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Chapter 1

Introduction

Inelastic behavior of materials is a subject that has fascinated engineers and researchers over
many decades. Sustained interest in this topic is due to its direct relevance in numerous
engineering applications. The real challenge is to accurately predict inelastic deformation
when the material is subjected to thermal transients and complex mechanical loading. Gas
turbine engines, power generation systems, and automotive engines are just a few examples
of where materials experience complex thermo-mechanical loading. In these situations,
the material is subjected to multiaxial states of stress, different loading rates and variable
temperature conditions. The accurate representation of stress, strain and temperature fields
within the structural components depends strongly on the mathematical representations or
constitutive equations of the inelastic behavior of these materials at various temperature
levels. Further, to be generally applicable, the constitutive equations must be expressed in

tensorial form.

The total strain in the material can be separated into elastic and inelastic parts. Clas-
sical decomposition of the inelastic component into time independent (plastic) and time
dependent (creep) contributions facilitates modeling of material behavior. The plastic com-
ponent is considered to be history dependent, i.e., the current plastic strain depends on the
loading history. The creep component is treated as time dependent and is responsible for

deformation when the external loads and the temperature are held constant.

At elevated temperatures, however, the classical decomposition into plastic and creep strains
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breaks down. In structural alloys creep and plastic strains occur simultaneously and inter-
actively. This suggests that we need a unified constitutive model to represent deformation
of metals at elevated temperatures. Many such models have been developed in the last few
decades (e.g. Walker [1981], Bodner [1987], Helling and Miller [1987], Robinson and Duffy
[1990], Freed and Walker [1995], Arnold et al {1996]). Most constitutive theories use internal
variables and appropriate evolutionary equations for simultaneously treating all aspects of
inelastic deformation including plasticity, creep and stress relaxation. These theories are

based on thermodynamics of irreversible processes and will be elaborated on in Chapter 3.

1.1 Materials for high temperature applications

Safety is a primary concern in aerospace applications. Thus, all substructures must remain
structurally sound during all phases of flight. For gas turbine engine components, materials
having good strength properties over a wide range of temperatures are required. Metal-
matrix composites (MMCs) and superalloys possess this quality and hence are suitable
for this application. Owing to its complexity, the fabrication of MMCs is expensive and
time consuming. Hence, superalloys like Inconel 718 (a Nickel-based alloy) and Haynes 188
(a cobalt-based alloy) are more popular than MMCs in the aerospace industry for engine
applications. Aged Inconel 718 is strengthened by precipitate hardening, in which fine
particles of a second phase are dispersed throughout the grains, thereby slowing down the
movement of dislocations. The physical mechanisms responsible for strengthening of this

alloy are explained in Chapter 2.

1.2 Objective of the present research

Inconel 718 is a wrought nickel-based alloy that is precipitation hardenable to obtain high

strength and is the material to be investigated in the present research.

Recent experiments on Inconel 718 indicate that the yield stress and subsequent flow stress
are significantly higher in compression than in tension (Gil et al [1999b]). This phenomenon,

known as the strength differential (SD), is observed for a wide range of temperatures as
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shown in Figure 1.1. Figure 1.1(a) shows higher yield and post-yield stresses in compression
at 650°C. Yield loci at 23°C and 650°C, shown in Figure 1.1(b), clearly show eccentricity
in the compressive stress direction. The SD effect can be mathematically defined as

5D=2(u) x 100 (1.1)
e+ o

where o, and o; are yield strengths in uniaxial compression and uniaxial tension, respec-
tively. At the initiation of yielding the SD has a high value; it then decreases, and finally

reaches a constant value at higher inelastic strains.

A yield function, based solely on the second invariant of deviatoric stress (J2) is not able
to correctly represent a material with a SD. Thus, the goal of the current work is to
generalize a viscoplastic model, currently based solely on J;, to account for the

strength differential effect.

1.3 Generalization of Plasticity Theory

Having established the need to generalize the yield function to capture the SD effect, it
is worthwhile to look at some yield functions and flow rules used by other researchers,
that deviate from Jy plasticity theory. This section starts with some basic elements of J»
plasticity followed by instances where deviations from the classical approach are required

to capture material behavior.

1.3.1 Metal Plasticity

(Hill [1950], Mendelson [1983], Lubliner [1990], Chen [1994], Khan and Huang [1995])

At the continuum level, the initial material behavior is taken to be linear elastic up to
the yield point. The yield surface delineates the current elastic region in stress space. For
an elastically isotropic metal, yielding depends on stress, temperature, and internal state

(described by hardening or internal state variables). Under isothermal conditions, initial
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yielding depends only on the stress state, which is often described by three stress invariants:

IL = oy
1
Jo = §S,JSU
1
J3 = gsijsjkski

where I, is the first stress invariant, J> and J3 are the second and third deviatoric¢ stress
invariants respectively, o;; and S;; denote the Cauchy and deviatoric stress components

respectively. The yield function can be expressed as
floy) = f11,J2, J3) = 0. (1.2)

Physically, I; represents the hydrostatic stress and Js represents the distortional energy in
the material. Though no definite physical quantity is attributed to Js, it can be treated as
a weighting parameter that induces asymmetry in yield and flow behavior between tension

and compression.

Based on the work of Bridgman [1952], yielding in most metals (e.g. mild steel, copper,
aluminum) was found to be relatively insensitive to hydrostatic pressure. This suggests
that I; is unimportant in the definition of yield. Also, for many metals the tensile and
compressive flow behavior are identical (e.g. aluminum, titanium, unaged maraging steel,
unaged Inconel 718), making J3 unimportant. Hence the yield function depends only on J,
and the yield surface is an infinite cylinder in the principal stress space with its axis along
the hydrostatic stress line. The von Mises yield criterion takes the form of a cylinder with

a circular cross-section, resulting in
Vv 3.]2 = Oy (1.3)

where oy is the uniaxial tensile yield strength.

When applied to these materials, Drucker’s stability postulate (Drucker [1951] and [1959])
results in the inelastic strain rate vector being normal to the yield surface. Thus, the yield
function can be treated as a plastic potential and the inelastic strain rate can be determined

by use of an associated flow law,

éi=A 8f” . (1.4)
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where ) is a scalar that is determined from the consistency condition discussed in Chapter
3. Hence classical plasticity theory, when applied to metals, suggests that the yield function

is based only on shear stress and that the flow law is associative.

1.3.2 Deviations from classical plasticity

Though many metals follow the von Mises (J; based) yield criterion and associative flow
law, there are some that deviate from either or both. In this section, we present some
instances where these deviations are observed. By doing so, we further emphasize the need

for the proposed investigation.

Starting from the middle 1960s, experimental results were published which show that yield
and flow stresses in tension and compression are different for some high strength steels (e.g..
Leslie and Sober [1967]; Kalish and Cohen [1969]; Rauch and Leslie [1972]; Chait [1972];
Spitzig et al [1975]). The physical mechanisms that can cause a SD were reviewed by Hirth
and Cohen [1970] and Drucker [1973]. For an elastically isotropic material exhibiting SD,
a yield function that only depends on J; will not give an accurate representation of the

material behavior.

Experiments on iron single crystals (Spitzig [1979]) showed that contrary to Schmid’s law
(Schmid [1924]), the normal stress on the slip planes affects the dislocation interactions.
The results suggest that the predominant effect of hydrostatic pressure is to retard the
generation of mobile dislocations, resulting in an increase in dislocation density which in
turn causes an increase in volume. This suggests that application of hydrostatic pressure

affects inelastic behavior of the material, indicating that flow is dependent on I;.

The above examples are a few instances where a Jy based yield description falls short in
representing the material behavior. Chapter 3 reviews more instances where a generalization

of the yield function is needed.
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1.3.3 Modified Yield Functions

Some researchers have extended Js plasticity theory to account for deviations from classical
plasticity. Drucker [1949] compared Osgood’s [1947] experimental data on aluminum alloy
tubes to classical Tresca and von Mises yield criterion. While neither the Tresca criterion,

nor the Mises criterion, agreed well with the experimental data, a function of the form
f(Jo, J3) = J3 —2.25 J§ — 1, (1.5)

did fit the data well. This was one of the first functions to go beyond the J, representation

of yield for metallic materials.

For materials exhibiting SD, J, plasticity theory needs to be generalized. Yield functions
for such materials must be represented by an odd power of I, an odd power of J3, or a
combination of the two. Dependence on I; requires pressure sensitivity, while dependence
on J3 (and not I}) requires pressure insensitivity. Spitzig et al [1975] superimposed tensile
and compressive loads on hydrostatic pressure for different materials. The results clearly
showed that the flow stress is pressure dependent. In many cases, the flow stress appears
to be linearly related to hydrostatic pressure, suggesting the use of a Drucker-Prager yield

criterion (Drucker and Prager [1952]);
f=alh++/Jo—k (1.6)

where o and k are experimentally determined constants. In other cases, the relationship

was not truly linear suggesting that either a J3 term or a different function of 7; is required.

Spitzig et al [1975] had good success using a Drucker-Prager type yield criterion of the form:

\/3J2=c—a11 (1.7)

where a and c are both strain dependent, but their ratio a/c(= «) is shown to be independent

of strain. The SD predicted by equation 1.7 is simply 2a.

Use of an associated flow law with a pressure dependent yield function results in a predicted
permanent volume change approximately 15 times greater than that determined by pre-test
and post-test density measurements and strain gage measurements (Spitzig et al [1975,1976];
Spitzig and Richmond [1980], Richmond and Spitzig [1984]). This suggests the use of a non-

associated flow law with pressure dependent yield representations for these materials.
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1.4 Method of Generalization

The generalization of classical plasticity theory lies in not ignoring the dependence of flow
on the stress invariants I; and J3. This necessarily complicates the mathematics and raises

the issue of what functional form of the stress invariants best represents inelastic flow.

A general approach for determining the inelastic flow dependence on each of the three stress
invariants would be to follow stress paths where only one of the three invariants varies. Two
classical experiments that do this are: a hydrostatic pressure test, where only I, varies; and a
pure torsion test, where only J» varies. There are many other stress paths that are possible.
Unfortunately, these stress paths generally require three-dimensional stress states, which
are difficult to obtain in the laboratory. For experimental expediency, tests involving axial-
torsional loading of thin-walled tubes are to be used in determining the significance of the

first and third stress invariants, I; and J3, respectively.

Once the form of the threshold function is determined for IN718, characterization is done to
quantify the material parameters in the model. Characterization experiments include shear
tests and uniaxial (tensile and compressive) tests. Multiple combinations of stress invariants
in the threshold function can result in an equally good correlation with the uniaxial test data.
Experimental validation is required to help choose the proper combination of invariants.
This is done by following load paths that extremize the differences between the predicted
responses, based on the chosen threshold functions and by comparing the experiments with
predictions. This approach can be applied to any material exhibiting a SD, e.g. martensitic

steels, and intermetallics like titanium aluminide.

1.5 Overview

Various mechanisms of deformation in IN718 are discussed in Chapter 2. Also reviewed are
the strengthening mechanisms in metallic alloys and the mechanisms responsible for SD in
metals. By comparing and contrasting different mechanisms, an attempt is made to identify

the ones that could be responsible for the observed SD effect in IN718.

Theoretical background, explaining the fundamentals of rate-independent and rate-dependent
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plasticity with emphasis on metal plasticity, is presented in Chapter 3. Thermodynamic
considerations leading to the use of internal state variables to account for various aspects
of time dependent inelastic deformation are explained therein. Related work on various

aspects of inelastic deformation, viz. yield and flow is also reviewed.

The viscoplastic model to be used for this investigation is proposed in Chapter 4. Start-
ing with the proposed threshold function, the flow and evolution laws are derived. The
requirement of convexity of the yield function is discussed. The experimental program for
determination of the material parameters in the proposed model is discussed in Chapter 5.
A brief review of experimental work in metal plasticity is followed by a description of the
experimental setup to be used in the present research. Test matrices for characterization

and validation experiments are developed.

Experimental results and the correlation between model and experiments are provided in
Chapter 6. Six material parameter sets that fit the characterization data are presented.
Choice of the right parameter set for Inconel 718 by correlating the predicted responses to
biaxial validation tests and hydrostatic pressure tests is discussed in detail. This is followed

by concluding remarks and suggested future work in Chapter 7.
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Chapter 2

Microstructure and deformation

Mechanisms

In this chapter, a detailed review of the microstructure and strengthening mechanisms in
Inconel 718 is presented. Also documented are the mechanisms responsible for the SD
effect in metallic materials in general. The effect of these mechanisms on the macroscopic
behavior of metals is reviewed. Finally, by comparing and contrasting various mechanisms,

an attempt is made to identify the ones responsible for the SD in Inconel 718.

Numerous structural studies on Inconel 718 have been carried out in an attempt to correlate
its properties to microstructure and heat treatment. This alloy has a large number of
phases that form in a specific temperature range and have a characteristic morphology.

The following is a list of different phases that are formed during various stages of heat

treatment:

1. MC phase: discrete particle phase formed on solidification and is stable up to 1200°C.

2. Laves phase: round, island shaped particles that form on solidification in the high-

niobium areas and are stable up to 1175°C.

3. ¢ phase: needle-like/plate-like that form on cooling during solidification in high nio-
bium areas and are stable up to 1010°C in wrought alloys, and up to 1120°C in cast

alloys, precipitating from 840°C to 980°C.
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Table 2.1: Material Composition of Inconel 718

Element | Content(wt.%)
Ni 53.58
Cr 17.52
Mo 2.87
(Nb+Ta) 5.19
Ti 0.95
Al 0.57
Co 0.39
C 0.034
S 0.002
Mn 0.12
Si 0.07
B 0.004
Cu 0.05
P 0.006
Fe Bal.

4. v" phase: disc shaped precipitates form during cooling or heat treatment between

730°C and 900°C. During cooling these precipitates tend to become smaller.

5. 7' phase: spheroidal precipitates form when cooling or heat treatment is in the range,

720°C-620°C.

2.1 Microstructure of Inconel 718

Wrought Inconel 718 alloy was obtained in the form of extruded 31.8 mm bars, all from
the same heat treatment. The weight composition of the alloy is listed in Table 2.1. The
machined samples were solutioned a’lﬁ 1038°C in argon for one hour and then air cooled.
Then they were aged at 720°C in argon for eight hours, cooled at 55°C/hour to 620°C and

held for eight hours, then air cooled to room temperature.
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Figure 2.1: Optical Micrograph of aged Inconel 718

Gil et al [1999b] performed metallography on this alloy by polishing and etching using
Tucker’s reagent (45 ml HCI, 25 m]l H,O, 15 ml HNOQOg3, and 15 ml HF) to reveal the grain
structure as seen in Figure 2.1. The grain structure consisted of equiaxed grains having
an ASTM size of 4 (90 pm in diameter). Carbide particles were observed throughout the

microstructure. Microhardness was measured to be Vicker 440 / Rockwell C of 45.

Transmission electron microscopy showed a fine dispersion of «" precipitates with preferred
orientation within a particular grain. This is shown in Figure 2.2 (samples prepared by C.
Gil, observed by P. Howell, Earth and Mineral Sciences, PSU). The precipitate particles
were observed to be platelets approximately 10-15 nm in length. Texture analysis (by M.
Angelone, Material Characterization Lab, PSU) showed that there is no preferred grain ori-
entation. Thus the preferred orientation of the precipitates within the grain is not expected

to cause anisotropic behavior.

2.2 Mechanisms of deformation in metals
This section reviews some of the physical mechanisms that occur during inelastic deforma-

tion in metallic materials. Strengthening mechanisms in aged Inconel 718 and the interac-

tion between the applied stress and microstructure are discussed next.
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Figure 2.2: Transmission Electron Microscopy of aged Inconel 718 showing 4" precipitates

At low temperature, slip is the most common mechanism of deformation. Slip occurs on
the plane of highest atomic density in the direction closest to the planes of maximum shear
stress. These planes and directions differ depending on the crystallographic structure of the

metal and the direction of the applied load.

During inelastic deformation most materials exhibit a resistance to slip called strain harden-
ing. Hardening occurs due to interaction of dislocations with precipitates, grain boundaries,
or other dislocations and is often a manifestation of dislocation pileups. Dislocation inter-
action may result in internal stress, causing a resistance to further deformation. However,
upon reversal of loading, the dislocations will propagate more easily and may cause yielding
to occur at much lower applied stress level, resulting in the Bauschinger effect (Khan and

Huang [1995]).

Another important factor that affects hardening behavior is the grain size. For a coarse
grain material, slip is restricted to the grain boundaries. However, for a fine grain material
like Inconel 718, slip systems are also activated in the interior of the grains causing higher

dislocation interaction in the material. This results in higher strain hardening.
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2.2.1 Strengthening mechanisms in Inconel 718

Generally, strengthening in metals is achieved by slowing the movement of dislocations. In
a precipitate hardened material, the precipitates are dispersed throughout the grains. Dis-
locations are pinned at these precipitates causing dislocation pileups. In order to overcome
the precipitates the dislocations either climb over or shear through them, both of which

require additional shear stress.

Strengthening Phases

Paulonis et al [1969] showed that the major strengthening phase in aged Inconel 718 is the
disc-shaped 7" (DOy2) precipitates rather than the spheroidal 4’ (Lly) phase found in most
nickel superalloys. The unit cells showing ordering for the body-centered tetragonal (bct)
4" and the face-centered ' are shown in Figure 2.3. They observed that fully heat treated
and deformed samples of Inconel 718, both at room and elevated temperatures, exhibited
planar deformation banding, a slip mode characteristic of nickel-based superalloys. They
pointed out that the alloy exhibits good tensile strength between cryogenic temperature to
about 705°C, even with as low as 20% by weight of the strengthening " phase. Excellent
weldability was attributed to sluggish precipitation kinetics of the 4" phase. They found
that the rapid deterioration of the tensile and creep strengths from 650-760°C was primarily
due to rapid coarsening of the 4" phase and partial solution of the v/ phases with concurrent
formation of stable orthorhombic NizNb. Nevertheless, v forms coherently and tends to
remain so throughout the coarsening period. Coherency of the precipitate is a significant

factor that contributes to the strength of the alloy.

Deformation Mechanisms

Analysis of deformed samples is difficult because the combination of high particle density,
coherency strain contrast, and dislocation strain contrast results in extremely complicated
electron micrographs (Paulonis et al [1969]). Compression at room temperature causes {1
1 1} planar slip banding. Tensile loading at elevated temperature results in heterogeneous

slip which is confined to planar bands. Precipitate shearing within the slip bands is also
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Figure 2.3: Unit cells showing ordering: (a) bct (") structure (b) fcc (v') structure

observed during tensile deformation.

Oblak et al [1974] observed that since ¥" particles produce a tetragonal distortion of the
matrix, the specific variants of 4" can be controlled by the application of stress during
aging. To restore order in the DOy, phase, atoms have to displace differently in different
directions. Also, dislocation movement to restore order in different variants of ~" is different.
Hence order strengthening is a complex interplay between the stress axis, Burgers vector of
dislocations and the variant present in the microstructure. Aging the material under tensile
and compressive loads suppresses or enhances the formation of a particular variant of DOgs.
This results in a stronger material when aged under tensile load and a weaker material when
aged under compressive load. This suggests that different variants of 7" interact differently

with the applied stress field and this could be a possible cause of the SD.

While no evidence was found for a stacking fault mode of shear, motion of dislocation pairs
seemed to cause shear (Oblak et al [1974]). Smaller particle sizes result in dislocations being
arranged in quadruplets rather than in pairs. While the lowest energy mode of deforma-
tion is the motion of dislocation quadruplets, the comparison with experimental data on
increase in critical resolved shear stress (CRSS) points towards deformation by motion of
dislocation pairs. For these reasons, it is felt that while order ensures the pairwise motion of

dislocations, the principal obstacles to these pairs are not the ordered particles per se, but
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rather their coherency strain fields. Hence, a coherency strengthening seems more probable
than order strengthening. Also, the temperature dependence of CRSS is better predicted
by coherency strengthening model. A possible role of the 4’ phase may be to inhibit de-
formation by stacking fault mode of shear. Hence, extremely stable microstructures can be

obtained by formation of compound v"-v' precipitate particles.

Small and Large Deformation Effects

Amongst other mechanisms in Inconel 718, the possibility of shearing ordered precipitates
by deformation twinning is discussed by Sundararaman et al [1988] for room temperature
deformation. Circular dislocation loops were found near v’ and a large number of dislocation
pairs were found near 4" phase in samples deformed to 2% strain. Some dislocations were
observed to split up into partial dislocations on entering 7" precipitates. Offset produced
on v" particles due to the passage of the deformation bands indicates that these precipitate
regions contain multi-layered stacking faults. Also observed were two sets of deformation

bands, lying on two different {1 1 1} plane variants.

For large strains (19%), Sundararaman et al [1988] observed similar deformation bands in
the material. In addition, the presence of deformation twins was seen within these bands.
The flow stress required for deformation twinning is less than that required for precipitate
bypassing and hence twinning is favored. Deformation of samples aged for longer periods
resulting in coarser precipitates showed that the 4" particles had apparently fragmented
into slices along {1 1 1} planes. Deformation twinning of 4" precipitates conserves order
within the twin bands, hence the matrix-precipitate lattice correspondence for the twinned
regions is the same as that for the twin-free regions. Some matrix twin segments appeared
to propagate through a few " precipitates. Offsets caused by the deformation twinning
leads to rotation of the macroscopic 4" habit plane. Each precipitate variant is associated
with a favored twin-plane (of the type {1 1 1}), the selection of which is presumably dictated
by the relative orientation of the stress axis. Again, deformation twinning is not seen in

samples with very fine sized 4" precipitates.
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Work Hardening

The work hardening rate in precipitate hardened alloys generally increases abruptly as the
precipitate size grows beyond a certain critical value (Sundararaman et al [1988]). This
effect is attributed to the transition from precipitate shearing to the precipitate bypassing
mechanism regime where the deformation results in the accumulation of dislocations in the
vicinity of the non-deformable precipitates. In Inconel 718, however, a drop in the work
hardening rate is observed when the precipitate radius is greater than 10 nm. This strongly
suggests that precipitate bypassing mechanisms, like Orowan, are not active. The passage
of shear through the precipitate particles by deformation twinning does not increase the
dislocation density to any significant extent and consequently this deformation mechanism
is not expected to increase the work hardening rate. The stress required to nucleate defor-
mation twins in the precipitate particles is larger than that required for the growth of such
twins. Thus, nucleation is immediately followed by easy propagation of deformation twins
across the precipitates. This brings down the work hardening rate when precipitate size is

greater than 10 nm.

Effect of Strain Rate and Temperature

The effect of strain rate and temperature on the thermo-mechanical behavior of Inconel
718 was investigated by Zhou et al [1993] to understand the relationships between the dy-
namic restoration process and the flow stress-strain curves. Also, changes of microstructure
associated with different degrees of reduction during compression processing were investi-
gated. Study of stress-strain response shows higher peak stresses at lower temperatures.
The flow stress is mildly sensitive to strain rates between 0.1-0.05 sec™!, but this sensitivity
increases with temperature. Dynamic recovery and dynamic recrystallization are observed
in the microstructure throughout the range of the experiments. Nucleation of dynamically
recrystallized grains occurs at strains corresponding to peak stress (referred to as peak
strain) and the dislocation density in the deformed region is considerable at this strain.
The fraction of the recrystallized grains increases with temperature. Preferred nucleation
sites for the recrystallized grains are the strained grain boundaries. Dynamic recovery is

a slow process and hence the dislocation density can increase considerably before dynamic
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recrystallization initiates at peak strain.

