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TECHNICAL PUBLICATION

ESTIMATING COSMIC-RAY SPECTRAL PARAMETERS FROM SIMULATED DETECTOR

RESPONSES WITH DETECTOR DESIGN IMPLICATIONS

1. INTRODUCTION

This Technical Publication (TP) develops statistical methods for estimating the three spectral

parameters of the broken power law energy spectrum. Estimation of these parameters and quantification of

the surrounding uncertainty of the estimates are of considerable importance to designers of cosmic-ray

detectors.

Analytical methods were developed in conjunction with a Monte Carlo simulation to explore the

combination of the expected cosmic-ray environment with a generic space-based detector and its planned

life cycle, allowing us to explore various detector features and their subsequent impact on estimating the

spectral parameters. This study thereby permits instrument developers to make important trade studies in

design parameters as a function of the science objectives, which is particularly important for space-based

detectors where physical parameters, such as dimension and weight, impose rigorous practical limits to the

design envelope.

A simple power law model consisting of a single spectral index (¢xI) is believed to be an adequate

description of the galactic cosmic-ray (GCR) proton flux at energies below 1013 eV, with a hypothesized

transition at knee energy (E k) to a steeper spectral index a2> ffl above Et. Methods for estimating these

three spectral parameters are developed in this TP. Because many of the features and analytical tools

related to a simple power law have natural extensions to the analysis of this so-called broken power law,

these methodologies will be discussed in detail first.



2. SIMPLE POWER LAW

The simple power law suggests that the number of protons detected above an energy (E) for an

assumed collecting power (product of size and observing tirne) is given by: I

No(> E)= NA( E_ff___]-°q+l ,

_,EA)

(l)

where E is in units TeV, a I is believed to be =2.8, and N A and E A are numbers determined from the detector

size and exposure time in the environment, respectively. For a typical space-based detector of 1 m 2 with a

3-yr program life, N A and E A are 160 and 500 TeV, respectively, implying that this detector is expected to

observe 160 proton events above 500 TeV over its expected life cycle. In statistical terms, N O is assumed to

represent an average number of events while the actual number to be observed on any given mission would

follow the Poisson probability distribution with mean number N 0. The number of particles detected is

taken to depend only on the geometrical factor of the assumed detector and its material composition. The

detection efficiency is a convolution of the geometry and material composition and is taken to be indepen-

dent of energy.

The associated cumulative probability distribution function (cdf) for E over some energy interval

of interest [E l,E 2] is then given by

_o(E)=I No(> E)- No(> E 2) for E I<E<E 2
NO(> El) - NO(> E2)

=1-
NAIl)-°'+'
NAIl/-°'+1NA( )

=1-
E-a+l _l-a 1

- L2 (2)

E 1-_xl r'l-a I/ - _2

2



Thus,thecorrespondingprobabilitydensityfunction(pdf) for E is

Co(E)- dOo(E)
dE

c_I-1 E -°q for E I<E<E 2

El -al - "_2"cl-°q

(3)

To randomly sample GCR proton event energies from the simple power spectrum over the interval

[E I,E2] , ui=Oo(Ei) is solved in terms of E i to obtain

I

, rl-@l- El-Oq )] i-alE i =dpol(l,i)=[El -al + t,i[tz 2
(4)

where Iti is a simulated random number from a standard uniform distibution and • 0- l represents the inverse

function of • 0, which is a conventional notation that will be used in subsequent sections. The mean of the

simple power law distribution is determined by the expected value operator <E> which gives

/d E =< E >=

E2

I EO°(E)clE

El

- el

The variance is given as _2 E = <E2> - (<E>) 2, where the general form of <Era> is

(5)

E2

< E m >= ] EmqjO( E)dE

El

O_1 -- 1 )El _+l-az - r'm+l-ch
_ *'2

- _l-a l
-k,'al--m---1 El a, tz2

(6)

At this time, note the critical point that <E2> becomes infinite, as do all other higher moments, as

E 2 goes to infinity, as is easily seen in eq. (7):

lim "|bx2x-tt dx = oo for all/, < 3 and a > 0 .
b_..) _o "_a

(7)

=,



This observation suggests the need for a careful look at the effects of the large variance and other

higher moments associated with all power law distributions, even when E 2 is kept finite. A measure of the

relative dispersion of the energies of the incident protons, which is independent of units, is defined by

V=6E]l,.t E for the simple power law and is called the coefficient of variation in the statistical literature. An

important concept in detector design is the energy resolution p of the detector that provides a measure of

the relative accuracy of a cosmic-ray detector, which is the fractional error in measurements of a

monoenergetic beam. The resolution p is defined as the standard deviation divided by the mean response

with typical values of 30 to 40 percent.

As will be shown in this TP, the precision with which the spectral parameter a 1 can be estimated

from a set of detector responses (energy deposits), measured in terms of its standard deviation, is a function

of both the variance of the incident energies and the uncertainty induced by the detector. The dominating

component of this measurement precision will be shown to be attributable to the variance of the incident

energies o"E, which in turn can only be controlled through collecting power. Since V and p are dimension-

less and provide a measure of relative dispersion for the power law distribution and detector, respectively,

an instructive comparison will show that V>>p. To illustrate these points, a detector-life cycle having

parameters NA= 160 and EA=500 TeV will observe 52,200 events on average in the energy range El=20

TeV to E2=5,500 TeV from a simple power law spectrum when _l is 2.8, which gives a mean GCR event

energy _E =44.5 TeV, a standard deviation 6E=74.10 TeV, and a coefficient of variation V= 166.5 percent.

In comparison, the resolution p of most detectors is between 30 and 40 percent. E 2 is chosen for this

detector-life cycle combination as 5,500 TeV, since the expected number of events above this energy are

negligible, while E l is taken to be 20 TeV for purposes of this discussion.

Since the number of events and their incident energies will vary because of the finite detector size

and exposure time, the statistical behavior of the GCR event energies in combination with a detector

having energy resolution p and the subsequent spectral parameter estimates over multiple missions will be

studied. Thus, for each mission, a random number N of GCR events from a Poisson distribution with mean

52,200 to represent the number of simulated events that the detector will observe in the energy range 20 to

5,500 TeV on any given mission will be generated.

Next, the incident energy of each of these N events using eq. (4) is simulated. For example, for one

such simulated mission, N=51,883 and the mean and standard deviation of the simulated GCR incident

energies are calculated to be 43.85 and 66.39 TeV, respectively. To illustrate the large fluctuations associ-

ated with power law distributions, the same number of events (51,883) are simulated from a normal distri-

bution having a mean of 44.5 and standard deviation 74.1 so as to match the power law's mean and standard

deviation for this energy range when a1=2.8 and observe that the sample mean and standard deviation are

44.51 and 74.17, respectively, for a single sample mission, which are much closer to the population mean

and variance than those from the power law random samples. This process is repeated for 100 missions,

and the standard deviation for each mission is plotted in figure 1.

Note the large fluctuations of the standard deviations for the power law samples from mission to

mission, while in contrast, the standard deviations of missions generated from a normal distribution are

very stable. As will be seen in subsequent sections, this is why the variation in detector responses is domi-

nated by the variation of GCR event energies, while the additional variation induced by the detector's

energy resolution plays a rather minor role. This in turn contributes the dominant component of the stan-

dard deviation of the spectral parameter estimator.

4
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Figure 1. Standard deviation of simulated incident energies from power

law (ragged curve) for 100 missions compared with that from

normal distribution having same mean and variance.

The variation of the sample standard deviation s, measured by its standard deviation, is given by

4P2N

where 1/,. is the rth central moment about the mean, 2 defined for the simple power law as

(8)

1/,. = _ (E -ue)"4)o(E)dE .
(9)

Thus, the large variation in mission standard deviations is due to the term ]/4, which again is only

finite by setting E 2 to a finiteyalue, but nevertheless is responsible for the erratic behavior of the mission-

to-mission sample standard deviations as depicted in figure 1. This erratic behavior of I:he observed mis-

sion standard deviations will necessarily be true for any power law having spectral index cq<5 Note that

for the normal distribution, - "

(lO)
O'S-- _

and evaluation of these two formulae yield Ors=5 TeV for the simple power law and 0.229 for the normal

distribution, which is roughly a factor of 22.



2.1 Estimation of the Spectral Parameter oq

Of particular interest in the study of cosmic-rays is the estimation of the spectral parameter o_l from

a set of data. Even though in practice the actual incident GCR energies are never observed, but only

a measure of their energy deposition from their passage through the detector, it is important to consider the

concept of an ideal detector having zero resolution. Thus, such a detector would measure the GCR event

energies exactly.

2.1.1 Method of Moments

The method of moments consists of equating the sample moments with the population moments,

which in general leads to k simultaneous nonlinear algebraic equations in the k unknown population

parameters. For the simple power law, there is only one parameter to be estimated, so the sample mean E

is set to the population mean/.t E in eq. (5) and then this nonlinear equation is solved in terms of &l, where

^ 2-& 1
(o:1 _I'VE 1 r"2-&l

g-iv<-2) el-<
(11)

Thus, for a given sample of size N, this equation is solved in terms of &l by numerical methods to

provide an estimate of ¢xI. This estimator, which is a function of the random variable E, has its own

associated pdf. Since the GCR incident energy E has mean PE and finite variance O'E2 (only because the

upper energy E 2 is finite), it is known by the Central Limit Theorem that the distribution of the sample

average E follows a normal distribution with mean/.t E and variance aE2/N.

