Thus any difference in the inelastic response could be attributed to -T1.

The objective of the various experimental possibilities described above is to determine what

effect each of the three stress invariants have on inelastic deformation. These paths can

only be determined by using the viscoplastic model to predict inelastic strain and searching

for paths that extremize the difference between these forms. It is probable that these paths

will require non-proportional loading and creep or relaxation periods.
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5.4 Proposed experiments for the current model

First, characterization is done using pure shear tests that are similar to load path AB in

Figure 5.6(b). Next, axial test results are used to determine the threshold surface parameters

a and c. The intention here is to follow load paths that result in varying la, J2 and J3, and

hence are not similar to any of the paths in Figures 5.5 to 5.10, where the idea was to keep

two invariants constant and vary the third.

Validation experiments are biaxial tests using, both proportional and non-proportional load-

ing. The non-proportional loading is similar to the path in Figure 5.8 while the proportional

loading is similar to the load paths in Figure 5.10. Tension and compression tests with super-

imposed hydrostatic pressure complement these validation experiments since they directly

show the effect of ,fl on material inelasticity. Test matrices are developed for characteriza-

tion and validation of the proposed viscoplastic model in the next section.

5.5 Test Matrices

The most important and often times the most difficult aspect of modeling at elevated

temperature is obtaining the required material parameters. The associated difficulty stems

not only from the variety in the mathematical forms of the threshold function, but also from

the fact that multiple sets of material parameters can correlate experimental data equally

well, for a given load path. In order to arrive at the proper set of material parameters, it is

therefore crucial to choose an appropriate set of experiments that bracket a wide range of

values for the variables under consideration (e.g. loading rate, load levels, control mode).

First, the test matrix for the pure shear characterization is developed. This is followed by

tests in tension and compression. Finally, test matrix for axial testing under hydrostatic

pressure is also given. All tests are conducted at 650°C except for the pressure tests, which

are at room temperature.

Pure shear characterization

Since we are trying to determine seven material parameters, different types of experiments
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Name

IN7

IN20

IN21

IN22

Table 5.1: Pure shear characterization experiments

Control Loading rate ts(sec) tl(sec) End level

Strain

Strain

Stress

Stress

1745 microstrain/s

17.4 microstrain/s

25.1 MPa/s

25.1 MPa/s

10.8

1500

22.9

19.5

43200

44700

1282

43200

0.0188

0.0261

552MPa

482MPa

Stress/

strain

I
Hold time :_'

Endlevel

ts time t/

Figure 5.11: Schematic for shear characterization tests

are typically required for proper estimation of these parameters. On this basis, four tests

(summarized in Table 5.1) were conducted.

The strain controlled tests were at different loading rates (two orders of magnitude) and

have the same end strain level. On the other hand, the stress controlled tests were at the

same loading rate but have different end stress levels. All the hold times except for IN21

were approximately 12 hours. A schematic diagram for these tests is shown in Figure 5.11.

Axial tests

Axial tests that will be used to characterize the material parameters a, c and ml are

summarized in Table 5.2.

Testing under hydrostatic pressure

The intention of these tests is primarily to get a qualitative estimate of the contribution of
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Table 5.2: Axial characterization experiments

Type

Tension

Compression

Control

Strain

Strain

End level Time

0.02 100 s

-0.02 100 s

I1 in the threshold function. Hence, only a few tests are planned which are either tensile

or compressive tests under three different values of hydrostatic pressure. These tests are

planned to be done at room temperature. The pressures are in the range; 0.1 to 420 MPa.

After obtaining the material parameters using shear and axial characterization, validation

of the model is done using biaxial experiments, which are developed in the next chapter.
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Chapter 6

Results and Discussion

We have now developed the formulation for a unified viscopla_stic model using a generalized

threshold function and identified experiments that are required to determine material pa-

rameters in the model. The results of the characterization and validation tests are presented

in this chapter. The procedure for determination of the material parameters is explained.

Once the parameters are determined, biaxial validation tests are compared with model

predictions. Results from the tension and compression tests under hydrostatic pressure il-

lustrate the importance of the first stress invariant in the description of inelasticity. Finally,

the results are discussed in detail and their implications on the model are described.

6.1 Determination of material parameters

The need for a unified viscoplastic model capable of capturing the SD effect has been estab-

lished and a generalized theory has been developed. Additionally, an experimental program

to characterize the material parameters in the model was developed. In this section, the

experimental results are presented starting with pure shear experiments. Using these data,

the parameters associated with GVIPS are optimized using the program, Constitutive Ma-

terial Parameter Estimator (COMPARE, Saleeb et al [1998]) and the correlated responses

are presented. COMPARE optimizes the parameters associated with flow and evolution (g,

n, it, m, _3, R, I4). Determination of threshold function parameters (a, b, c, ml) is done using
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axial (tensileandcompressive)experimentaldata. Onceall theparametersaredetermined,

the modelsareput througha rigoroustest to verifyconvexityof the thresholdfunctions.

6.1.1 Experimental results

The pure shearexperimentsdescribedin Table5.1werecarriedout on agedInconel718

at 650°C.A widerangeof loadingratesand end levelsareusedin the characterization

experimentsandhencewecanexpectto obtainagoodestimateofthe materialparameters.

Resultsofthepureshearexperimentsarepresentedin Figure6.1to Figure6.3. Stress-strain

responsefor monotonicincreasingshearstrainat twodifferentratesis shownin Figure6.1.

The loadingrate for IN7 (1740microstrain/sec)is two ordersof magnitudehigher than

that for IN20 (17.4microstrain/sec)resultingin lessinelasticdeformationin INT. Hence,

the maximumstresslevel for IN7, in spite of its lowerstrain level, is higher than IN20.

Figure6.2showsstressrelaxationover12hoursafter loadingthesetwo specimens.Stress

relaxationis higherfor IN7 dueto the smalleramountof inelasticdeformationthat occured

duringloadingrelativeto IN20. Creeptestresultsareshownin Figure6.3.Creepstrainsfor

IN21arelargerthan IN22becausetheconstantshearstresswashigher;552MPacompared

to 482MPa (for the sameloadingrateof 25.1MPa/sec).

Strain controlledloadingis chosenfor further uniaxialand biaxial experiments.For this

reason,only thestraincontrolledtest resultsfrom IN7 andIN20areusedfor characterizing

the material.

6.1.2 Optimization using COMPARE

The size of the data set was reduced to about 12-15 points for each test in order to run

the optimization program in a reasonable amount of time (less than approximately two

hours). Care was taken in order not to lose essential information provided by these tests.

The reduced test data points axe shown by circles in Figures 6.4 and 6.5.
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Name

IN7

IN20

IN7

IN20

Table 6.1: Experiments used for shear characterization

Max. Strain Time to max. strain (sec) Hold time (sec) Weights

0.0188

O.O25985

0.0188

0.025985

10.8

1499.2

10.8

1499.2

43200

43200

0.25

0.25

0.25

0.25

Table 6.2: Elastic constants for aged Inconel

i 165360MPa

0.297

63732.5MPa

718 at 650°C

The choice and the number of points used in the test data plays an important role in

optimizing the material parameters to fit the data. As can be clearly seen, more points are

used in the regions of changing slopes. These regions are typically transitions from elastic

to inelastic regimes or from monotonic loading to hold.

COMPARE was used to fit the parameters associated with the flow law, hardening, and

recovery parameters using these four sets of experimental data. The input data are sum-

marized in Tables 6.1 and 6.2.

An intermediate step was adopted to facilitate optimization of the seven material parameters

(a, n, #, m, _3, R, H). First, only the loading portions of IN7 and IN20 were used with equal

weights (0.5) to evaluate all of the parameters (set I, Table 6.3). Next, the complete data

sets from IN7 and IN20 (including relaxation) were used to determine another set (set II)

of parameters (Table 6.4). When all four tests are used together, the parameters associated

with flow law (t;, #, n) were kept close to set I and those associated with evolution (m, 2,

R, H) are kept close to set II. Parameters #, R and Hwere kept within + three decades and

parameters t_, n, m and j3 were kept within =t=30%. The initial values and bounds in Table

6.5 reflect this approach.

COMPARE successively updated the objective function until it reached a value of 1.0 and
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Table6.3: Optimizedvaluesof materialparameters(SetI)

Parameter

(MPa)

n

# (MPa-s)

m

a (i/s)

H (MPa)

Final value

78.0

7.4

7.0x106

6.8

3.8

3.0x10 -13

4.2x10 i°

Table 6.4: Optimized values of material parameters (Set II)

Parameter

(MPa)

n

# (MPa-s)

m

R (l/s)

H (MPa)

Final value

270.0

10.2

8.0x IOs

12.0

3.05

6.0)<10-13

2.0xlO9

Table 6.5: Material parameters to be optimized

Parameter Initial value Lower bound Optimized Value Upper bound

g(MPa)

n

# (MPa-s)

m

rt (i/s)

H (Mea)

78.0

7.4

7.0x 10 6

12.0

3.05

6.0xlO-13

2.0x 10 9

60.0

5.0

7.0xlO3

8.0

2.0

6.0x 10 -i6

2.0x 10 6

93.447

9.445

6.544 x 10 9

9.9

3.445

5.787x10 -i5

9.332 x l0 s

100.0

10.0

7.0x109

16.0

4.0

6.0x 10-i°

2.0 x 10 i2
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the optimizedmaterial parametersaregivenin Table6.5. To completethe optimization,

COMPARE was required to be restarted a few times (typically 3 to 4). Each time the

program is restarted, a new (updated) set of initial parameters is used which ensures that

the optimization does not stop at a local minimum. The resulting correlation to the experi-

mental data is shown by solid lines in Figure 6.4 and Figure 6.5. There is a good correlation

between the model response and the experimental data. It should be noted that predictions

from COMPARE using the parameters in Table 6.5 for axial loading results in identical

stresses in tension (figure 6.6) and compression except for the sign. This is because the

threshold function in the COMPARE (GVIPS formulation) depends only on J2.