A critical dislocation density, which depends on the condition of deformation, must be
exceeded before recrystallization can proceed. An increase in temperature leads to an
increase in grain boundary mobility and a decrease in the critical dislocation density for
dynamic recrystallization, which in turn results in a decrease in peak strain. The strain
rate has the opposite effect. The fraction of dynamically recrystallized grains increases with
temperature, and the fully recrystallized microstructure is obtained at temperatures greater
than 1050°C and a strain of around 0.7. Beyond this peak strain, more dislocations are

generated which is a driving force for further nucleation and grain growth.

2.2.2 Mechanisms Causing Strength Differential Effect

Several hypotheses were proposed to explain the strength differential (SD) effect. These
include microcracking, residual stresses, internal Bauschinger effect, particle-dislocation in-
teractions, and volume expansion during inelastic deformation. In this section a brief history
of these investigations is presented. Comparing and correlating these with the deformation
mechanisms in Inconel 718, an attempt can be made to qualitatively arrive at the most

probable cause of the SD.

Volume Expansion Hypothesis

Leslie and Sober [1967] were among the first to observe SD in martensitic steels. They found
that untempered carbon martensite is significantly stronger in compression than in tension.
The SD effect appeared to increase with increasing carbon content. Radcliffe and Leslie
[1969] were the first to attribute SD effect to volume expansion during inelastic deformation,
which would theoretically lead to larger stress in compression than in tension. The volume

expansion hypothesis is also supported by Drucker [1973] for plastics and granular media.

In some cases the effect of hydrostatic stress is to cause an increase in dislocation density,
which can result in permanent volume expansion. However, some hydrostatic pressure de-
pendent materials do not exhibit a permanent volume change during deformation. Spitzig

et al [1975] have reported that the yield strength of quenched AISI 4310 and 4330 steels

NASA/CR—2001-210715 19



increases evenly in both tension and compression with increasing hydrostatic pressure. Fur-
thermore, they detected a permanent volume change proportional to inelastic strain. They
suggested that the change in volume is due to a large increase in the dislocation density.
Consequently, SD of 6% is observed for both steels, which remained constant with increase
in inelastic strain and hydrostatic pressure. They proposed a modified yield function to

account for this SD (see equation 3.43).

Precipitate Dislocation Interaction

Rauch [1975] speculated that a significant generation of dislocations would lead to a volume
change, especially in aged materials where pre-existing dislocations are immobilized by
precipitates. However, their experimental results for tempered AISI 4310, 4320 and 4330
steels disagree. No evidence of permanent volume expansion was observed. SD appeared

to increase with decreasing temperature.

Rauch et al [1975] point out that though the initial density decrease (volume increase)
in as-quenched AISI 4310, 4320, and 4330 steels can be attributed to transformation of
retained austenite, the rate of density change continues to be high even at large strains.
Thus SD at large strains can be better explained by increase in dislocation density during
flow. According to them, the volume expansion hypothesis is a potential explanation for SD
effect. Pinning of transformation dislocations by carbon and rapid mobilization of newly
created dislocations result in volume increase during deformation. This is consistent with
no SD effect in unaged maraging steels, which have no precipitates. All this points to

hydrostatic stress dependence of yield and flow in martensitic steels.

Nonlinear Elastic Interaction Hypothesis

Another theory for the SD effect was proposed by Hirth and Cohen [1970]. They ruled
out: (1) microcracks, because ultra fine grained martensitic steels have enhanced fracture
toughness, are resistant to microcracking, and yet exhibit SD; (2) residual stresses, be-
cause at sufficiently high strains, residual stresses are overcome and yet the SD persists;

(3) retained austenite; and (4) internal Bauschinger effect, because of randomness in the
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orientation of the martensite plates. They attribute the SD effect to the solute-dislocation
interaction. The barrier for the dislocation segments near an interstitial carbon atom is
influenced by the normal stress across the glide plane that is increased by compression and
decreased by tension. Severe distortion of the iron lattice around the interstitial carbon
atom leads to local elastic strains that become non-linear. This inevitably alters the atomic
force-displacement relationships such that they are different in tension and compression.
This hypothesis suggests that a significant portion of the SD phenomenon may be due to
nonlinear elastic interactions. They were able to account for a SD of up to 3-6% using this

hypothesis in martensitic steels.

Kalish and Cohen [1969] suggest that displacement of iron atoms are so large that associated
elastic strains are nonlinear and the interstitial-dislocation binding energy becomes greater
in compression than in tension. Coherency strains around the precipitated particles result
in greater dislocation interaction under compression than under tension. This suggestion
is supported by Chait [1973], who tested three titanium alloys in the aged condition and
found that coherent precipitation contributes to strength differential effect. Two of these
alloys that exhibited large SD, possessed coherent a — /3 phase, while one alloy showed very
small SD due to  phase in it being not coherent. Chait attributed the SD effect in Zircalloy
to formation of deformation twins, which is more difficult in compression than in tension.
Similar results in titanium alloys are reported by Winstone et al [1973]. The SD effect is

much smaller in alloys in which the precipitates are not coherent with the matrix.

Pampillo et al [1972] add to the theory of Hirth and Cohen [1970] by suggesting that the
nonlinear elastic behavior leads to a change in elastic moduli at sufficiently large elastic
strains. The change occurs such that the elastic modulus decreases in tension and increases
in compression. As a result, the internal stress, which depends on the interaction between
the long range stress fields of the dislocations and that of the precipitates, decreases in
tension and increases in compression, and this causes a SD. This theory explains the effect
of carbon concentration and dislocation density for martensitic steels. Also, it explains the
increase in SD at low temperatures. It is also consistent with the observation of Rauch
and Leslie [1972], who reported that the elastic modulus of martensitic AISI 4320 steel was

consistently 1-3.5% less in tension than in compression.

NASA/CR—2001-210715 21



Gil et al [1999a] observed an increase in instantaneous stiffness of aged Inconel 718 in com-
pression. They speculated that this stiffening could be associated with nonlinear interaction

between precipitates and dislocations. However, stiffening was not observed in tension.

Effect of Interface Decohesion

Olsen and Ansell {1969] proposed a different theory for the SD effect in two phase alloys. TD-
Nickel with 2% by volume dispersion of spherical ThQO, particles tested at room temperature
showed a 0.2% offset yield strength that was 30% higher in compression than in tension.
The dislocations bypassed the ThO, particles both in tension and compression and hence
is not the cause of SD. They suggested that voids form at the particle matrix interface as a
result of interface decohesion during tensile loading prior to yielding. Interface decohesion
prevents build-up of residual dislocation loops and high shear stress on particles, permitting
a sufficient amount of dislocations to bow between particles to give macro yielding at lower
stress level. This is not seen in compression. Thus, the mechanism in tension is bowing
of dislocations and that in compression is shearing of precipitate particles, for which the

required stress is greater and hence the SD.

This theory applies to two-phase alloys with a weak bond between the particles and the
matrix. Olsen and Ansell [1969] also studied Al-Al;O3 which is known to exhibit very good
bonding characteristics. Here, no decohesion was seen and this results in no SD. Contrary
to this, Mannan and Rodriguez [1973] observed that the SD in zirconium alloy increased
with increasing interstitial content, even though no decohesion was observed. Here, the SD
is due to the differences in the long range internal stress. This supports our contention that

the SD phenomenon is due to different mechanisms in different materials.

Stress Interaction with Precipitates

Plietsch and Ehrlich [1997] studied the strain-controlled tension/compression behavior of
pseudoelastic shape memory alloys of Ni-Ti type. They proposed an explanation of SD
based on the generation of stress induced martensite (SIM) during loading. For a given

stress axis, the largest possible transformation strains in tension loading can be more than
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twice as high as the respective compressive strains. They studied austenitic, pseudoelastic,
and purely martensitic samples (pseudoelastic samples were obtained by special thermo-
mechanical conditioning and are capable of completely recovering deformation strains up
to 8% by reversible transformation). The austenitic samples showed no SD. In martensitic
samples, martensite is present as 12 variants that are internally twinned. During tension
or compression loading, these variants are altered by successive transformations to a single
variant that is capable of compensating for the applied stress most effectively. The strain
induced by martensitic transformation is much larger in tension than in compression for
the same stress level. This results in a moderate SD. Pseudoelastic samples on the other
hand, exhibited maximum SD. This is because the variant group formed in compression can
deliver only a small transformation strain. This results in a much steeper rise in stress and

results in a large SD.

2.3 Effect on Macroscopic Response

At this point, the strengthening mechanisms in aged Inconel 718 and other mechanisms
that result in a SD effect in metals, are reviewed. It is required to relate these mechanisms

to the macroscopic response (experimentally observable).

Drucker [1973] ruled out the possibility of microcracks or residual stresses being the cause
for SD eﬂect. According to him, it is the inhibiting influence of compression normal to
the slip plane or twin plane which causes SD. Thus, it is most critical to verify whether or
not the application of hydrostatic pressure (which adds equal compression normal to each
plane) raises the magnitude of yield or flow strength in shear, tension or compression. For
a material exhibiting a SD, a permanent volume change is a necessary accompaniment to
inelastic deformation if the normality flow rule is applied. Generation of dislocations as well
as vacancies in metals is associated with a volume increase and so might lead to similar
macroscopic behavior. Stability at a material point implies convexity of the yield surface
and for convexity to hold, the effect of added hydrostatic pressure on solid materials is
limited by the theoretical strength. Drucker concludes that the most critical experiment
to understand the SD is a tension test or a compression test in the presence of hydrostatic

pressure.
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The pressure dependency of flow results from the fact that the basic flow events like dislo-
cation glide are pressure dependent (Spitzig [1979], Spitzig and Richmond [1984]). Spitzig
[1979] showed that the normal stress on the slip planes affects the dislocation interactions
in iron single crystals. The results suggest that hydrostatic pressure retards the generation
of mobile dislocations. Jung [1981] presented a thermodynamics based model which shows
that pressure should increase the interaction between dislocations. He used this model
to explain dislocation annihilation and show that the pressure induced friction impedes
dislocation motion and completely compensates for the increased interaction between dis-
locations. Spitzig and Richmond [1984] were able to directly relate equation 1.7 to Jung’s
model and conclude that the pressure dependence of the flow stress does not come from the
plastic dilatancy as required by the associated flow law. Rather, it comes from the effect of

pressure on dislocation motion.

Jesser and Kuhlmann-Wilsdorf [1972] found that the dislocation structure of commercially
pure Nickel is not altered by hydrostatic pressure. They conclude that pressure causes a
strong rise in frictional stress, which is associated with the Peierls-Nabarro stress being
pressure dependent. They relate the pressure dependence to the extra volume that the

atoms in the dislocation core occupy.

2.4 Possible mechanisms causing SD in Inconel 718

As mentioned earlier, microstructural analysis of deformed samples is difficult due to high
particle density, coherency, and dislocation strain contrast. Thus, it is worthwhile to identify

the possible mechanisms that cause SD in Inconel 718.

From the above discussion of SD, the experimental results on different materials suggest that
a microstructure containing precipitate particles is a prerequisite for SD effect. The exact
mechanism responsible for a SD differs depending on the microstructure of the material.
Theories such as the internal Bauschinger effect and microcracking hypothesis, suggest that

the SD will increase with increasing inelastic strain, which was not observed in experiments.

Interface decohesion between the 4" precipitates and the matrix can be ruled out because

the " platelets remain coherent up to large strains and also during coarsening. Thus, this
g g
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is not the cause for a SD in aged Inconel 718. There is no significant difference between
the elastic moduli in tension and compression. SD persists at strains beyond 2% where
the inelastic strains are dominant and nonlinear elastic interactions are negligible. Thus,
nonlinear elastic interaction is not the sole cause of SD. Gil et al [1999a], however, identified
this mechanism as a cause for stiffening in compression, which occurs at the onset of yielding

where the inelastic strains are low in comparison with the nonlinear elastic strains.

Differential formation of deformation twins in tension and compression does not seem to
be a primary cause for a SD. The effect of loading on different variants of v precipitate,
which have different favored twin planes, can cause a difference in response under tension
and compression. Though no definite evidence has been seen for or against this possibility,
deformation twinning seems to be a secondary effect and is not likely to be a dominant

cause for SD in Inconel 718.

Two theories that seem more convincing are: (1) volume expansion hypothesis; and (2) the
particle-dislocation interaction hypothesis. In most cases, both of these underestimate the
observed SD effect, suggesting that both of these mechanisms contribute to this effect. It
remains to be seen whether hydrostatic pressure has an influence on the SD in Inconel 718.
As suggested by Drucker, tensile and compressive experiments under varying hydrostatic
pressure are planned on aged Inconel 718. In general, hydrostatic pressure impedes the
motion of dislocations causing an increase in dislocation density which in turn causes a

volume expansion.

In the event of hydrostatic pressure-independence, the most probable cause for SD in aged
Inconel 718 appears to the interaction between coherency strain fields around the 4" precip-
itates and the dislocations. It appears that the precipitate-dislocation interaction causes an
increase in the dislocation density, the coherency strains seem to cause greater dislocation
interaction under compression than under tension. If the material is hydrostatic pressure-
dependent, the SD can be attributed in part to the particle-dislocation interaction and in

part to the volume expansion.
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Chapter 3

Continuum Plasticity

Starting with the definitions of stress invariants, this chapter presents the basic elements of
rate-independent (classical) plasticity theory, viz. yield criterion, flow law, hardening law,
and loading criteria. Then, the internal variable approach to rate-dependent plasticity is
presented which leads into the internal variable theory of viscoplasticity. Finally, a review of

general yield functions and flow laws that go beyond classical plasticity theory, is provided.

Any material deforms when subjected to external forces. The deformation is elastic if it
is reversible and time-independent, viscoelastic if it is reversible and time-dependent, and
plastic if it is irreversible or permanent. Brittle materials like glass and concrete exhibit
very little inelastic deformation before fracturing. On the other hand, metals can undergo

significant inelastic deformation before failure and therefore are ductile materials.

The theory of plasticity deals with the stress-strain and load-deformation relationships
for a ductile material beyond the elastic limit. The establishment of these relationships
generally follows two steps: (1) the experimental observation and (2) the mathematical
representation. The stress states that are normally achieved in an experiment are uniform,
but the ultimate goal of any plasticity theory is a general mathematical formulation that

can predict the inelastic deformation of materials under complex loads.

The theories of plasticity can be established in two categories: (1) mathematical theories and

(2) physical theories. Mathematical theories are formulated to represent the experimental

NASA/CR—2001-210715 27



observations as general mathematical formulations. These theories do not require deep
knowledge of physics of plastic deformation and are based on hypotheses and assumptions
from experimental results. Therefore, the mathematical theories are referred to as phe-
nomenological theories. The physical theories on the other hand, attempt to quantify the
plastic deformation at the microscopic level and explain why and how the plastic deforma-
tion occurs. The movements of atoms and the deformation of single crystals and grains are
important considerations. Here, metals are viewed as aggregates of single crystals or poly-
crystals and their response to applied loads are derived from their building blocks, namely

single crystals and grains (Khan and Huang [1995]).

Most applications, such as metal forming or structural design, are based on macroscopic
quantities. Any plasticity theory must therefore contain mathematical variables that can
be measured during experiments at the macroscopic level. To make reasonable hypotheses
and assumptions on the basis of experiments and to fully understand the meaning and
limitations of a proposed theory, knowledge of material structure and physics of inelastic

deformation is very helpful.

3.1 Invariants of the stress tensor

The stress state at any material point may be represented by the stress tensor o0;;. Its
components in the cartesian coordinate system can be represented by a matrix of second
order
Ozx Ozy Oz
Oij = | Oyz Oyy Oyz (3.1)
Ozr Ozy Ozz
Since the stress tensor is symmetric, only six stress components 0z, 0y, Ozz, Oyy, Oyz, T2z
are independent. Thus, six independent stress components determine a stress state uniquely

and visa versa. Using the above stress tensor, the three principal stresses can be determined

using the characteristic equation

oij —odij| =0 (3.2)
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which can be expanded to
o —No?+Lo-I3=0 (3.3)

where 8;; is the Kronecker delta, I1, I, and I3 are the invariants of the stress tensor. In

terms of the principal stresses, ¢, 02 and &3, the invariants are

Iy, = o,+03+ 03
L, = 0,0y + 0903+ 0301 (3.4)
I3 = 010203.

In plasticity theory, it is customary to decompose the stress tensor as
gij = Omdij + Sij (3.5)
where oy, is the hydrostatic stress given by

Om = 30 =

(01 + 02+ 03) (3.6)

W -

(Uzz + Uyy + 022) =

and S;; is the deviatoric stress tensor. Using the deviatoric stress tensor, the deviatoric

stress invariants can be defined as

J = 8§;=0
1 1
J2 = 585 = gllon - 03)* + (02 — 03)* + (03 — 01)”] (3.7)

1
J3 = gSiijkSki=S15253~

The three invariants, Iy, Jo and J3 were discussed in Chapter 1. Invariants of the effective

stress which are used in the proposed model are defined in a similar manner (Chapter 4).

3.2 Rate Independent Plasticity

In this section, the fundamental aspects of classical or rate-independent plasticity are ex-
plained. The three basic elements of classical plasticity are yield criterion, flow rule and

hardening rule.
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3.2.1 Yield Criteria

In a uniaxial stress state, the elastic limit is defined by the yield stress. Under combined
stresses, the elastic limit is defined by a surface in stress space. Mathematically, the elastic

limit, for a general anisotropic material is expressed as

floi;) = 0. (3.8)

Invariant representation of yield

For an isotropic material, the orientation of principal axes is immaterial and hence the
principal stresses, o1, 02 and o3 are sufficient to uniquely describe the state of stress. The
principal stresses form the integrity basis (Spencer and Rivlin [1962]). It is customary to

use I, Jo, and J3 as an integrity basis. Hence, the yield function becomes
f(I1,J2, J3) = 0. (3.9)

As a further refinement to this criterion, evolution of material state can be incorporated in

the integrity basis to represent the flow behavior.

Pressure independent yield criteria

Since yielding of most metals is found to be insensitive to hydrostatic pressure, it follows
that shear stresses must control the yielding of such materials. There are several shear

stress based yield criteria. Traditionally, Tresca and von Mises criteria are widely used for

defining yield in metals.

1. Tresca Yield Criterion states that yielding occurs at a material point, when the
maximum shearing stress at that point reaches a critical value k. In three dimensional
principal stress space, the yield surface is a regular hexagonal cylinder with its axis

along the hydrostatic stress axis.

2. von Mises Yield Criterion states that yielding occurs when the strain energy of

distortion in a material reaches a critical value. In three dimensional principal stress
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space, the yield surface is an infinite circular cylinder with its axis aligned with the

hydrostatic stress axis.

The Tresca and Mises yield functions are independent of: [;, implying hydrostatic pressure-

independence; and J3, meaning no asymmetry between tensile and compressive stresses (no

SD).

Pressure-dependent yield criteria

Geological materials such as soils, rocks and concrete are hydrostatic pressure sensitive.
Hence, their yield representation must involve I;. Some metallic materials are also pressure
sensitive and require a different yield representation compared to the conventional Tresca
or Mises criterion (Drucker [1973], Spitzig [1975]). The simplest and most popular two-

parameter models are those of Mohr-Coulomb and Drucker-Prager.

Mohr-Coulomb Criterion

Mohr’s criterion is based on the assumption that the maximum shear stress is the decisive
measure of yielding. It states that yielding occurs when the radius of the largest principal
circle touches the yield envelope, which are straight lines in the (o, 7) space as shown in

Figure 3.1. Mathematically, this can be expressed as
|7} = ¢ — o tang (3.10)

in which c¢ is the cohesion and ¢ is the angle of internal friction; both are material constants
determined by experiments. In special cases of frictionless materials, for which ¢ = 0,
equation 3.10 reduces to the Tresca criterion. In terms of the stress invariants, the criterion

can be written as

f(l, J2,8) = 1Il.sz"n(j>+ \/J_z[sin(ﬂ + I) + icos(e + z)sim;ﬁ] —ccosp =0 (3.11)
3 3 V3 3
where # depends on Jy and J3 as
cos(360) = 37\/3—‘1%
Jg

Graphically, this criterion is shown in different stress planes in Figure 3.1.
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Figure 3.1: The Mohr-Coulomb Yield Criterion

Drucker-Prager Criterion

The Drucker-Prager criterion is a simple modification of the von Mises criterion to include

the effect of hydrostatic pressure on yielding. Mathematically,

f,B)=al+ VR -k=0 (3.12)

where a and k are material constants. When « is zero, it reduces to the von Mises criterion.
The yield surface here, is a right circular cone in the principal stress space, as shown in

Figure 3.2.

Unlike the Mohr-Coulomb hexagonal yield surface, the Drucker-Prager surface is smooth.
This facilitates its application in plasticity theory because it becomes easy to calculate the

normal vector to the yield surface numerically.
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Figure 3.2: The Drucker-Prager Yield Criterion

3.2.2 Flow Law
Plastic Potential Theory

The general mathematical treatment of the constitutive equation for plastic deformation
was proposed by von Mises in 1928. He noticed that in elasticity theory, the strain tensor
was related to the stress through an elastic potential function, the complementary strain

energy U, such that

oU,

s (3.13)

€ij =

By generalizing and applying this idea to plasticity theory, Mises proposed that there exists

a plastic potential g(o;;), such that the inelastic strain rate é{j could be derived from the

following flow rule:

o=\ 99

= .14
] aU'z'j (3 )

where A is a proportional positive scalar factor which can be determined from the yield
criterion. Plasticity theory based on the above flow rule is called plastic potential theory.

The following remarks should be noted about the above flow rule:

1. Geometrically, the plastic potential g(o;;) = 0, represents a surface in the stress space
and é,-Ij can be represented by a vector in this space. The inelastic strain rate vector
is normal to g(oi;) = 0. Therefore, equation 3.14 is also referred to as the normality

flow rule in plasticity theory.
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2. If inelastic flow is hydrostatic pressure independent, and thus incompressible, the
corresponding plastic potential surface in the principal stress space must be cylindrical
-1

(not necessarily with a circular cross section) with 0, = 09 = 03 as its axis. €

is
perpendicular to this axis representing only shape changes of the surface. This is not

the case for hydrostatic pressure-dependent materials.

3. A common approach in plasticity theory is to assume that the plastic potential func-
tion g(oy;) is the same as the yield function f(o;;), so that the flow law can be written

as

) . af
!. fy
€ )\80'1'_7' (3.15)

and the inelastic strain rate vector is normal to the yield surface. This is called the

associated flow rule. On the other hand, if g # f, the flow rule is called nonassociated.

4. In general, experimental observations show that inelastic deformation of metals can
be characterized quite well by an associated flow rule, but for some porous materials

a nonassociated flow rule provides a better representation of inelastic deformation.

Prandtl-Reuss Incremental Stress-Strain Relations

The Prandtl-Reuss flow theory is based on the following three assumptions:

1. The principal axes of the inelastic strain increment are coincident with those of the

current stresses.