For example, when a1=2.8, El=20 TeV, E2=5,500 TeV, E is normally distributed with mean

44.5 TeV and standard deviation (74.1 TeV)/NI/2. These results can be used to obtain the probability

distribution of the estimator by solving the probability equation:

Pr,

^ _2-&l
( &l - l "] E2-a' -/::2 -44.5

_l-& I
Iv&l - 2 ) E_ -&' _ /z 2

< Z
74.1

x 2

i 1 2 dr=
(12)

in terms of &l for various values of Z. Letting Z vary from -4.7 to 4.7 and setting N=52,000 events gives

the probability distribution of &! shown in figure 2. Also depicted in figure 2 is the relative frequency

histogram of the estimates &l, based on 5,000 simulated missions; where for each mission, 52,000 events,

on average, are simulated and the estimate of a 1 obtained by solving eq. (11). Furthermore, even though an

explicit mathematical form for the pdf is not readily available, its mean and standard deviation can be

calculated by numerical methods. For the distribution shown here, a numerically evaluation reveals its

mean to be 2.800 and standard deviation as 0.0115 when N=52,000, which compares to the mean and

6
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standard deviation of the 5,000 simulated estimates with 2.800 and 0.0114, respectively. With the ability to

numerically construct this estimator's pdf and moments, the important result is that its variance is inversely

proportional to the sample size N, which is also true for many common estimators; e.g., the sample mean,

standard deviation, and median. For example, if the number of events is doubled, then the variance is

halved; and if the number of events is halved, then the variance doubles. Note that this relationship be-

tween sample size and the standard deviation of the estimator _! is based on keeping El and E 2 fixed, so

that in practice, the variance can be reduced by increasing the size and/or observing time.

2.1.2 Method of Maximum Likelihood

The likelihood function of a random sample from the simple power law, regarded as a function of

the single unknown parameter c_1, is

L(al ) _-- |jET]__ l -_l__l i/[:i

\ _1 - '-'2 i= j

, El < E i < E 2
(13)

The method of maximum likelihood (ML) seeks as the estimate of oq that value (say, (XML) which

maximizes the likelihood function so that L(OtML ) > L(oq) for all ot 1. Statistically speaking, this means that

7



theML estimatorleadsusto achoiceof _1 thatmaximizestheprobabilityof obtainingtheobserveddata.
In practice,it isoften simplerto work with the logarithmof the likelihood functionandseeksolutionsof
(logL)'=0 for which (log L)" <0 (indicating a maximum), where the prime and double prime indicate the

first and second derivative, respectively. Thus, eq. (14) is numerically solved in terms of o_1 to obtain the

ML estimate C_ML

N
FOogE,/EU'-Oogr /E _Zl° E; --o •

01ogL N N[ l_oq - rl_a IE (14)
_2 i= 1Oa I 0_1 - 1

The second derivative of the log-likelihood function is obtained next. Note that (log L) "<0 for all

_, indicating that log L is concave; hence, there is a unique maximum, which was graphically observed by

plotting log L as a function of _l:

[ 2,(log_-loge,)22 ]/"
(15)

By the Cramer-Rao inequality, the lower bound of the variance of any estimator _2 of ggl is given

by: 3

Vat(d0 ->
-1 (16)

02 log L

ad

which is asymptotically attained by the ML estimator. Also note that it is inversely proportional to the

number of events N as was the variance of the estimator obtained using the method of moments. Other

important properties of ML estimators are (1) asymptotically normally distributed and (2) consistency or

asymptotically unbiased. Thus, a key question is, "For what values of N are these asymptotic properties

achieved by the ML procedure?"

Based on the same 5,000 mission set discussed in the previous section, the mean and standard

deviation of the 5,000 ML estimates are 2.800 and 0.00782, respectively. Using eqs. (15) and (16), the

Cramer-Rao bound is computed to be 0.00786 when N=52,000 and aM-t =2.800, which compares very well

with the simulation results. Furthermore, the frequency histogram of these 5,000 ML estimates resembled

the normal distribution as stated in (1) of the above paragraph. A separate simulation study was conducted

in which the sample size N was gradually reduced from 52,000 to 200, and the two asymptotic properties

(1) attaining the Cramer-Rao bound and (2) consistency, were achieved by the ML estimates until around

N= 1,200. A bias on the high side of O_ML and failure to attain the Cramer-Rao bound became more and

more evident as the number of events N diminished from 1,200 to 200.

Another very important comparison is the ratio of the standard deviation of O_ML to that of the

estimator obtained using the method of moments. Direct calculation shows this ratio is roughly 1.45,

implying that the ML procedure is significantly better than the method of moments when dealing with the



simplepower law.This result is not too surprising, however, because ML estimators, in general, have

better statistical properties than the estimators obtained by the method of moments. 4

2.2 Detector Response Function

An original goal of this research was to create a Monte Carlo simulation in which various detector

response functions describing the distribution of energy deposition in the detector as a function of incident

GCR proton energy could be inserted. This desired flexibility led us to seek a numerical solution instead of

a completely analytical approach.

Based on GEANT simulations of energy deposition for monoenergetic protons at specified ener-

gies at 0.1, 1, 10, 100, ! ,000, and 5,000 TeV, the Gaussian distribution provided a reasonable description of

the distribution of energy depositions at each of these incident energies. 5 Furthermore, the mean detector

response was found to be well approximated by a linear function of incident energy in the range of interest

for this study, which is typically between 10 and 5,500 TeV. Other detector response functions, such as a

gamma distribution and another response function constructed from a combination of normal distributions

having different parameters, have also been investigated and are presented in the broken power law section

of this TP.

The random variable Y is introduced to represent the detector's response in terms of energy deposi-

tion of a GCR proton of incident energy E, and the conditional mean response and standard deviation of Y

fo r a given event energy E modeled as J.iyi E = (a + bE) and (Tyi E = (c-t- dE), respectively, where the four

coefficients a, b, c, and d are estimated using linear regression on the GEANT simulation results. Thus, for

each simulated incident GCR proton energy E i, the detector response is simulated as

Yi = J.IyIE i + CrYIE i Zi
(17)

or

Yi = (a + bE i) + (c + dEi)Z i ,
(18)

with the nonnegativity constraint Yi>O and where Z i is a standard normal random number having zero

mean and unit standard deviation. Thus, the detector response function is defined as

(y--l.tylE )2

r/ylE 20"ylE (19)
g(ylE)= e , y>0 ,

where F/ylE is a normalizing coefficient related to the truncation of the normal distribution resulting from
the constraint y>0. It is worth noting for constant resolution studies in which a Gaussian response function

is assumed and p=cr/la is set to values 0.4 and 0.6, the corresponding detector energy resolution is 39 and

51 percent, respectively, and is rounded to 40 and 50 percent in the figures and tables in this TP.



Thus,rlytEis determinedfrom
9

oo

! _ 1 2 d- (20)
_ylE -1 2---_ e

PylE

where the lower limit of integration is -1 divided by the resolution function given as

PylE = 6YIE /IJYIE = (('+ dE)/(a + bE) . (21)

First, it is worthwhile to consider a detector having energy resolution PytE=CrYiE/laYiE a constant p

and independent of the cosmic-ray's energy (E) so that ¢:rrlE = p PYIE, where typical values of interest for O

are O, 0.2, 0.3, 0.4, and 0.6. It should also be noted that the normalizing coefficient 77in eq. (20) is constant

whenever the detector resolution p is energy independent.

Second, a case where P_qE and Gyi E are linear but their ratio is not a constant so that the detector's

resolution is a nonlinear function of incident energy E was investigated. For this second scenario, two

studies were conducted in which the resolution is getting better from 40-percent resolution at 20 TeV to

30-percent resolution at 5,500 TeV and then getting worse from 30-percent resolution at 20 TeV to 40-

percent resolution at 5,500 TeV. These two energy-dependent cases are presented in the broken power law

section.

For detectors having constant energy resolution p, 77 is also a constant but depends on p, and is

given in table 1 for several values of energy resolution.

Table 1. Normalizing coefficient 77for Gaussian response function.

Truncated

Probability

10%

0

ConstantResolution(p)

20%

2.9E-07

1

I 30% 40%

0.00043 0.00621

1.00043 1.00625

50% 60%

0.02275 0.04779

1.02328 1.05019

2.3 Probability Distribution of the Detector Response

The probability distribution for the detector response in the presence of the simple power law

energy spectrum over the energy range [El,E2] is:
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E2

go(Y;al)= f g(ylE;p)dPo(E;al)dE, y>O .

El

(22)

The spectral parameter aj has been explicitly included in the argument list of both the simple

power law pdf as ¢0(E:al) and the detector response distribution g00,;a i) in eq. (22) to indicate that this

spectral index is inherited through the integral.

2.4 Ideal Detector

The concept of a zero-resolution or ideal detector is very useful because it sets an upper bound on

the expected performance of any real detector. Furthermore, it allows quantifying the magnitude of the

uncertainty in the estimate of the spectral parameter, measured in terms of the standard deviation of the

estimator, attributable to event statistics (statistical fluctuation of incident GCR proton energies) relative to

the uncertainty in measuring the spectral parameter estimate induced by the detector's nonzero energy

resolution.

Thus, for an ideal detector, p=0 so that the standard deviation O'ylE=0 for all GCR event energies E.

Hence, the detector response to a GCR of energy E is given by Y=a+bE so that the incident energies may

be directly obtained as Ei=(Yi-a)/b; therefore, the estimation procedures developed in sections 2.1.1 and

2.1.2 apply.

2.4.1 Method of Moments for a "Real" Detector

The conditional expected value theorem, which says that the expected value of the conditional

expected value is the unconditional expected value, 6 or in the notation of the mathematical expectation

applied to the detector response Y,

py =<Y>=<<YIE>> ,
(23)

to obtain the mean detector response Pr for a detector having constant resolution p:

oo i X_.._._

X
Pr = (a + bPE) 1+ prl(p) e 2 dx

-y;
(24)

where fly is the mean detector response (energy deposit) and p£ is the mean of the simple power law

distribution. The term involving the integral can be thought of as a correction term to the mean for the

truncation given in table 1 and can be ignored whenever p<0.30; i.e., 30-percent resolution or better. Using

the method of moments, fly is estimated with the sample average Y and when combined with eq. (5) for rE,

yields eq. (25) that can then be solved in terms of &l by numerical methods:

11



Y//bb __ (61-1 ]E_ -6't r'2-61a - "_2 (25)
= _1_61

b _.d¢I-2) E_ -&, L2

c_, X 2 ]

l + prl(p) f x -7__ e dx

_}/p -

For example, when the resolution is a constant 40 percent (p=0.40), the point estimate of the spec-

tral parameter czI based on the 5,000 missions is 2.801 using eq. (25) and 2.79 using the same equation but

with the correction term set to zero in the denominator, resulting in a bias of =0.01 that can be removed by

including this correction term. This effect is much more pronounced when p=0.60 and results in a bias of

0. ! in the point estimate of ocI so that the correction term is critical.