Figure 6.6 shows that the flow stresses predicted by COMPARE are higher than the exper-

imental values for tension and compression. Positive values of either a or c or both result

in a decrease in tensile flow stresses and an increase in compressive flow stresses relative to

the J2 model (a --c =0). Hence, it is not possible to start with the optimized parameters

in Table 6.5 and get good correlation with tensile and compressive experiments. In order

to successfully capture the SD effect, it is required to obtain an axial prediction that is

between the tensile and compressive experimental data. Starting with such a J2 model (a=

c= 0) we can then capture the SD effect by introducing positive values for a or c or both.

To do this, we used an alternative approach to determine the material parameters.

One reason for the over-prediction of flow stresses in tension and compression could be a

need for more variety in the experimental data. An attempt to use the stress controlled

test data (IN21 and IN22) in addition to those in Table 6.1 did not result in any better

correlation with experiments. Even differential weighting of the tests for optimization gave

no improvement in prediction. One approacJa would be to add experiments with different

loading rates, hold times, end levels, modes of control (stress or strain) and types of loading

(single step or multi-step), in the characterization. However, we restrict additional shear

experiments to only one (IN4) and choose an alternative way to characterize the GVIPS

parameters.
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Table 6.6: Revised experiments used for characterization

Type Name Max. Engineering Strain

Shear IN7 0.0188

Shear IN4 0.024

Axial IN6 0.02

Axial IN2 -0.02

Loading time (sec)

10.8

100.0

100.0

100.0

Weights

0.25

0.25

0.4

0.1

6.1.3 Alternative approach

A good way to start is to look at the parameters, which had been fit to the experiments

purely by a mathematical technique, from a physical viewpoint. The flow law parameters

(93.447 MPa) and n (9.445) from Table 6.5 seem to be physically unrealistic, n represents the

initial shear yield strength (equation 4.15) and hence should be close to the experimentally

determined value of 220 MPa. Parameter n represents rate sensitivity of the material. A

large n (9.445) gives large rate-sensitivity, but this is not observed in the experiments. Also,

the hardening parameter H (9.332x l0 s MPa), which represents the internal stiffness of the

material, should be less than the external stiffness (165360 MPa).

More reasonable values of n, n and H, used in the optimization, resulted in better comparison

with axial test data. However, the predicted axial stress was still not between the tension

and compression test data. At this point, it was felt that using different experimental data

for the characterization would give better axial response predictions. First, test IN20 was

removed from the characterization because its loading rate (17 microstrain/s) was much

slower than what is planned for the present investigation (200-300 microstrain/s). Also,

since we are not looking at long term relaxation behavior at this point, only the loading

part of IN7 was considered. Another strain controlled shear loading test (IN4 shown in

Figure 6.7) was added to the data because its loading rate (240 microstrain/sec) is in

the 200-300 microstrain/s range. Further, tensile and compressive test data (IN6 and IN2,

respectively) are incorporated in the characterization with appropriate weighting. The tests

used in the revised COMPARE optimization are summarized in Table 6.6. The weights for

IN6 and IN2 were developed after a few iterations.
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Table 6.7: Optimized values using revised tests

Parameter

(MPa)

n

# (MPa-s)

m

R (l/s)

H (Mea)

Final value

234.7

2.0

1.7681 x 105

7.0

3.652

1.0xl0 -12

1.966 x 10 4

The corresponding optimized material parameters axe given in Table 6.7 and the correlated

shear responses are shown in Figure 6.8. The correlation for IN7 is excellent and that for

IN4 is reasonable. In addition, the presence of data for IN6 and IN2 in the characterization

helped to obtain an axial response that is between the experimental tensile and compressive

data (Figure 6.9).

Such a correlation is acceptable because of the following:

1. The value of _ is reasonably close to the shear strength (220 MPa).

2. The lower rate sensitivity observed in experiments is obtained with a lower value of

the exponent n (2.0).

3. The internal stiffness parameter H is less than the elastic modulus.

Incorporation of I1 and Ja through positive values of a and c will result in more accurate

predictions in tension and compression and thus will represent the SD effect. Of course, from

this point onwards it is required to use the formulation developed in Chapter 4, which uses

a general yield function (we cannot use COMPARE anymore). The detailed formulation of

the constitutive equations and simplifications for various cases are presented in Appendix A.

A FORTRAN program was written to calculate the material response using this generalized

formulation and is listed in Appendix B.
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6.1.4 Axial Characterization

The aim of the axial characterization is to determine the threshold surface parameters a, b,

c and ml, which along with the parameters in Table 6.7 will form the complete parameter

set required for the model. First, a value of ml is arbitrarily chosen. The parameter b is

equivalent to 1/t_ 2ml. By doing so, the general threshold function (equation 4.23) reduces

to equation 4.15 of the baseline GVIPS model for pure shear loading (I1--J3=O). This

correspondence is necessary because the parameters in Table 6.7 are based on the GVIPS

model (equation 4.15) but are also used in the general formulation. Two values for ml (1.0

and 0.6) are investigated. Values of ml higher than 1.0 do not significantly improve the

axial predictions. Moreover, they result in very small numbers for a and c, which cause

numerical difficulties. The values of a and c are varied iteratively until the tensile and

compressive flow stresses predicted by the program given in Appendix B correlate well with

the experimental data.

For each value of ml, three combinations of invariants were investigated. These three sets

can be classified as

1. I1J2model;c =0anda_0

2. J2J3 model; a = 0 and c _ 0

3. I1J2J3 model; a _ 0 and c _ 0.

The idea of choosing I1J2, J2J3, and I1J2J3 models is to clearly identify the influence of

each invariant on the inelastic behavior of the material. The threshold surface parameters

are summarized in Table 6.8.

The correlation of the models in Table 6.8 with experimental data is shown in Figure 6.10

and Figure 6.11. Each of these models gives a fairly good correlation of the flow stresses in

tension and compression. The point to note here is that all of these models do an excellent

job in the prediction of SD especially in the regions of high inelasticity (>1% strain). This

was our primary objective.

Before proceeding on to the validation of the models in Table 6.8, we will compare the
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Table 6.8: Threshold surface parameters

Name ml b(1/MPa _m_)

J2 1.0 1.8154x10 -5

I1J2 1.0 1.8154x 10-5

J2J3 1.0 1.8154x10 -5

I1J2J3 1.0 1.8154x10 -5

J2 0.6 1.43 x 10 -3

It ,/2 0.6 1.43 x 10 -3

J2J3 0.6 1.43x10 -3

I1J2J3 0.6 1.43x10 -a

a(1/MPa 2m' )

0

-5.3 x 10 -7

0

2.6x10 -7

0

4.5 x 10.5

0

2.2 x 10 .5

c(1/MPa 2m' )

0

0

4.5x10 -6

2.2x10 -6

0

0

1.5 x 10 -4

7.OxlO -5

initial threshold surfaces with experiment and verify their convexity.

6.1.5 Comparison with experimental threshold surface

The initial threshold surface for aged Inconel 718 at 650°C in the axial-shear plane was

determined experimentally by Gil [1999b] using an offset strain definition of 30 microstrain.

This is shown by circles in Figure 6.12. The initial threshold surface data is regressed

(Miller et al [1990]) to a I1J2 function to get the experimental threshold surface shown by

+ symbols (ml = 1.0, a = 3.838x 10 -6, b = 1.8263 x 10 -5). Also plotted are the threshold

surfaces predicted by the model using the parameters shown in Table 6.8 for ml=l.0.

Comparison between the predicted and experimental surfaces clearly shows that the models

under-predict the tension-compression yield asymmetry.

In aged Inconel 718, the SD starts with a high value, then rapidly decreases and attains

a constant value as inelasticity occurs (Iyer and Lissenden [2000b]). We are interested in

material behavior as it evolves during inelastic deformation. Thus, we ignore the under-

prediction of the SD at flow-initiation as long as the prediction is good at moderate to large

inelastic strains. With this in mind, we choose the threshold parameter values in Table 6.8

and ignore the parameter set obtained by regression to the experimental yield surface data.

Moreover, use of parameter set obtained by regression under-predicted the flow stresses in

both tension and compression.
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6.2 Convexity of initial threshold surface

Convexity of the initial threshold surface is a requirement that is a consequence of Drucker's

stability postulate. Figure 6.12 shows the initial threshold surfaces for the parameters corre-

sponding to ml=l.0 in Table 6.8. For m1=0.6 the surfaces are identical. As the contribution

of J3 increases (value of c relative to a) there appear to be non-convexities appearing at

the regions of pure shear. It is difficult to check the convexity of these functions visually.