2. The inelastic strain increments are proportional to the deviatoric stress tensor.
3. No volume change occurs during inelastic deformation.

4. Initial response is isotropic.

In contrast to the deformation theory, the stress-strain relation in the flow theory is given

in an incremental form. Here, the inelastic (deviatoric) strain increments are given by

del; = dX Sj; (3.16)
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Figure 3.3: Graphical Representation of Flow Rule

where d\ is a positive scalar factor. This relation is called the Prandtl- Reuss relation. An
interesting observation is that the associated flow law for the Mises yield function is the
Prandtl-Reuss relation. This means that the Prandtl-Reuss relations are associated with

the Mises yield criterion. The flow rule is graphically shown in Figure 3.3.

Subsequent Yield Surface

For an elastic-perfectly plastic material, the subsequent yield surface is the same as the
initial yield surface since there is no increase in stress carrying capacity of the material
beyond the yield stress. But, for hardening materials, the two surfaces are different and
there are various models to describe how the initial surface evolves into the subsequent yield
surface. Before discussing these models, the criteria for loading and unloading should be

defined.

Loading criteria

For a hardening material, if the stress state tends to move out of the yield surface, we have
a loading process and elastic-plastic deformation is observed. Additional plastic strains are
produced and the configuration of the current yield or loading surface changes, so that the
stress state always stays on the subsequent loading surface. If the stress state tends to move
into the yield surface, we have an unloading process. Only elastic deformation occurs and

the loading surface remains unchanged. The other possibility of stress change from a plastic
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Figure 3.4: Loading Criterion for a Work-Hardening Material

state is that the stress point moves along the current yield surface. This process is called
neutral loading. Mathematical expressions for classifying these criteria are called loading

criteria, and may be expressed by:

f =0, ﬁdo,-j > 0 : Loading
Joj
of .
f = 0, =—=—do;; = 0 : Neutral loading (3.17)
doi;
of

f =10, 5—do; <0: Unloading.
(4]

The gradient vector, n;;(=8f/80;;) is the outward normal to the yield surface f = 0. These

criteria are illustrated schematically in Figure 3.4.

Consistency Condition

During inelastic deformation, the elastic region has to change so that the stress state remains

on the yield surface. Mathematically, this condition is expressed as
flo+do,k+dr) = 0 (3.18)

where x is the hardening parameter. In incremental form, it may be rewritten as

of of . _
%da + andﬁ = 0. (3.19)

This equation is known as the consistency condition, and lends itself to the determination

of the magnitude of plastic strain increment. The consistency condition ensures that the
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plastic loading path begins at the current yield surface and ends at the subsequent surface,

and that changes in the size and location of the yield surface are consistent with the adopted

hardening rule.

Hardening Laws in Plasticity

For work hardening materials, stress states can exist beyond the initial yield surface and the
yield surface evolves such that the current stress state always lies on it. There are various

models describing this evolution of the yield surface. These are called hardening models.

Isotropic Hardening

This is the simplest hardening model and is based on the assumption that the yield surface
expands uniformly without distortion, as the inelastic flow occurs, as shown in Figure 3.5(a).
If the yield surface has the form f(oy;) = k?(ep), the size of the yield surface is governed
by the value of k2, which depends upon either effective inelastic strain or plastic work.

Isotropic hardening can be observed in materials with forest dislocations.

Since the loading surface expands uniformly(or isotropically), it can not account for the
Bauschinger effect exhibited by most structural metals. Hence, it will not lead to realistic
results when complex loading paths involving significant changes in the direction of stress

vector are considered.

Kinematic Hardening

The kinematic hardening model assumes that during inelastic deformation the yield surface
translates as a rigid body in the stress space, keeping its shape, size, and orientation the
same as that of the initial yield surface. Kinematic hardening is often associated with

dislocation pileups in a material. This model has the form
f(O',‘j — a,-j) - k2 =0 (3.20)

where k is a constant and @;; are the coordinates of the center of the yield surface, which

changes as inelastic deformation progresses. This is shown graphically in Figure 3.5(b).
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Figure 3.5: Hardening Rules: (a)Isotropic; (b)Kinematic

Mixed Hardening

A combination of isotropic and kinematic models leads to a more realistic mized hardening

model whose loading function can be expressed as
floy —aj) — k2(6p) =0. (3.21)

In engineering application for metals, the concept of mixed hardening is attractive. The
loading surface translates and uniformly expands in all directions; i.e. it retains its original

shape. With mixed hardening, different levels of Bauschinger effect can be simulated.

Drucker’s Stability Postulate

Drucker [1959] defined a stable material as one which satisfies the following conditions:
1. The work done by an external agency during the application of an added set of forces
on the change in displacement it produces, is positive.

2. The net work performed by the external agency over the cycle of application and
removal of the added set of forces on the changes in displacements it produces is

nonnegative.
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These criteria are called Drucker’s Stability postulate. The first is for a work increment
during loading and is called stability in small and the second is for a work increment after

full load /unload cycle, and is termed stability in cycle. Mathematically, these reduce to

dode > 0 loading; (3.22)

dode! > 0 complete cycle. (3.23)

Stability in a complete cycle leads to the following:

(035 — o3)é; 2 0 (3.24)

where 0;; is a stress state on the yield surface and o;; is any possible stress state inside or

on the yield surface. This is called mazimum plastic dissipation postulate.

Convexity and Normality

If the plastic strain coordinates are superimposed upon the stress coordinates, as shown in
Figure 3.6, equation 3.24 can be interpreted geometrically as the scalar product of the stress
increment vector (oy; — o0;) with the strain increment vector de{j. A positive scalar product

indicates an acute angle between these two vectors. The stability postulate therefore leads

Ao
g |______ B-=
o—o%)de! >0
o’ - '_'&"%*
A A
L del,
0 ¢ >

Figure 3.6: Stability in Cycle: Stress Path ABC produced by External Agency

to the following consequences for work hardening materials (Drucker [1960}):

1. Convexity: The initial yield surface and all the subsequent yield surfaces must be

convex.
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2. Normality: The inelastic strain increment vector, de{j must be normal to the yield

surface at a smooth point and must lie between adjacent normals at a corner.

3.3 Rate Dependent Plasticity

One way that loading history affects the constitutive relation is through rate sensitivity,
the deformation produced by a slow loading rate is different, almost invariably greater than
that produced by rapid stressing. A particular manifestation of the time dependence is the
fact that the deformation will in general, increase in time at a constant stress; called creep.

Relazation, on the other hand is the decrease in stress with time for a given strain.

Many physical and chemical processes in metals are thermally activated and hence the
dependence of material behavior on temperature. For most metals, creep is thermally
activated if the temperature is higher than 30% of the melting temperature. Creep can
cause failure, either due to excessive deformation or creep rupture. These processes are

often governed by the Arrhenius rate equation, which has a general form

A ePF/RT (3.25)

éSS
where €, is the steady state creep rate, AFE is the activation energy, k is Boltzmann’s con-
stant and T is the absolute temperature. The rate sensitivity of a work-hardening material
itself increases with temperature. The above equation permits, in principle, the simul-
taneous representation of the rate sensitivity and the temperature sensitivity of metallic

materials.

An alternative way of representing the dependence of material response on temperature and
rate is by assuming that the strain, in addition to stress and temperature, depends on an
array of variables, ag. These variables are called internal, or hidden variables, that usually

take on scalar or second rank tensor values. The strain is accordingly given by
€ = €(0i5, T, ag). (3.26)

Another important effect observed in metals is creep which depends on stress level and

temperature. Rate independent plasticity does not represent these effects. This section
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starts with general principles in mechanics that lead to the internal variable theory of

plasticity.

3.3.1 General Principles in Mechanics

Before we discuss the internal variables approach, it is necessary to lay out the universal
laws that must be obeyed during any process, regardless of the properties of the material
which is undergoing the process. There are five such principles to be considered in plasticity

theory (Khan and Huang [1995]).

Conservation of Mass

According to the law of conservation of mass, no mass can be created or destroyed in a

given volume v of the material, which leads to
pdv = constant (3.27)

where p is the material density.

Conservation of Momentum

The rate of change of total momentum of any given set of particles equals the vectorial sum
of all the forces acting on this set of particles. For a set of particles that currently occupies

a spatial volume, v, with surface traction and the body forces acting on it, this law leads to
oi; + pbi = pa; (3.28)

where b;’s are the body forces per unit volume and a;’s are the components of the acceler-

ation of the body. Equations 3.28 are also known as the local equations of equilibrium.

Conservation of Angular Momentum

This principle is also a generalization of Newton’s second law of motion for continuum

mechanics. It states that the rate of change of moment of momentum for any given set
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of particles equals the vectorial sum of the moments acting on it. Mathematically, the

principle of conservation of angular momentum can be stated as

/(p €ijk Tj ak)dv = /R(e,'jk Tj tr)ds + /(p €ijk Tj bk)d'v (3.29)

v v

where e;j is the alternator, ¢; is the traction force vector and r; is the position vector of
the body (volume v enclosed by surface R) under consideration. This, along with equation

3.28, establishes the symmetry of the stress tensor. i.e. gi; = 0ji.

Conservation of Energy: The First Law of Thermodynamics

Extensive experimental observations indicate that energy can never be created or destroyed
in the universe, but can only be transformed from one form to another. For a closed system
the total rate of work done on the system by all the external agencies must equal the rate
of increase of the total energy of the system. This principle is also called the first law of
thermodynamics. If we consider only mechanical and thermal energy in a closed system,

the first law can be written as
pt = oyéi; + pro— i (3.30)
where 7 is the internal energy per unit volume, r is the internal heat source per unit

volume, g; ; is the heat flux out of the system through its boundaries, and o;;¢;; represents

the mechanical work done by the external forces that is not converted into kinetic energy.

Clausius-Duhem Inequality: The second Law of Thermodynamics

The second law of thermodynamics limits the direction of the energy transformation. When-
ever a transformation occurs, the energies involved must obey the first law. It has been
experimentally observed that while some energies transform from one type to another, there
are other types of transformations that are impossible. For example, heat flow can occur
from a warmer system to a colder system, but the reverse heat flow can never occur. The
kinetic energy of a moving body can be converted into heat by friction, but the heat caused
by friction can never be converted into kinetic energy. While the first law cannot describe
these observations, it is the second law that governs this directional phenomenon observed

in the energy transformation processes.

NASA/CR—2001-210715 42



The second law postulates that there exists a state function called the entropy; the change

in entropy is given by
2 dQ
AS = S-5 = / T for a reversible process
1
2dQ . .
AS = S -5 > T for an irreversible process
1

where dQ is the heat input during the process, T the temperature, and indices 1 and 2
denote the starting and ending points of the process. It can be seen that the change in
entropy of a system can never be negative; it is zero for a reversible process and positive for

an irreversible process. If only mechanical and thermal energies are considered, the second

law can be written as

. T qi
— pg— = > 3.31
ps p= + ( ")i 0 (3.31)

where s is the specific entropy. This relation is called Clausius-Duhem inequality. Using

equation 3.30, r can be eliminated and we get

. . ] 1
prs — pu + oy€; — iQiT’i > 0. (3.32)

By introducing a thermodynamic potential H, called the Helmholtz free energy, given by

H = u — sT', we can rewrite equation 3.32 as

X . ) 1
—pH — psT + o465 — T_qiT’i > 0. (3.33)
In thermodynamics, the internal energy u, entropy s, heat flux ¢ and the stress o are
all considered state functions that can be determined by the state variables using state

equations or constitutive equations.

3.3.2 Internal Variables: General Theory

In thermoelasticity, internal energy u, entropy s, and heat flux g, can be fully described by
the current value of stress and temperature. The situation becomes more complex when
deformation is inelastic. Here, in addition to the current values of the state variables, the
history of the deformation is also important. This requires identifying more state variables

to describe the deformation history. It is very hard to enumerate all of the relevant state
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variables from macroscopic observations alone. Microscopic deformation considerations are
needed and some assumptions have to be made to use certain macroscopic (observable)
variables as representatives of the microscopic phenomenon. After the state variables are
chosen, the mathematical forms of the constitutive equations should be determined. This
involves experimental evaluation and mathematical formalization, which at times are very

complex (Lubliner [1990]).

In thermomechanics, the state variables are identified by using the concept of internal
variables. It is postulated that the current state of an inelastically deformed solid can
be determined by the current values of stress, temperature, and a set of internal variables.
The history of deformation is indirectly included in the evolution of these internal variables.

Mathematically, this can be stated as

u = u(oij, T,ag)
s = S(O'ij, T, aﬂ) (334)
q = 4q(0i,T,ap)

where ag, i=1,2,...,n are internal variables which can be scalars, vectors or tensors. These
variables can be considered in two categories; (1) physical variables describing the aspects
of local physico-chemical structure which may change spontaneously, and (2) mathemat-
ical constructs or phenomenological variables, in which case the functional dependence of

stress(or strain) on the internal variables, and their rate equations, is assumed a-priori.

Thermomechanical Aspects

An equilibrium state of a system is a state that has no tendency to change without a change
in external controls. The local state (0,7, a) may be called a local equilibrium state if
the internal variables remain constant at a constant stress and temperature. This can be

mathematically stated as
a = g(o,T,a) =0, i=12 ..n. (3.35)

In an elastic continuum, every local state is an equilibrium state, though the continuum

need not be globally in equilibrium. On the other hand, existence of non-equilibrium states
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is an essential feature of rate-dependent inelastic continua. Such states evolve in time
by means of irreversible processes, of which creep and relaxation are examples. Hence,
the thermomechanics of inelastic continua belongs to the domain of thermodynamics of

irreversible processes (Lubliner [1990]).

3.3.3 Generalized Flow Potential

A general concept of the flow potential is due to Rice [1970,1971]. First, a generalized flow
potential is defined which is assumed to depend on the the stress, temperature and a set of
internal variables. The flow and evolution laws can be obtained by simply differentiating
this potential.

For a strain formulation, generally the Helmholtz free energy, H(e;;, T, 6:: A 3) is used as the
generalized potential. This potential is convex and the mechanical and thermal quantities

can be obtained as follows:

OH 0H 0H
%S e T Ta T T, (3.36)
1] ﬂ
For a stress formulation, Gibb’s complementary free energy (®), given by
<I>(a',']-, T, (,\!5) = 0’1‘]‘6,']‘ - F (337)

is used as the generalized potential, from which the state variables can be obtained as

0d ad ad
i = —— = - — A = —_-— 3.
6” 80’,']', 8 6T’ B aag (J 38)
Further, the evolution is governed by the dissipation potential, (0;;,T,a3) as
o0 . o0
.J ¢
o= Ag = — —. 3.39
EU aO','j ’ 5 Bag ( )

3.3.4 Internal Variable Theory of Viscoplasticity

Most researchers use the term viscoplasticity in the classical sense, that is, to denote the
description of rate-dependent behavior with a well defined yield criterion, but this usage is

not universal. Others, following Bodner [1968], use the term for highly non-linear behavior,
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without a well defined yield, that is characteristic of metals, especially at higher tempera-
tures. These are unified models. Nevertheless, both of these are subclasses of the internal

variable models (Lubliner [1990]).

Classical Viscoplasticity

Suppose we have a continuous function f(o,T,a) such that there exists a region in stress
space where f(o,T,a) < 0 and é{-]- = 0, then f(o,T,a) = 0 is the threshold surface in
the stress space and the elastic region forms its interior. This definition does not require
simultaneous vanishing of all the internal variable rates (ég) in the elastic region. Hence,
phenomenon like strain-aging, which require evolution of local structure while the material
is stress-free, can be represented. However, this is of importance only for processes whose

time scale is comparable to the relaxation time for strain-aging.

The dependence of the threshold function on the internal variables g describes the hard-
ening properties of the material. During hardening, the threshold function decreases from
a positive value toward zero at a constant stress and temperature, that is f < 0. Similarly,
softening is characterized by f > 0. In the limiting case f =0, ie. fis independent of ag

and the material is perfectly plastic material.

Unified Viscoplasticity

According to Bodner [1968], yielding is not a separate or independent criterion but is a
consequence of a general constitutive law of the material behavior. Since the 1970’s, several
constitutive models for the rate-dependent inelastic behavior of metals have been formulated
without a formal hypothesis of threshold surface. These models can successfully represent
creep especially under high temperature without a decomposition of strain into plastic and
creep strains. They have consequently come to be known as unified viscoplasticity models,
and are particularly useful for the description of bodies undergoing significant temperature

changes.

Perhaps the simplest unified model is due to Bodner and Partom [1972,1975] in which the

NASA/CR—2001-210715 46



flow equations are given by
e = ¢Sy (3.40)
where

¢ = ¢(Do,n, Z) (3.41)

and D,, n are material parameters and Z depends on the inelastic power (W;). The rate

equation is
Wi = oijél; = 2020(Wi, Ja). (3.42)

Here, temperature dependence is achieved through temperature-dependent material param-

eters.

More recently, sophisticated unified viscoplastic models, that describe many features of the
behavior of metals at elevated temperatures have been developed. Arnold and Saleeb [1994]
developed a Generalized Viscoplastic model with Potential Structure (GVIPS). In GVIPS,
the total strain is decomposed into elastic and inelastic strains. However, it is still unified in
the sense that the inelastic strain in not further decomposed into plastic and creep strains.
It is a fully associative, multiaxial, non-isothermal, non-linear kinematic hardening model
that accounts for most aspects of temperature and rate-dependent inelastic deformation.
This is the baseline model that is modified in the current work and will be presented in

detail in Chapter 4.

3.4 Review of Related Work

It is clear that the SD cannot be represented by the classical Mises yield criterion with
an associated flow rule. This prompts us to look at more general constitutive models that
can better represent the yield and flow behavior of the materials that exhibit a SD effect.
Reviewed here are some forms of threshold functions, definitions of flow, and flow rules that

have been used to capture different aspects of flow behavior in materials.
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3.4.1 General Threshold Functions

One of the first general yield functions for metals was proposed by Drucker [1949] as de-
scribed in equation 1.5. A function based on J;-J3 was better than either Tresca or von
Mises functions in correlating yield surface data for the aluminum alloy. Further, he proved
that the deformation theory of plasticity falls short in representing a general state of stress

in a material and is not compatible with the Jo-J3 representation of yield.

Spitzig et al [1975] proposed a generalized yield function to account for the observed SD
effect in tempered AISI 4310 and 4330 steels.

F=0—an b5 —c (3.43)

where a, b, and ¢ are material constants. To be able to correctly predict the observed
volume expansion during inelastic deformation, they suggested the use of a non-associated

flow law.

Lee and Ghosh [1996] addressed the problem of expressing the non-coaxiality of stress path
in constitutive modeling. Due to shear banding, all the stress increments in a given stress
path do not have the same principal axes. This is referred to as non-coaxiality and is
attributed to the rigid body rotations associated with pure shear, compressibility due to
Poisson effect and plastic dilation. To account for non-coaxiality and shear banding com-
monly observed in deforming metals, they proposed the inclusion of J;3 in the constitutive
model. To this end, they proposed two modifications to the Drucker-Prager criterion; one

for materials weak in shear and another for those weak in tension.

Lissenden et al [1999] developed a method for determining rate dependent flow surfaces for
Inconel 718. Inadequacy of J» based models to represent the asymmetry in yield (between

tension and compression) led them to use the following forms for the yield functions:
f o= ali+bJY% -1 (3.44)

[ = b3J3/2+C J3—1

where g, b, and c are material constants that fit to the experimental data. These functional
forms fit the yield surface data very well and the outward normals to the surfaces were

found to be consistent with the experimentally determined directions of the inelastic strain
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rate vectors.

In order to characterize the viscoplastic behavior of geological materials, Desai and Zhang

[1987] proposed a generalized yield function of the form

f=JR~(~all+yI})ezp(8 1) - B 5" (3.45)
where a, v, 3, n, and m are response functions and S, = J3l /3 / J21 /2. This yield function is
continuous in stress space. It permits hierarchical development to incorporate progressive
complexities such as associative and non-associative responses, anisotropic hardening, strain

softening and fluid pressure.

Mandl and Luque [1970] analyzed a fully developed shear flow of frictional granular material.
They justified the use of Mohr-Coulomb criterion for planar elements that have normals in
the flow plane to describe yield in this situation. They rewrote the criterion in cartesian

coordinates as
1/2

f= (ZM%@) sinp + ccosp — (UmTW)Q +0§y . (3.46)

Functions based on Internal Variables: Threshold Functions

Wegener and Schlegel [1996] studied the suitability of different yield functions for approx-
imation of subsequent yield surfaces to capture various effects of distortional hardening.

They chose a yield function of the form
f=fF 2z, k=1.) (3.47)

where T is the effective shear stress, z; are the internal variables that are tensorial in nature.
They compared four experimental yield surfaces corresponding to different load paths from
the work of Phillips and Tang [1972] and found that a sixth order tensor for z; gave a good

representation of the subsequent surfaces for all the cases.

Chaboche [1977] used inelastic strain(e’) and strain like symmetric second-rank tensor A as
internal variables. The thermodynamic force conjugates to these variables are the stress-like

variables, R and «;j, respectively, and the assumed threshold surface is

flo,a,R) = \/JTQ — % — ko =0 (3.48)
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where
- 1
Jo = ‘2‘(Sz'j — ai5)(8ij — aij) (3.49)

aij being the deviator of a;; and k, is the yield strength in shear. The yield surface is
of Mises type, capable not only of expansion (as measured by R) but also of translation
represented by a;; which marks the center of elastic region. The invariants used in the yield

function are effective deviatoric stress invariants.

Robinson and Ellis [1986] assumed the following form for the dissipation potential:
Q=k|— /F"dF + E/G”"dG’ (3.50)
2u H i

where p, R, H, n, m, k are material constants. The threshold function F depends on Jo
and J3 and has its origin in Drucker’s form (equation 1.5).
(- eI}

7 (3.51)

F(J2, J3) =

and the function G’ depends on the corresponding invariants of the internal stress (J; and
J3) as

(3 — cJg’)'/3

=2 (3.52)

GI(Jév Jé) =

The effective and internal stress invariants are defined in Chapter 4. The threshold function

reduces to the Mises criterion for ¢=0, and Drucker’s model for ¢=-1.75.

Hopkins [1990] developed the flow and the evolutionary laws for the above model. He
arrived at the limits on the value of ¢ using material stability criterion. He also determined

functional forms for F and G’ for non-monotonic loading conditions like stress reversals.

Janosik and Duffy [1997] pointed out that ceramic materials exhibit complex rate dependent
thermo-mechanical behavior. To account for the SD effect and the sensitivity of these
materials to hydrostatic pressure, they introduced I and J; in the definitions of F and G’
in the Willam and Warnke model [1975]. These functions were in turn used in Robinson’s

model to develop the constitutive laws for ceramics.
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3.4.2 Flow Definitions

At elevated temperatures, metallic alloys exhibit strong time-dependent behavior and the
concept of yield surface, in the classical sense, generally breaks down as we move into the
realm of viscoplasticity. However, analogous geometrically and thermodynamically based
concepts such as surfaces of constant strain rate (SCISRs) and surfaces of constant dissipa-
tions (SCDs) have been postulated to play the same central role in viscoplastic constitutive
theories as yield surfaces do in classical plasticity. Physical quantities used to define the

amount of inelastic flow in a material are defined mathematically as follows:

1. Inelastic power is the product of the stress and the inelastic strain rate.

2. Dissipation represents the rate of work that cannot be recovered in a process and
mathematically is the difference between inelastic power and the product of internal

stress and internal strain rate.