When the detector response distribution is symmetric and truncation is negligible so that lly=(a+bldE),
I

then oq can always be estimated using the mean of the detector responses Y to estimate ,u r in eq. (24). This

implies that knowledge of the variance of the detector distribution, and hence the resolution, is really not

required in order to estimate a l, provided knowing thai the resolution is <30 percent so the effect of

truncation can be ignored.

This is a useful result, because if the uncertainty regarding the true resolution is non-negligible,

then the method of moments provides a way to proceed with the estimation of _l; e.g., the detector's

energy resolution is known to be <30 percent but nothing more. However, as already noted, the method of

moments does not provide the minimum variance estimator that the ML method does which requires a

complete specification of the detector parameters a, b, c, and d of this assumed Gaussian response func-

tion. Furthermore, the energy resolution of most real detectors is worse than 30 percent.

This estimator based on the method of moments is a function of the random variable Y and has its

own associated pdf. Since Y has mean ,uy and variance a2y, it is known by the Central Limit Theorem that

the distribution of _ follows a normal distribution with mean ]./y and variance _2y/N. Thus, the variance of

the detector response Y is O2y = < y2 > _/.i.2 , where

If '2]
< y2 >= (a 2 + 2abl.t E + b2o2 + b2bl2)O(p ) _ (1 + px) 2 e--_d x (26)

For example, when a1=2.8, El=20 TeV, E2=5,500 TeV, and/9=0.40, Y is normally distributed with

mean 131.58 GeV and standard deviation (213.69 GeV)/N_/2. The probability distribution of dq, along

with its mean and standard deviation, can be obtained by solving the probability equation in eq. (27) using

the methods discussed with eq. (12):

12



PF
213.69

_<Z (27)

If the truncation effect is assumed to be negligible in eq. (26), then the following succinct formula

for the variance ofihe detector response as a fu-nction of detector parameters a, b, and p and the mean/d E

and variance 0.2 of the power law distribution is obtainedi

2 -2 2 [(a+b/dE)2 +b20.2] ,cry = O 0.E + p 2
(28)

In terms of the standard deviation of the detector response _y, the approximation in eq. (28) is seen

to be actually quite good, for when p=0.40, this formula yields, _r=213.37 GeV as compared to the exact
value of 213.69 GeV obtained from eq. (27) using the integral correction terms. When p=0.60, this

approximation yields _v =237.31 GeV as compared to the actual value of 239.78 GeM Thus, ignoring the
truncation is not too serious when estimating the standard deviation but can be devastating for p>0.40

when estimating the mean fr and hence a I when U_ng the method of moments. Much insight into the

estimation of the spectral parameter a 1 can be gleaned from eq. (28) because it shows the relationship
• 2

between the variance cry of the detector response distribution, the variance 0 .2 of the GCR prolofi energy

spectrum, and the detector response function parameters a, b, and p.

The influence of the variance and other higher moments of the simple power law energy spectrum

is visualized in figure 3 which shows the mean detector response (mean energy deposit) per mission for 30

simulated missions in comparison with the mean incident proton energy for 30 missions. Corresponding

standard deviations per mission are plotted in figure 4. Note that the detector response mean and standard

deviation per mission tend to track the mean and standard deviation of the incident energies for the 30

missions, illustrating the strong influence of the GCR energy mission-to-mission fluctuations on the detec-

tor response variation, even in the presence of the "smearing" induced by this detector having 40-percent

energy resolution. As will be seen in section 2.4.2, the component of variation due to the GCR event

statistics will be the dominating component of the total variation in the standard deviation of the estimator

of the spectral index o_I.
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2.4.2 Maximum Likelihood for a "Real" Detector

As in section 2.1.2, the method of ML seeks O_MLwhich maximizes the log-likelihood function so

that log L(aML )> log L(a]) for all off, where the likelihood function for the detector response in the

presence of the simple power iaw energy spectrum of N incident GCR protons over the energy range

[E1,E2] is
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l°g L(al ) = Z l°g[g0(Yj;al )] = log

j=l j=l [E I

g(yj IE) ¢o(E;ctl )dE (29)

Because of the complexity of the integral and the desired capability to easily change the functional form of

the detector response function g in eq. (29), a numerical approach for obtaining (2ML was chosen. Two

optimization algorithms that do not require gradient information (derivatives) were selected for use; i.e.,

the multidimensional minimization algorithm called the Nelder-Mead downhill simplex method and Powell's

direction set method. 7 Wh]le both methods provided matching results and were about the same in terms of

computer run time, the Nelder-Mead downhill simplex method was easier to control and modify the termi-

nation criteria. Furthermore, the simplex method proved to be more robust with the emergence of multiple

maxima in the likelihood function which occurred at the higher values of the knee location investigated in

the broken power law section of this TP. Therefore, the discussion that follows is specific to the downhill

simplex method. Since this is a minimization algorithm, the objective function is defined as

N I-E: ]O(al)=-logL(al)=-' _log]j" g(yjlE)_o(E;al)dE , (30)

LE,

so that minimizing O(a 1) maximizes log L(a !) as desired, where the integral is numerically evaluated. The

following two termination criteria are used to halt the search procedure for the ME estimate at the (m+ l)th

iteration:

(i) I_l,m+ 1 - O_1,m I<E' I

and ::_

(ii) IO(Cg,m+l) - Ofctl,m)l<e2 (31)

The search procedure continues until the termination criteria are met, which in words are: (i) the

movement in successive step sizes of a I is <e 1 and (ii) the objective function is changing by an amount <e 2.

Typical values used for these two stopping tolerances are on the order of 10 -5 and seem reasonable in light

of the magnitude of the parameter being estimated (=2.8) and the value of the objective function in the

vicinity of the ML solution. O(aMt ) being of the order of magnitude 10 5 when E l is taken to be anywhere

between 10 and 30 TeV, so the number of terms in the sum is between 182,000 to 26,000, respectively.

Furthermore, changing e I and/or e 2 in either direction by an order of magnitude provided no noticeable

change in results. "....

Figure 5 shows the ML estimates of a 1 for a zero-percent resolution detector obtained from eq. (14)

in comparison with the ML estimates obtained from a 40-percent resolution detector and applying the

downhill simplex algorithm to eq. (30) for 30 missions. This very close comparison suggests that the GCR

event statistics are the dominating component of uncertainty in the estimation of the spectral parameter al"
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2.5 Summary Remarks and Conclusions for the Simple Power Law

Two methods for estirnating the single spectral index (or t) of a simple power law have been inves-

tigated. The first method--the method of moments--was found to be very useful in studying the general

nature of the statistical estimation problem as well as yielding an analytical solution that could be com-

pared with Monte Carlo simulation results. Furthermore, when the detector resolution is better than

30 percent so that the truncation of the detector response function is negligible, the method of moments

provides an estimator of a I without requiring specific knowledge of the detector resolution p but only that

it is better than 30 percent. This does not imply p is insignificant when it is <30 percent, but only that the

correction terms previously discussed can be ignored and thus explicit knowledge is not needed of the

value of p to estimate e I. In fact, the standard deviation of the estimator increases as p increases as one

would expect and results from the fact that whatever phappens to be, its impact is communicated to the

estimate of e I through the variance of the detector mean response Y which is a function of p as indicated

in eqs. (26)-(28).

Another interesting result is that when the resolution is <30 percent, it is not necessary to know the

explicit functional form of the detector model, but only that it is symmetric. Unfortunately, most detector

response functions are worse than 30-percent resolution and may be asymmetric as well.

The method of ML estimation clearly stands out as the method of choice for estimating (z ! in terms

of minimum variance and consistency (asymptotically unbiased), as well as asymptotic normality which

allows for probabilistic statements, such as confidence intervals for the unknown spectral parameter. These

results as a function of detector resolution are shown in figure 6.
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Figure 6. Comparison between method of moments and maximum

likelihood as a function of detector resolution.

When compared to the standard deviation of the method of moments estimator, the ratio varies

from 1.47 for the zero-percent resolution detector to 1.33 for the 50-percent resolution detector, which is

roughly equivalent to giving away half of the detector's collecting power by choosing the inferior method

of moments estimation technique.

Also shown was that the standard deviation of the estimate for both estimation procedures is

inversely proportional to the square root of the sample size, so that halving the collecting power increases

the standard deviation by a factor of .if2. This holds true for the standard deviation of ML estimate as long

as it attains the Cramer-Rao lower bound, which it does when the number of GCR events exceeds ---1,200.

Another important result is the relationship between the collecting power and the energy resolution

of the detector. A measure of the detector's ability to estimate the spectral parameter a 1 is its standard

deviation and as seen in figures 6 and 7, the dominant component of the standard deviation of 0_ML is

attributable directly to the large fluctuations in GCR incident energies, being driven by the large variance

and other higher moments of the simple power law distribution. This large component can only be reduced

by increasing the number of events N that is controlled by the collection power of the dectector. A compari-

son of the standard deviation of O_ML for the generic detector discussed in this TP and when its collecting

power is halved is given in figure 7. Table 2 provides the numerical results used to construct many of the

figures in this section.
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Table 2. Numerical values used to construct figures 6 and 7.

E1=20TeV,E2=5,500TeV, _1=2.8, Naverage=52,000

events. 5,000 mission averages for simulation results.

1. Method of moments (theory)

2. Method of moments (simulation)

3. Maximum likelihood (Cramer-Rao lower bound)

4. Maximum likelihood (simulation)

5. Meandetector response (GeV) (theory)

6. Meandetector response (GeV) (simulation)

7. Standard deviation (theory)

8. Standard deviation (simulation)

9. Coefficient of variation Vy(detector, %)

E1=20TeV,E2=5,500TeV, cq=2.8, Naveraoe=26,000
events. 5,000 mission avera_lesfor simulation results.