Hence, it needs further attention and a rigorous check of convexity for each parameter set

in Table 6.8 is provided in this section.
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6.2.1 Mathematical Implementation

The objective here is to verify the convexity of the threshold function in three dimensional

stress space. We start with the function

F ai2m, + bar_21 _ .2ml/3= + cja - 1 (6.1)

and follow the general methodology to check convexity, outlined in chapter 4. For ease of

computation the principal stresses (al, 002, 003) axe expressed in terms of the octahedral

normal stress (aoct) and the angle of similarity (0).

00"2 -_ 00oct -F

0"3 00oct

where

cos 0 }
cos (0 - 2rr/3)

cos (0 + 2_r/3)

(6.2)

11 (6.3)00oct _ --3

and

cos30 = 3v_ J3 rr (6.4)
2 13/2 ; 0<0<-_.

"2

J2 can be expressed in terms of aoct and 0 using equations 6.1, 6.3 and 6.4.

[1-- a(3a°ct)2m' ] l/m'b+ _._J2 = -c-(-a______os 3-_-m, /3 (6.5)

Now, substituting equation 6.5 into equation 6.2 we can express principal stresses in terms

of just aoct and O.

2 1 - a(a00oct) 2m'..

002 = ooc, + b+ cosaO)2m,/3
003 00oct

1/2rnx

cos 0 }
cos (0 - 27r/3) •

cos (0 + 27r/3)

(6.6)

The limits for 00octcan be determined by considering pure hydrostatic tension (11 = 300, 0*2=

J3 = 0) and compression (I1 = -300, J2 = J3 = 0). Substituting in equation 6.1 gives the

range as

-1 1
< o < -- (6.7)

3aU2rnl - _ 3al/2m, "
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Nowthe wholethresholdsurfaceis definedby equation6.1with aoct in the range given by

equation 6.7 and 0 in the range [0,7r/3]. The convexity of F needs to be verified in this

range.

The Hessian of F in three dimensional space in matrix form is given by equation 4.32. The

first and second partial derivatives of F with respect to the invariants can be expressed as

OF
- 2aI1

OF
-- b

OJ2
OF 2c

0J3 - 3 "-J31/3

02F
-- 2a

0112

02F
- 0

OJ22

02F _ -2cJ-4/3
OJ32 9 3 •

The derivatives of the stress invariants with respect to the principal stresses can be eas-

ily found because the invariants are explicitly expressed in terms of the principal stresses

(equations 3.4).

The second partial derivatives of F required for the Hessian can now be computed using

OiF 02F Oil Oil OF 0211 02F 0,12 OJ'2

OoiO6 j - Oil 2 0o i Oaj -4- Oil OaiOaj + OJ22 Oai Ooj

OF 02,1"2 c32F OJ30 J3 OF 02J3

+ _)J2 c30"iOcrj + 0J32 Oai c_o'j + OJ30t_iOOj

(6.8)

where i and j vary from 1 to 3.

The unit normal vector at any point (O'1,O'2,a3) on the threshold surface is

1 lOFt. OF_. OF_]h = . (6.9)

V/ 2 J

As described in Chapter 4, we need to find two basis vectors in the tangent plane by

orthonormalizing the unit vectors B, where B = (Sij-ninj). U_j in equation 4.31 is the

matrix containing the two basis vectors in the tangent plane. For convexity, the curvature

tensor Rij (equation 4.31) must be positive definite at all points on the threshold surface,
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1000

Figure 6.13: Eigenvalues of the curvature tensor (I1 ,]2,]3 model)

which means that the eigenvalues of Nil must be positive. A MATLAB program was written

to compute these eigenvalues (Appendix C).

Using the above formulation, a convexity check was performed for all the parameter sets in

Table 6.8. Very small increments of angle 19and mean stress croct were used in the program

to exhaustively probe all the threshold surfaces in three dimensional principal stress space.

Resulting eigenvalues corresponding to each point on the threshold surface were positive

thereby confirming the positive definiteness of the curvature tensor. Threshold functions

for parameters corresponding to m1=1.0 in Table 6.8 are convex. The minimum eigenvalues

of the curvature tensor (for ItJ2J3 model) at discrete points (using intervals of aoct=4 MPa

and 0=2 ° ) are plotted in Figure 6.13.

The convexity of the function in equation 6.1 was first confirmed for the values of a, b and
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c (corresponding to m1=0.6) in Table 6.8. The surface defined by equation 6.1 is observed

to be identical to that represented by equation 4.23 and hence convexity of the latter is

established.

6.3 Biaxial experiments for validation

The material parameters associated with the flow and evolution (g, n, #, m, /3, R, H) axe

given in Table 6.7. At this point, we have six sets of threshold surface parameters (a, b,

c, ml) given in Table 6.8. The focus of this section is the biaxial tests that were used to

distinguish between these models and thereby choose the proper set of threshold surface

parameters.

Generally, in viscoplastic model development, all material parameters are determined using

uniaxial characterization experiments. Then the model is validated by tests which are very

different from those used in characterization. These axe validation tests that are complicated

enough to rigorously test the model.

At this point, we have not conclusively determined the threshold surface parameters. Hence,

the intent of the biaxial tests is really two fold; (1) to choose the best set of threshold surface

parameters from Table 6.8 and (2) to validate the model.

Biaxial tests were chosen for the following reasons:

1. These tests are very different from the tensile, compressive and shear tests used in

characterization.

2. For non-proportional load paths, the inelastic strain rate vector is not always aligned

with the loading direction. Hence, such load paths are good tests for the models and

are expected to differentiate between their predictive capability.

6.3.1 Test Matrix

Six biaxial tests (IN4, IN5, IN6, IN2, INll, IN28), schematically shown in Figure 6.14, were

performed using strain-controlled axial-torsional loading of aged Inconel 718 tubes at 650°C
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Figure 6.14: Biaxial Experiments

Table 6.9: Test matrix for biaxial experiments

Na3lle

IN4

IN5

IN6

IN2

INll

IN28

Strain at A

(Axial,Shear)

(0.0,0.024)

(O.OlS,O.O3)

(o.o3,o.o)

(-o.o2,o.o)

(0.0,0.0042)

(0.0,-0.0109)

Time (OA)

(see)

100

94

150

100

5O

130

Strain at B

(Axial,Shear)

(0.02,0.024)

(0.03,0.024)

(-0.02,-

0.024)

(0.02,0.0125)

Time (AB)

(s_c)

6O

6O

(-0.015,-

0.0109)

6O

100

75

Type

shear-tensile

proportional

axial-shear

compressive-

shear

shear-

proportional

shear-

compressive
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(experiments performed by C.J. Lissenden at NASA Glenn Research Center). These tests

were chosen such that they have significantly different loll paths in the axial-shear stress

plane. The loading rates were kept close to the rates used in the characterization tests. The

strain levels and corresponding times are shown in Table 6.9. The experimental data

points are shown by circles and squares in Figure 6.15 through 6.28. Though many data

points were collected only a few are shown to be able to clearly see the comparison with

predictions of models in Table 6.8. Both stress-time and stress-strain curves are presented.

6.3.2 Comparison with model predictions

First, models with m1=1.0 are used to predict stress histories for IN4, IN5, IN6, and IN2

(Figures 6.15 to 6.24). This section presents and discusses the comparison between model

predictions and experimental results.

Shear-tensile loading (IN4)

Figures 6.15 and 6.16 show the comparison between experiments and model predictions. The

shear stress predictions during shear loading are identical for I1J2, J2 J3, and I1 J2 J3 models.

This is expected because /1 and J3 remain zero for shear loading. For the subsequent

axial loading there is a significant difference in axial stresses predicted by these models.

Experimental data for axial stress is best predicted by the J2J3 and I1J2J3 models. The J2

model over-predicts the axial stresses and so does the IiJ2 model. The drop in shear stress

during axial loading is slightly overestimated by all of the models.

Proportional loading (IN5)

Axial and shear stresses for the proportional loading are shown in Figures 6.17 and 6.18.

The J2 model over-predicts both the axial and shear stresses. Axial stresses are under-

predicted by I1J2, J2J3, and I1J2J3 models and there is no significant difference between

the predictions. Shear stresses show a moderate difference in model predictions. The I1 J2

model predicts even higher shear stresses than the J2 model. The I1J2J3 model predicts

marginally better than J2 model. The J2J3 model gives the best prediction of shear stresses.
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Figure 6.15: Shear-tensile loading (IN4): Stress-time response (m] = 1.0)
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Tensile-shear loading (IN6)

Axial and shear stresses for tensile-shear loading are shown in Figures 6.19 and 6.20. All

three models (It J2, J2J3, and 11J2J3) predict almost the same axial and shear stresses.

Comparison with the experimental data is reasonable but the differentiation between the

models in terms of their predictive capability is not achieved. Thus, it is difficult to say

which model gives the best prediction for this experiment.

There are two possible explanations for the model predictions being almost identical.

1. Consider variations in the stress invariants I1, `]2 and `]3 predicted by the ,]2 model as

shown in figure 6.21. Axial loading causes all of the invariants/1, J2 and `]3 to increase

and attain a constant value. The subsequent shear loading causes only a marginal

increase in `]2, while both/_1 and `]3 drop rapidly. This makes the coefficients a and c

of the threshold function, which scale il and `]3 respectively, ineffective. Thus, none

of the model predictions are significantly different from that of the J2 model.