3. Egquivalent inelastic strain rate is the square root of the self product of strain rate.

Battiste and Ball [1986] used SCISRs and Clinard and Lacombe [1988] used SCDs to describe
the dissipation potentials at elevated temperature for monolithic materials. Lissenden et
al [1997a] pointed out that SCISRs and SCDs need not represent the same surfaces under
all conditions and hence needs careful consideration. A good example of this would be the
dissipation potential in equation 3.50. For this potential, the two surfaces are different and
become identical only if the J3 dependence is removed. Of all the surface definitions that

represent inelastic flow, the SCDs are most meaningful from the thermodynamics viewpoint.

An important issue is that the SCDs are not experimentally measurable. At best, ex-
periments can measure the surfaces of constant inelastic power (SCIPs) as explained by
Lissenden et al [2000]. Hence, it is important to correlate SCIPs that can be experimentally
determined, to SCDs that are theoretically meaningful. This subject was addressed by Iyer
et al [2000a).
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3.4.3 Inelastic Behavior

In the inelastic region, the flow law relates the incremental stress to incremental inelastic
strain. The associated flow law, which is widely used in classical plasticity theory, was
described earlier. Here, the focus is on the non-associated flow laws that are required for

describing inelastic flow in some materials.

Mroz [1963] pointed out that the vector of incremental plastic strain can rotate significantly
for small inhomogeneity, even for a smooth yield surface, thereby leading to a non-associated
flow rule. This inhomogeneity is caused by plastic deformation at the microscale and is a
function of grain size, temperature, and elastic and plastic properties of the grain. Accord-
ing to him, the separation of total strain into elastic and plastic parts is difficult due to

inhomogeneity, which affects hardening characteristics and laws of plastic deformation.

Spitzig et al [1975] used the yield function in equation 1.7 for describing flow in marten-
sitic steels. An associated flow law overpredicted the volume expansion by a factor of 15.
They proposed the use of non-associated flow law for accurate prediction of volume expan-
sion during inelastic deformation. In Robinson’s model the flow law is associative but the

evolution law is non-associative.

Frantziskonis et al [1986] attributed the non-coaxiality of the plastic strain increment and
the stress increment in granular materials to intergranular friction and changes in the phys-
ical state of the material during deformation. They proposed a correction to the yield

function in equation 3.45 based on the deviation of the plastic strain increment from nor-
mality.

F = f +h(J;,€) (3.53)
where h is the correction function that depends on the three invariants J;, i=1 to 3, and
&, which is a hardening parameter. The use of F for the yield function leads to a non-
associated flow law, which is able to capture the effects such as volume change and stress

path dependence.

Mand] and Luque [1970] found that the internal kinematical constraints cause the direction
of the principal macrostress to deviate from the direction of strain increment, though the

granular material is assumed to be completely isotropic. This non-coaxiality is perfectly
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compatible with material isotropy and has only minor consequences on the mathematics of
classical plasticity. They found the angle of deviation to be the half angle of internal friction
for a critical void ratio. Drucker’s stability postulate is not satisfied in the overall sense.
They decompose the stress tensor into two parts; one capable of performing inelastic work
and the other not capable of performing work. The inelastic strain increment is coaxial
with the working part of stress, thereby indicating that a weakened form of the stability

postulate holds.

Another instance of application of non-associated flow laws is by Kang and Willam [1999]
who used a yield function that depends on all the three stress invariants and is continuous
in stress space except at the point of equitriaxial tension. Application to concrete resulted
in satisfactory prediction of brittle failure mode in tension and compression failure in pure

shear with volumetric constraint.
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Chapter 4

Proposed Viscoplastic Model

In this chapter, a viscoplastic model capable of predicting a SD is proposed and subse-
quently specialized for aged IN718 at 650°C. This model is an extension of the Generalized
Viscoplastic Model with Potential Structure (GVIPS), developed by Arnold and Saleeb
[1994]. First, a background relating to the internal variables used in GVIPS is presented.
This is followed by the theoretical framework of GVIPS and constitutive equations. The
proposed modifications to GVIPS to account for the observed SD are presented and the
resulting formulation is derived, giving the flow and evolutionary laws. Finally, a detailed

procedure to estimate the material parameters in the model is proposed.

4.1 Background

Inelasticity exhibited by the thermomechanical response of engineering materials is related
to irreversible thermodynamic processes. These involve energy dissipation and material
stiffness variations due to physical changes in the microstructure. Consequently, thermo-
dynamic arguments have often been utilized in the internal variable approach in the for-
mulation of phenomenological constitutive laws (Coleman and Gurtin [1967]; Rice [1971];

Lubliner [1972,1973]; Lemaitre and Chaboche [1990]).

Thermodynamic admissibility restrictions associated with various dissipative mechanisms

underlying the above models reduce to the well-known Clausius-Duhem or dissipation
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inegquality. The thermodynamically based constitutive equations in these models are dis-
cussed with respect to the above restriction. Mathematical constructs of flow or dissipation
potential and the associated normality conditions are introduced for convenience in satis-
fying the above constraints based on simple properties of non-negativeness and convezity
of these functions (Ponter and Leckie [1976]; Rice [1970]; Ponter [1976], Onat and Leckie
[1988]; Robinson and Duffy [1990]; Lemaitre and Chaboche [1990]; Freed et al [1991)).
Such forms however, do not automdtically imply the existence of total or integrated forms
of thermodynamic potentials; for example, the Helmholtz free energy or the Gibb’s com-
plementary free energy. If the latter is assumed a-priori, the corresponding formulation
is termed a complete potential-based structure; on the other hand, those derived from an

assumed dissipation potential form are referred to as incomplete potential-based models.

The complete potential-based class of inelastic constitutive equations possesses a number

of distinct and important attributes:

1. They constitute the cornerstone of numerous regularity properties and bounding the-

orems in plasticity and viscoplasticity (Ponter [1976,1979,1980]).

2. They result in sufficiently general variational structure, whose properties can be ex-
ploited to derive a number of useful material conservation laws (Eshelby [1951,1956];

Rice [1968]).

3. The discrete form of the assumed Gibb’s potential is numerically advantageous in the
development of efficient algorithms for finite element implementation (Saleeb et al

[1990]; Saleeb and Wilt [1993]; Maier and Novati [1990]).

A number of variables have been used to describe the evolution of the internal structure,
as inelastic deformation occurs. The ones usually used in sophisticated unified theories are

defined here.

1. Internal Stress represents the inner stress field associated with immobile dislocations.

It is smaller than the applied stress.

2. Effective Stress is the difference between applied and the internal stresses.
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3. Drag Stress is based on the dislocation motion. Increase in drag stress decreases the
inelastic strain rate and thus increases the size of the elastic region, similar to isotropic
hardening.

GVIPS uses two variables; the drag stress which is non-evolving, and the internal

stress, which is tensorial and evolves with inelastic deformation.

4.2 Theoretical Framework

GVIPS applies to an initially isotropic material. It is limited to small deformations and the
initial state of the material is assumed to be stress-free. Gibb’s thermodynamic potential
function (@) is assumed to depend on stress, temperature, and an array of internal variables

(Coleman et al [1967]; Lubliner [1972,1973]).
In its differential form, the Gibb’s potential, ®(o;;,a4,T), is written as follows (Lubliner
(1973]; Ponter [1979]):

d® = —¢;doy; — SAT — Agdag (4.1)

where S denotes the entropy, o the internal state variables, Ag the thermodynamic affinities

corresponding to ag, €;; the total strain and o;; the stress tensor. It follows from equation
p g B8s €ij j q

4.1 that
o od
oo
= — 4.2
S 57 (4.2)
o0
Ag = ———
g OJag

are defined as the equations of state (Malvern [1969]; Lemaitre and Chaboche [1990]) and
oij, ag, and T are force-like thermodynamic state variables while ¢;;, Ag, and S are the
corresponding conjugate displacement-like variables. The most general expression for the

total strain rate is obtained by differentiating the first of the above equations as

L _d_ o, Fe . o8 o
“ = dt 6(7,']' N 30’,']'60’,-5 re &Jijaag A aoijaT

T. (4.3)

Two options are available for describing the flow and evolutionary equations. The first

option assumes a fully coupled form, i.e., the inelastic strain rate is intimately linked to
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the thermodynamic internal state, hence its functional dependence is completely defined
once ® is assumed. This form is too restrictive, in that it requires proportionality between
the inelastic strain and the rate of change of internal state (Arnold and Saleeb [1994]). As
a result, the classical definition of steady state creep which requires an evolving inelastic
strain at a constant internal state, cannot be attained using this coupled form. This leads us
to the second option; a decoupled Gibb’s form, in which the selected internal state variables
are grouped a priori by separation of the inelastic strain as an independent state parameter
and suppressing all stress dependency of the remaining associated internal state groups in

the selected ® function. This form indeed allows the classical steady state creep.

4.2.1 Decoupled form

In the decoupled form, the evolution of inelastic strain is independent of the internal force-
like state variables, ag, associated with material inelasticity. It is this separation that
allows for inclusion of the classical notation of steady state creep. The Gibb's potential for

an isothermal case is expressed as
P = E(aij) - O'ijffj + H'(aﬁ) (4.4)

where F is negative of the elastic strain energy, the second term is inelastic work, and H !

is a material function.

Differentiating equation 4.4 with respect to stress, gives the total strain rate as a sum of
two components; elastic (or reversible)(éf;), and inelastic(é{j).

o

. . J
€ij = —aO'.ij = €f] + eij (45)
where
0’E
T i 4.6
EzJ [ agijaars] Ors ( )

1

and inelastic strain rate, ¢;;, is defined separately.

For an isothermal process, the energy balance requires that the external work rate be equal

to the sum of the internal work rate and the dissipation, i.e.

U,‘jé{j = Q(O’ij,ag) + Otgf.\g.
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The second law states that the change in entropy is positive. For an isothermal process

Q(o,-j,ag) = O’ijé{j — a[j/‘\g > 0. (4.7)

This is called the dissipation inequality.

The inelastic strain rate é{j is defined such that the dissipation inequality is satisfied. Dif-
ferentiating the dissipation potential Q with respect to o;; and ag we get the flow and

evolution laws,

PR 0

I — 4.8
4 - o (4.8)
; o
Ag = —— 4.9
8 Focs (4.9)
respectively. Using the Gibb’s potential, the evolution law can also be written as
. d 0P
A —_ - — . 4.10
8= 5 [ aaﬁ} Qpi & (4.10)
where
9%
= — 4.11
Qs OJaglay ( )

relates the internal force-like variables to the internal displacement-like variables and is
called the internal compliance operator. This operator is completely defined once ® is
chosen. It is interesting to note that this operator provides information about the curvature
of the Gibb’s potential as well as the relaxation trajectories in the associated stress space

(Arnold [1987]). The evolution law for the internal variable is

onN

—_— 4.12
b (4.12)

& = —[Q3]

The Gibb’s and dissipation potentials are directly linked through the internal state variables.
Clearly, this framework provides a structure in which the flow and evolutionary laws are

fully associative and hence easily integrable.

4.3 Generalized Viscoplastic model with Potential Structure
Using the above framework, Arnold et al [1996] developed a multiaxial, potential based,
fully associative, isothermal, unified viscoplastic model. This model possesses one tensorial

internal state variable, the internal stress (a;;) that is associated with dislocation motion.
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The forms of the Gibb’s potential (®) and the dissipation potential (2) are chosen as follows
(Saleeb and Wilt [1993]):

1 K2 B+1
¢ = %%~ T HEC (4.13)
) 1 (F>n+1 R (G)m+ﬁ+1
2u(n+1) H(m+8+1) (4.14)

where &, u, n(> 1), m(> 8+ 1/2), 8, R, and H are positive material parameters. The first
three are associated with the flow law and the rest with the evolution equation. The scalar
function F' depends on the effective stress and G depends on the internal stress invariants.

The McCauley brackets are such that

(Fy = F if F>0

= 0 otherwise

G) = G if G>G,

= G, otherwise.

This ensures use of different forms of F' in different regions of the state space to account for
stress-reversals, cyclic-loading and dynamic recovery effects. Also, G, is the cut-off value of
G, which is a small constant that helps fit the experimental data and prevents singularity

in the numerical solution when G tends to zero.

In the spirit of von Mises and owing to the deviatoric nature of the inelastic deformation,
only the quadratic invariants are considered in the definitions of the potentials for this

model. Hence the definitions of F' and G are as follows:

F=2_ (4.15)

G = =2 (4.16)
where jz is the effective deviatoric stress invariant defined as

~ 1
Jo = 52,72,7- (4.17)
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and Jj is the internal deviatoric stress invariant given by

1
Jy = 54 %j (4.18)
and the effective deviatoric stress is
2,']' = Sij — G4j5- (419)

The function F, acts like a threshold surface because no inelastic strain will occur if F < 0.
The size of this surface is dictated by the shear strength (k) and its location is determined
by a;;. Following the above framework and using these potentials (equations 4.13 and 4.14),

the flow law is derived as

(4.20)

and the evolution equations for the internal stress are

. H m
Q; = (Iijkl - Tlf—é_ﬂ)aija“) (@eil — RG akl) (4.21)

where [;;1; is the fourth order identity tensor.

The above equation consists of two terms that represent competing mechanisms in the
material; (1) a hardening term (associated with H, 3) that accounts for the strengthening
mechanisms, and (2) a recovery term (associated with R, m) that accounts for the softening
mechanisms and is called strain-induced recovery or dynamic recovery. These competing
terms in the evolution equations are consistent with the assumption about the nature of

internal mechanisms in the material (Miller [1987]; Freed et al [1991]).

4.4 Proposed Model

The model described in the previous section is Js-based, which is suitable for many metals
like titanium (Arnold et al [1996]). It cannot, however, account for the SD phenomenon
which is observed in aged Inconel 718. To do so, we need to generalize the above model.
The starting point here is the choice of Gibb’s and the dissipation potentials which have the
same form as equations 4.13 and 4.14 respectively. The threshold function is generalized

and then the flow and evolutionary laws are derived.
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Table 4.1: Material parameters for various threshold functions

Source Threshold (Yield) Function | m a b c

Mises Va-k /2 0 1/k 0

Drucker-Prager al;+v/J3-k 1/2 a/k 1/k 0
Drucker J3-3J2-k8 3 0 1/k% -9/(4kS)

4.4.1 Modified Threshold Function

As mentioned before, an elastically isotropic material that exhibits a SD must be represented
by a threshold function that depends on an odd power of I or J3 or a combination of
both. Pressure sensitivity requires dependence on I, while pressure insensitivity requires
dependence on J3 (and not I)). Here, the threshold function is generalized to include all
the effective stress invariants as follows:
- - ~3my

F=al™ 4+bJ" +cJ,® -1 (4.22)

where a, b, ¢, and m are constants to be fit to the experimental data. The invariants I

and J3 are defined as

I = oy—a

1
J3 = gzijzjkzk,-.

This form is convenient to use because it is an additive combination of all three effective
stress invariants. Initially, when the internal variables are zero, the invariants depend on

the external deviatoric stresses only, and the threshold function F is the yield function.

There are several advantages of choosing such a form of threshold function.

1. It is most general in that it incorporates all the three effective stress invariants.

2. The polynomial form is convenient for differentiation which is required to derive the

flow and evolution laws.

3. Equation 4.22 can be easily reduced to some of the classical yield functions by choosing

suitable values for a, b, ¢, and m; as shown in Table 4.1.
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4. For pure shear loading (f1:j3:0), the above functional form reduces to
F=bJ—1

which has the same form as the baseline GVIPS model. This feature will be useful in

characterizing the model, which is detailed in subsequent sections.

Further, for better flexibility of data fitting, the above threshold function is modified as

1

- - LMo
F=[aP™ 4bJm tc,® |7 — 1. (4.23)

Notice that threshold function in the equation 4.23 also reduces to the baseline GVIPS

model for pure shear loading (I~ 1=j3:()).

4.4.2 Flow and Evolution laws

Function G, which depends on the internal variables is chosen to have the same form as F

and can be written as
1

2m m
G =[all™ +bJ™ +cJ) 5 (4.24)

where a, b, ¢, and m; are same as those in equation 4.23. The invariants I{ and Jj are

defined as
II = ay
, 1
J3 = 30410k Cki-

Using these functions in the Gibb’s and the dissipation potentials (equations 4.13 and 4.14),
and by appropriate differentiation of the potentials, we can derive the flow and evolution
laws. In this section, only the final formulae are given. Detailed derivation is given in

Appendix A.

Flow Law

The associated flow law (equation 4.8) is used to derive the flow law. Using Q (equation

4.14) the inelastic strain rate tensor is obtained as

2
. K -~
& = —2MF"(F + 1™y (4.25)
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where

%ml—l "'zfnl“‘1

_ 4 - . T 2
T,-j = (2aI~12m‘ - §CJ2J3 )6,']' + bJéml 12,'3' + gCJ33 LigXjq-

Equation 4.25 is the flow law for the proposed model.

Evolution Law

The evolution equations for the internal variables can be obtained in a similar manner using

equation 4.12 as follows:

o0
oz
2
= 611 — ﬁ

b H

Ay =

GUHArm-m g, (4.26)
where
1 4 2 — _ 2 g
@y = (2al;"™ " - ¢ s ™ D8 + 6™ ay; + 3603 Laiqajq

where a;; is the internal deviatoric stress tensor. Equation 4.26 is the evolution law for the

proposed model.

Internal Constitutive Equation

The internal compliance tensor Q;;x; is obtained by differentiating ® (equation 4.13).

B G
Q"kl = — 62@ = Eia{G aakl] (4 27)
4 Ba,-jaakl H (’)a,-j ) ’

The internal constitutive rate equation is
é&ij = LijuAn (4.28)

where A;; are displacement like variables that are conjugate to internal stress tensor (cvij)

and L;jx, is the internal stiffness tensor (= Qi"j}d). Using G in equation 4.24 and differentiating
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we get

Qijkt = (4.29)
b 8¢ 2 2 _

T3 o7 (3™ ~ 1) JEI™ )60k

+b(m1 - 1)J§m1_2aijak1 + bJémlﬂl(sik(Sjl

2¢c 2, — 2 2 1 2J;
+§J§3m1 Haidrj + ajibin — gaijékl + (5m — I)J_é(aiqajqakpalp — TQquajqékl))

3
dc ,2,,, 1.2 J! 1+8-—m
o S (L 1)J—$akpazp5z‘j + agdij) + (—ﬁ-—l) ©i; Oki]-
3

2
%G(l+ﬂ—m1)[(2a(2ml . I)I{le -2 Jém,l*l +

Gam

This compliance tensor, when inverted and substituted in equation 4.28, will completely
define the evolution of internal stress. It is seen from equation 4.27 that the internal
compliance is not constant. It depends on the deviatoric and mean internal stresses. Thus
equation 4.28 is highly non-linear and rate dependent. A key difference between this model
and the baseline GVIPS model is the internal constitutive rate equation. Here, the total

internal stress rates are related to the internal strain rate (A;;), while in the baseline model

the deviatoric variables are employed.

4.5 Characterization of Material Parameters

The model now has eleven independent material parameters that need to be determined for

aged Inconel 718 at 650°C. These parameters are summarized below.

1. Flow law parameters (k, s, n): & is the threshold stress in pure shear, u is associated

with the viscosity of the material, and n is an exponent.

2. Hardening parameters (H, 3): These are responsible for work hardening of the material

during plastic deformation.

3. Recovery parameters (R, m): These parameters are associated with the recovery mech-

anism that competes with the hardening mechanism in the material.

4. Threshold function parameters (e, b, ¢, m;): Parameter a scales the mean stress

invariant I; while ¢ scales J3, and m; is an exponent.
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The parameter b is set to 1/x(?>™1) so that for a pure shear loading the threshold function,

and hence the flow and evolution equations will reduce to the baseline GVIPS model.

The methodology for characterizing the remaining ten material parameters is as follows:

1. Conduct pure shear experiments on aged Inconel 718. Fit the parameters associated
with flow and evolution laws (GVIPS parameters), &, y, n, m, 3, R and H to these
data using optimization. Since I 1:j3=0 the parameters a, ¢, and m; will not affect

the prediction of GVIPS parameters.

2. Conduct axial tension and axial compression experiments on aged Inconel 718. Use
the GVIPS parameters (obtained from step 1) to fit the parameters a, ¢, and m; to

these data.

3. Ensure that a, b, ¢, and m; are such that the resulting initial threshold surface is

convex, thereby satisfying Drucker’s stability postulate at a material point.

These steps are necessary, in part, due to limitations with the current characterization tools,

which are explained in detail in the following subsections.

4.5.1 Parameters associated with flow and evolution

GVIPS parameters are fit to the pure shear experimental data on Inconel 718. This is done
using the Constitutive Material Parameter Estimator (COMPARE), a software package de-
veloped by Saleeb et al [1998]. COMPARE was run on a NASA-GRC computer system.
Material parameters are determined by minimizing the errors between the experimental data
and the predicted response. It uses both optimization and constitutive model (J; based)
analysis, casts the estimation as a minimum error weighted, multi-objective optimization
problem, and then solves the optimization using a sequential quadratic programming tech-

nique. It has three main parts that are summarized below.
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Primal Analysis

This module is responsible for numerically simulating the load paths used in the experi-
ments. It is similar to nonlinear finite element code built upon a single four node plane
stress element with material nonlinearity capability. A fully implicit backward Euler scheme
with corresponding algorithmic (consistent) tangent stiffness matrix is used because of its

robustness and superior stability and convergence properties.

Sensitivity Analysis

Sensitivity analysis involves the calculation of parameter sensitivities to the predicted re-
sponse. The sensitivity analysis is of the direct type performed on the basis of an explicit
recursive form associated with the above integrator. The sensitivities are naturally derived
from exact expressions in conformity with the underlying integration scheme. The advan-
tage of this approach is the improved computational efficiency, while the disadvantage is the
necessary analytical derivation of sensitivities that at times become complicated. However,

the former outweighs the accompanying complexity.

Optimization

The multi-objective optimization problem is formulated in COMPARE and solved using
a sequential quadratic nonlinear programming technique (Schittkowski [1981]). Its salient

features are:

1. Design variable formulation that includes component synthesis, i.e. active/passive
design variables. During optimization, the active design variables are modified and

the passive ones are not.

2. General scaling of objective functions as well as design variables for numerical sim-

plicity.

3. Formulation of a single design optimization problem through a weighted objective

function.
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The weighted objective function F(§) for p tests is minimized to find n variables §. Here

F(§) is expressed as

p . .
F§) =) W'i’(§) (4.30)
i=1 °
where
1 p ng Rk 2
i(8) = = 1——
HO=523 ( Rpk)
and

fi(8) is the objective function for the i*" test with initial value fi,(§). n, is the number
of measurement stations along a load history. R; and R, are the kt" components of
response from analysis and test, respectively. ng is the number of measured components at

a particular j** station.