10. Maximum likelihood

1I. Ratio of line 4 to line 10, compare to sqrt(2)

0%

0.0115

0.0114

0.00786

O.OO78

130.66

130.66

192.07

191.47

147

0.0110

1.41

DetectorResolution

20% 40%

0.0116 0.0128

0.0117 0.0125

Analyticalsolution not available

0.0083

130.66

130.64

197.61

196.86

151

0.0118

1.42

0.0092

131.58

130.64

213.69

213.33

162

0.0132

1.43

5O%

0.0136

0.0133

0.0100

138.85

138.81

239.77

238.82

173

0.0144

1.44
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3. BROKEN POWER LAW

This energy spectrum suggests a transition from spectral index o_Ibelow the knee location energy

E k to a steeper spectral index _ > a I above the knee. The broken power law predicts that the number of

protons detected above an energy E is given by: 1

N 1(> E) =
NA_._)_.EA ) _ EA ) f°rE->Ek

No(>E)- [N0(>Eh)- N,(> )] forE< Ek

(32)

where E is in units TeV, N A and E A are 160 and 500 TeV as before, and currently available measurements

suggest that aj is =2.8, a 2 is thought to be somewhere between 3.1 and 3.3, and E/, is parameterized in the

range 100-300 TeV for this research. N0(>E ) is the number of protons detected above an energy E as

defined in eq. (1); and as in the simple power law section, these simulation studies assume the number of

events for a given mission follow the Poisson probability distribution with mean determined by eq. (32).

Writing N0(>E ) in eq. (32) as

No(>E)=NA(Ek]-CtI+I( E__) -Otl+l

_EA) _El,)

(33)

and constructing the cdf as in eq. (2), then differentiating, gives the pdf of the broken power law over

energy range [El,E2] as

01 (E ; a I ,a 2, E k ) =

A(__E ]-°q for

kEk)

A( E--] -a2 for

kEk)

E l <E<E k

E_. < E < E 2

(34)

where the normalizing coefficient A is given by

A = A(al,a2,E/,.) =
(O' 1 - 1)(O:"2 - 1)

Ek [O_1- O_2 + (O_2 _ i)( E1 ]l-a1 / .1-a_ 1 EkJ J

(35)
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Note that ¢i has "slope" al/c/.. 2 below/above the knee location E k and is continuous at E k as

required, and the single normalizing coefficient A in both mathematical terms of ¢1 in eq. (34) provides a

succinct mathematical form, making calculation of the log-likelihood function in the ML search algorithm

computationally more efficient than other equivalent mathematical representations of ¢1. The mean, vari-

ance, and other important moments of the broken power law distribution can be obtained from the general

form of <Era> given as

E2
P

< Em >= i Em c_I(E)dE

El

eel)m+,-°, ,1 1 1-

=AE_!'+l[m+i-oq m+ 1--0_2 (E'k-k)

(36)

which necessarily has dimension (TeV) m since A has dimension (TeV) -l. A random sample of GCR proton

event energies are obtained from the broken power law spectrum over the range [EI,E 2] as E i = dPl-l(ui),

where u i is a random number from a standard uniform distibution and (I) l-I represents the inverse function

of the broken power law cdf _1-

Figure 8 shows NI(>E) with a histogram (the ragged curve in fig. 8) constructed from simulated

events from the broken power law. N0(>E) is included in figure 8 for comparison with N l(>E) and clearly

shows the transition from a I to c_2 at the knee E k, with the plots cropped at 1,000 TeV to better illustrate

this so-called knee region. Parameters used in this example are oq =2.8, o_2=3.3, Ek= 100 TeV, El=20 TeV,

and E2=5,500 TeV.

Note that at the knee, the difference between N0(>I00 TeV) and NI(>I00 TeV) is 626 events and

reduces to 412 events when or,2 drops to 3.1. Another important observation is the significant reduction in

the standard deviation of the incident energy when compared to the simple power law, which suggests that

detector resolution will play a somewhat larger role in the overall contribution to the estimator's standard

deviation than it did in the case of a simple power law. The mean _E, standard deviation o"E, and coefficient

of variation V=CrE/pE are given in table 3 for selected parameters for comparison.
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Table 3. Means, standard deviations, and coefficient of variation (mathematically

the same as resolution) for the simple power law and broken power law.

EnergyRange

20-5,500 TeV

Simple power law

Broken power law

Broken power law

Mean Standard

Spectral Parameters (TeV) Deviation (TeV)

_1=2.8 44.50 74.1

_1=2.8, _z=3.1, Ek=lOOTeV 4t.83 54.17

_+=2.8, _2=3.3, Ek=lOOTeV 40.67 45.54

Coefficient

of Variation (%)

166

t29

101
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3.1 Estimation of the Spectral Parameters _1, °_z, and E k

As suggested in the simple power law study in section 2, the ML procedure offers a superior

approach for estimating the spectral parameters in terms of their known favorable statistical properties.

Thus, concentration will be on obtaining the ML estimates of the three spectral indices of the broken power

law distribution. For notational convenience, the vector 0 =(t_ I, a2, E k) consisting of the three broken

power law spectral indices is introduced.

The ML estimation procedure will be illustrated for a single mission by first estimating 0directly

from the incident energies E i (equivalent to the so-called ideal detector having zero energy resolution), and

then from their simulated detector responses Yi using the same detector response function described in the

simple power law section and for the case where a!=2.8, a 2 =3.3, Ek=100 TeV, El=20 TeV, and E2=5,500

TeV. The results from many other parametric scenarios of interest will also be presented.

3.1.1 Method of Maximum Likelihood for the Ideal Detector

The likelihood function of a random sample of size N from the broken power law, regarded as a

function of the unknown vector of parameters 0=(o_ 1, _'2, Ek) is

/ )L(O)=A(o)N H -_k
_ Ei<E k E t

, El < Ei, Ei < E2 ' (37)

where the first product is over the energies below the knee energy (E k) and the second product is over those

energies above E k, and they total in number to N, and A(0) is the coefficient given in eq. (35). The Nelder-

Mead downhill simplex method is used to find the ML solution 0ML that minimizes the objective function

(minus the log-likelihood) defined as

l°gA(0)+°tl / E log E-_/]]+o_2/ E l°g[Eff-_]l •O(0) = -L(0) = -N k,Ei<Et [Lk ]) _ EJ >-Ek
(38)

For the sample mission under consideration, the number of simulated events is N=5 ! ,259 and is a

random number generated from a Poisson distribution with mean N l(>20 TeV)=51,576 (recall N0=52,200

for the simple power law). Note that 2,165 of these events are above the assumed knee location at 100 TeV.

Also, the mean of these simulated incident energies is 40.28 TeV and standard deviation 40.79 TeV and can

be compared with the bottom row of table 3.

To obtain a reasonable starting point for the search procedure, it is first assumed that a i will be

largely influenced by those energies (E i) thought to be well below the knee energy (Et:), even though the

true value ofE k is unknown. For example, if all energies below 70 TeV (of which 49,094 are below 70 TeV,

or 96 percent), with the assumption that a simple power law will dominate the statistical description of

these event energies, then the ML estimate of a 1 is 2.81 using eq. (30). Next, keeping oq fixed at 2.81
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and using the full set of simulated event energies, the other two parameters are fit using a two-dimensional

simplex search for (_2,Ek), which yields _2=3.3 ! 7 and Ek=95.44 TeV. The two-dimensional simplex search

is illustrated in figure 9 and three things should be noted: (1) The knee energy (E k) has been scaled by a

factor of 0.1 so that it is fairly close in magnitude to the other two spectral parameters, (2) the simplex can

leave the initial simplex region (but in this example, it returned), and (3) the simplex moves only one

vertex per iteration.

Simplex Search for o_2 and Ek

14-

13

12-

_. 11-

_10 -

9-

8-

7

2.9

Initial Simplex

(Bold)-_,__

• ____---'-__

Covergence Point

I I I I

3.1 3.3 3.5 3.7

_2

Figure 9. Two-dimensional simplex search for (a:2,Ek).

Next, 0initia I =(2.810, 3.317, 95.44) is defined and used to construct the initial simplex for the three-

dimensional search for 0ML, where this simplex consists of the vertices of a tetrahedron centered at 0initia I

with edge lengths in each coordinate axis taken to be 20 percent of each component of 0initia I. For the two-

and three-dimensional searches, slightly different termination criteria are used and the relative difference

in magnitudes of the three spectral parameters are considered. The search halts when (I) the maximum of

the greatest relative distance of each of the three spectral parameters is each smaller than e t and (2) the

maximum change in the objective function over each of the four vertices is <e 2, so the simplex essentially

shrinks to a very small, nonmoving tetrahedron at 0ME" Setting the e's to the values discussed in the simple

power law section, 0ME =(2.801, 3.324, 94.95) is obtained. At this ML solution, note 2,434 of the 51,259

simulated GCR energies are above the estimated knee location at 94.95 TeV, whereas only 2,165 are above

the "true" location at 100 TeV.

Also note that the two-stage approach for constructing a suitable initial simplex for the three-

dimensional search produced in this example values of einitia I that are quite close to 0ML, which of course

is very desirable. However, in subsequent studies where the true knee location (E k) is set to higher values

such as 300 TeV, it was necessary to introduce a more sophisticated search because of the situation of

multiple minima arising from the erosion of the asymptotic properties of the likelihood function as the

number of events above the knee diminished.
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Figure 10 shows a stereoscopic pair of the initial simplex tetrahedron and the first few steps, where

only one vertex is moved per iteration. _1, c_2, and E k are along the .xyz axis. The dot in the center is the

tetrahedron at termination, and 0ML is obtained from the coordinates of the last step upon halting. Dimen-

sions have been scaled according to the termination criteria and also to facilitate viewing.

Z

Figure 10. Stereoscopic view of the first few movements of the

Nelder-Mead downhill simplex search (cross-eyed stereo).