2. During shear loading, `]3 drops rapidly for all the models and so does I1 for I1 J2 and

I1J2J3 models. I1 and `]3 become zero approximately at the same time (about 180

sec) giving a pure shear state (figure 6.21). Thereafter, the material remains in pure

shear (`]2 _ 0, -T1= `]3 =0) and the difference between model predictions vanish.

Compressive-shear loading (IN2)

Results of the compressive-shear loading are shown in Figures 6.22 and 6.23. Again. all

models predict nearly the same axial and shear stresses for the same reasons as above for

IN6.

During the compressive loading segment of the experiment, the shear stress did not remain

zero as it should have. A closer look at the data reveals that the shear strains are negligibly

small (< 10 microstrain). Hence, it is difficult to find a reason for the drift in shear stress.
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This error results in unsatisfactory comparison between predictions and experiment. In the

event of no experimental error, the model predictions might come close to experiments.

However, the fact still remains that a good differentiation between the predictive capability

of the models is not achieved.

Predictions from the models with mI=0.6 are shown in Appendix D. There it is observed

that changing the exponent ml to 0.6 does not change the predictions appreciably. Also,

assigning different values to ml (other than 1.0 and 0.6) did not change the predictions

significantly. Thus, further predictions are restricted to models with ml = 1.0.

6.3.3 Differentiating between models

Comparing the four biaxial experiments (IN4,IN5,IN6,IN2) it is clear that shear-axial load-

hag (IN4) is most successful in differentiating between the models and points to a better

predictive capability of the J2 J3 and I1J2J3 models. While proportional loading (IN5) mod-

erately differentiates between the models, the load cases starting with axial load (IN6 and

IN2) are unable to differentiate between the models.

Figure 6.24 tracks the variations of/_1, J2, and J3 for shear-axial loading (IN4). A clear

difference between this and Figure 6.21 is that the invaxiants -T1and J3 increase substantially

in the second segment (axial) of loading. This makes the coefficients a and c more effective

and hence we see a large difference in the model predictions.

A simple way to achieve a substantial increase in ]1 and J3 is to start with a shear loading

and then apply other loading. Based on this idea, two more biaxial experiments (INll and

IN28) were conducted. The load paths for these additional experiments are also shown in

Figure 6.14. The corresponding test matrix is given in Table 6.9.

Shear-proportional loading (INll)

Shear stresses predicted by all models are identical and are in good agreement with the

experimental data as shown in Figures 6.25 and 6.26 . There is a clear difference between

the model predictions for axial stress. The J2J3 and I1J2J3 model predictions follow the
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experimental data closely for most of proportional loading. The I1 J2 model over-predicts

the stress throughout the proportional loading. This further reassurance in the predictive

capability of the J2Ja and the I1J2J3 models.

Shear-compressive loading (IN28)

Stress predictions for shear-compressive loading are shown in Figures 6.27 and 6.28. Shear

stresses predicted by all models are not substantially different. The difference in predictions

is clearly seen for axial stresses. The J2 model over-predicts the compressive stresses and the

I1J2 model predicts an even higher compressive stress. Predictions using J2J3 and I1J2J3

models show good agreement with the compressive experimental data.

There is a discrepancy between the experimental values of the shear stress and the model

predictions during the second loading segment (AB). The shear stress did not drop to almost

zero as it did in the other experiments (Figure 6.15). There were no errors noted during the

experiment and the strain history (shear and axial) is correct. This makes it difficult to say

why the shear stress did not drop as much as it was expected to. Also, there was a slight

drift in axial stress in the first loading segment for reasons similar to IN2. However, our

primary interest is in the axial stress during the second loading segment and we disregard

these discrepancies. This experiment points to the fact that the predictive capability of

the J2J3 model is better than that of the IlJ2 model. In this case, the I1J2J3 model also

shows a good correlation with experimental data.

6.4 Summary of model predictions

Introduction of hydrostatic pressure dependence (through/1) in the baseline (J2) model did

not improve the model predictions. In the shear-compressive loading (IN28), the/1 J2 model

does not predict the axial stress well, even compared to the baseline model. Hence, the I1 J2

model can be ruled out for Inconel 718. The J2J3 and I1J2J3 models have consistently

shown good predictive capability.

Experiments are in progress at Case Western Reserve University to study the effect of
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Table 6.10: Material parameters for Inconel 718 at 650°C

Parameter

(MPa)

n

# (MPa-s)

m

R (l/s)

H (MPa)

a (1/MPa e)

b (1/MPa 2)

c (1/MPa 2)

ml

Value

234.7

2.0

1.7681x 105

7.0

3.652

1.0x 10 -12

1.966 x 10 4

0.0

1.8154 x 10 -5

4.5 x 10-6

1.0

hydrostatic pressure on the flow behavior of aged Inconel 718 at room temperature. Initial

experiments show that the yield and flow in the material is not affected by pressure. These

experiments suggest that inelastic deformation in Inconel 718 is relatively independent of

I1 and hence we can choose the J2J3 model over the IiJ2J3 model.

All the material parameters for the model are now determined and their values are given

in Table 6.10.

6.5 Comments on the method

Some aspects of the formulation and experimental procedure need to be put in perspective.

6.5.1 Load Paths

In three dimensional principal stress space, load paths can be found along which only one of

the effective invariants changes while the other two remain constant (equation 5.1). Owing

to the complexity involved with three dimensional testing, two dimensions load paths in
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Figure 6.29: Principal stress paths with ]1 changing - J2 and J3 constant

axial-shear plane were found along which J2 is constant and ]1 changes (keeping J3 constant)

or J3 changes (keeping ]t constant). Some illustrations of such load paths in effective axial-

shear stress space were given. However, in the external stress space the corresponding load

paths are more complicated. This is because the internal stresses evolve during inelastic

deformation and do not necessarily follow the external stresses. Two load paths in principal

stress space are shown in Figure 6.29 and Figure 6.30, which correspond to paths CD in

Figure 5.5 and path AB Figure 5.7 respectively. It may be possible to follow these load paths

but these tests involve three dimensional loading, which requires complex experimental set

up.

In order to avoid the above complexity, an alternative approach was adopted which involves

simpler experiments. Simple shear experiments helped to determine all of the parameters
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associated with the baseline GVIPS model. The difference is in the determination of the

additional contribution of I1 (through a), J3 (through c) and exponent rnl. Instead of

trying to determine the contribution of these invaxiants directly through complicated load

paths, an indirect procedure involving simple uniaxial and biaxial tests was adopted. A few

combinations of threshold surface parameters (a, b, c, ml) were obtained that fit the axial

test data (tensile and compressive) well. The biaxial tests helped to differentiate between

the models with respect to their predictive capability. Hence, biaxial experiments were

useful in identifying the right combination of invariants and also in validating the model.

The design of experiments in Chapter 5 was helpful in two ways; (1) it established an exper-

imental procedure to effectively isolate the effect of each invariant on inelastic deformation

and (2) it provided a methodology for differentiating between the models using biaxial
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experiments.

6.5.2 Threshold function

The choice of the threshold function was the key in formulation. The main advantages of

this form are addressed below.

Current form

There are several advantages of using the generalized polynomial form (equations 4.22 and

4.23) for the threshold function.

1. The function in equation 4.22 is easily reducible to well known models like Mises and

Drucker-Prager.

2. Both functions reduce to the baseline model (equation 4.15) for pure shear loading

which allows the use of COMPARE for estimation of GVIPS parameters.

3. The effect of each stress invariant on inelastic deformation can be determined sep-

arately due to the chosen form of the threshold function. Also, the resulting flow

and evolutionary laws are mathematically separable into terms associated with each

invariant. This is a definite numerical advantage in that it allows easy inclusion or ex-

clusion of a given invariant in the formulation by simply choosing a zero or a nonzero

value for the corresponding coefficient.

4. The effectiveness of using the form in equation 4.23 (instead of equation 4.22) was not

seen in this investigation. This is because the value of the threshold function is not

significantly different for the two values of ml (1.0 and 0.6) and the corresponding

parameters (a, b, c) in Table 6.8.

Let us consider an example of axial loading and a I1 J2 model. The values of the

threshold function are plotted as a function of the ratio a/b (significance of/1 relative

to J2) for ml=l.O and m:=0.6 (Figure 6.31). For low values of the ratio (-_ 0.01 for

Inconel 718) there is no difference between the threshold value for m:=l.O and that

for ml=0.6. However, as the ratio increases, there is a significant difference between
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Figure 6.31: Variation of threshold function for axial loading

the two. Thus, for materials with high a/b ratio (granular or frictional materials),

changing mt is more effective. For this reason, we retain the form in equation 4.23

and not revert to equation 4.22 in the formulation.

Alternative functions

Some alternative functional forms such as exponential or implicit forms can be considered

for the threshold function. But these forms will result in flow and evolution equations where

the invariants are not easily separable. This makes the objective of studying the effect that

each invariant has on the SD effect more difficult.