The input requirements and procedure followed for using COMPARE to estimate these

material parameters are detailed in Chapter 6.

4.5.2 Determination of threshold function parameters

After the seven parameters associated with flow and evolution law are determined and
having set b = 1/k2™, it remains to determine the parameters a, ¢, and m;. Material
response to a general loading path that results in non-zero stress invariants I, and J;
is required to determine these parameters. Data from uniaxial tension and compression

experiments (which result in non-zero I; and J3) are to be used for this.

The J; model (a = ¢ =0) will predict identical responses in tension and compression and
thus will not capture the SD effect. By suitably choosing the values for a, ¢, and m, it

is possible to match the predicted responses in tension and compression with experimental
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data. This is done iteratively. Multiple sets of parameters (a, ¢, m;) can be found that
may fit the data equally well, resulting in I Jo, JoJs, and I; JoJ3 models. The procedure for
determining the proper combination of (a, ¢, m;) for Inconel 718 is explained later. This
will determine whether the SD phenomenon is caused by the effect of hydrostatic pressure,

or by influence of J3, or both.

4.5.3 Convexity Requirement

Convexity of the yield surface is a consequence of Drucker’s stability postulate. This means
that the values of a, b, ¢, and m; are not completely arbitrary. Thus, for a given my,
though multiple combinations of a and ¢ may fit the axial experimental data in tension and

compression, only those combinations that satisfy the convexity requirement are acceptable.

Outlined here is a procedure to verify convexity of any given function in three-dimensional
space (ILyer and Lissenden [2000b]). Using this procedure, we can determine the limits that

the convexity requirement places on the threshold function parameters.

The basic requirement for convexity of a three-dimensional surface is that its curvature
must be non-negative everywhere on the surface. That is, the curvature of the function
in two mutually perpendicular directions in the tangent plane at any given point on the
surface, must be non-negative. Mathematically, this requires that the curvature tensor be

positive definite.

An arbitrary vector u; and the tangent plane to the threshold surface are shown in principal
stress space in Figure 4.1 . The components of this vector in the normal and tangential
directions to the threshold surface are also shown. Since u; is arbitrary, all vectors that lie
in the tangent plane are given by (d;; — n;n;)u;, where n; denotes the unit outward normal
to F. The unit vectors in the tangent plane are §;; — n;n;. Orthonormalizing this vector
gives a set of three basis vectors, two of which lie on the tangent plane, the third being the

unit normal vector itself.
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Tangent Plane

\ Threshold Surface

Figure 4.1: Basis vector determination

The curvature in the tangential plane is given by

H,; Hyy Hyj
U Uiz Uss
Rpg = Hyy Hjyy Hy
Uy Uz Uss
Hj3 Hjz Hjs
where H;; is the Hessian of F given by
9*F
H; =
80','60_7'

Ui Ui
Upp U (4.31)
Uiz Uss

(4.32)

where o; is the principal stress vector. U consists of two basis vectors that lie in the plane

tangent to F in the principal stress space.

Using the above procedure, material parameters associated with flow and evolution laws

(k, 4, n, B, m, R, H) and prescribed combinations of threshold surface parameters (a,

¢, my) will be determined. To find the right combination of (a, ¢, m;) that describes

the material behavior accurately, we need to consider material response for load paths

other than pure shear and uniaxial loadings. These are validation experiments that will

be detailed in subsequent chapters. Uniaxial testing under hydrostatic pressure will be an

added advantage. These will help us to confirm the importance of I; (value of a) for this

material.

NASA/CR—2001-210715 70



Chapter 5

Experimental Program

This chapter starts with a brief review of relevant experimental work on inelastic defor-
mation of metals. Next, the details of the test system and specimens used in the present
investigation are presented. A detailed section on the design of experiments follows, which
establishes a method to isolate the effect of each stress invariant on deformation in three
dimensional principal stress space. The method is then simplified for axial-torsional space.

Finally, the test matrix for the characterization tests of Inconel 718 is presented.

Experimental evaluation is an important step in the development of multiaxial viscoplastic-
ity models. In general, three types of experiments are necessary to support the development
of any potential based models (Robinson {1985]) for high temperature structural materials.

These are as follows:

1. Ezploratory tests: These tests guide the development of the theoretical framework
and help examine the mathematical aspects of the framework. For a potential based
framework, they help in developing the functional forms of the Gibb’s and the dissi-

pation potentials.

2. Characterization tests: These tests provide the required database for determining the
specific functional forms and the parameters that represent a specific material for a
specific temperature range. Usually these are simple tests like tension, compression

and shear on relatively simple specimen geometries.
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3. Validation tests: These tests provide the ultimate test of the constitutive model by
comparing actual structural component response with analytical predictions based on
the proposed model. For most cases, simple specimen geometries are used and the

loadings are complex enough to rigorously test the model.

Tensile and compressive tests with superimposed hydrostatic pressure provide information
about the significance of I} in describing the flow and evolution laws for the material. In
the present investigation, these tests are intended to be used qualitatively to validate the

models that include I; in the threshold function.

5.1 Review of experiments

Plasticity experiments have been conducted on metals to study their yield and flow behavior.
Volume expansion during inelastic deformation was the emphasis in many investigations.
Both uniaxial and multiaxial loadings have been reported. Such experiments date back to
Lode [1926] who tested thin walled metal tubes in tension and internal pressure. There
was a discrepancy between experimental data and the Mises yield criterion, which led
Taylor and Quinney [1931] to further investigate the effect of biaxial (axial and torsional)
loadings on tubular specimens of copper, aluminum and steel. In general, their work showed
good agreement with Mises yield criterion for these materials. They also performed large
deformation uniaxial tensile tests on these materials and monitored the changes in internal
volume of the specimens. They found large changes in internal volume that could not be
accounted for by small density changes and attributed it to the anisotropy induced during

inelastic deformation.

Most biaxial testing was done using proportional loading (Phillips et al [1957,1961], Findley
et al [1962], Michno and Findley [1976]). Biaxial experiments on metals at high tempera-
tures (> 500°C) were difficult to perform owing to the complexity in experimentation and

the associated difficulty in accurate measurement of strains.

Dependence of inelastic deformation on hydrostatic pressure has been another topic of
investigation for metals. Contrary to the experimental findings of Bridgman [1952], some

metals have exhibited dependence of flow on hydrostatic pressure. Drucker [1973] pointed
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out that the SD phenomenon can result as a consequence of pressure dependent yielding.
Spitzig et al [1975] have shown that several high strength steels (tempered 4310 and 4330)
that exhibited SD effect indeed showed pressure dependent yielding. The volume expansion
observed in these materials was in accord with the expected increase in dislocation density

during deformation, but did not agree with the normality rule predictions.

Another type of plasticity experiment is the determination of initial and subsequent yield
surfaces. Comprehensive reviews of these experiments have been provided by Michno and
Findley [1976] and Hecker [1976]. Most of these experiments involved axial torsional loading
on thin walled tubular specimens. The pros and cons of using strain and stress controlled
loadings were investigated by some researchers. Phillips and Lu [1984] used stress and
strain controlled loadings to determine yield surfaces for pure aluminum and found no ap-
preciable difference between the two. On the other hand, some researchers preferred strain
controlled loading to stress controlled loading and argued that the former leads to more
accurate results(Wu and Yeh [1971], Ellis et al [1983]). Dependence of yielding on tex-
ture was determined by Althoff and Wincierz [1972] by experiments on textured brass and
aluminum. Subsequent yield surfaces were also a focal point in many experimental investiga-
tions (Nagdhi et al [1958], Phillips and Tang [1972], Williams and Svensson [1970,1971}). In
general, the inelastic strain rate vector was found to be normal to the yield surface (Michno
and Findley [1974], Phillips and Moon [1977], Khan and Wang [1993]). This suggests that

an associated flow law is a good approximation for most metals.

The shape of flow surfaces is strongly dependent on the flow definition (chapter 3). There
has been some effort in the determination of flow surfaces, both surfaces of constant inelastic
power (SCIPs) (Clinard and Lacombe [1988]) and surfaces of constant inelastic strain rate
(SCISRs)(Battiste and Ball [1986]). These flow surfaces are either determined directly
during experiments or by using post experiment data reduction techniques. For direct
determination, the inelastic strain rate must be calculated in real time (Ellis and Robinson

[1985], Battiste and Ball [1986], Lissenden et al [1997a]).

Gil [1999b] established an experimental program to determine yield and flow surfaces for
solutioned and aged Inconel 718. Using axial-torsional loading SCISRs and SCIPs in axial-

shear stress plane were constructed (for temperatures between 23°C and 649°C). He found
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that the initial yield surfaces for solutioned Inconel 718 at low temperatures fit the Mises
criterion. However, the yield loci for solutioned Inconel 718 at high temperature (> 350°C)
and the yield loci for aged alloy for all the temperatures investigated, showed an eccentricity
toward compressive stress direction (see Figure 1.1(b)). This is the SD phenomenon in

Inconel 718 and is the topic of present investigation.

In general, plasticity experiments on metals have dealt with determining yield surfaces (ini-
tial and subsequent) and finding the effect of loading (type of control, rate) on hardening
behavior. The effect of hydrostatic pressure on yield and flow is another topic of interest.
The present work involves loadings, both uniaxial and biaxial (axial-torsional), deep in the
inelastic region for aged Inconel 718 at 650°C. Elevated temperature experiments involv-
ing multiaxial loading are difficult to perform for two reasons; (1) difficulty in accurate
measurement of strains at elevated temperature and (2) the need for such experiments was
not felt because no systematic effort was made to determine the individual effects of stress
invariants on the inelastic flow of metals. Of course, in the present investigation there is
such a requirement in order to capture the SD phenomenon. A comprehensive technique to
capture the SD effect by investigating the effect of all the three stress invariants on inelastic

deformation is not reported to date.

5.2 Test equipment and Specimen details

An MTS axial-torsional test system was used for the uniaxial and biaxial experiments.
A gas based high pressure deformation apparatus was used for testing under hydrostatic

pressure. The specimens used for testing have different geometries for each of these systems.

5.2.1 MTS Axial-Torsional test system

The MTS test system (at NASA-Glenn Research Center) is a servo-hydraulic test machine
having an axial load capacity of 222500 N and a torque capacity of 2260 N-m. The specimens
are gripped by hydraulically actuated grips. Shown in Figure 5.1 is the complete test system
with all the required accessories. The top grip of the load frame is attached to an axial-

torsional load cell that in turn is attached to the cross head, which remains fixed during
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Figure 5.1: MTS Axial-Torsional test system at NASA Glenn Research Center

a test. The bottom grip is attached to an actuator capable of independent rotational and
vertical translational motions. The rotation of the actuator can be controlled in a closed
loop system by the angle of rotation, torque and shear strain while the vertical motion is
controlled by either displacement, load or axial strain. Kalluri and Bonacuse [1990] provide

additional details regarding the biaxial test machine.

The test machine is equipped with an adjustable coil (figure 5.2), 50 kW audio frequency,
induction heating system capable of generating specimen temperatures up to 800°C. For
this reason, the specimen grips are water cooled. The temperature control is done by
one thermocouple spot welded to the the specimen at the gage section. The temperature
distribution in the gage section is determined by thermocouples which are spot welded to

the outer surface of the specimen in the gage section. The temperature variation is limited
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R

Figure 5.2: Close up showing the specimen, heating coil and extensometer

to +1% of the target temperature. An enclosure around the test machine limits the effects

of air currents. Axial and torsional stress and strain data are saved electronically.

Strain measurement

At high temperatures like 650°C it is not practical to use strain gages. On the other hand,
strain measurement with good resolution is required to accurately determine the initiation
of yield. At high temperatures extensometers are preferred to strain gages. The common
factors that make accurate strain measurement (using extensometer) at high temperatures
difficult are (1) presence of electronic noise and (2) coupling between axial and torsional

strain components.

A multiaxial extensometer (figure 5.2) that is capable of axial and torsional strain measure-
ments over a wide range of temperatures is used. The extensometer contains two alumina
rods spaced 25 mm apart. These are in contact with the specimen by means of indentations
on the specimen and spring loading provided by the mounting fixture. The top rod is free
to move only in the axial direction while the bottom rod is free to move only in the cir-
cumferential direction. Axial displacement § and angle of twist 8 are output voltages. The
axial strain is €;; = 0/l, and the shear strain is v, = 7,0/l,, where r, is the outer radius

of the specimen and [, is the gage length (25 mm) of the extensometer.
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Figure 5.3: Gas based high pressure deformation apparatus

Test machine control

The MTS system is controlled by a microcomputer equipped with a digital-analog (D/A)
converter that provides independent controls over the axial and rotational motions of the
actuator. A 16-bit analog-digital (A/D) converter is used to acquire load, torque and
extensometer (axial and torsional) data. The D/A and A/D hardware is commanded 100
times per second by software that is customized using a FORTRAN program. Two tests
were performed using stress control. All other tests in this investigation were performed in

strain control.

5.2.2 Pressure test equipment

A schematic diagram for the gas based high pressure deformation apparatus (at Case West-
ern Reserve University (CWRU)) is shown in Figure 5.3. It utilizes a pressure intensifier
to generate pressure that is contained within the multi-walled pressure vessel. The volume
of the pressurized gas is kept as low as possible because of the danger associated with the
stored energy. Pressure is monitored using manganin coil pressure gage that is exposed to
the high pressure environment. These coils are used because of the highly reproducible and

linear manner in which the coil resistance changes with applied pressure.
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Figure 5.4: Dimensional details of tubular specimens (all dimensions in mm)

The specimen is first inserted in the load train assembly present in the pressure vessel
before gas pressurization and then tension or compression is applied at a desired level of
superimposed hydrostatic pressure. It is important to continuously monitor the pressure
during testing. It is required to accurately monitor the load and displacement during
deformation under pressure. For more details on the test system and test procedures, the

reader is referred to Lewandowski et al [1998].

5.2.3 Specimen details

Specimens used in the MTS system were thin-walled tubes, designed to achieve a plane state
of stress in the gage section. Also, the dimensions are such that loading the gripped ends of
the specimen results in a uniform stress distribution in the gage section. The dimensional

details of the specimen are given in Figure 5.4.

5.3 Design of Experiments

We have introduced the importance of stress invariants other than Js to represent yield and
flow behavior for a class of materials that exhibit a SD effect. These invariants are brought
into the formulation by simply including them in the threshold function and then deriving
the flow and evolutionary laws based on it. Although the chosen form of the threshold

function in equation 4.22 is justified for its simplicity and easy reducibility to well known
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forms, it is only one of the many possibilities. The appropriate choice of the form may

depend on the material under investigation.

A traditional approach for metals would be to conduct hydrostatic tests as suggested by
Bridgman [1952]. For pure hydrostatic state of stress (o), I; = 30 and J; = J3 = 0. Hence,
such a test will help determine whether I, affects flow behavior and causes permanent
volume change during inelastic deformation. If no permanent deformation is observed under
hydrostatic stress, the threshold function can be based on deviatoric invariants alone. Unlike
the threshold function for a Js material, which can be quantified by pure tensile loading,
a simple uniaxial test will be insufficient to quantify a general threshold function. This
is because the general yield function has three unknown coefficients, the determination of

which requires at least three experiments.

5.3.1 Isolating the effect of invariants

For a general case where I; and/or J3 must be considered, a multiaxial test program needs
to be adopted to quantify their relative importance in the definition of yield and flow. This
can be accomplished by following stress trajectories that have only one stress invariant that
is changing, or better yet, only one nonzero stress invariant. Some simple loadings (external)
such as hydrostatic pressure (I} # 0, Jo, = J3 = 0) and pure shear (J; # 0, I, = J3 = 0)
can help describe the initiation of inelasticity. The internal state of the material does not
change during elastic deformation and hence L =1 1, Jo = Jo, and j3 = J3. During inelastic
deformation, however, the external loading that causes pure shear or hydrostatic tension are
not immediately known. This is because the invariants also depend on the internal stresses

which are nonzero during inelastic deformation giving I £ 11, Jo # Jo, and J3 # Js.

For a general loading condition, stress paths having only one changing effective stress in-
variant can be obtained by following guiding vectors in the effective stress plane determined

by the cross product of the gradient of the other two invariants. Mathematically, this can
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be expressed as

Vo, x VJs : I, changing
VJs x VI, : J, changing (5.1)

Vil X ng : j3 changing
where I 1s j2 and j3 are effective stress invariants defined previously.

Stress paths obtained by the above equations are greatly influenced by the starting point,
which is not required to be the zero stress condition. Effective invariants also depend on
the internal stresses, which are neither measurable nor controllable variables. Therefore,
computer modeling is necessary to determine what loading to apply in order to follow
the guiding vectors in equation 5.1. An additional complexity arises for non-proportional
loading for which the applied stress and effective stress directions are generally not the

same.

5.3.2 Stress trajectories in three dimensional stress space

Using equations 5.1, a number of stress trajectories can be derived depending on the starting
point in the stress space. Figure 5.5(a) shows two stress paths in the principal effective
stress space that have both J; and Js constant, while Figure 5.5(b) shows the change in I;
along the same stress paths. Note that path AB is hydrostatic tension while path CD is
not. However, both paths are straight and have the same direction. Similarly, the case for
varying Jo with constant I, and J3 is shown in Figure 5.6. Again, the importance of the
starting point is clearly seen, path AB starts very near the origin and is pure shear while
path CD is not. Both AB and CD are straight and parallel but the increase of J, along CD
is larger than that along AB.

Finally, paths for varying Js with constant [; and J, are shown in Figure 5.7. They are
neither straight nor do they intersect the origin. Both paths have a local extreme which is

expected to cause a distinct change in the inelastic response as the change from loading to

unloading occurs.
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Experimentation using three-dimensional stress states require complex laboratory equip-
ment such as that developed by Calloch and Marquis [1999]. Hence, a simpler alternative
approach would be to restrict the stress trajectory to a plane stress. Plane stress loading
can be readily applied to a thin-walled tube by axial force, torque, and internal pressure.
For a plane state of stress however, the invariants are related by

I
J3 = 31(-72 -

1 -
§If) (5.2)
resulting in only two of the invariants being independent. Thus a different approach than

that for three-dimensional space is needed.

5.3.3 Plane stress experiments

Since J> has the primary influence on the inelastic flow, it can be treated differently relative
to the other two invariants. It is thus proposed that the change in J, be the same in each
of the two tests, one test having a varying I; and a constant J3 and the other test having a
varying Js and a constant ;. These types of tests appear to be possible using axial-torsional

loading of a thin walled tubular specimen.

Simple load paths in the axial-torsional stress space that satisfy the above condition are
shown in Figure 5.8 and Figure 5.9. If a pure tensile stress state is chosen as a starting
point for shear loading as in Figure 5.8, the result is a constant I; and a changing Js. If a
combined compression-shear stress state is chosen as a starting point and the compressive
stress is reduced while the shear stress is increased as in Figure 5.9, J3 remains constant
and I, increases. Though I; approaches zero, this load path corresponds to loading since

the J, rate is positive in the sense of increasing inelasticity.

The intent of these tests is to facilitate comparison with pure shear tests conducted at an
identical J, rate. Differences in the inelastic strain response could then be attributed to
Jy for loading in Figure 5.8 and to I; in Figure 5.9. This can be used to determine an

appropriate weighting of the material parameters a and ¢ in equation 4.22.

Since proportional loading is easier to apply than non-proportional loading, it is worthwhile
to consider the proportional load paths shown in Figure 5.10. The loading rate can be

adjusted so that the J, rate is the same for any loading direction, A;. For values of A; of
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0.0 and 0.2816, the changes in Js happen to be almost identical while the change in I is

not. Thus any difference in the inelastic response could be attributed to I.

The objective of the various experimental possibilities described above is to determine what
effect each of the three stress invariants have on inelastic deformation. These paths can
only be determined by using the viscoplastic model to predict inelastic strain and searching

for paths that extremize the difference between these forms. It is probable that these paths

will require non-proportional loading and creep or relaxation periods.

NASA/CR—2001-210713

86



5.4 Proposed experiments for the current model

First, characterization is done using pure shear tests that are similar to load path AB in
Figure 5.6(b). Next, axial test results are used to determine the threshold surface parameters
a and ¢. The intention here is to follow load paths that result in varying I, J» and J3, and
hence are not similar to any of the paths in Figures 5.5 to 5.10, where the idea was to keep

two invariants constant and vary the third.

Validation experiments are biaxial tests using, both proportional and non-proportional load-
ing. The non-proportional loading is similar to the path in Figure 5.8 while the proportional
loading is similar to the load paths in Figure 5.10. Tension and compression tests with super-
imposed hydrostatic pressure complement these validation experiments since they directly
show the effect of I; on material inelasticity. Test matrices are developed for characteriza-

tion and validation of the proposed viscoplastic model in the next section.

5.5 Test Matrices

The most important and often times the most difficult aspect of modeling at elevated
temperature is obtaining the required material parameters. The associated difficulty stems
not only from the variety in the mathematical forms of the threshold function, but also from
the fact that multiple sets of material parameters can correlate experimental data equally
well, for a given load path. In order to arrive at the proper set of material parameters, it is
therefore crucial to choose an appropriate set of experiments that bracket a wide range of

values for the variables under consideration (e.g. loading rate, load levels, control mode).

First, the test matrix for the pure shear characterization is developed. This is followed by
tests in tension and compression. Finally, test matrix for axial testing under hydrostatic
pressure is also given. All tests are conducted at 650°C except for the pressure tests, which

are at room temperature.

Pure shear characterization

Since we are trying to determine seven material parameters, different types of experiments
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Table 5.1: Pure shear characterization experiments

Name | Control | Loading rate ts(sec) | ty(sec) | End level
IN7 Strain | 1745 microstrain/s | 10.8 43200 | 0.0188
IN20 | Strain | 17.4 microstrain/s | 1500 44700 | 0.0261
IN21 | Stress 25.1 MPa/s 229 1282 552 MPa
IN22 | Stress | 25.1 MPa/s 19.5 43200 | 482 MPa

«———— Hold time ————

! Endlevel
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Figure 5.11: Schematic for shear characterization tests

are typically required for proper estimation of these parameters. On this basis, four tests

(summarized in Table 5.1) were conducted.

The strain controlled tests were at different loading rates (two orders of magnitude) and
have the same end strain level. On the other hand, the stress controlled tests were at the
same loading rate but have different end stress levels. All the hold times except for IN21

were approximately 12 hours. A schematic diagram for these tests is shown in Figure 5.11.

Axial tests

Axial tests that will be used to characterize the material parameters a, ¢ and m; are

summarized in Table 5.2.

Testing under hydrostatic pressure

The intention of these tests is primarily to get a qualitative estimate of the contribution of
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Table 5.2: Axial characterization experiments

Type Control | End level | Time
Tension Strain | 0.02 100 s
Compression | Strain | -0.02 100 s

I, in the threshold function. Hence, only a few tests are planned which are either tensile
or compressive tests under three different values of hydrostatic pressure. These tests are

planned to be done at room temperature. The pressures are in the range; 0.1 to 420 MPa.