As a check on the found solution, a coordinate frame is centered at 0ML and then the objective

function evaluated along each axis by an amount of +10 percent of each value to measure the behavior of

O(0) in the vicinity of0ML ' The results are depicted in figure 11 and show that O(0) is indeed a minimum

at 0ML. Note that variation in _l produces the greatest variation in the objective function, as one would

expect, since it is a coefficient of 48,825 (95.2 percent) of the event energies below the estimated knee

location at 94.95 TeV.
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Objective function in the vicinity ofthemaximumlikelihood solution 0ML.
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3.2 Estimation of the Spectral Indices With a "Real" Detector

For each simulated GCR event energy E i from the broken power law spectrum, there is an associ-

ated simulated detector response Yi according to the detector response function defined in eq. (19). The pdf

of the detector response in the presence of the broken power law spectrum is thus given by

w

gl (Y; O_1,a2, Ek ) : J

E[

g (y IE; p) ¢1 (E ;_1, o_2, El, )dE, y > 0, (39)

where the integral limits [E l,E2] must be split as [E l ,Ek] and [Ek,E2] in the numerical integration. Figure 12

depicts this pdf for several different values of the detector energy resolution (p).

Broken Power Law,%=2.8, %=3.3, Ek=f00 TeV

E1=20TeV,E2=5,500 TeV

0.023 [ .',
li

0.018 ['- i _ Resolution
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0.008

0.003

-0.003 0

!/"_l. 20%

y \ 40%

_.J.t _ i
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Figure 12.

. JI ---- |

300 400 500

Y(GeV)

Detector response probability density function for resolutions

10, 20, 40, and 50 percent.

Detector responses Yi for a detector with constant resolution/9=0.40 are simulated and all other

detector response function parameters are defined in the simple power law case, using the same set of

5i,259 incident energies E i from the broken power law spectrum considered in the zero-resolution case.

The mean is calculated as 120.37 GeV and the standard deviation 123.99 GeV. Figure 13 compares prob-

ability curves (greater than) on a log-log scale for the detector response distributions in the presence of the

broken power law ¢Pl and the simple power law _0' A log-log scale helps illustrate the difference between

detector response distributions to the two different GCR energy spectra ¢0 and _l. A frequency histogram

of the simulated detector responses to a broken power law is also provided in figure 13 (lower curves),

although it is virtually indistinguishable from the theoretical function.
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Detector response distributions Pr(Y>y) in the presence of

a simple power law and and broken power law. Histogram

of simulated responses to broken power law is also

included.

The simplex procedure is used to obtain the ML estimates 0ME for the three spectral indices that

minimize the objective function (minus the log-likelihood):

N [E2

O(O) = -__._Log I ;

i=l LE,

g(Yi [E;9) ¢_i(E ;0)dE (40)

Selection of a starting point for the three-dimensional search follows along similar lines to the zero-

resolution energy case, but here only the detector responses Yi are used. Again, assume the estimate of a 1

will be largely influenced by those detector responses Yi thought to be below the detector's mean response

to some GCR event believed to be below the knee E/.; e.g., a 70-TeV event. Thus, a simple power law is fit

to those detector responses below 196.76 GeV (mean response to a 70 TeV GCR proton and accounts for

89 percent of all the detector responses in this simulated set), with the assumption that a simple power law

will dominate the statistical description of these events. It is important to note that the present goal is to

obtain a reasonable starting value of a 1. Even though some detector responses to incident energies below

E k will end up above the detector mean response to E k and visa versa, the set of response energies below

the mean detector response to a 70-TeV event given by/2(70 TeV)-- 196.76 GeV should be well represented

by a simple power law. Thus, the conditional pdf g0(,,,,czl I y< 196.76 GeV) is used and its associated

objective function minimized in terms of a t to obtain 2.8. In practical terms, the front end of the detector

response pdf gj is approximated with the detector response pdf go associated with a simple power law.
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Figure 14showsthefitted detectorresponsedistributionl-G 0(YI Y< 196.76 GeV) with the detec-

tor response histogram in the presence of the broken power law. Their difference is provided since the two

curves are visually on top of each other.
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Holding cq fixed at 2.8 and using the full set of detector responses, a two-dimensional search for

(_c2, Ek) yields o_2=3.32 and Et:=96.8 TeV. Figure 15 shows the fitted distribution making the transition

along the two parts of the broken power law distribution joined a t the knee E/, and tracks the histogram of

simulated detector responses. A simple power law response distribution given by Pr(Y>y)= 1-G0(Y) is pro-

vided for comparison. As before, a tetrahedron about 0initia i = (2.80, 3.32, 96.8) provides the initial simplex

and then a three-dimensional search using all the detector responses yields 0ML =(2.81,3.38, i02.9).

To check the ML solution, a coordinate frame is centered at 0ML and the objective function evalu-

ated along each axis by an amount of +10 percent of each value to measure the behavior of O(0) in the

vicinity of 0ML. The results are depicted in figure 16 and indicate that the objective function is indeed a

minimum at 0ML. A slightly more rigorous check was also performed in which the objective function was

evaluated at each point of a random cloud consisting of 1,000 points surrounding 0ME and for which

O(0ML ) was observed to be the smallest.
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Figure 15. Results of the two-dimensional fit of (a 2, Ek).
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4. RESULTS

Methods for obtaining the ML estimates of the three spectral parameters of the broken power law

distribution from simulated detector responses have been developed, thereby enabling us to study various

calorimeter design parameters and their impacts on the statistical properties of these ML estimates. The

following studies are of particular interest and are included: (1) Statistical properties of the ML estimates

and variation of the knee location and spectral break size, (2) data analysis range, (3) energy-dependent

resolution, (4) non-Gaussian detector response functions, (5) collecting power versus energy resolution,

and (6) implications of detector response model uncertainties.

4.1 Statistical Properties of the Maximum Likelihood Estimates

and Variation of the Knee Location and Spectral Break Size

In this section, the statistical behavior of the ML estimates of the three spectral parameters based on

simulating many missionS-is eXl_lored. Figure-/_] shows re|atlve fi:equericy histograms of these estimates

based on 1,000 simulated missions in which the spectral parameters were set to a1=2.8, a2=3.3, and Ek=100

TeV for the data analysis range 20-5,500 TeV and a detector having a Gaussian response function with

40-percent constant energy resolution. Note that the histograms are roughly Gaussian in shape but with a

slight skewness to the right, exhibited for _2 and E k but not a I .

RelativeFrequencyHistogramof_1and
1,000Missions,BrokenPowerLawWithcfi=2.8,

_2=3.3,Ek=100TeV,and IncidentEnergy20-5,500TeV 0,035
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Figure 17. Relative frequency histograms of the maximum likelihood estimates of the spectral

parameters tr I, _t-2, and E k of the broken power law energy spectrum.
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These observations lead to a more general investigation of the asymptotic behavior of ML esti-

mates. Table 4 provides a summary of these findings. The first column lists the Gaussian response function

resolution (zero and 40 percent) for the studies presented in table 4, and the second column gives the

average number of events above El=20 TeV used in each simulated mission, along with the average num-

ber of events above the knee location E k given in parentheses for values of Ek= 100, 200, and 300 TeV. For

example, the entry 51,576 (2,255) appearing in the first row indicates there are 51,576 events on average

above 20 TeV for the baseline detector of which 2,255 of them would be above the knee location, Ek=100

TeV. The next three columns give the mean of each spectral parameter based on the simulation results,

followed by the last three columns that give their respective standard deviations. The rows labeled as

"Theoretical Limits" provide the input parameters for these simulation studies along with the Cramer-Rao

bound which is the bound below which the variance of an estimator cannot fall 2 and is thus very important

when comparing different estimation techniques.

First, note in table 4 that as the true knee location (Ek) is set at 100, 200, and 300 TeV in the

simulations, an ever-increasing amount of bias is observed in the mean estimate of _¢2 and El due to the

erosion of consistency (asymptotically unbiased) and is a direct consequence of the diminishing number of

events above the knee, whereas the ML estimate of al continues to enjoy this favorable statistical property.

The Cramer-Rao lower bound is provided for comparison with the standard deviations of the ML

estimates obtained from the simulations. Note that while this theoretical minimum variance bound is nearly

attained when the true knee location (Et:) is 100 TeV and the number of events above E k is over 2,000, the

ability to achieve this lower bound gradually declines as the true knee location E k increases to 200 TeV, and

then even more so when Ek=300 TeV. The gradual growth in bias and inability to achieve the Cramer-Rao

lower bound, coupled with a growing skewness in the frequency histograms of the estimates for or,2 and E k

that indicate the asymptotic normality property is slipping away too, are symptoms of the increasing diffi-

culty in estimating the spectral parameters when the true knee location (E k) is too high for this baseline

detector. Furthermore, an investigation of the behavior of the objective function defined in eqs. (38) and

(40) shows the emergence of multiple minima at these higher values of E l and is a condition that is

observed to worsen with increasing E k.
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Table4. Asymptoticbehaviorof themaximumlikelihood estimatesfor E_:= 100, 200, 300

TeV, collecting power IX (baseline) and 5X, with a special 6.4X detector only for

the Ek=300 TeV case.

Detector

Resolution

(%)

0

40

0

40

0

40

0

40

4O

0

40

0

40

Ek(TeV)
N1(>20TeV)

(NI(>Ek))

100

51,576

(2,255)

100

257,880

(II,275)

200

52,022

(647)

200

260,110

(3,235)

30O

52,116

(312)

FurtherStudy
Required

3O0

260,580

(1,560)

3OO

333,542

(2,000)

Mean

,,
(_1 0;2 =l Ek

!