Another possibility is to use a polynomial form with different exponent (equation 4.22 with

rnt # 1) for better data fitting capability. Such a function will not reduce to the form in the

baseline model (equation 4.15) for pure shear loading. Hence the baseline model would have
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to be altered and the whole optimization software reworked to determine the parameters

associated with the baseline model.

6.5.3 Flow law

Hydrostatic pressure-dependence is represented by the use of/1 in the threshold function.

An associated flow law for pressure-dependent materials often over-predicts the volume

expansion during deformation (e.g. Spitzig et al [1975]). However, based on the initial

experiments on aged Inconel 718 at the Case Western Reserve University, the effect of

hydrostatic pressure on inelastic deformation appears to be relatively low, resulting in a

Ii-independent material. Hence, the volume expansion is not expected to be over-predicted

by the associated flow law. Also, the predictions using an associated flow law compare well

with experiments. Thus, the need for use of a non-associated flow law does not arise for

Inconel 718.

6.5.4 Mechanism for SD

Various deformation mechanisms in Inconel 718 were discussed in Chapter 2. It appears

that the particle-dislocation interaction is a more probable cause for the SD than is volume

expansion. Volume expansion is caused by the retarding effect of hydrostatic pressure on

the mobile dislocations, with an associated increase in dislocation density. But, since the

inelastic deformation in Inconel 718 appears to be relatively independent of hydrostatic

pressure, the volume expansion hypothesis can be ruled out as a cause of SD. Thus, the

main cause of SD appears to be the interaction between coherency strain fields around 7_

precipitates and dislocations.
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Chapter 7

Conclusions and Future Work

This chapter starts by summarizing the steps that were involved in the development of the

unified viscoplastic model to account for the SD effect. Conclusions that can be drawn

from this work are presented next. Finally, future work that could be undertaken for the

betterment of the model is suggested.

7.1 Summary

A potential based viscoplasticity model (GVIPS), based on J2, was the starting point of

the model development. In order to account for the SD effect, the threshold function was

generalized by including the other two stress invariants (In and J3) in its definition. A

polynomial form was used for the threshold function. Flow and evolution laws to describe

the material behavior during inelastic deformation were derived from the proposed threshold

function.

Experiments were performed on aged Inconel 718 at 650°C to quantify the material param-

eters in the model. Shear loading was chosen to estimate all the parameters associated with

the GVIPS model because, for this loading la = J3 = 0 and the proposed model reduces to

the GVIPS model. The parameters associated with I1 and J3 do not affect the determina-

tion of the other parameters for this loading. Shear tests involved monotonic loading (strain

and stress control), relaxation, and creep tests with different loading rates and load levels.
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GVIPSparameterswereoptimizedto fit theexperimentaldata in shear.Theexperimental

datasetswerechosenjudiciouslyandthe weightingof testdatawaschangediteratively to

arriveat thefinal GVIPSparameters.Thegoalwasto obtainanaxialstress-strainresponse

intermediatebetweentensionandcompressiontest data.

Tensionandcompressiontestswereconductedup to strainsof 2%. By introducingpositive

valuesfor the parametersa (which scales /1) or c (which scales J3) or both, three com-

binations of invariants were developed. Values of the coefficients were converged upon by

comparing model predictions with the tension and compression test data. The resulting

threshold functions had I1.12, J2J3 and IiJ2J3 forms. Convexity of these threshold func-

tions in the three dimensional principal stress space was confirmed by checking the resulting

curvature tensor for positive definiteness.

An experimental procedure for studying the effect of each stress invariant on the inelastic

deformation was established in three dimensional principal stress space. This requires fol-

lowing complicated paths in three dimensional stress space. Simple biaxial tests were chosen

instead of three dimensional paths for experimental simplicity. Six axial-torsional experi-

ments were conducted on tubular specimens of aged Inconel 718 at 650°C. Comparison of

the test data with model predictions indicated that the use of J3 in the threshold function

significantly improved the predictive capability of the model especially for non-proportional

load paths. However, using/1 in the formulation did not improve model predictions. In some

load cases, introduction of/1 widened the gap between experiments and model prediction.

Also, preliminary results from tension and compression tests conducted under hydrostatic

pressure indicate that inelastic deformation is relatively independent of pressure, indicating

/]-independence. It was therefore established that aged Inconel 718 is a J2J3 material.

7.2 Conclusions

The following conclusions can be drawn from the investigation of inelastic behavior of aged

Inconel 718.

• A unified viscoplastic model was developed that effectively predicts a strength differ-

ential effect.
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• Theability of themodelto representthe strengthdifferentialeffectwasdemonstrated

for agedInconel 718 at 650°C.

• A general form of the threshold fimction in terms of the stress invariants I1, J2, and

J3 was proposed and specialized into four trial functions: J'2, I1J2, ,12,13, and I1,1"2,13.

The d2da threshold function appears to best represent the inelastic response of Inconel

718, indicating no pressure dependence of flow.

• The model with a J2J3 threshold function exhibited excellent predictive capability

under non-proportional axial-torsional loading applied at elevated temperature.

• A general method to determine the effect that each stress invariant has on inelas-

tic deformation was established. A current limitation of this method is that three.

dimensional stress paths must be applied.

• A procedure to determine the convexity of any function in three dimensional stress

space was implemented to verify convexity of the threshold function. It was established

that the model developed for aged Inconel 718 satisfies Drucker's stabihty criterion.

• The physical mechanism responsible for the strength differential in Inconel 718 appears

to be the interaction between coherency strain fields around _" precipitates and the

dislocations.

• The viscoplastic model is very general in that it can be applied to many materials,

including the ones that do not exhibit a strength differential. The suggested experi-

mental procedure for characterizing and validating the model is simple and hence can

be applied to a wide range of materials.

7.3 Future work

The viscoplastic model developed in this investigation opens the door for research in related

areas.

• More variety of tests can be conducted for model characterization. A test matrix can

be derived which is best for optimization of the material parameters.
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• Directeffectofindividualstressinvariantsontheinelasticdeformationcanbeobtained

by followingthreedimensionalstresspathsdevelopedusingthe proposedthreshold

function. Tothis end,complicatedtwo dimensionalstresspathsin the axial-torsional

stressspacewith constantJ2 rate, that seem more feasible, can also be attempted.

• The threshold surface parameters that fit the axial test data well did not fit the

initial threshold surface data. One way to effectively account for this is to make the

coefficients of/1 and J3 (a and c) a function of inelastic deformation. This way, the

parameters can have initial values that fit the initial threshold surface data, and then

can evolve such that a good correlation is also obtained with the uniaxial test data.

• Experimental data for different strain rates can be used in characterizing the model

so that its predictive capability is improved for a range of loading rates. Similarly,

if the capability of the baseline model to account for variation in temperature can

be exploited, a non-isothermal model can be built using this procedure. This would

additionally involve experiments at different temperature levels.

• It will be interesting to evaluate the performance of the model using a different class of

material, e.g. granular materials. The effectiveness of the model would be established

if it is able to predict the hydrostatic pressure-dependence that is prevalent in these

materials.

• Alternative ways of microstructural evaluation of samples deformed under tension and

compression can be explored to determine the exact mechanism causing SD.
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Appendix A

Formulation with Generalized

Threshold Function

A.1 Flow Law and Evolution Law

Dissipation Potential

_ _- n 2 1 (F) n+l R (G) m+_+l ]

2# (n + 1) + H (_¥_-_T)]

Gibb's Potential

1 _2

= -_aijeij (1 +/3)H G13+1

Generalized Functions

_1 +b +c J3 3 ]'_,-1.

1

G = [aq + b.l_m' + cJ_ "_'

Effective Stress Invariants

1 : (Tii -- OLii

2 "7

fi3 = 12ij_jk_ki
3
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Internal Stress Invariants

1

,]_ = _aijaij

1

J_ = -_aijajkaki

Derivatives of generalized functions with respect to invariants

OF
_ 2aFl-mlFlml-1

Oil
OF

_ bFl-ml j_nl-1oJ2

OF _ 2C Fl_ml _3ml/3_ 1
O J3 3

02G
2aG 1-ml I_ 2rnl - 1

0i_ -

02G
_ bC1_m, J_-1

OJ_2

02G _ 2CGl-ml j_2ml/3-1
oj_ 2 3

Derivatives of effective invariants with respect to stress

oh
OtTij

Oaij

Oaij

-- (_ij

-- Eij

2-
-- EiqEjq - _ J2(_ij
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Derivatives of internal invariants with respect to stress

OI i

()o_ij

og;
Do_ij

- d_j

-- aij

-- aiqajq - 2 j_dij
0

Derivatives of generalized functions with respect to stress

OF OFoi, OF OF
b_,_j - oh o_,---_+ o J2 o_,_j + o J3 oa_j

= (F + 1) 1-m'Tij

(A.1)

where

where

Tij = (2a] 2m' -1 _ _

Oij = (2aI_ 2m1-1 --

_ _2 bj_J_lEi j 2 _m1-1_.-l)6ij + _c.1_ Z_iq_jq+

OF OF

Oaij Offij

OG
- Gl-mlOij

Oaij

4cj_J_'_m'-l)6ij + b4m'-laij + _cd_ _m'-laiqajq9

(A.2)