After obtaining the material parameters using shear and axial characterization, validation

of the model is done using biaxial experiments, which are developed in the next chapter.
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Chapter 6

Results and Discussion

We have now developed the formulation for a unified viscoplastic model using a generalized
threshold function and identified experiments that are required to determine material pa-
rameters in the model. The results of the characterization and validation tests are presented
in this chapter. The procedure for determination of the material parameters is explained.
Once the parameters are determined, biaxial validation tests are compared with model
predictions. Results from the tension and compression tests under hydrostatic pressure il-
lustrate the importance of the first stress invariant in the description of inelasticity. Finally,

the results are discussed in detail and their implications on the model are described.

6.1 Determination of material parameters

The need for a unified viscoplastic model capable of capturing the SD effect has been estab-
lished and a generalized theory has been developed. Additionally, an experimental program
to characterize the material parameters in the model was developed. In this section, the
experimental results are presented starting with pure shear experiments. Using these data,
the parameters associated with GVIPS are optimized using the program, Constitutive Ma-
terial Parameter Estimator (COMPARE, Saleeb et al [1998]) and the correlated responses
are presented. COMPARE optimizes the parameters associated with flow and evolution (x,

n, i, m, B, R, H). Determination of threshold function parameters (a, b, ¢, m;) is done using
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axial (tensile and compressive) experimental data. Once all the parameters are determined,

the models are put through a rigorous test to verify convexity of the threshold functions.

6.1.1 Experimental results

The pure shear experiments described in Table 5.1 were carried out on aged Inconel 718
at 650°C. A wide range of loading rates and end levels are used in the characterization

experiments and hence we can expect to obtain a good estimate of the material parameters.

Results of the pure shear experiments are presented in Figure 6.1 to Figure 6.3. Stress-strain
response for monotonic increasing shear strain at two different rates is shown in Figure 6.1.
The loading rate for IN7 (1740 microstrain/sec) is two orders of magnitude higher than
that for IN20 (17.4 microstrain/sec) resulting in less inelastic deformation in IN7. Hence,
the maximum stress level for IN7, in spite of its lower strain level, is higher than IN20.
Figure 6.2 shows stress relaxation over 12 hours after loading these two specimens. Stress
relaxation is higher for IN7 due to the smaller amount of inelastic deformation that occured
during loading relative to IN20. Creep test results are shown in Figure 6.3. Creep strains for
IN21 are larger than IN22 because the constant shear stress was higher; 552 MPa compared
to 482 MPa (for the same loading rate of 25.1 MPa/sec).

Strain controlled loading is chosen for further uniaxial and biaxial experiments. For this
reason, only the strain controlled test results from IN7 and IN20 are used for characterizing

the material.

6.1.2 Optimization using COMPARE

The size of the data set was reduced to about 12-15 points for each test in order to run
the optimization program in a reasonable amount of time (less than approximately two
hours). Care was taken in order not to lose essential information provided by these tests.

The reduced test data points are shown by circles in Figures 6.4 and 6.5.
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Table 6.1: Experiments used for shear characterization

Name | Max. Strain | Time to max. strain (sec) | Hold time (sec) | Weights
INT 0.0188 10.8 - 0.25
IN20 | 0.025985 1499.2 - 0.25
IN7 0.0188 10.8 43200 0.25
IN20 | 0.025985 1499.2 43200 0.25

Table 6.2: Elastic constants for aged Inconel 718 at 650°C
E | 165360 MPa

v | 0.297
G | 63732.5 MPa

The choice and the number of points used in the test data plays an important role in
optimizing the material parameters to fit the data. As can be clearly seen, more points are
used in the regions of changing slopes. These regions are typically transitions from elastic

to inelastic regimes or from monotonic loading to hold.

COMPARE was used to fit the parameters associated with the flow law, hardening, and
recovery parameters using these four sets of experimental data. The input data are sum-

marized in Tables 6.1 and 6.2.

An intermediate step was adopted to facilitate optimization of the seven material parameters
(x, n, p, m, B, R, H). First, only the loading portions of IN7 and IN20 were used with equal
weights (0.5) to evaluate all of the parameters (set I, Table 6.3). Next, the complete data
sets from IN7 and IN20 (including relaxation) were used to determine another set (set II)
of parameters (Table 6.4). When all four tests are used together, the parameters associated
with flow law (k, u, n) were kept close to set I and those associated with evolution (m, B,
R, H) are kept close to set II. Parameters x, R and H were kept within + three decades and
parameters k, n, m and (3 were kept within £30%. The initial values and bounds in Table

6.5 reflect this approach.

COMPARE successively updated the objective function until it reached a value of 1.0 and
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Table 6.3: Optimized values of material parameters (Set I)

Parameter | Final value

k (MPa) 78.0

n 7.4
p (MPa-s) | 7.0x106
m 6.8
8 3.8

R (1/s) 3.0x10713
H (MPa) | 4.2x10%°

Table 6.4: Optimized values of material parameters (Set II)

Parameter | Final value

x (MPa) 270.0

n 10.2
p (MPa-s) | 8.0x108
m 12.0
8 3.05

R (1/s) 6.0x10713
H (MPa) | 2.0x10°

Table 6.5: Material parameters to be optimized

Parameter | Initial value | Lower bound | Optimized Value | Upper bound
x(MPa) | 78.0 60.0 93.447 100.0
n 7.4 5.0 9.445 10.0
¢ (MPa-s) | 7.0x10° 7.0x10% 6.544x10° 7.0x10°
m 12.0 8.0 9.9 16.0
B 3.05 2.0 3.445 4.0
R (1/s) | 6.0x107'% | 6.0x10716 5.787x10715 6.0x10710
H (MPa) | 2.0x10° 2.0x108 9.332x108 2.0x10'?
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the optimized material parameters are given in Table 6.5. To complete the optimization,
COMPARE was required to be restarted a few times (typically 3 to 4). Each time the
program is restarted, a new (updated) set of initial parameters is used which ensures that
the optimization does not stop at a local minimum. The resulting correlation to the experi-
mental data is shown by solid lines in Figure 6.4 and Figure 6.5. There is a good correlation
between the model response and the experimental data. It should be noted that predictions
from COMPARE using the parameters in Table 6.5 for axial loading results in identical
stresses in tension (figure 6.6) and compression except for the sign. This is because the

threshold function in the COMPARE (GVIPS formulation) depends only on Js.

Figure 6.6 shows that the flow stresses predicted by COMPARE are higher than the exper-
imental values for tension and compression. Positive values of either a or ¢ or both result
in a decrease in tensile flow stresses and an increase in compressive flow stresses relative to
the Jo model (a =c =0). Hence, it is not possible to start with the optimized parameters
in Table 6.5 and get good correlation with tensile and compressive experiments. In order
to successfully capture the SD effect, it is required to obtain an axial prediction that is
between the tensile and compressive experimental data. Starting with such a J> model (a=
¢= 0) we can then capture the SD effect by introducing positive values for a or ¢ or both.

To do this, we used an alternative approach to determine the material parameters.

One reason for the over-prediction of flow stresses in tension and compression could be a
need for more variety in the experimental data. An attempt to use the stress controlled
test data (IN21 and IN22) in addition to those in Table 6.1 did not result in any better
correlation with experiments. Even differential weighting of the tests for optimization gave
no improvement in prediction. One approach would be to add experiments with different
loading rates, hold times, end levels, modes of control (stress or strain) and types of loading
(single step or multi-step), in the characterization. However, we restrict additional shear
experiments to only one (IN4) and choose an alternative way to characterize the GVIPS

parameters.
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Table 6.6: Revised experiments used for characterization

Type | Name | Max. Engineering Strain | Loading time (sec) | Weights
Shear | IN7 0.0188 10.8 0.25
Shear | IN4 0.024 100.0 0.25
Axial | ING6 0.02 100.0 0.4
Axial | IN2 -0.02 100.0 0.1

6.1.3 Alternative approach

A good way to start is to look at the parameters, which had been fit to the experiments
purely by a mathematical technique, from a physical viewpoint. The flow law parameters «
(93.447 MPa) and n (9.445) from Table 6.5 seem to be physically unrealistic. x represents the
initial shear yield strength (equation 4.15) and hence should be close to the experimentally
determined value of 220 MPa. Parameter n represents rate sensitivity of the material. A
large n (9.445) gives large rate-sensitivity, but this is not observed in the experiments. Also,
the hardening parameter H (9.332x10% MPa), which represents the internal stiffness of the
material, should be less than the external stiffness (165360 MPa).

More reasonable values of x, n and H, used in the optimization, resulted in better comparison
with axial test data. However, the predicted axial stress was still not between the tension
and compression test data. At this point, it was felt that using different experimental data
for the characterization would give better axial response predictions. First, test IN20 was
removed from the characterization because its loading rate (17 microstrain/s) was much
slower than what is planned for the present investigation (200-300 microstrain/s). Also,
since we are not looking at long term relaxation behavior at this point, only the loading
part of IN7 was considered. Another strain controlled shear loading test (IN4 shown in
Figure 6.7) was added to the data because its loading rate (240 microstrain/sec) is in
the 200-300 microstrain/s range. Further, tensile and compressive test data (IN6 and IN2,
respectively) are incorporated in the characterization with appropriate weighting. The tests
used in the revised COMPARE optimization are summarized in Table 6.6. The weights for

IN6 and IN2 were developed after a few iterations.
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Table 6.7: Optimized values using revised tests

Parameter | Final value
k (MPa) | 234.7

n 2.0

p (MPa-s) | 1.7681x10°
m 7.0

B 3.652

R (1/s) 1.0x10712
H (MPa) | 1.966x10%

The corresponding optimized material parameters are given in Table 6.7 and the correlated
shear responses are shown in Figure 6.8. The correlation for IN7 is excellent and that for
IN4 is reasonable. In addition, the presence of data for IN6 and IN2 in the characterization
helped to obtain an axial response that is between the experimental tensile and compressive

data (Figure 6.9).

Such a correlation is acceptable because of the following:

1. The value of « is reasonably close to the shear strength (220 MPa).

2. The lower rate sensitivity observed in experiments is obtained with a lower value of

the exponent n (2.0).

3. The internal stiffness parameter H is less than the elastic modulus.

Incorporation of I} and J3 through positive values of a and ¢ will result in more accurate
predictions in tension and compression and thus will represent the SD effect. Of course, from
this point onwards it is required to use the formulation developed in Chapter 4, which uses
a general yield function (we cannot use COMPARE anymore). The detailed formulation of
the constitutive equations and simplifications for various cases are presented in Appendix A.
A FORTRAN program was written to calculate the material response using this generalized

formulation and is listed in Appendix B.
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6.1.4 Axial Characterization

The aim of the axial characterization is to determine the threshold surface parameters a, b,
c and my, which along with the parameters in Table 6.7 will form the complete parameter
set required for the model. First, a value of m, is arbitrarily chosen. The parameter b is
equivalent to 1/k?™. By doing so, the general threshold function (equation 4.23) reduces
to equation 4.15 of the baseline GVIPS model for pure shear loading (I,=J3=0). This
correspondence is necessary because the parameters in Table 6.7 are based on the GVIPS
model (equation 4.15) but are also used in the general formulation. Two values for m,; (1.0
and 0.6) are investigated. Values of m; higher than 1.0 do not significantly improve the
axial predictions. Moreover, they result in very small numbers for ¢ and ¢, which cause
numerical difficulties. The values of a and ¢ are varied iteratively until the tensile and
compressive flow stresses predicted by the program given in Appendix B correlate well with

the experimental data.

For each value of m;, three combinations of invariants were investigated. These three sets

can be classified as

1. I Jy model; ¢ =0 and a # 0
2. JoJ3 model; a=0and ¢ # 0
3. I,J:J3 model; a # 0 and ¢ # 0.
The idea of choosing I J3, JoJs, and I) JJoJJ3 models is to clearly identify the influence of

each invariant on the inelastic behavior of the material. The threshold surface parameters

are summarized in Table 6.8.

The correlation of the models in Table 6.8 with experimental data is shown in Figure 6.10
and Figure 6.11. Each of these models gives a fairly good correlation of the flow stresses in
tension and compression. The point to note here is that all of these models do an excellent
job in the prediction of SD especially in the regions of high inelasticity (>1% strain). This

was our primary objective.

Before proceeding on to the validation of the models in Table 6.8, we will compare the
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Table 6.8: Threshold surface parameters

NASA/CR—2001-210715

Name | m; | b(1/MPa?™) | a(1/MPa?™) | ¢(1/MPa?™)
Jo 1.0 | 1.8154x107° 0 0
LJy | 1.0] 1.8154x1075 | 5.3x10°7 0
JoJs | 1.0 | 1.8154x107° 0 4.5%x107°
IiJyJs | 1.0 | 1.8154x107° 2.6x1077 2.2x1076
Jo 0.6 | 1.43x1073 0 0
nJy |06 1.43x1073 4.5%107 0
JoJ3 | 0.6 | 1.43x1073 0 1.5x10~*
LiJoJs | 0.6 | 1.43x1073 2.2x107° 7.0x107°

initial threshold surfaces with experiment and verify their convexity.

6.1.5 Comparison with experimental threshold surface

The initial threshold surface for aged Inconel 718 at 650°C in the axial-shear plane was
determined experimentally by Gil [1999b] using an offset strain definition of 30 microstrain.
This is shown by circles in Figure 6.12. The initial threshold surface data is regressed
(Miller et al [1990]) to a I1J> function to get the experimental threshold surface shown by
+ symbols (m; = 1.0, a = 3.838x107°%, b = 1.8263x107°). Also plotted are the threshold
surfaces predicted by the model using the parameters shown in Table 6.8 for m;=1.0.
Comparison between the predicted and experimental surfaces clearly shows that the models

under-predict the tension-compression yield asymmetry.

In aged Inconel 718, the SD starts with a high value, then rapidly decreases and attains
a constant value as inelasticity occurs (Iyer and Lissenden [2000b]). We are interested in
material behavior as it evolves during inelastic deformation. Thus, we ignore the under-
prediction of the SD at flow-initiation as long as the prediction is good at moderate to large
inelastic strains. With this in mind, we choose the threshold parameter values in Table 6.8
and ignore the parameter set obtained by regression to the experimental yield surface data.
Moreover, use of parameter set obtained by regression under-predicted the flow stresses in

both tension and compression.
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6.2 Convexity of initial threshold surface

Convexity of the initial threshold surface is a requirement that is a consequence of Drucker’s
stability postulate. Figure 6.12 shows the initial threshold surfaces for the parameters corre-
sponding to m;=1.0 in Table 6.8. For m;=0.6 the surfaces are identical. As the contribution
of J3 increases (value of ¢ relative to a) there appear to be non-convexities appearing at
the regions of pure shear. It is difficult to check the convexity of these functions visually.
Hence, it needs further attention and a rigorous check of convexity for each parameter set

in Table 6.8 is provided in this section.
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6.2.1 Mathematical Implementation

The objective here is to verify the convexity of the threshold function in three dimensional

stress space. We start with the function

Fo=al”™ 4+ bJ™ +cJi™/P -1 (6.1)

and follow the general methodology to check convexity, outlined in chapter 4. For ease of
computation the principal stresses (o1, 02, 03) are expressed in terms of the octahedral

normal stress (0o¢;) and the angle of similarity (9).

oy Ot cos 6
2/ J.
02 =94 Ooct ¢ T Q cos (6 — 27/3) (6.2)
o3 Ooct cos (6 + 27/3)
where
I
Goct = (6.3)
and
3\/_ J3 T
cos 30 = - J3/2 ; 0<6< 3 (6.4)

J2 can be expressed in terms of o, and 8 using equations 6.1, 6.3 and 6.4.

_ 2m 1/ma
I = | a(3“ o) ™ : (6.5)
b+ c(2= 375 €08 36)2m1/3

Now, substituting equation 6.5 into equation 6.2 we can express principal stresses in terms

of just o, and 6.

a1 Ooct 1/2my cos @
2 1-— a(30 £ )2m
02 (=4 Goct (T 7 b+ c(=2= 2 cos 30)2m1 /3 cos (6 —2n/3) ¢ - (6.6)
3
g3 Toct CcOs (9 + 27[‘/3)

The limits for o,ct can be determined by considering pure hydrostatic tension (I =30,J2 =
J3 = 0) and compression (I} = —30,J; = J3 = 0). Substituting in equation 6.1 gives the
range as

-1 1
3ql/2m1 = 3ql/2m '

IA
q
A

(6.7)
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Now the whole threshold surface is defined by equation 6.1 with o4 in the range given by

equation 6.7 and @ in the range [0,7/3]. The convexity of F needs to be verified in this

range.

The Hessian of F in three dimensional space in matrix form is given by equation 4.32. The

first and second partial derivatives of F with respect to the invariants can be expressed as

OF

= = 2al
I, ah
OF
on =0
oF — %J—lﬂ
aJ; 373
F
?2—2 = 2a
oI,
O°F
——_ =0
aJo?
_82F = —_2CJ—4/3
8J5? g "3

The derivatives of the stress invariants with respect to the principal stresses can be eas-
ily found because the invariants are explicitly expressed in terms of the principal stresses

(equations 3.4).

The second partial derivatives of F required for the Hessian can now be computed using

9’F  9*F oI, 8I, OF &I 0*F 8Jy 0J2

S it it Wil gL 222 6.8
60,‘80'_7‘ 8112 60’1 80']' + 811 60’{80]' 6.]22 50’,' 60]' ( )
+QF_’ 82 J, + &’F 0J; dJs + oF 82 J3
6J2 60','80]' 6J32 (901' 80'_7' 0J3 80'1‘801'
where i and j vary from 1 to 3.
The unit normal vector at any point (¢),02,03) on the threshold surface is
1 F. OF ., F .
il = ‘ [g—z B_j + g—k . (6.9)
VIBEE +IB5 1 + 1352 L0 doen O

As described in Chapter 4, we need to find two basis vectors in the tangent plane by
orthonormalizing the unit vectors B, where B = (8;;-n;nj). Uj; in equation 4.31 is the
matrix containing the two basis vectors in the tangent plane. For convexity, the curvature

tensor X;; (equation 4.31) must be positive definite at all points on the threshold surface,
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which means that the eigenvalues of R,; must be positive. A MATLAB program was written

to compute these eigenvalues (Appendix C).

Using the above formulation, a convexity check was performed for all the parameter sets in
Table 6.8. Very small increments of angle # and mean stress o,; were used in the program
to exhaustively probe all the threshold surfaces in three dimensional principal stress space.
Resulting eigenvalues corresponding to each point on the threshold surface were positive
thereby confirming the positive definiteness of the curvature tensor. Threshold functions
for parameters corresponding to m;=1.0 in Table 6.8 are convex. The minimum eigenvalues
of the curvature tensor (for I; JoJ3 model) at discrete points (using intervals of 04ct=4 MPa

and 6=2°) are plotted in Figure 6.13.

The convexity of the function in equation 6.1 was first confirmed for the values of g, b and
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¢ (corresponding to m;=0.6) in Table 6.8. The surface defined by equation 6.1 is observed
to be identical to that represented by equation 4.23 and hence convexity of the latter is

established.

6.3 Biaxial experiments for validation

The material parameters associated with the flow and evolution (s, n, 4, m, 3, R, H) are
given in Table 6.7. At this point, we have six sets of threshold surface parameters (a, b,
¢, my) given in Table 6.8. The focus of this section is the biaxial tests that were used to
distinguish between these models and thereby choose the proper set of threshold surface

parameters.

Generally, in viscoplastic model development, all material parameters are determined using
uniaxial characterization experiments. Then the model is validated by tests which are very
different from those used in characterization. These are validation tests that are complicated

enough to rigorously test the model.

At this point, we have not conclusively determined the threshold surface parameters. Hence,
the intent of the biaxial tests is really two fold; (1) to choose the best set of threshold surface

parameters from Table 6.8 and (2) to validate the model.

Biaxial tests were chosen for the following reasouns:

1. These tests are very different from the tensile, compressive and shear tests used in

characterization.

2. For non-proportional load paths, the inelastic strain rate vector is not always aligned
with the loading direction. Hence, such load paths are good tests for the models and

are expected to differentiate between their predictive capability.

6.3.1 Test Matrix

Six biaxial tests (IN4, IN5, IN6, IN2, IN11, IN28), schematically shown in Figure 6.14, were

performed using strain-controlled axial-torsional loading of aged Inconel 718 tubes at 650°C
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Figure 6.14: Biaxial Experiments

Table 6.9: Test matrix for biaxial experiments

Name Strain at A | Time (OA) | Strain at B | Time (AB) Type
(Axial,Shear) (sec) (Axial,Shear) (sec)

IN4 (0.0,0.024) 100 (0.02,0.024) 60 shear-tensile
IN5 (0.018,0.03) 94 - - proportional
IN6 (0.03,0.0) 150 (0.03,0.024) 60 axial-shear
IN2 (-0.02,0.0) 100 (-0.02,- 60 compressive-

0.024) shear

IN11 (0.0,0.0042) 50 (0.02,0.0125) 100 shear-
proportional

IN28 (0.0,-0.0109) 130 (-0.015.- 75 shear-
0.0109) compressive
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(experiments performed by C.J. Lissenden at NASA Glenn Research Center). These tests
were chosen such that they have significantly different load paths in the axial-shear stress
plane. The loading rates were kept close to the rates used in the characterization tests. The
strain levels and corresponding times are shown in Table 6.9. The experimental data
points are shown by circles and squares in Figure 6.15 through 6.28. Though many data
points were collected only a few are shown to be able to clearly see the comparison with

predictions of models in Table 6.8. Both stress-time and stress-strain curves are presented.

6.3.2 Comparison with model predictions

First, models with m;=1.0 are used to predict stress histories for IN4, IN5, IN6, and IN2
(Figures 6.15 to 6.24). This section presents and discusses the comparison between model

predictions and experimental results.

Shear-tensile loading (IN4)

Figures 6.15 and 6.16 show the comparison between experiments and model predictions. The
shear stress predictions during shear loading are identical for I Jo, J»J3, and I, J2J3 models.
This is expected because I, and J; remain zero for shear loading. For the subsequent
axial loading there is a significant difference in axial stresses predicted by these models.
Experimental data for axial stress is best predicted by the JoJ3 and I; JoJ3 models. The J;
model over-predicts the axial stresses and so does the I} J; model. The drop in shear stress

during axial loading is slightly overestimated by all of the models.

Proportional loading (IN5)

Axial and shear stresses for the proportional loading are shown in Figures 6.17 and 6.18.
The Jo model over-predicts both the axial and shear stresses. Axial stresses are under-
predicted by IJa, J2J3, and I JoJ3 models and there is no significant difference between
the predictions. Shear stresses show a moderate difference in model predictions. The I;J;
model predicts even higher shear stresses than the J> model. The I;JyJ3 model predicts

marginally better than J; model. The JJ3 model gives the best prediction of shear stresses.
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Figure 6.15: Shear-tensile loading (IN4): Stress-time response (m; = 1.0)
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Figure 6.16: Shear-tensile loading (IN4): Stress-strain response (m; = 1.0)
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Figure 6.17: Proportional loading (IN5): Stress-time response (m; = 1.0)
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Tensile-shear loading (IN6)

Axial and shear stresses for tensile-shear loading are shown in Figures 6.19 and 6.20. All
three models (I,J>, JoJ3, and I J,J3) predict almost the same axial and shear stresses.
Comparison with the experimental data is reasonable but the differentiation between the
models in terms of their predictive capability is not achieved. Thus, it is difficult to say

which model gives the best prediction for this experiment.