2.80 3.30 100

2.8O 3.31 101

2.80 3.31 102

2.80 3.30 100

2.80 3.30 100

2.80 3.30 101

2.8O 3.3O 2OO

2.80 3.32 202

2.80 3.33 2O5

2.80 3.30 200

2.80 3.30 200

2.80 3.31 201

2.80 3.30 300

2.80 3.34 310

2.80 3.30 300

2.80 3.31 302

2.80 3.31 3O4

2.80 3.30 300

2.8O 3.3O 3OO

2.80 3.31 301

StandardDeviation

% % : E,
I

0.012 0.049 6.6

0.012 0.053 7.6

0.020 0.076 14.0

0.0052 0.022 3.0

0.0052 0.022 3.2

0.0088 0.033 6.2

0.0094 0.092 23.4

0.0096 0.11 30.3

0.013 0.16 47.7

0.0042 0.041 10.5

0.0042 0.043 11.8

0.0059 0.063 20.3

0.0088 0.13 50.0

0.0087 0.18 71.0

0.0039 0.060 22.3

0.0040 0.067 26.3

0.0053 0.092 39.B

0.0035 0.053 19.7

0.0036 0.056 22.4

0.0046 0.078 35.3

1X Theoretical Limit

(unbiased,Cramer-Rao LB)

Simulation (3,000 missions)

Simulation (3,000 missions)

5X Theoretical Limit

(unbiased,CrameroRaoLB)

Simulation (3,000 missions)

Simulation (3,000 missions)

1X TheoreticalLimit

(unbiased, Cramer-RaoLB)

Simulation (2,000 missions)

Simulation (2,000 missions)

5X Theoretical Limit

(unbiased, Cramer-Rao LB)

Simulation (2,000 missions)

Simulation (2,000 missions)

1X Theoretical Limit

(unbiased, Cramer-RaoLB)

Simulation (3,000 missions)

Simulation (3,000 missions)

5X Theoretical Limit

(unbiased, Cramer-Rao LB)

Simulation (3,000 missions)

Simulation (3,000 missions)

6.4X Theoretical Limit

(unbiased, Cramer-RaoLS)

Simulation (1,500 missions)

Simulation (1,500 missions)
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As noted in table 4, the case where Ek=300 TeV and the detector's energy resolution is 40 percent

resulted in several errant estimates of o_2 and E k, which is perhaps an indication that a simple power law

would provide an adequate explanation of these particular simulated "missions." However, as indicated in

table 4, these favorable statistical properties are largely restored when the collecting power is increased by

a factor of 5 and reinforces the importance of collecting power. Furthermore, no errant estimates were

observed. Figure 18 shows the effect of collecting power on the histograms of the estimate of the knee

location when Ek=200 TeV and compares the baseline (outer curve) with a 2× (middle) and 5× (inner)

detector.
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It should be noted that the Cramer-Rao bound was derived for the ideal detector having zero energy

resolution and shows those values of the knee location E k where one begins to see an erosion of the asymp-

totic properties of ML estimates and the difficulties encountered with the multiple minima of the objective

function. Attempts to derive the Cramer-Rao bound for a "real" detector having a nonzero resolution and

involve the convolution integral in eq. (39) were found to be mathematically intractable. However, they

can readily be numerically constructed using record-order difference equations.

Also of interest is the correlation between the ML estimates of the three spectral parameters, a

direct consequence of the mathematical definition of the broken power law in which the knee E/acts as a

"hinge," connecting the lower part of the distribution controlled by a I with the upper part controlled by cv2.

Thus, one can easily visualize a correlation between a 1 and Ekand _ and E k, while oq and c_2 appear to be

only slightly correlated according to the simulation results.
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For example, when o'1=2.8, cy-.2=3.2, E_=125 TeV, El=20 TeV, E2=5,500 TeV, and the detector

resolution is zero, the correlation matrix given in table 5 is based on 25,000 simulated missions. When the

detector resolution is 40 percent and a Gaussian response function used, the correlation was seen to be

slightly greater among the estimates of the three spectral parameters.

Table 5. Correlation matrix based on 25,000 simulated missions.

CorrelationMatrix

cx1 (x2 Ek

cq 1.00 0.08 0.42

cc2 0.08 1.00 0.72

4,1A Spectral Break Size of 0.3

Ek 0.42 0.72 1.00

The case where _ is set to 3.1 in the simulations and the so-called spectral break size is reduced to

0.3 when a I remains fixed at 2.8 is of particular interest. Figure 19 shows relative frequency histograms of

three estimates (oft, oc2, E k ")ML based on 1i0()0 simulated missions in which the GCR events were simulated

from the broken power spectrum with c_1=2.8, ff2=3.1, and Ek=100 TeV over the range 20-5,500 TeV for

which the average number of events above 20 TeV is 51,800 and of which 2,500 are above the assumed knee

location at 100 TeV. The detector is assumed to have a constant 40-percent energy resolution with a Gaussian

response function.

RelativeFrequencyHistogramof _1andcc2 RelativeFrequencyHistogramof Ek
1,000Missions,BrokenPowerLawWithcq=2.8, 1,000Missions,BrokenPowerLawWith_1=2.8,

o.2=3.1,Ek=lO0TeV,andIncidentEnergy20-5,500TeV %=3.1, Ek=lO0TeV,andIncidentEnergy20-5,500TeV
DetectorResolution40% DetectorResolution40%
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Figure 19. Relative frequency histograms of the maximum likelihood estimates of the three

spectral parameters a l, _, E k of the broken power law energy spectrum.

Detector response function is Gaussian having 40-percent constant energy

resolution.
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Also notethatthemeanandstandarddeviationof the incidentGCRenergiesare/.rE=42TeVand
o'E=54TeV,respectively,for this simulationscenario.Comparingto thecasewherec_=3.3 and the other

parameters the same shows an average of 51,600 events above 20 TeV of which 2,250 are above the

assumed knee location at 100 TeV and with fiE=41 TeV and O'E=46 TeV. Thus, the standard deviation is

considerably larger for the cv2=3.1 case but also has ---10 percent more events above the knee E k.

Figures 20a and 20b compare standard deviations of the ML estimate of o_1 and o_2, respectively, for

the _2=3.1 with cc2=3.3 case as a function of detector energy resolution. A somewhat surprising result is

observed in figure 20b where the standard deviation of the c_2 estimate actually decreases when the spectral

break size decreases from 0.5 to 0.3 and is attributable to the 10-percent increase in events above the knee,

despite the increase in GCR incident energy variance (6 E increases as the break size decreases, and hence

so does the standard deviation of the detector responses crr which would tend to increase the standard

deviation of the estimate of _2). Thus, as seen in figure 20b, the increase in events above the knee slightly

outweighs the increase in variance associated with the decrease in spectral break size. Note in figure 20c

the standard deviation of the E k estimate almost doubles when the spectral break size decreases from 0.5 to

0.3, a more intuitive result.
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Last, the asymptotic properties and correlation among the estimates is explored by simulating 100,000

missions from the broken power distribution with oq=2.8, a2=3.1, and Ek=100 TeV over the range of

20-5,500 TeV. This is accomplished using a detector having twice the collecting power of the baseline

detector and thus providing 103,600 events on average above 20 TeV, of which =5,000 are above the

assumed knee location at 100 TeV. The ideal or zero-resolution detector is also used for comparison with

the Cramer-Rao bound which has only been derived for zero-resolution detectors. Table 6 gives the means,

standard deviations, and Cramer-Rao bound for this scenario and table 7 gives the correlation matrix based

on these 100,000 simulated missions.

Table 6. Means, standard deviations,

and Cramer-Rao bounds.

Mean

O_1 2.80

_2 3.10
Ek 100.5TeV

Standard

Deviation

0.0084

0.032

8.6TeV

Cramer-Rao

Bound

0.0083

0.031

7.6TeV

Table 7. Correlation matrix.

_1 1.00

e2 0.06

Ek 0.47

o_2

0.06
1.00

0.68

E,

0.47

0.68

1.00

4.2 Data Analysis Range Study

The energy range [E_,E2] from which GCR proton events are simulated has a significant impact on

the statistical properties of the ML estimates. While increasing E 2 beyond 5,500 TeV has no noticeable

effect since events of energy exceeding 5,500 TeV are very unlikely, lowering E l does have a significant

impact on the standard deviation of the estimates of t_ l and E k. By lowering E l, many more events repre-

sentative of that part of the broken power law below the knee and controlled by _1 will be detected, along

with the extension of the estimation range or "moment arm" for a 1, the combination thereby providing

greater precision in the estimation of oq. Furthermore, as a I is estimated with greater precision, E k can be

measured with somewhat greater precision too since reducing the variation in a 1 removes additional varia-

tion in the "hinge" E k. Hence, lowering the data analysis range results in a reduction in uncertainty of a I

and E h and thus reduces the total uncertainty so that very slight gains in variance reduction in the estimate

ofo_ 2 is also realized. These results are depicted in figures 21a-21c for a I , 6c2, and E k, when E]=30, 20, 15,

and 10 TeV and for which there were on average 24,500, 51,500, 87,000, and 181,000 events, respectively,

with =2,250 above the knee for each. Other parameters are oq=2.8, ff2=3.3, Ek= 100 TeV, E2=5,500 TeV,

and the response function is assumed Gaussian.
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Figure 21c. Effects of lowering E 1 on the standard deviation of the estimate of _2-

4.3 Energy-Dependent Resolution Study

The situation in which the detector response function is assumed to be Gaussian but the detector

energy resolution varies with incident GCR event energy is of particular interest to designers of cosmic-ray

detectors. In previous studies presented so far in this TP, the detector response function is assumed to be

Gaussian with a linear mean response (energy deposit) of the form (a + bE) and with constant detector

energy resolutionp so that the parameter o'in the Gaussian response function is defined as o'(E)=p(a + bE).

Two cases of interest are (1) energy resolution is "getting better" from 40-percent resolution at El=20 TeV

to 30 percent at E2=5,500 TeV and (2) gettme, Worse" from 30-percent resolution at El=20 TeV to

40 percent at E2=5,500 TeV. These two cases are modeled by assuming that o'(E) is a linear function of

incident GCR energy of the form (c + dE) and then the coefficients c and d are determined by matching the

conditions for each of the two cases. Doing so yields the energy-dependent resolution curves depicted in

figure 22.

Table 8 shows the results based on 100 simulated missions using the same incident GCR energies

for both cases and the mean estimates shown are essentially unbiased, with standard deviations having

expected comparisons; e.g., standard deviations slightly larger for the "getting worse,' case. The constant

40-percent case is included for comparison.
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Figure 22. Energy-dependent resolution curves.