Flow Law

Substituting from equation A.1

eid --
Oaij

2_ O_Tij

_ij = _---_Fn(F + 1) i-m1Tij

Evolution Law

Aij
Oaij

n 2 F, _ OF n2R-m+_ OG
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Substitutingfrom equationA.1 and A.2

o1 __ __Aij = eij I_'2R G(I +B+m-m, )o. "

Internal Compliance

Qijkl
OOlijOOtkl

H Oc_ij

l_2ml 0[GI+_ -m, Okl ]

H O0_ij

_2 G 1+/3-ml [Cg_)kl
_- L_ ÷ 1 + fl - ml OijOkt ]

ag' ]

Each term in Okt is differentiated by parts and the final expression for the internal compli-

ance tensor is

Qijkt = (A.3)

_c(_+__.,,)[(2a(2m, b 8c 2 ,_ ,__.,,,__1)i_2m1-2 _ -3J_m'-I + _(5ml - 1)J_ j_3 )_ij6k_

I.T$ ml --lg

+b(ml - 1)J_ m'-2aijakl Jr- uo 2 OikOfl

2c 2 2 2 1 2J_ a a
+"_J3 gmt-l(ailt_kj + ajlt_ik -- -_aijt_kl + (Sml -- 1)_3(aiqajqakpalp -f- iq jqt_kl))

4cj,_m,-1 2 J,_ (l+fl-ml)

Simplification for deviatoric models

For models not involving I1 (hydrostatic pressure-independent material) the 5kl is inconse-

quential in the internal constitutive rate equation because

(_kl_kl = dkk = 0
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Thusthe termswith Ski can be dropped and the internal compliance tensor simplifies to

Qijkl =

/,;2 _(l+3--ml) _ 1"_ rtrnl--2 --1-- [b(rnl ")J2 aijakl + bJ_ m_ (_ik(_jl
H

2 2 1

2c jr 5rnl-1 (ail(_kj _- ajtSik + (Sml -- 1)_3aiqajqakpalp)+--_ 3

4c t 2 2 ji
J_ sm_-l((-_ml - 1)_akpalp_ij + akl_ij)

3

-4- Gm 1 Oij(bJ't2ml-lakl -1- 5cj3 akqalq)]

Stress transformation to principal plane

Transformation of stresses from the axial-shear plane to the principal plane facilitated the

numerical inversion of the internal compliance tensor (Qijkl) for loadings that start with

shear.

A.2 Contracted Notation

Various tensors in the formulation have been changed to contracted notation for ease of

programming.

_ij= [ 1 1 1 0 0 0 ]

Eij=[Eu E22 E33 E23 E31 El2]

aij= [ all a22 a33 a23 a31 a12 ]
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Ziq_jq =

_]_21 .-_ _22 -_ _23

_]_21 -4- _22 -_ _3

_12_13 + _22_23 4- _32_33

_11_13 + _12_23 + _13_33

_11_12 + _12_22 -4- _13_32

T

aiqajq =

a211 -4- a22 -4- a213

+ +
a_l + a_2 + a23

a12a13 -4- a22a23 + a32a33

alia13 + a12a23 -_- a13a33

alia12 + a12a22 + a13a32

T

100000

0 1 0000

00 1000

0001 00

000010

00 000 1

ailgkj =

all 0 0 0 0 a12

0 a22 0 a23 0 0

0 0 a33 0 a31 0

0 0 a23 0 a12 0

a31 0 0 0 0 a23

0 a12 0 a31 0 0
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ajldik =

all 0 0 0 0 a12

0 a22 0 a23 0 0

0 0 a33 0 a31 0

0 a23 0 a33 0 0

0 0 a31 0 all 0

a12 0 0 0 0 a22
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Appendix B

FORTRAN Program for

Computing Material Response

implicit double precision(a-h,o-z)

common / one / q0,ql,q2,q3,q4

common / six / xk,xmu,xn,ra,beta,xa,xb,xc,xm,xh,xml,m

common I eight / ctemp

dimension sb(6),eb(6),a(6),epl(6),dep(6),adot(6),c(6,6),acap(6)

dimension th(6),sig(6),dev(6),dp(6)

qO = O.dO

ql = l.dO

q2 = 2.dO

q3 = 3.dO

q4 = 4.dO

pi = q4*atan(ql)

open (12,file='nn5.inp',status='old ')

open (13,file='gnew.dat',status='unknown ')

read current temperature

read(12,*) ctemp,xnu

call GVPROP(XK,XMU)

and Poisson ratio
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c read matrix temperature-independent GVIPS parameters

read(12,*) xn,xh,beta,xm,ra

c read threshold surface parameters

read(12,*) xa,xb,xc,xml

c material properties (elastic)

call ELPROPS(emod,alfa,c,xnu)

gm = emod/(ql + xnu)/q2

c read no. of load segments and probes

read(12,*) nstep,ipro

do I000, m=l,nstep

read(12,*) ttim,ninc,sigi,sigf,taui,tauf

timinc = trim/real(nine)

tall = taui

siga = sigi

deltau = tauf-taui

delsig = sigf-sigi

dtau=deltau/real(ninc)

dsig=delsig/real(ninc)

do 500, k=l,ninc

c Strain control loading

eb(1) = siga

siga = siga + dsig

eb(2) = tau

tau = tau + dtau

ax ffiemod*(eb(1)-taxe)

sh = q2*gm*(eb(2)-tshe)

c transformation to principal stress

sb(1)ffiax/q2 + sqrt(ax**q2/q4 + sh**q2)

sb(2)fax/q2 - sqrt(ax**q2/q4 + sh**q2)
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call GVIPS(sb,a,adot,dep,c,xjl,xj2,xj3,sig)

c calculate plastic strains

do 60, i=1,6

a(i) = a(i) + adot(i)*timinc

dp(i)=dep(i)*timinc

6O epl(i) = epl(i) + dep(i)*timinc

axe=qO

she=qO

theta=abs(ql/q2*atan(q2*sh/ax))

transform principal inelastic strain increments to axial and

axe=ql/q2.(dp(1)+dp(2)+abs(dp(1)-dp(2))*cos(q2*theta))

she=ql/q2*(dp(1)-dp(2))*sin(q2*theta)

compute total inelastic strain

taxe=taxe+axe

tshe=tshe+she

shear components

if(k/lOOO.O-int(k/lOOO.O).eq.qO)then

write(13,9995) k,ctime,ax,sh,xjl,xj2,xj3,taxe,tshe

endif

500

I000

9995

crime = crime + timinc

continue

continue

format(i8,9d12.4)

stop

end

c#######################################################################

subroutine gvprop(kapa,xmu)

implicit double precision (a-h,o-z)
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double precision kapa,kapaO

common / eight / ctemp

kapa = 234.7

xmu = 1.7681d5

return

end

c#########################################################################

subroutine elprops(emod,alfa,c,xnu)

c elastic stiffness tensor

implicit double precision(a-h,o-z)

common / one / qO,ql,q2,q3,q4

common / eight / ctemp

dimension c(6,6)

emod = 165360.0

xlam = xnu*emod/((ql + xnu)*(ql - q2*xnu))

xmu = emod/(q2*(ql + xnu))

c(1,1) = xlam + q2*xmu

c(2,2) = c(1,1)

c(3,3) = c(1,1)

c(1,2) = xlam

c(1,3) = c(1,2)

c(2,3) = c(1,2)

c(2,1) = c(1,2)

c(3,1) = c(1,3)

c(3,2) = c(2,3)

c(4,4) = xmu

c(5,5) = xmu

c(6,6) = xmu

return

end

C#############################################################################
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subroutine gvips(st,at,adot,dep,c,xjl,xj2,xj3,sig)

c Formulation with generalized threshold function

implicit double precision(a-h,o-z)

common/ one / qO,ql,q2,q3,q4

common / two / ctemp

common / six / xk,xmu,xn,ra,beta,xa,xb,xc,xm,xh,xml,m

dimension st(6),dep(6),dev(6),sig(6),xl(6,6),atO(6)

dimension acap(6),at(6),adoZ(6),c(6,6),xq(6,6),xql(6,6)

dimension xu(6),su(6),delta(6),xv(6,6),xw(6,6),yi(6,6)

dimension pi(6),th(6),xul(6),yil(6,6),thl(6),pil(6),depl(6)

dimension indx(6),thO(6),th2(6),pl(6,6),p2(6,6)

if(xa.ne.qO)then

atO(1) = (Q2*at(1) - at(2) - aZ(3))IQ3

atO(2) = (Q2*at(2) - at(1) - at(3))/Q3

atO(3) = (Q2*at(3) - at(2) - at(1))/Q3

else

atO(1)=at(1)

atO(2)=at(2)

atO(3)=at(3)

endif

atO(4) = at(4)

atO(5) = at(5)

atO(6) = at(6)

xil=at(1)+at(2)+at(3)

ast=st(1)+st(2)

C deviatoric stress components

dev(1) = (q2*st(1) - st(2) - st(3))/q3

dev(2) = (q2*st(2) - st(l) - st(3))/q3

dev(3) = (q2*st(3) - st(2) - st(1))/q3
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dev(4) = st(4)

dev(5) = st(5)

dev(6) = st(6)