There are two possible explanations for the model predictions being almost identical.

1. Consider variations in the stress invariants I}, J; and J3 predicted by the Jo model as
shown in figure 6.21. Axial loading causes all of the invariants I, Jy and J; to increase
and attain a constant value. The subsequent shear loading causes only a marginal
increase in J,, while both I, and J; drop rapidly. This makes the coefficients a and ¢
of the threshold function, which scale I, and Js respectively, ineffective. Thus, none

of the model predictions are significantly different from that of the J; model.

2. During shear loading, Js drops rapidly for all the models and so does I for I, J, and
I, JoJ3 models. I, and J5 become zero approximately at the same time (about 180
sec) giving a pure shear state (figure 6.21). Thereafter, the material remains in pure

shear (J; # 0, I; = J3 =0) and the difference between model predictions vanish.

Compressive-shear loading (IN2)

Results of the compressive-shear loading are shown in Figures 6.22 and 6.23. Again. all
models predict nearly the same axial and shear stresses for the same reasons as above for

IN6.

During the compressive loading segment of the experiment, the shear stress did not remain
zero as it should have. A closer look at the data reveals that the shear strains are negligibly

small (< 10 microstrain). Hence, it is difficult to find a reason for the drift in shear stress.
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Figure 6.19: Tensile-shear loading (IN6): Stress-time response (m; = 1.0)
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This error results in unsatisfactory comparison between predictions and experiment. In the
event of no experimental error, the model predictions might come close to experiments.
However, the fact still remains that a good differentiation between the predictive capability

of the models 1s not achieved.

Predictions from the models with m;=0.6 are shown in Appendix D. There it is observed
that changing the exponent m; to 0.6 does not change the predictions appreciably. Also,
assigning different values to m; (other than 1.0 and 0.6) did not change the predictions

significantly. Thus, further predictions are restricted to models with m; = 1.0.

6.3.3 Differentiating between models

Comparing the four biaxial experiments (IN4,IN5,IN6,IN2) it is clear that shear-axial load-
ing (IN4) is most successful in differentiating between the models and points to a better
predictive capability of the JoJ3 and I JoJ3 models. While proportional loading (IN5) mod-
erately differentiates between the models, the load cases starting with axial load (IN6 and

IN2) are unable to differentiate between the models.

Figure 6.24 tracks the variations of I}, J3, and Js for shear-axial loading (IN4). A clear
difference between this and Figure 6.21 is that the invariants ; and J; increase substantially
in the second segment (axial) of loading. This makes the coeflicients a and ¢ more effective

and hence we see a large difference in the model predictions.

A simple way to achieve a substantial increase in [, and J is to start with a shear loading
and then apply other loading. Based on this idea, two more biaxial experiments (IN11 and
IN28) were conducted. The load paths for these additional experiments are also shown in

Figure 6.14. The corresponding test matrix is given in Table 6.9.

Shear-proportional loading (IN11)

Shear stresses predicted by all models are identical and are in good agreement with the
experimental data as shown in Figures 6.25 and 6.26 . There is a clear difference between

the model predictions for axial stress. The JyJ3 and I1J2J3 model predictions follow the
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Figure 6.22: Compressive-shear loading (IN2): Stress-time response (m; = 1.0)
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experimental data closely for most of proportional loading. The I} J» model over-predicts
the stress throughout the proportional loading. This further reassurance in the predictive

capability of the JoJ3 and the I JoJ3 models.

Shear-compressive loading (IN28)

Stress predictions for shear-compressive loading are shown in Figures 6.27 and 6.28. Shear
stresses predicted by all models are not substantially different. The difference in predictions
is clearly seen for axial stresses. The Jo model over-predicts the compressive stresses and the
I, J5 model predicts an even higher compressive stress. Predictions using JoJ3 and I1J2J3

models show good agreement with the compressive experimental data.

There is a discrepancy between the experimental values of the shear stress and the model
predictions during the second loading segment (AB). The shear stress did not drop to almost
zero as it did in the other experiments (Figure 6.15). There were no errors noted during the
experiment and the strain history (shear and axial) is correct. This makes it difficult to say
why the shear stress did not drop as much as it was expected to. Also, there was a slight
drift in axial stress in the first loading segment for reasons similar to IN2. However, our
primary interest is in the axial stress during the second loading segment and we disregard
these discrepancies. This experiment points to the fact that the predictive capability of
the JoJ3 model is better than that of the I;J, model. In this case, the I; JoJ3 model also

shows a good correlation with experimental data.

6.4 Summary of model predictions

Introduction of hydrostatic pressure dependence (through I;) in the baseline (J2) model did
not improve the model predictions. In the shear-compressive loading (IN28), the I, J; model
does not predict the axial stress well, even compared to the baseline model. Hence, the 1) J;
model can be ruled out for Inconel 718. The JoJ3 and I, JoJ3 models have consistently

shown good predictive capability.

Experiments are in progress at Case Western Reserve University to study the effect of
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Table 6.10: Material parameters for Inconel 718 at 650°C

Parameter | Value

x (MPa) 234.7

n 2.0

u (MPa-s) 1.7681x10°

m 7.0
Jéj 3.652
R (1/s) 1.0x10712

H (MPa) 1.966x10*

a (1/MPa?) | 0.0

b (1/MPa?) | 1.8154 x107°
¢ (1/MPa?) | 4.5 x107°
m 1.0

hydrostatic pressure on the flow behavior of aged Inconel 718 at room temperature. Initial
experiments show that the yield and flow in the material is not affected by pressure. These
experiments suggest that inelastic deformation in Inconel 718 is relatively independent of

I, and hence we can choose the JoJ3 model over the I;J>J3 model.

All the material parameters for the model are now determined and their values are given

in Table 6.10.

6.5 Comments on the method

Some aspects of the formulation and experimental procedure need to be put in perspective.

6.5.1 Load Paths

In three dimensional principal stress space, load paths can be found along which only one of
the effective invariants changes while the other two remain constant (equation 5.1). Owing

to the complexity involved with three dimensional testing, two dimensions load paths in
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axial-shear plane were found along which j 2 is constant and I; changes (keeping J3 constant)
or Js changes (keeping I, constant). Some illustrations of such load paths in effective axial-
shear stress space were given. However, in the external stress space the corresponding load
paths are more complicated. This is because the internal stresses evolve during inelastic
deformation and do not necessarily follow the external stresses. Two load paths in principal
stress space are shown in Figure 6.29 and Figure 6.30, which correspond to paths CD in
Figure 5.5 and path AB Figure 5.7 respectively. It may be possible to follow these load paths

but these tests involve three dimensional loading, which requires complex experimental set

up.

In order to avoid the above complexity, an alternative approach was adopted which involves

simpler experiments. Simple shear experiments helped to determine all of the parameters
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associated with the baseline GVIPS model. The difference is in the determination of the
additional contribution of I; (through a), J3 (through c) and exponent m;. Instead of
trying to determine the contribution of these invariants directly through complicated load
paths, an indirect procedure involving simple uniaxial and biaxial tests was adopted. A few
combinations of threshold surface parameters (a, b, ¢, m,) were obtained that fit the axial
test data (tensile and compressive) well. The biaxial tests helped to differentiate between
the models with respect to their predictive capability. Hence, biaxial experiments were

useful in identifying the right combination of invariants and also in validating the model.

The design of experiments in Chapter 5 was helpful in two ways; (1) it established an exper-
imental procedure to effectively isolate the effect of each invariant on inelastic deformation

and (2) it provided a methodology for differentiating between the models using biaxial
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experiments.

6.5.2 Threshold function

The choice of the threshold function was the key in formulation. The main advantages of

this form are addressed below.

Current form

There are several advantages of using the generalized polynomial form (equations 4.22 and

4.23) for the threshold function.

1. The function in equation 4.22 is easily reducible to well known models like Mises and

Drucker-Prager.

2. Both functions reduce to the baseline model (equation 4.15) for pure shear loading

which allows the use of COMPARE for estimation of GVIPS parameters.

3. The effect of each stress invariant on inelastic deformation can be determined sep-
arately due to the chosen form of the threshold function. Also, the resulting flow
and evolutionary laws are mathematically separable into terms associated with each
invariant. This is a definite numerical advantage in that it allows easy inclusion or ex-
clusion of a given invariant in the formulation by simply choosing a zero or a nonzero

value for the corresponding coefficient.

4. The effectiveness of using the form in equation 4.23 (instead of equation 4.22) was not
seen in this investigation. This is because the value of the threshold function is not
significantly different for the two values of m; (1.0 and 0.6) and the corresponding

parameters (g, b, ¢) in Table 6.8.

Let us consider an example of axial loading and a I;J> model. The values of the
threshold function are plotted as a function of the ratio a/b (significance of I, relative
to Jp) for m;=1.0 and m,=0.6 (Figure 6.31). For low values of the ratio (= 0.01 for
Inconel 718) there is no difference between the threshold value for m;=1.0 and that

for m;=0.6. However, as the ratio increases, there is a significant difference between
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Figure 6.31: Variation of threshold function for axial loading

the two. Thus, for materials with high a/b ratio (granular or frictional materials),
changing m, is more effective. For this reason, we retain the form in equation 4.23

and not revert to equation 4.22 in the formulation.

Alternative functions

Some alternative functional forms such as exponential or implicit forms can be considered
for the threshold function. But these forms will result in flow and evolution equations where
the invariants are not easily separable. This makes the objective of studying the effect that

each invariant has on the SD effect more difficult.

Another possibility is to use a polynomial form with different exponent (equation 4.22 with
m1 # 1) for better data fitting capability. Such a function will not reduce to the form in the

baseline model (equation 4.15) for pure shear loading. Hence the baseline model would have
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to be altered and the whole optimization software reworked to determine the parameters

associated with the baseline model.

6.5.3 Flow law

Hydrostatic pressure-dependence is represented by the use of I; in the threshold function.
An associated flow law for pressure-dependent materials often over-predicts the volume
expansion during deformation (e.g. Spitzig et al [1975]). However, based on the initial
experiments on aged Inconel 718 at the Case Western Reserve University, the effect of
hydrostatic pressure on inelastic deformation appears to be relatively low, resulting in a
I,-independent material. Hence, the volume expansion is not expected to be over-predicted
by the associated flow law. Also, the predictions using an associated flow law compare well
with experiments. Thus, the need for use of a non-associated flow law does not arise for

Inconel 718.

6.5.4 Mechanism for SD

Various deformation mechanisms in Inconel 718 were discussed in Chapter 2. It appears
that the particle-dislocation interaction is a more probable cause for the SD than is volume
expansion. Volume expansion is caused by the retarding effect of hydrostatic pressure on
the mobile dislocations, with an associated increase in dislocation density. But, since the
inelastic deformation in Inconel 718 appears to be relatively independent of hydrostatic
pressure, the volume expansion hypothesis can be ruled out as a cause of SD. Thus, the
main cause of SD appears to be the interaction between coherency strain fields around "

precipitates and dislocations.
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Chapter 7

Conclusions and Future Work

This chapter starts by summarizing the steps that were involved in the development of the
unified viscoplastic model to account for the SD effect. Conclusions that can be drawn

from this work are presented next. Finally, future work that could be undertaken for the

betterment of the model is suggested.

7.1 Summary

A potential based viscoplasticity model (GVIPS), based on J;, was the starting point of
the model development. In order to account for the SD effect, the threshold function was
generalized by including the other two stress invariants (7; and J3) in its definition. A
polynomial form was used for the threshold function. Flow and evolution laws to describe
the material behavior during inelastic deformation were derived from the proposed threshold

function.

Experiments were performed on aged Inconel 718 at 650°C to quantify the material param-
eters in the model. Shear loading was chosen to estimate all the parameters associated with
the GVIPS model because, for this loading I; = J3 = 0 and the proposed model reduces to
the GVIPS model. The parameters associated with I; and J3 do not affect the determina-
tion of the other parameters for this loading. Shear tests involved monotonic loading (strain

and stress control), relaxation, and creep tests with different loading rates and load levels.
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GVIPS parameters were optimized to fit the experimental data in shear. The experimental
data sets were chosen judiciously and the weighting of test data was changed iteratively to
arrive at the final GVIPS parameters. The goal was to obtain an axial stress-strain response

intermediate between tension and compression test data.

Tension and compression tests were conducted up to strains of 2%. By introducing positive
values for the parameters a (which scales ;) or ¢ (which scales J3) or both, three com-
binations of invariants were developed. Values of the coefficients were converged upon by
comparing model predictions with the tension and compression test data. The resulting
threshold functions had I;.Jp, JoJs and I JoJ3 forms. Convexity of these threshold func-
tions in the three dimensional principal stress space was confirmed by checking the resulting

curvature tensor for positive definiteness.

An experimental procedure for studying the effect of each stress invariant on the inelastic
deformation was established in three dimensional principal stress space. This requires fol-
lowing complicated paths in three dimensional stress space. Simple biaxial tests were chosen
instead of three dimensional paths for experimental simplicity. Six axial-torsional experi-
ments were conducted on tubular specimens of aged Inconel 718 at 650°C. Comparison of
the test data with model predictions indicated that the use of J3 in the threshold function
significantly improved the predictive capability of the model especially for non-proportional
load paths. However, using I in the formulation did not improve model predictions. In some
load cases, introduction of I, widened the gap between experiments and model prediction.
Also, preliminary results from tension and compression tests conducted under hydrostatic
pressure indicate that inelastic deformation is relatively independent of pressure, indicating

I1-independence. It was therefore established that aged Inconel 718 is a J>J3 material.

7.2 Conclusions

The following conclusions can be drawn from the investigation of inelastic behavior of aged

Inconel 718.

e A unified viscoplastic model was developed that effectively predicts a strength differ-

ential effect.
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e The ability of the model to represent the strength differential effect was demonstrated

for aged Inconel 718 at 650°C.

o A general form of the threshold function in terms of the stress invariants I, Jo, and
J; was proposed and specialized into four trial functions: Jy, I1Jo, JoJ3, and Iy JoJ3.
The JoJ3 threshold function appears to best represent the inelastic response of Inconel

718, indicating no pressure dependence of flow.

e The model with a JoJ3 threshold function exhibited excellent predictive capability

under non-proportional axial-torsional loading applied at elevated temperature.

e A general method to determine the effect that each stress invariant has on inelas-
tic deformation was established. A current limitation of this method is that three

dimensional stress paths must be applied.

e A procedure to determine the convexity of any function in three dimensional stress
space was implemented to verify convexity of the threshold function. It was established

that the model developed for aged Inconel 718 satisfies Drucker’s stability criterion.

e The physical mechanism responsible for the strength differential in Inconel 718 appears
to be the interaction between coherency strain fields around " precipitates and the

dislocations.

e The viscoplastic model is very general in that it can be applied to many materials,
including the ones that do not exhibit a strength differential. The suggested experi-
mental procedure for characterizing and validating the model is simple and hence can

be applied to a wide range of materials.

7.3 Future work

The viscoplastic model developed in this investigation opens the door for research in related

areas.

e More variety of tests can be conducted for model characterization. A test matrix can

be derived which is best for optimization of the material parameters.
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e Direct effect of individual stress invariants on the inelastic deformation can be obtained
by following three dimensional stress paths developed using the proposed threshold
function. To this end, complicated two dimensional stress paths in the axial-torsional

stress space with constant J, rate, that seem more feasible, can also be attempted.

e The threshold surface parameters that fit the axial test data well did not fit the
initial threshold surface data. One way to effectively account for this is to make the
coeflicients of I; and J3 (a and c) a function of inelastic deformation. This way, the
parameters can have initial values that fit the initial threshold surface data, and then

can evolve such that a good correlation is also obtained with the uniaxial test data.

e Experimental data for different strain rates can be used in characterizing the model
so that its predictive capability is improved for a range of loading rates. Similarly,
if the capability of the baseline model to account for variation in temperature can
be exploited, a non-isothermal model can be built using this procedure. This would

additionally involve experiments at different temperature levels.

e It will be interesting to evaluate the performance of the model using a different class of
material, e.g. granular materials. The effectiveness of the model would be established
if it is able to predict the hydrostatic pressure-dependence that is prevalent in these

materials.

o Alternative ways of microstructural evaluation of samples deformed under tension and

compression can be explored to determine the exact mechanism causing SD.
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Appendix A

Formulation with Generalized

Threshold Function

A.1 Flow Law and Evolution Law

Dissipation Potential

Gibb’s Potential

® = —gieii —
274 T 1+ B)H

Generalized Functions

~ ~ L2my 1
F=laP™ +bJ" +cJdg® |™ —1.
2y s
G =[all®™ +bJ™ +cJy 5"

Effective Stress Invariants

L = o4—ai

- 1

Jo = -2-2,']‘ Z,‘j

. 1

J3 = gzijzjkzki

NASA/CR—2001-210715 157



Internal Stress Invariants

1

!

Jy = Eaija,-j
1

!

J3 = 30i05k0k

Derivatives of generalized functions with respect to invariants

g—g = 2aF'"Mm!
% = pFI-™ jm-l
2987{7‘3 _ %Fl—mljgmﬁ(i—l
Z;GQ = 2gGImpPm!
%; — bGl—m1J£m1—1
gj; _ %Gl—mljéih'mm—l

Derivatives of effective invariants with respect to stress

2,

g;]z = Eiqzjq“gji"su
T

gii_ = —Eiqzjq+§.f25,3
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Derivatives of internal invariants with respect to stress

o, _

6a,-j K

a7,

Gy =

a7, 2
o @igjq — §J§5z‘j

Derivatives of generalized functions with respect to stress

oF OF 0, OF 8J, OF 8Js

= —=—+—= + = (A.1)
doi; oI, 8oi;  0Jy 0oy 8J3 0oij
= (F+1)7™7Ty

where
72m;—1 4 - "%ml_l ymi—1 2 ~%m1_1
Tij = (2(1]1 — §CJ2J3 )6,;j + bJ2 E,’j + 56.13 Ziqzjq
oF oF
Baij N 60,'3'
oG
=GI"™QE,, A2
where
0. = 12my1—1 4 ! [%m]—l tm1—1 2 1§m1—1
ij = (20,11 - §CJ2J3 )61.7 + bJ2 aqij + 5CJ3 QiqQjq
Flow Law
. a0
61] - aO’U
_ R OF
2p  Oojj
Substituting from equation A.1

N2
—FYF+1)'"™7Yy

é,‘j = 2H

Evolution Law

. o0
Aij - Baij
K2 oF k%R oG
= L opn m+3
2u  Oojj + H G Oayj
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Substituting from equation A.1 and A.2

. 2R )
Aij — 611] _ EH_G(l+ﬂ+m——m1)ei‘j

Internal Compliance

__&e

Boz,-jaak,

8 G

Kz_Qa[G aakl]
H c‘)aij
K2my B[G1+ﬂ_ml O]

H Ja;
K_2G1+l3—m1 00y + 1+8—my
H Ba,-j G{"

Qijki

0O

Each term in ©y; is differentiated by parts and the final expression for the internal compli-

ance tensor is

Qijkr = (A.3)
KQ (1+8—my) 12my -2 b ymy—1 8¢ 2 12 31 2my—2
—H—G ! [(2&(27711 - l)Il - 5.]2 + 2—7(5777,1 — I)JQ J33 )6ij5k[

+b(my — l)Jéml_Qa,-jakg + bJéml_l&'k(Sﬂ

2c 2. 2 1 2J!
+ 3™ 1(au5kj + @il — 040k + (51 — 1) 5 (QigQjqQkpip — —2 @iqajq0k1))
3 3 3 7 3
dc 20,21, 2 J, 1+8-m
_5 :;3"“ 1((§m1 - l)J—?akpalp&'j + aklé‘i]‘) + (_Gr?_l> @ij@kl]
3

Simplification for deviatoric models

For models not involving I (hydrostatic pressure-independent material) the &y; is inconse-

quential in the internal constitutive rate equation because

Okitgr = G =0

NASA/CR—2001-210715 160



Thus the terms with 8; can be dropped and the internal compliance tensor simplifies to

Qijki =
2
%G“_*—a_ml)[b(ml - 1)( é"“nzaijak, + bJémlﬁl(sik(Sjl
2¢ ,2m,— 2 1
+—J:;3m] 1(ai16kj + ajllsik + (Tml - l)jaiqajqakpalp)
3 3 J3
4c 2 —1 2 J’
—3«]53"“ ((§m1 - I)J_?akpalpéij + aidij)
3

1+48-m . 2 2.
+ (—%) @ij(bjéml lakl + ECJé:‘ml lakqalq)]

Stress transformation to principal plane

Transformation of stresses from the axial-shear plane to the principal plane facilitated the

numerical inversion of the internal compliance tensor (Q;jx) for loadings that start with

shear.

A.2 Contracted Notation

Various tensors in the formulation have been changed to contracted notation for ease of

programming.