Table 8. Nonconstant energy resolution results.

Spectral
Parameter

(X 1

(X 2

Ek

Mean and Standard Deviation of the Estimates Based on 100 Missions

Resolution

Constant 40%

Standard
Mean Deviation

2.80 0.02

3.33 0.072

100.7 14.4

Nonconstant

(Getting Better)

Standard
Mean Deviation

2.794 0,018

3.309 0.067

99.63 12.6

Nonconstant

(Getting Worse)

Standard
Mean Deviation

2.794 0.018

3.312 0.073

99.93 13.5

4.4 Non-Gaussian Detector Response Functions

The simulation studies presented so far have assumed a Gaussian detector response function. While

reference 5 suggests that a Gaussian function is reasonable, there is concern that perhaps the response

function is skewed slightly to the right and that this "tail" will contribute to greater difficulties in estimat-

ing the broken power law spectral parameters. The gamma response function, capable of describing a wide

variety of shapes with right-hand skewness (outer curve from the right in fig. 23) and the broken-Gaussian

consisting of two blended normal distributions (middle curve from right) suggested by reference 8 for its

closeness to the Gaussian response function but with the tail region, as desired, were introduced to address

this concern. Both were used as detector response functions in 1,000 simulated missions using the baseline

detector collecting power and simulating GCR events from the broken power law with parameters _1=2.8,

_2=3.3, E_.=100 TeV, from the range 20-5,500 TeV. The results are shown in table 9. Note that the gamma

response function produces a slight bias in the estimate of the knee location that was removed in a subse-

quent run with the collecting power doubled. Also note that the standard deviation of the estimate of _x2

increases by =13 percent for both response models relative to the Gaussian response function having

40-percent resolution. It should also be noted that while the gamma response function has a constant

energy resolution of 40 percent, the broken Gaussian has a 41-percent resolution because of the added

skewness while keeping the rest of the distribution matching the Gaussian.
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Figure 23. Gamma, broken Gaussian, and Gaussian response functions.

Table 9. Gaussian, broken Gaussian, and gamma response function study.

Mean and Standard Deviationof Maximum LikelihoodEstimates of Spectral Paramelers(1,000 Missions)

o_1 c(2 Ek

ResponseModel Standard Standard Standard

(40% Resolution) Mean Deviation Mean Deviation Mean Deviation

Gaussian

Broken Gaussian

Gamma

2.80

2.80

2.80

0.020

0.021

0.023

3.31

3.31

3.31

0.072

0.082

0.082

100.7

100.8

102.3

t4.4

14.9

16.1

4.5 Collecting Power Versus Resolution Study

Cosmic-ray instrument developers must often make trade studies in design parameters as a func-

tion of the science objectives, which is very important for space-based detectors where physical param-

eters, such as dimension and weight, impose rigorous practical limits to the design envelope. Particularly

important is the comparison between detector energy resolution and collecting power (combination of

detector size and observing time) two parameters often played against each other in the design phase of a

new detector program. As seen in the simple power law section, the ability to measure the spectral param-

eter _], measured in terms of the standard deviation as its estimator, depends rather weakly on resolution

and strongly on collecting power as is evidenced in figure 7. Also observed was that the standard deviation

is inversely proportional to the square root of the number of events, so that halving or doubling the collect-

ing power scales the standard deviation by a factor of _ for the ML estimate when the number of events

exceeds around 2,000. As noted in table 3, the variance of the broken power law distribution (and its higher

moments too, although not shown in table 3) is somewhat smaller than the variance of the simple power
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law, implying the detector's energy resolution will play a somewhat stronger role in the estimation of the

three spectral parameters. Figures 24a-24c illustrate the relationship between collecting power and detec-

tor energy resolution by showing the impact on the standard deviation of the three spectral parameters

when the collecting power of the baseline detector is halved and then doubled. In this study, GCR events

were simulated from the broken power law with parameters ax=2.8, a2=3.3, Ek= 100 TeV, from the energy

range 20-5,500 TeV, and the baseline number of events is 51,600 above 20 TeV of which 2,250 are above

the assumed knee at 100 TeV. In approximate terms, note that doubling the collecting power compares with

about a 20-percent trade in resolution for a t and E k but also note that a 40-percent resolution detector is

better than a zero-resolution detector of half its size relative for the event-starved _2 parameter.

StandardDeviationofSpectralParameter(_1
for0.5X, 1X, 2XCollectingPower

EnergyRange20-5,500TeV

0.5X(N=25,800)

-.0- 1X(N=51,600)

2X(N=103,200)
0.05

0.03
E

__ oolv _ --- ................. , I............
0 20 40 50

Resolution(%)

Figure 24a. Relationship between collecting power and energy
resolution measured in terms of the standard deviation

of the maximum likelihood estimate of o_I.
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Figure 24b.

StandardDeviation of Spectral Parameler (:(2
for 0.5X, 1X, 2X Collecting Power

Energy Range 20-5,500 TeV

0.5X (N=25,800)

1X (N=51,600)

-_.-- 2X (N=103,200)

t i

20 40 50

Resolution (%)

Relationship between collecting power and energy
resolution measured in terms of the standard

deviation of the maximum likelihood estimate of o_2.

m

Figure 24c.

Standard Deviationof SpectralParameter Ek
lor 0.5X, 1X, 2X CollectingPower

Energy Range 20-5,500 TeV

0.5X (N=25,800)

1X (N=51,600)

.... 2X (N=103,200)

I

20

Resolution(%)

40 5O

Relationship between collecting power and energy

resolution measured in terms of the standard deviation

of the maximum likelihood estimate of E k.
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It is importantto notethatthe relationshipsillustratedin figures24a-24careindependentof the
energyrangeassimilarcomparisonswereobservedwhenE l was lowered to 15 YeV and to I0 TeV. Raising

E 2 has no effect since the number of events above E2=5,500 TeV is negligible for detectors with this

collecting power.

Because the Cramer-Rao lower bound always scales by _ for each of the three spectral param-

eters and, as noted in table 4, the asymptotic properties (including attainment of the Cramer-Rao bound) of

the ML estimates of O_2 and E k are nearly met whenever the number of events above the knee exceeds

2,500, which is about the situation for the baseline detector collecting power when E k- 100 TeV, it can be

seen that doubling the collecting power means the standard deviation of the u.2 and E k estimators scales by

4_, but halving results in a factor of around 1.5 instead of 1.41, as attainment of the Cramer-Rao bound is

slipping away faster for the smaller detector. Obviously, as E k increases to 200 and 300 TeV as in table 4,

the number of events above the knee diminishes too so that the bound is not attained, so scaling will not go

by the _ until the collecting power is such that the number of events above E_ is =2,500 or more. This

latter result is the rationale for selecting the hypothetical 5× detector in table 4 so that the number of events

above Ek=200 is 3,235. Of course since the number of events representative of a t is always quite large and

is on the order of 50,000 or greater when the lower limit of the data analysis range is 20 TeV or less for the

baseline detector, scaling by 4_" will hold for the standard deviation of the ML estimate of a I.

4.6 Implications of Detector Response Model Uncertainties

Maximum likelihood estimation of cosmic-ray spectral parameters as presented in this TP requires

the complete specificity of all detector response model parameters. The reality of actually knowing these

parameters with little or no surrounding uncertainty depends largely on designers being able to calibrate

the detector at different incident energies at a particle accelerator facility. However, because space-based

detectors will be exposed to GCR events having energy much greater than those energies available at

accelerator facilities, it becomes essential to gain an understanding of the detector's response function

using Monte Carlo simulations of the detector's response (energy deposit) to those energies that cannot be
attained at accelerator facilities. These simulations, coupled with a favorable comparison between simula-

tion results and accelerator results at energies available in a test facility, will provide a better understanding

of the detector response function.

By way of example, the impacts on spectral parameter estimation when certain detector response

function parameters are incorrectly known are investigated next. This state of ignorance will manifest

itself as a bias in the mean or point estimate of the spectral parameters. This situation is modeled by

simulating detector responses according to one set of detector response function parameters and then using

a different set of parameters in the detector response function g in eq. (40) of the ML estimation procedure.

Since detector resolution is an important design parameter, the case is first considered where the

detector has a constant energy resolution; however, a different resolution value was used in an assumed

state of misunderstanding in eq. (40). For example, suppose the real detector resolution is a constant

35 percent, but in the simplex search the resolution parameter (p) is set to different constant values in

eq. (40) corresponding to resolutions ranging from 3! to 39 percent. This situation is modeled by simulat-

ing the detector responses Yi as
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Yi = (a + bEi)(1 + 0.35 Z i) (41)

according to eq. (18) and for GCR event energy E i from an assumed broken power law with parameters

_1=2.8, a2=3.3, and Et=100 TeV, from the energy range 20-5,500 TeV and for an assumed Gaussian

response model having 35-percent energy resolution. Z i is a Gaussian random number having zero mean

and unit variance, along with the nonnegativity constaint Yi >0. Next, in the ML procedure, p is set to the

different values in eq. (40) to obtain the ML estimates of the three spectral parameters. Table 10 at the end

of this section shows the mean for each of ML spectral parameter estimates based on 100 simulated mis-

sions, each where/9 is set to 0.31,0.32 ..... 0.39 in eq. (40).

Table I0. Implications of detector response model uncertainties.