C effective deviatoric stress components

do 10, i=1,6

lO sig(i) = dev(i) - atO(i)

c first effective invariant

xj l=st (i) +st (2) +st (3) -xi i

delta(1)=ql

delta(2)=ql

delta(3)=ql

delta(4)=qO

delta(5)=qO

delta(6)=qO

su(1)= sig(1)**q2 + sig(6)**q2 + sig(5)**q2

su(2)= sig(2)**q2 + sig(4)**q2 + sig(6)**q2

su(3)= sig(S)**q2 + sig(4)**q2 + sig(5)**q2

su(4)= sig(6)*sig(5) + sig(2)*sig(4) + sig(S)*sig(4)

su(5)= sig(1)*sig(5) + sig(4)*sig(6) + sig(S)*sig(5)

su(6)= sig(1)*sig(6) + sig(2)*sig(6) + sig(4)*sig(5)

xul(2)=

xul(3)=

xul(4)=

xul(5)=

xul(6)=

xul(1)= atO(1)**q2 + atO(6)**q2 + atO(5)**q2

atO(2)**q2 + atO(4)**q2 + atO(6)**q2

atO(3)**q2 + atO(4)**q2 + atO(5)**q2

atO(6)*atO(5) + atO(2)*atO(4) + atO(3)*atO(4)

atO(1)*atO(5) + atO(4)*atO(6) + atO(3)*atO(5)

atO(1)*atO(6) + atO(2)*atO(6) + atO(4)*atO(5)

do 12, i=1,6
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do 12, j=l,6

xv(i,j)=qO

xw(i,j)=qO

if(i.eq.j)then

yi(i,j)=qi

else

yi (i, j)=qO

endif

12 continue

c 2nd & 3rd effective invariant

XI2 = QO

XJ2 = QO

XI3 = QO

XJ3 = O0

DO 20, I=1,3

XI3 = XI3 + Ql,(atO(I),xul(I)+q2*atO(i+S)*xu1(I+3))/Q3

20 XJ3 = XJ3 + Ql,(sig(I)*su(I)+q2*sig(I+3)*su(i+3))/Q3

DO 21, I=1,3

XI2 = XI2 + Ql*(atO(I)*atO(I)/Q2 + atO(I+3)*atO(I+3))

21XJ2 = XJ2 + QI*(SIG(I)*SIG(I)/Q2 + SIG(I+3)*SIG(I+3))

sxj l=ql

sxj 3=ql

if (xj i. it .qO) sxj l=-ql

if (xj 3. it. qO) sxj 3=-ql

c setting minimum values for internal invariants (Go for stability)

if(xa.ne.qO.and.xc.ne.qO.and.ast.ne.qO)then

congl=30.O
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cong2=900.O

cong3=27000.0

elseif(xa.ne.qO.and.xc.eq.qO.and.ast.ne.qO)then

congl=30.O

cong2=900.0

elseif(xa.eq.qO.and.xc.ne.qO.and.ast.ne.qO)then

cong2=900.0

cong3=27000.0

elseif(xa.eq.qO.and.xc.eq.qO.or.ast.eq.qO)then

cong2=900.0

endif

if (xj2.eq.qO) return

xek2 = xb*xj2**(xml-ql)

if(xc.ne.qO.and.ast.ne.qO)then

xek3 = q2/q3*xc*sxj3*abs(xj3)**(q2/q3*xml-ql)

else

xek3 = qO

endif

if(xa.ne.qO.and.xc.ne.qO.and.ast.ne.qO)then

exe=xa*sxjl*abs(xjl)**(2*xml)+xb*xj2**xml+

+ xc*sxj3*abs(xj3)**(2*xml/3)

xekl = q2*xa*sxjl*abs(xjl)**(q2*xml-ql)

+ -4.0/9.0*xc*xj2*sxj3*abs(xj3)**(q21q3,xml-ql)

elseif(xc.ne.qO.and.xa.eq.qO.and.ast.ne.qO)then

exe=xb*xj2**xml+xc*sxj3*abs(xj3)**(2,xmll3)

xekl =-4.0/9.0*xc*xj2*sxj3*abs(xj3)**(q2/q3*xml-ql)

elseif(xa.ne.qO.and.xc.eq.qO.and.ast.ne.qO)then

exe=xa*sxjl*abs(xjl)**(2*xml)+xb,xj2**xml

xekl = q2*xa*sxjl*abs(xjl)**(q2*xml-ql)
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elseif(xa.eq.qO.and.xc.eq.qO.or.ast.eq.qO)then

exe=xb*xj2**xml

xekl=qO

endif

do 123, i=1,6

123 pi(i) = xek1*delta(i) + xek2*sig(i) + xek3*su(i)

function F

fcap= (abs(exe))**(ql/xml) - ql

if(fcap.lt.qO) fcap= qO

flit = fcap**xn

inelastic

do 30,

30 dep(i)

strain rate tensor

i=1,6

= xk*xk/q2/xmu*flit*(fcap+ql)**(ql-xml)*pi(i)

if(xa.ne.qO.and.xc.ne.qO.and.ast.ne.qO)then

if(abs(xil).it.abs(congl))xi1=congl

if(xi2.1t.cong2)xi2=cong2

if(abs(xiS).It.abs(cong3))xi3=cong3

elseif(xa.ne.qO.and.xc.eq.qO.and.ast.ne.qO)then

if(abs(xil).it.abs(congl))xil=congl

if(xi2.1t.cong2)xi2=cong2

elseif(xa.eq.qO.and.xc.ne.qO.and.ast.ne.qO)then

if(abs(xi3).it.abs(cong3))xi3=congS

if(xi2.1t.cong2)xi2=cong2

elseif(xa.eq.qO.and.xc.eq.qO.or.ast.eq.qO)then

if(xi2.1t.cong2)xi2=cong2

endif

sxi 1=ql
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sxi3=ql

if(xi1.1t.qO)sxil=-ql

if(xi3.1t.qO)sxi3=-ql

if(xi2.gt.qO)then

if(xc.eq.qO.and.xa.ne.qO)then

gcap=xa*sxil*abs(xil)**(q2*xml)+xb,xi2**xml

elseif(xa.eq.qO.and.xc.ne.qO.and.ast.ne.qO)then

gcap=xb*xi2**xml+xc*sxi3*abs(xi3)**(q2,xml/q3)

elseif(xc.ne.qO.and.xa.ne.qO.and.ast.ne.qO)then

gcap=xa*sxil*abs(xil)**(q2*xml)+xb,xi2,,xml

+ +xc*sxi3*abs(xi3)**(q2*xml/q3)

elseif(xc.eq.qO.and.xa.eq.qO.or.ast.eq.qO)then

gcap=xb*xi2**xml

endif

endif

c function G

gcap=(abs(gcap))**(ql/xml)

xik2 = xb*xi2**(xml-ql)

if(xc.ne.qO.and.ast.ne.qO)then

xik3 = q2/q3*xc*sxi3*abs(xi3)**(q2/q3,xml-ql)

else

xik3 = qO

endif

if(xc.ne.qO.and.xa.ne.qO.and.ast.ne.qO)then

xikl = q2*xa*sxil*abs(xil)**(q2,xml-ql)

+ -4.0/9.0*xc*xi2*sxi3*abs(xi3)**(q21q3*xml-ql)

elseif(xc.ne.qO.and.xa.eq.qO.and.ast.ne.qO)then

xikl = -4.0/9.0*xc*xi2*sxi3*abs(xi3)**(q2/q3,xml-ql)
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elseif(xa.ne.qO.and.xc.eq.qO.and.ast.ne.qO)then

xikl = q2,xa*sxil*abs(xil)**(q2*xml-ql)

elseif(xc.eq.qO.and.xa.eq.qO.or.ast.eq.qO)then

xikl=qO

endif

do 122, i=1,6

thl(i)=xik2*aZO(i)+xik3*xul(i)

122 th(i) = xikl*delta(i) + xik2*aZO(i) + xik3*xul(i)

xv(l,l)=atO(1)

xv(1,6)=atO(6)

xv(2,2)=atO(2)

xv(2,4)=atO(4)

xv(3,3)=atO(3)

xv(3 5)=atO(5)

xv(4 2)=aZO(4)

xv(4 4)=atO(3)

xv(5,3)=atO(5)

xv(5,5)=atO(1)

xv(6,1)=atO(6)

xv(6,6)=aZO(2)

xw(1,i)=aZO(1)

xw(i,6)=azO(6)

xw(2,2)=azO(2)

xw(2,4)=azO(4)

xw(3,3)=aZO(3)

xw(3,5)=azO(5)

xw(4,3)=atO(4)

xw(4,5)=azO(6)
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xw(5,1)=atO(5)

xw(5,6)=atO(4)

xw(6,2)=atO(6)

xw(6,4)=atO(5)

if(xc.ne.qO.and.xa.ne.qO.and.ast.ne.qO)then

zl = q2*xa*(q2*xml-ql)*sxil*abs(xil)**(q2*xml-q2)

+ - xb/q3*xi2**(xml-ql)

+ + 8.0*xc/27.0*(q2/q3*xm1-q1)*sxi3*abs(xi3)**

+ (q2/q3*xml-q2)*xi2*xi2

elseif(xc.ne.qO.and.xa.eq.qO.and.ast.ne.qO)then

zl=- xb/q3*xi2**(xml-ql)