5ij=[1 1100 0]

Eij:[zu Lo B3z Yoz X3 212]

aij:[au a2 a33 a3 Q31 012]
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Th + I, + B

25 + 5, + B3

D51 + 5, + I3
12813 + ToeXoz + X308
E11813 + Bi2Z03 + 3%
| 1112+ Z19¥00 + Z38

[ e +a%tad
a3, + a3, + aj
Gigazq = a3 + a3, + a3
Q12013 + aze023 + a3zaass

a11a13 + a12a23 + a13a3;

0ikbj1 =

Lo R e B e
oS o o O

©c o o o o
o o o o ~ o
o o © = o o
o o

—_
_ o o o o ©

0 0 asa 0 asi
il =
0 0 a3 0 ap

0 a9 0 asz) 0
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| anlai2 +aiz2az2 + aizasz |

33

33

32




ai 0 0 0 0 a9
ap 0 ax O

a0 =

0

0 0 a3 0 ay
0 a3 0 azz O
0

o o o O

0 a3 0 an

a12 0 0 0 0 ag) 5
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Appendix B

FORTRAN Program for

Computing Material Response

implicit double precision(a-h,o0-z)

common / one / q0,g9l1,92,q3,q4

common / six / xk,xmu,xn,ra,beta,xa,xb,xc,xm,xh,xml,m

common / eight / ctemp

dimension sb(6),eb(6),a(6),epl(6),dep(6),adot(6),c(6,6),acap(6)
dimension th(6),sig(6),dev(6),dp(6)

q0 = 0.d0
ql = 1.40
92 = 2.d0
93 = 3.d0
g4 = 4.d0
pi = gé*atan(ql)

open (12,file=’nn5.inp’,status=’o0ld’)

open (13,file=’gnew.dat’,status=’unknown’)
¢ read current temperature and Poisson ratio

read(12,*) ctemp,xnu

call GVPROP(XK,XMU)
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¢ read matrix temperature-independent GVIPS parameters
read(12,*) xn,xh,beta,xm,ra
¢ read threshold surface parameters
read(12,*) xa,xb,xc,xml
¢ material properties (elastic)
call ELPROPS(emod,alfa,c,xnu)
gm = emod/(ql + xnu)/q2
¢ read no. of load segments and probes

read(12,*) nstep,ipro

do 1000, m=1,nstep
read(12,*) ttim,ninc,sigi,sigf,taui,tauf

timinc = ttim/real (ninc)

tau = taui

siga = sigi

deltau = tauf-taui
delsig = sigf-sigi
dtau=deltau/real{ninc)

dsig=delsig/real(ninc)

do 500, k=1,ninc

¢ Strain control loading
eb(1) = siga
siga = siga + dsig
eb(2) = tau
tau = tau + dtau

emod*(eb(1)-taxe)

ax

sh

q2*gm* (eb(2)-tshe)

¢ transformation to principal stress
sb(1)=ax/q2 + sqrt(ax**q2/g4 + shx*q2)
sb(2)=ax/q2 - sqrt(ax**q2/q4 + sh*xq2)
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call GVIPS(sb,a,adot,dep,c,xjl,xj2,xj3,sig)
¢ calculate plastic strains
do 60, i=1,6
a(i) = a(i) + adot(i)*timinc
dp(i)=dep(i)*timinc
60 epl(i) = epl(i) + dep(i)*timinc

axe=q0
she=q0
theta=abs(ql/q2*atan(g2*sh/ax))

c transform principal inelastic strain increments to axial and shear components
axe=q1/q2*(dp(1)+dp(2)+abs(dp(1)-dp(2))*cos(g2*theta))
she=q1/q2*(dp(1)-dp(2))*sin(q2*theta)

¢ compute total inelastic strain
taxe=taxe+axe

tshe=tshe+she

if (k/1000.0-int (k/1000.0) .eq.q0)then
write(13,9995) k,ctime,ax,sh,xj1,xj2,xj3,taxe,tshe

endif

ctime = ctime + timinc
500 continue
1000 continue
9995 format(i8,9d12.4)

stop

end

CREMHHHBHBRBR BRI HB R BB R B R R ARG R i i)

subroutine gvprop(kapa,xmu)

implicit double precision (a-h,o-z)
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double precision kapa,kapa0
common / eight / ctemp
kapa = 234.7
xmu = 1.7681d5
return
end
CRUBBHABBHRUBBHBHHBHEBRBBRERGRRBHEERERBHBURERBURBB R R B R EHRHRRER LRSS
subroutine elprops(emod,alfa,c,xnu)
c elastic stiffness tensor
implicit double precision(a—h,o—z)l
common / one / q0,ql1,q92,q3,q94
common / eight / ctemp
dimension c(6,6)

165360.0

emod

xlam = xnu*emod/((gql + xnu)*(gl - q2%xnu))

xmu = emod/(q2*(ql + xnu))

c(1,1) = xlam + g2*xmu
c(2,2) = c(1,1)
c(3,3) = c(1,1)
c(1,2) = xlam
c(1,3) = ¢c(1,2)
c(2,3) = ¢c(1,2)
c(2,1) = c(1,2)
c(3,1) = ¢c(1,3)
c(3,2) = c(2,3)
c(4,4) = xmu
c(5,5) = xmu
c(6,6) = xm
return

end

CHUBHBHRHHBURBRRWN R BRI R RS B AR R R SRR Wi
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subroutine gvips(st,at,adot,dep,c,le,ij,ij,sig)

¢ Formulation with generalized threshold function
implicit double precision(a-h,o-z)
common / one / q0,q91,q92,q93,q94
common / two / ctemp
common / six / xk,xmu,xn,ra,beta,xa,xb,xc,xm,xh,xml,m
dimension st(6),dep(6),dev(6),sig(6),x1(6,6),at0(6)
dimension acap(6),at(6),adot(6),c(6,6),xq(6,6),xq1(6,6)
dimension xu(6),su(6),delta(6),xv(6,6),xw(6,6),yi(6,6)
dimension pi(6),th(6),xul(6),yi1(6,6),th1(6),pi1(6),depl(6)
dimension indx(6),th0(6),th2(6),p1(6,6),p2(6,6)

if(xa.ne.q0)then

at0(1) = (Q2*at(1) - at(2) - at(3))/Q3
at0(2) = (Q2*at(2) - at(1) - at(3))/Q3
at0(3) = (Q2*at(3) - at(2) - at(1))/Q3
else

at0(1)=at (1)
at0(2)=at(2)
at0(3)=at(3)

endif

at0(4) = at(4)
at0(5) = at(5)
at0(6) = at(6)

xil=at (1)+at(2)+at(3)

ast=st(1)+st(2)

C deviatoric stress components

dev(1) = (q2*st(1) - st(2) - st(3))/q3
dev(2) = (g2*st(2) - st(1) - st(3))/q3
dev(3) = (q2#st(3) - st(2) - st(1))/q3
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dev(4) = st(4)
dev(5) = st(5)
dev(6) = st(6)

C effective deviatoric stress components
do 10, i=1,6
10 sig(i) = dev(i) - atO(i)

¢ first effective invariant

xjl=st(1)+st (2)+st(3)-xil

delta(1)=ql
delta(2)=q1
delta(3)=q1
delta(4)=q0
delta(5)=q0
delta(6)=q0

su(1)= sig(1)**g2 + sig(6)**q2 + sig(5)**q2
su(2)= sig(2)**q2 + sig(4)**q2 + 8ig(6)**q2
su(3)= 8ig(3)**q2 + sig(4)**q2 + sig(5)*xq2
su(4)= sig(6)*sig(5) + sig(2)*sig(4) + sig(3)*sig(4)
su(5)= sig(1)*sig(5) + sig(4)*sig(6) + sig(3)*sig(5)
su(6)= sig(1)*sig(6) + sig(2)*sig(6) + sig(4)*sig(5)

xul(1)= at0(1)**q2 + at0(6)**q2 + at0(5)*xq2
xul(2)= at0(2)**q2 + at0(4)**q2 + at0(6)**q2
xul (3)= at0(3)**q2 + at0(4)*xq2 + at0(5)**q2
xul(4)= at0(6)*at0(5) + at0(2)*at0(4) + at0(3)*at0(4)
xul(5)= at0(1)*at0(5) + at0(4)*at0(6) + at0(3)*at0(5)
xul(6)= at0(1)*at0(6) + at0(2)*at0(6) + at0(4)*at0(5)

do 12, i=1,6
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do 12, j=1,6
xv(i,j)=q0
xw(i, j)=q0
if(i.eq.j)then
yi(i,j)=ql
else
yi(i,j)=q0
endif

12 continue

c 2nd & 3rd effective invariant

XI2 = QO

XJ2 = QO

XI3 = QO

XJ3 = Q0

D0 20, I=1,3

XI3 = XI3 + Qi*(at0(I)*xul(I)+q2*at0(i+3)*xul(I+3))/Q3
20 XJ3 = XJ3 + Qi*(sig(I)*su(I)+q2*sig(I+3)*su(i+3))/Q3

D0 21, I=1,3

XI2 = XI2 + Q1*(at0(I)*at0(I)/Q2 + at0(I+3)*at0(I+3))
21 XJ2 = XJ2 + Q1*(SIG(I)*SIG(I)/Q2 + SIG(I+3)*SIG(I+3))

sxjl=ql

sxj3=ql

if(xj1.1t.q0)sxjl=-ql
if(xj3.1t.q0)sxj3=-ql

¢ setting minimum values for internal invariants (Go for stability)

if(xa.ne.q0.and.xc.ne.q0.and.ast.ne.q0)then

congl=30.0
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cong2=900.0
cong3=27000.0
elseif(xa.ne.q0.and.xc.eq.q0.and.ast.ne.q0)then
cong1=30.0
cong2=800.0
elseif(xa.eq.q0.and.xc.ne.q0.and.ast.ne.q0)then
cong2=900.0
cong3=27000.0
elseif(xa.eq.q0.and.xc.eq.q0.or.ast.eq.q0)then
cong2=900.0

endif

if(xj2.eq.q0) return

xek2 = xb*xj2+*(xmil-ql)

if (xc.ne.q0.and.ast.ne.q0)then

xek3 = q2/q3*xc*sxj3*abs(xj3)**(q2/q3*xml1-q1)
else

xek3 = qO
endif

if(xa.ne.q0.and.xc.ne.q0.and.ast.ne.q0)then
exe=xa*sxjl*abs(xj1)**(2*xm1)+xb*xj2**xmi+
+ xc*sxj3*abs (xj3) ** (2%xm1/3)
xekl = g2*xa*sxji*abs(xjl)**(q2*xmi-q1)
+ -4.0/9.0*xc*xj2*sxj3*abs (xj3) **(q2/q3*xm1-q1)
elseif (xc.ne.q0.and.xa.eq.q0.and.ast.ne.q0)then
exe=xb*xj2**xml+xc*sxj3*abs (xj3)** (2*xm1/3)
xekl =-4.0/9.0*xc*xj2*sxj3*abs(xj3)**(q2/q3*xmi-q1)
elseif(xa.ne.q0.and.xc.eq.q0.and.ast.ne.q0)then
exe=xa*sxjl*abs(xj1)**(2*xml) +xb*xj2#**xm1

xekl = g2*xax*sxjl*abs(xjl)**(q2*xmi-q1)
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elseif (xa.eq.q0.and.xc.eq.g0.or.ast.eq.q0)then
exe=xb*xj2**xml
xek1=g0

endif

do 123, i=1,6
123 pi(i) = xekixdelta(i) + xek2*sig(i) + xek3*su(i)

¢ function F
fcap = (abs(exe) ) **(ql/xmi) - qi
if (fcap.1t.q0) fcap = q0

flit = fcap**xn

¢ inelastic strain rate tensor
do 30, i=1,6
30 dep(i) = xk*xk/q2/xmu*f1lit* (fcap+ql)**(ql-xml1)*pi(i)

if(xa.ne.qO.and.xc.ne.qO.and.ast.ne.qO)then
if (abs(xil) .1t .abs(congl))xil=congl
if(xi2.1t.cong2)xi2=cong?2
if (abs(xi3) .1t .abs(cong3))xi3=cong3
elseif (xa.ne.q0.and.xc.eq.q0.and.ast.ne.q0)then
if (abs(xil) .1t.abs(congl))xil=congl
if(xi2.1t.cong2)xi2=cong2
elseif (xa.eq.q0.and.xc.ne.q0.and.ast.ne.q0)then
if (abs(xi3).1lt.abs(cong3))xi3=cong3
if(xi2.1t.cong2)xi2=cong2
elseif (xa.eq.q0.and.xc.eq.q0.or.ast.eq.q0)then
if (xi2.1t.cong2)xi2=cong2

endif

sxil=ql

NASA/CR—2001-210715 173



8xi3=q1l

if(xil.1t.q0)sxil=-q1
if(xi3.1t.q0)sxi3=-ql

if(xi2.gt.q0)then
if(xc.eq.q0.and.xa.ne.q0)then
gcap=xa*sxil*abs(xil)»*(q2+xml)+xb*xi2**xmi
elseif(xa.eq.q0.and.xc.ne.q0.and.ast.ne.q0)then
gcap=xb*xi2**xmi+xc*sxi3*abs(xi3)**(q2*xm1/q3)
elseif (xc.ne.q0.and.xa.ne.q0.and.ast.ne.q0)then
gcap=xa*sxil*abs(xil)** (q2%xm1)+xb*xi2**xmi

+ +xc*sxi3*abs(xi3) **(q2*xm1/q3)

elseif (xc.eq.q0.and.xa.eq.q0.or.ast.eq.q0)then
gcap=xb*xi2**xml

endif

endif

¢ function G

gcap=(abs(gcap) ) **(q1/xm1)

xik2 = xb*xi2*x(xml-q1)

if(xc.ne.q0.and.ast.ne.q0)then

xik3 = q2/q3*xc*sxi3+*abs(xi3)**(q2/q3*xmi-q1)
else
xik3 = q0

endif

if(xc.ne.q0.and.xa.ne.q0.and.ast.ne.q0)then
xikl = g2*xa*sxil*abs(xil)**(q2%xmi-q1)
+ -4.0/9.0%xc*xi2*sxi3*abs (xi3)**(q2/q3*xmi-q1)
elseif(xc.ne.q0.and.xa.eq.q0.and.ast.ne.q0)then

xikl = -4.0/9.0*xc*xi2*sxi3*abs (xi3)**(q2/q3*xmi-q1)
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elseif(xa.ne.q0.and.xc.eq.q0.and.ast.ne.q0)then
xikl = q2*xa*sxil*abs(xil)#**(q2*xml-ql)
elseif(xc.eq.q0.and.xa.eq.q0.or.ast.eq.q0)then
xik1=q0

endif

do 122, i=1,6
th1(i)=xik2*at0(i)+xik3*xul (i)

122 th(i) = xiki*delta(i) + xik2#*at0(i) + xik3*xul(i)

xv(1,1)=at0(1)
xv(1,6)=at0(6)
xv(2,2)=at0(2)
xv(2,4)=at0(4)
xv(3,3)=at0(3)
xv(3,5)=at0(5b)
xv(4,2)=at0(4)
xv(4,4)=at0(3)
xv(5,3)=at0(5)
xv(5,5)=at0(1)
xv(6,1)=at0(6)
xv(6,6)=at0(2)

xw(1,1)=at0(1)
xw(1,6)=at0(6)
xw(2,2)=at0(2)
xw(2,4)=at0(4)
xw(3,3)=at0(3)
xw(3,5)=at0(5)
xw(4,3)=at0(4)
xw(4,5)=at0(6)
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xw(5,1)=at0(5)
xw(5,6)=at0(4)
xw(6,2)=at0(6)
xw(6,4)=at0(5)

if(xc.ne.q0.and.xa.ne.q0.and.ast.ne.q0)then
z1 = g2+*xa*(g2*xmi-q1)*sxil*abs(xil)**(q2*xmi1-q2)
+ - xb/g3*xi2**(xmi-ql)
+ + B.0*xc/27.0%(q2/q3*xm1-q1)*sxi3*abs(xi3)**
+  (g2/q3*xml1-q2)*xi2*xi?2
elseif (xc.ne.q0.and.xa.eq.q0.and.ast.ne.q0)then
z1=- xb/q3*xi2**(xml-q1)
+ + 8.0*xc/27.0%(q2/q3*xml1-q1)*sxi3*abs(xi3)**
+  (q2/q3*xml1-q2)*xi2*xi2
elseif (xa.ne.q0.and.xc.eq.q0.and.ast.ne.q0)then
z1=q2*xa*(q2*xml-ql)*sxil*abs (xil)**(q2*xmi-q2)
+ -xb/q3*xi2*x(xml-q1)

endif

z2 = xb*(xmil-ql)*xi2**(xmi-q2)

z3

xb*xi2** (xmi-q1)

if(xc.ne.q0.and.ast.ne.q0)then

cnl = sxi3*abs(xi3)**(q2*xml1/q3-ql)

cn2 = sxi3*abs(xi3)**(q2*xmi1/q3-q2)
else

cnl=q0

cn2=q0

endif

cn3 = (ql-xml+beta)/gcap**xmi

¢ internal compliance tensor
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if(xa.eq.q0.and.xc.eq.q0.or.ast.eq.q0)then

do 31,
do 31,
31

+

i=1,6
i=1,6
xq(i,j)=gcap**beta/xh*
(beta/gcap/xk/xk*at0(i)*at0(j)+yi(i,j))

elseif (xc.ne.q0.and.xa.eq.q0.and.ast.ne.q0)then

do 32,

32

do 33,

33

+

do 34,

34

+

+

+

i=1,6
do 32, j=1,6
xq(i,j) = xk*xk/xh*gcap**(beta+ql-xmi)*
(z2*at0(i)*at0(j) + z3*yi(i,j)
+ cnl*q2*xc/q3*(xw(i,j)+xv(i,j)
-q2/q3*delta(i)*at0(j))
+ cn2*q2*xc/q3*(q2*xm1/q3-q1)* (xul (i) *xul (j)
-q2/q3*xi2*delta(i)*xul(j))
+ cn3*th(i)*th1(j))
elseif (xa.ne.q0.and.xc.eq.q0.and.ast.ne.q0)then
i=1,6
do 33, j=1,6
xq(i,j) = xk*xk/xh*gcap#**(beta+ql-xml)*
(z1*delta(i)*delta(j)
+ z2#%at0(i)*at0(j) + z3*yi(i,j)
+ cn3*th(i)*th(j))
elseif (xa.ne.q0.and.xc.ne.q0.and.ast.ne.q0)then
i=1,6
do 34, j=1,6
xq(i,j) = xk*xk/xh*gcap**(beta+ql-xml)#
(z1*delta(i)*delta(]j)
+ z2%at0(i)*at0(j) + z3*yi(i,j)
+ cnl*q2*xc/q3*(xw(i,j)+xv(i,j)-q2/q3*at0(i)*delta(j)
-q2/q3*delta(i)*at0(j))
+ cn2xq2#xc/q3*(q2%xm1/q3-q1)* (xul (i) *xul (j)-
q2*xi2/q3*xul (i)*delta(j)-q2/q3*xi2*delta(i)*xul(j))
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+ + cn3*th(i)*th(j))

endif

¢ internal stiffness tensor

call invert(xq,6,6,x1)

¢ internal strain rate
do 70, i=1,6
70 acap(i)=(dep(i)~-ra*xk*xk/xh*

+ gcap**(ql+beta+xm-xm1)*th(i))

¢ convert tensorial shear components to contracted (vector) components
do 80, i=4,6

80 acap(i) = g2=*acap(i)

¢ internal constitutive rate equation
do 90, i=1,6
adot (i) = q0
do 90, j=1,6
adot (i) = adot(i) + x1(i,j)*acap(j)

90 continue
C CONVERT CONTRACTED SHEAR COMPONENTS BACK TO TENSORIAL COMPONENTS

DC 100, I=4,6
100  ACAP(I) = ACAP(I)/Q2

END
C o ke o e o o o s o o o o o ok o o e o o ok o ke o i ok ke o o Sl o o 3 oK o o 3K o 2 o 2k 3 3 3 o 3 36 o o ok ok ok 3 ok o ok o ok K o ok ok ok ok ok

subroutine invert(a,n,m,d)

c inverts n x n matrix a. result returned as array d
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c m is the dimensioned size of arrays a and d

implicit double precision(a-h,o0-z)
dimension a(m,m),d(m,m),w(138,276)
do 5 i=1,n
do 5 j=1,n
w(i,j)=a(di,])
if(i.eq.j) then
w(i,j+n)=1.
else
w(i,j+n)=0.0d0
end if
5 continue
do 50 k=1,n
do 10 1=1,2*n-k+1
j=2*n+1-1
wik,j)=vw(k,j)/w(k,k)
10 continue
do 30 i=1,n
if(i.eq.k) goto 30
do 20 1=1,2*n-k+1
j=2#*n+1-1
w(i,j)=w(i,j)-w(i,k)*w(k,j)
20 continue
30 continue
50 continue
do 60 i=1,n
do 60 j=1,n
d(i,j)=w(i,j+n)
60 continue
return

end
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Appendix C

MATLAB Program for

Determining Convexity

m=1.0;

ij=1;

for sav=654:-4:-654

1lc=1;

for ¢=2.2e-6

a=2.6e-7;

b=1.8154e-5;

i=1;

for lam=1:1:27

ik=i*ij;

k=0;

th=pi*1lam/180;
rj2=(1-ax(9*sav~2) "m)/(b+c/3"m*(2*cos(3*th)) " (2*m/3));
rj2=(abs(rj2))~(1/(2*m));

% principal stresses

s1=sav+2/sqrt(3)*rj2*cos(th);
s2=sav+2/3qrt (3)*rj2*cos(th-2*pi/3);

NASA/CR—2001-210715 181



s3=sav+2/sqrt (3)*rj2*cos(th+2*pi/3);

% invariants

il=gl1+52+s83;
j2=1/3%((s1-82) ~2+(82-s83) "2+(83-81)"2);
j3=1/27*(2%s1-52-83) * (2*s2-s1-83) *(2%s83-81-82) ;
snj3=1;

if j3 <0

snj3=-1;

end

%derivatives for hessian matrix
di=b*j2"~ (-1 + m)=*m;

d3=b*j2° (-2 + m)*(-1 + m)*m;

d5=0;

if 11 ==

d0=0;

d6=0;

else

dO=a*2*m*il~ (2*m-1) ;
d6=2*axil1~ (-2 + 2*m)*m*(-1 + 2*m);
end

if j3 ==

d2=0;

da=0;

else

d2=(2*c*snj3*(abs(j3)) " (-1 + (2*xm)/3.)*m)/3.;
d4=(2*c*snj3*(abs(j3)) " (-2 + (2*m)/3.)*(-1 + (2*m)/3.)*m)/3.;
end

djo=1;

dj1=1/3+(2%s1-52-83) ;
dj2=1/3*(2*82-81-83);
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dj3=1/9%(2%s1°2-52"2-53"2-2%51%52-2%51*53+4*52%83) ;
dj4=1/9%(2%s2"2-81"2-83"2-2*51%52-2%52*53+4*51*s3) ;
dj5=2/3;

dj6=2/3;

dj7=2/9%(2*s1-s2-53) ;

dj8=2/9*(2*s2-s1-83);

djo=-1/3;

dj10=2/9*(2%s3-s1-82);

dj11=1;

dj12=1/3*(2%s3-51-52) ;

dj13=2/3;

dj14=-1/3;

dj15=-1/3;
dj16=1/9*(2*s3‘2—si“2-32‘2—2*s1*33—2*s2*s3+4*s1*s2);
dj17=2/9%(2%s3-s1-82);

dj18=2/9%(2%s2-51-53);

dj19=2/9%(2*s1-52-83);

mil=d6 + di*dj5 + d3*dji*djl + d2xdj7 + dd=dj3*dj3;
m12=d6 + di*dj9 + d3*dj2*djl + d2+dj10+ d4*dja*dj3;
m22=d6 + di1*dj6 + d3*dj2*dj2 + d2*dj8 + dd*dj4*dj4;
m13=d6 + d3+dj1*dj12 + d1*dj14 + d4xdj3*dj16 + d2*dj18;
m23=d6 + d3*dj2+*dj12 + di*dj15 + d4xdja*dj16 + d2*dj19;
m33=d6 + d1*dj13 + d3*dj12°2 + d2*dj17 + d4*dj1672;

% curvature tensor
x=[m11 mi2 m13

mi2 m22 m23

mi3 m23 m33];

ul=d0 + di*dji + d2#*dj3;
u2=d0 + di*dj2 + d2*dj4;
u3=d0 + dixdj12+ d2*dj16;
du=(ul-2+u2-2+u3°2)"0.5;
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% unit vector in tangential direction
u=[ul/du u2/du u3/dul]’;

bm=eye (3)-u*u’;

% orthonormalization
[pm,s,v]=svd(bm);
g=pm(:,1:2);

% curvature in tangential direction
kur(i)=min(eig(q’*x*q));
kurr=kur(i);

1(i)=lam;

res(ik,1)=sav;
res(ik,2)=lam;
res(ik,3)=kurr;

if kur(i) < 0.0

lamc (ik)=lam;
str(ik)=sav;

kc (ik)=kurr;
cr(lc,ik)=c;

lc=1c+1;

end

k=k+1;

end

i=i+l;

end

ij=ij+l;

end
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Appendix D

Correlation for Biaxial Loading
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Figure D.1: Shear-tensile loading (IN4) (m; = 0.6)
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Figure D.2: Proportional loading (IN5) (m; = 0.6)
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Figure D.3: Tensile-shear loading (IN6)(m; = 0.6)
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