+ + 8.0*xc/27.0*(q2/q3*xm1-q1)*sxi3*abs(xi3)**

+ (q2/q3*xml-q2)*xi2*xi2

elseif(xa.ne.qO.and.xc.eq.qO.and.ast.ne.qO)then

zl=q2*xa*(q2*xml-ql)*sxil*abs(xil)**(q2*xml-q2)

-xb/q3*xi2**(xml-ql)+

endif

z2 = xb*(xml-ql)*xi2**(xml-q2)

z3 = xb*xi2**(xml-ql)

if(xc.ne.qO.and.ast.ne.qO)then

cnl = sxiS*abs(xiS)**(q2*xml/q3-ql)

cn2 = sxi3*abs(xi3)**(q2*xml/q3-q2)

else

cn1=qO

cn2=qO

endif

cn3 = (ql-xm1+beta)/gcap**xml

c internal compliance tensor
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if(xa.eq.qO.and.xc.eq.qO.or.ast.eq.qO)then

do 31, i=1,6

do 31, j=1,6

31 xq(i,j)=gcap**beta/xh*

+ (beta/gcap/xk/xk*atO(i)*atO(3)+yi(i,j))

elseif(xc.ne.qO.and.xa.eq.qO.and.ast.ne.qO)then

do 32, i=1,6

do 32, j=1,6

32 xq(i,j) = xk,xk/xh*gcap**(beta+ql-xml)*

+ (z2*atO(i)*atO(j) + z3*yi(i,j)

+ + cnl*q2*xc/qS*(xw(i,j)+xv(i,j)

+ -q2/q3*delta(i)*atO(j))

+ + cn2,q2,xc/q3*(q2*xml/q3-ql)*(xul(i)*xul(j)

+ -q2/q3*xi2*delta(i)*xul(j))

+ + cn3*th(i)*thl(j))

else±f(xa.ne.qO.and.xc.eq.qO.and.ast.ne.qO)then

do 33, ±=1,6

do 33, j=1,6

33 xq(±,j) = xk,xk/xh*gcap**(beta+ql-xml)*

+ (zl*delta(i)*delta(j)

+ + z2*atO(i)*atO(3) + z3*yi(i,3)

+ + cn3*th(i)*th(3))

elseif(xa.ne.qO.and.xc.ne.qO.and.ast.ne.qO)then

do 34, i=1,6

do 34, j=l,6

xq(i,j) = xk,xk/xh*gcap**(beta+ql-xml)*

(zl*delta(i)*delta(j)

+ z2*atO(i)*atO(j) + z3*yi(i,j)

34

+

+

+

+

+

+

+ cnl,q2,xc/q3*(xw(i,j)+xv(i,j)-q2/q3*atO(i)*delta(j)

-q2/q3,delta(i)*atO(j))

+ cn2,q2*xc/q3*(q2*xml/q3-ql)*(xul(i)*xul(j)-

q2,xi2/q3,xul(i)*delta(j)-q2/q3*xi2*delta(i)*xul(j))
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+ + cn3*th(i)*th(j))

endif

c internal stiffness tensor

call invert(xq,6,6,xl)

c internal strain rate

do 70, i=1,6

70 acap(i)=(dep(i)-ra*xk*xk/xh,

+ gcap**(q1+beta+xm-xml)*th(i))

c convert tensorial shear components to contracted (vector)

do 80, i=4,6

80 acap(i) = q2,acap(i)

components

c internal constitutive rate equation

do 90, i=1,6

adot(i) = qO

do 90, j=l,6

adot(i) = adot(i) + xl(i,j)*acap(j)

90 continue

C CONVERT CONTRACTED SHEAR COMPONENTS BACK T0 TENSORIAL COMPONENTS

DO i00, I=4,6

I00 ACAP(I) = ACAP(I)/Q2

KETUKN

END

C__@_@_@__@@______

subroutine invert(a,n,m,d)

c inverts n x n matrix a. result returned as array d
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c m is the dimensioned size of arrays a and d

implicit double precision(a-h,o-z)

dimension a(m,m),d(m,m),w(138,276)

do 5 i=i,n

do 5 j=l,n

w(i,j)=a(i,j)

if(i.eq.j) then

w(i,j+n)=l.

else

w(i,3+n)=O.OdO

end if

5 continue

do 50 k=i,n

do i0 l=l,2*n-k+l

j=2*n+l-I

w(k,j)=w(k,j)/w(k,k)

iO continue

do 30 i=1,n

if(i.eq.k) goto 30

do 20 l=1,2*n-k+l

j=2*n+l-i

w(i,j)=w(i,j)-w(i,k)*w(k,j)

20 continue

30 continue

50 continue

do 60 i=l,n

do 60 j=l,n

d(i,j)=w(i,j+n)

60 continue

return

end
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Appendix C

MATLAB Program for

Determining Convexity

m=1.0;

ij--l;

for say=654:-4:-654

Ic=l;

for c--2.2e-6

a=2.6e-7 ;

b=l. 8154e-5 ;

i=1;

for lam=l: 1:27

ik=i*ij ;

k=O ;

th=pi*lam/180 ;

r32= (l-a* (9*say _2) "m) /(b+c/3"m* (2*cos (3*th))" (2.m/3)) ;

rj 2= (abs (rj 2) )" (I/(2*m) );

principal stresses

sl=sav+2/sqrt(3)*rj2*cos(th);

s2=sav+2/sqrt(3)*rj2*cos(th-2*pi/3);
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s3=sav+2/sqrt(3)*rj2*cos(th+2*pi/3);

±nvariants

il=sl+s2+s3;

j2=l/3*((s1-s2)'2+(s2-s3)^2+(s3-sl)^2);

j3=l/27*(2*sl-s2-s3)*(2*s2-sl-s3)*(2*s3-sl-s2);

sn33=l;

if j3 < 0

snj3=-l;

end

%derivatives for hessian matrix

dl=b*j2^(-1 + m)*m;

dS=b*j2"(-2 + m)*(-1 + m)*m;

d5=O;

if il == 0

dO=O;

d6=O;

else

dO=a*2*m*il'(2*m-1);

d6=2*a*il'(-2 + 2*m)*m*(-1 + 2*m);

end

if j3 == 0

d2=O;

d4=O;

else

d2=(2*c*snj3*(abs(j3))'(-I + (2*m)/3.)*m)/3.;

d4=(2*c*snj3*(abs(j3))'(-2 + (2.m)/3.)*(-i +

end

djO=l;

dj I=I/3. (2*s1-s2-s3) ;

dj 2=I/3. (2*s2-sl-s3) ;

(2*m)/3.)*m)/3.;
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dj3=1/g,(2,s1_2-s2"2-s3"2-2*s1*s2-2*s1*s3+4*s2*s3);

dj 4=1/9. (2*s2"2-s1^ 2-s3 ^2-2.s l*s2-2*s2*s3+4*s1*s3) ;

aj 5=2/3 ;

dj 6=2/3 ;

dj 7=2/9. (2*s 1-s2-s3) ;

dj8=2/9. (2*s2-s1-s3) ;

dj9=-1/3;

dj 10=2/9. (2*s3-sl-s2) ;

dill=l;

dj 12=1/3. (2*s3-s1-s2) ;

dj 13=2/3;

dj14=-1/3;

dj15=-1/3;

dj 16=1/9. (2*s3_2-s1^2-s2_2-2*sl*s3-2*s2*s3+4*s1*s2) ;

dj 17=2/9. (2,s3-s1-s2) ;

dj 18=2/9. (2,s2-s1-s3) ;

dj 19=2/9, (2,s 1-s2-s3) ;

mll=d6 + dl*dj5 + d3*djl*djl + d2*dj7 + d4*dj3*dj3;

m12=d6 + dl*dj9 + d3*dj2*djl + d2*djlO+ d4*dj4*dj3;

m22=d6 + dl*dj6 + d3*dj2*dj2 + d2*dj8 + d4*dj4*dj4;

m13=d6 + d3*dj1*dj12 + dl*dj14 + d4*dj3*dj16 + d2*dj18;

m23=d6 + d3*dj2*dj12 + dl*dj15 + d4*dj4*dj16 + d2*dj19;

m33=d6 + d1*dj13 + d3*dj12_2 + d2*dj17 + d4*dj16_2;

% curvature tensor

x=[mll m12 m13

m12 m22 m23

m13 m23 m33];

ul=dO + dl*djl + d2*dj3;

u2=dO + dl*dj2 + d2*dj4;

u3=dO + dl*dj12+ d2*djl6;

du=(ul'2+u2"2+u3"2)'0.5;
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unit vector in tangential direction

u=[ul/du u2/du u3/du]';

bmfeye(3)-u*u';

orthonormalization

[pm, s, v] =svd (bm) ;

q=pm(:,l:2);

curvature in tangential direction

kur(i)--min(eig(q'*x*q));

kurr=kur(i);

l(i)ffizam;

res(ik,1)fsav;

res(ik,2)ffilam;

res(ik,3)=kurr;

if kur(i) < 0.0

lamc(ik)=lam;

str(ik)=sav;

kc(ik)=kurr;

cr(ic,ik)ffic;

Ic=ic+l;

end

kffik+l;

end

ill+l;

end

ijffiij+i;

end
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Appendix D

Correlation for Biaxial Loading
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Figure D.I: Shear-tensile loading (IN4) (ml = 0.6)
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