Constant resolution versus

assumed constant 35%

Nonconstant resolution versus

assumed constant 35%

Gaussianversus assumed

Broken Gaussian

BrokenGaussian versus

assumed Gaussian

BrokenGaussian versus

assumed Gaussian

Assumed

Resolution

31%

32%

33%

34%

35%

36%

37%

38%

39%

Getting worse:

30% to 40% over

20-5,500 TeV

Getting better:

40% to 30% over

20-5,500 TeV

Method 1

Method 1

Method 2

(11

2.76

2.76

2.77

2.79

2.80

2.81

2.83

2.84

2.86

2.88

2.65

2.98

2.53

2.85

_2 E,(XeV)

96.6

96.8

97.4

98.2

99.4

101

103

106

109

3.34 145

3.25 67

3.38 17I

3.21 67

3.32 115

3.29

3.29

3.30

3.30

3.30

3.31

3.31

3.32

3.32

Note that the mean estimates exhibit a bias as a result of using incorrect values of/9 in eq. (40). Also

see in table 10 that when/9=0.35 in eq. (40) and matches the "correct" resolution as used in eq. (41) to

simulate the detector responses, the means of the ML estimates match the assumed spectral parameters
used in the simulation, and thus there is no bias in the estimates. It was also noted that their variances were

essentially unaffected and this example is akin to a misaligned riflescope that results in the rifle shooting

off-axis from the line of sight but the shot group size remains unaffected.
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Next, consider the situation where the real detector resolution is energy dependent, but a constant

resolution of 35 percent is used in eq. (40). For example, if the real detector resolution is "getting better"

over the simulated GCR energy range 20-5,500 TeV as shown in figure 22 but instead a constant 0=0.35 is

used in eq. (40) in the simplex search for 0ML and 100 simulated missions, very large biases result (given

in table 10). Another case where the real resolution was "getting worse," depicted in figure 22, was when

a constant of 35-percent resolution was again used in eq. (40), resulting in the other large biases given in

table 10. Based on these studies, one concludes that the real key is to understand what the true energy-

resolution relationship is and not so much a matter that it has a particular mathematical form. However, as

these studies indicate, designs having a constant resolution are more forgiving as long as the error amount

is a constant.

Another important study regards the so-called tails of the response function. The response func-

tions depicted in figure 23 were used to address this concern. The results from these simulations are pre-

sented in table 9 and indicate that while a "smaller tail" is desirable, having a larger tail is not as bad as

perhaps feared. Of particular interest is the situation in which the real detector response function is Gaussian

but in a state of ignorance, the broken Gaussian function is inserted as the detector response function g in

eq. (40) in the ML search for 0. Based on 1,000 mission averages, a large bias in the mean estimates of the

spectral parameters is noted in table 10. In the case where_ the real detector response function is the broken

Gaussian function, the Gaussian function was incorrectly used in eq. (40) and is also included in table 10,

and again large biases are seen. These two cases are labeled as method 1 and will be compared to a revised

technique labeled method 2.

It should be noted that in method 1, as well as in all simulation studies presented so far in this TP,

GCR events are simulated from an energy range E l to E 2, where typically E2=5,500 TeV and E l is a value

between 10 and 25 TeV. The choice of E 2 is based on the collecting power of the detector and is chosen

such that there will only be a negligible number of events above E 2. The selection of E l is largely dictated

by the practical number of events that can be handled in the simulation and for a thousand or more mis-

sions. Setting E l to --20 TeV proved to be a good working value since 50,000 events on average are

generated for the baseline-sized detector that are representative of _l and hence provides a robust estimate

of a I for the unconstrained multistage approach of estimating the three spectral parameters; i.e., first

fitting aj, then keeping a ! fixed at this value and fitting a 2 and E k, followed by the three-dimensional

search for (oq, tr2, Ek)ML on the full set of energy deposits. The adequacy of this working value of E l=20

TeV is further reinforced by noting in figure 21c that the critical parameter o_2 is essentially independent of

lowering E 1 below 20 TeV when the knee location is 100 TeV or greater.

Next, for each of these simulated GCR events, a detector response is simulated according to the

assumed detector response function and then the full set of simulated responses are used to estimate the

spectral parameters. However, because no energies below E 1 are simulated, frequency histograms of the

simulated detector responses, which resemble the appropriate detector pdf shown in figure 12, do not

match the front-end portion of a real cosmic-ray energy spectrum which does look like those depicted in

figure 8. This difference or mismatch is an artifact of not generating events from below E 1 that would have

otherwise had the effect of filling in this front-end portion of the histogram and consequently resembling a

real cosmic-ray energy spectrum.
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Thisdifferenceisnotcritical whenmakingrelativecomparisonsof theeffectsof designparameters
or energyspectrumparameterswhendetectorresponsefunction parametersusedto generatedthe simu-
latedresponsesmatchthosedetectorresponsefunctionparametersusedin eq.(40) in thesimplexsearch
for 0ML; i.e., impliesa perfectunderstandingof the responsefunction.However,when theimpactsof
responsefunction uncertaintiesarestudied,it is more importantthat the simulationtechniquesproduce
resultsthatarecloserto arealcosmic-rayenergyresponsespectrum.To illustratethispoint, supposeE I is

set to 5 TeV in the simulation and the baseline detector collecting power is used, along with a broken power

law energy spectrum with parameters _x1=2.8, _2=3.3, and Ek=100 TeV, and E2=5,500 TeV so that there

will be around 634,000 events above 5 TeV. Next, if detector responses assuming a Gaussian response

function with a constant 40-percent energy resolution are simulated, then there will be 477,400 responses

on average <50 GeV, whereas there will be 459,400 responses <50 GeV if the broken-Gaussian response

function depicted in figure 23 is used, or a difference of 18,000 events. This region of energy deposits <50

GeV results in that portion of the histograms that are of the greatest mismatch between the Gaussian and

broken-Gaussian detector response histograms and is an artifact of not having any events <5 TeV in the

simulation, and it is also the same region that does not match a real cosmic-ray response spectrum. Thus, it

is this large mismatch that is driving the large biases seen in table 10 for oq and E k when responses accord-

ing to one of these response functions are simulated and then the other response function is used in eq. (40)

of the simplex search for 0ML to study the impact of incorrectly understanding the "tail" of the detector

response function.

The goal of method 2 is to make the histogram of the simulated detector responses match a real

cosmic-ray energy spectrum when studying the effects of incorrectly known detector response function

parameters so that a better estimate of their impact on the spectral parameter estimates is gained. This is

achieved by placing a cut Yc in the simulated detector responses and then dropping all responses <Yc" In the

simulation, the choice ofy c dictates the value of E l because E l must be chosen so that the probability of

events having energy <E l but producing detector responses >y,. is negligible, which obviously depends on

the detector's energy resolution. For example, ifYc=60 GeV and a Gaussian response function having a 40-

percent energy resolution and a mean response (a + bE) is considered, as used for the baseline detector

and defined in eq. (18), then E 1 can be any value <7 TeV, since only a negligible number of events from

below 7 TeV will deposit more than 60 GeV. Selecting El=5 TeV provides =634,000 GCR events and

setting yc=60 GeV and dropping all simulated detector responses smaller than Yc produces a simulated

response spectrum that does indeed look like a real response spectrum. Estimating the spectral parameters

using only the simulated detector responses that are >Yc as described here and for the case where the real

detector response function is the broken Gaussian but a Gaussian function is inserted in eq. (40) in the

simplex search for 0ME which results in the much more modest and intuitive biases shown as method 2 in

the last row of table 10. Varying the cut Yc between 60 and 100 GeV produced similar results for all three

spectral parameters, while lowering Yc below 55 GeV resulted in the more severe bias obtained using

method 1 and associated with the large front-end mismatch of the histograms.

A very important practical benefit realized by introducing the cut Yc is that the lower limit of inte-

gration in eq. (40) can be any value EL<E 1, which means that the ML procedure can be made independent

of the range of integration, as long as E L is chosen wisely. Thus, the ML estimation procedure herein

developed can now be applied to real cosmic-ray detector response data. It should be mentioned that cuts

on the high end are not required, since any value EH>E 2 is suitable because the probability of events >E 2
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areessentiallyzero.However,settingE H unnecessarily high would result in many unnecessary calcula-

tions in the numerical integration of eq. (40).

Introducing the cut Yc requires a modification to the objective function in eq. (40) to handle the

conditional detector response distribution. Thus, the objective function for method 2 becomes

N

O(oq,o:'2,E/) =-logL =- _ lOgkl(y j lyj > yc;O'l,_2,Ek)] ,

j=l

(42)

where

gl (3j Iv.,. , ,! > yc;o_l,O_2,Ek ) =

g(yj I E;p) (_ 1(E ;_l,a2,Ek )dE

Y(•

1 - ; gl (Y ; al, a2, E/)dy

0

, Yj > Yc •
(43)

From a simulation point of view, El=5 TeV is about the lowest value that was used because of the

vast number of generated events and the requirement to handle thousands of simulated missions which are

needed to make meaningful inferences. Consequently, cuts much less than 60 GeV are generally not fea-

sible in simulations designed to study detector response function uncertainties. However, cuts in real

cosmic-ray data can be taken to be much lower since the spectrum is already filled in from events having

energies much less than 5 TeV.
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5. CONCLUSIONS

Methods for estimating cosmic-ray spectral parameters from simulated detector responses with

implications for detector design are presented in this TP. The method of ML estimation is seen to be the

method of choice for estimating the single spectral parameter _l of a simple power law spectrum in terms

of minimum variance and other important statistical properties and was thus selected as the estimation

procedure for the broken power law spectrum. Again, the ML estimates attained these favorable statistical

properties when the true knee location was around 100 TeV, but then these properties gradually slipped

away for knee locations of 200 TeV and greater. The case of a spectral break size of 0.3 was also investi-

gated and the results compared with the 0.5 break-size case in figures 20a-20c. A data analysis range study

was conducted and showed that significant improvements in the precision in estimating the slope o_I below

the knee and the location Et.. (but to a lesser degree) can be realized by lowering the lower limit of the

simulation range E 1 but had essentially no impact on the estimation of the slope parameter O_2 above the

knee.

The effects of detector energy resolution, collecting power, as well as various functional forms for

the detector response function and energy-dependent resolution functions have also been studied and these

results presented in this TP. While the energy resolution observed plays a somewhat stronger role in the

estimation of the spectral parameters of a broken power law energy spectrum relative to a simple power

law, the ability to estimate these spectral parameters, measured in terms of their standard deviations, still

depends rather weakly on resolution and strongly on collecting power.

While increasing the size of the right-hand tail of the detector response function did indeed cause a

slight rise in the standard deviation of the estimates of the three spectral parameters (greatest for cc2), the

ML estimation procedure yielded estimates that, from a practical point of view, are unbiased. Similar

results were gleaned from the studies using energy-dependent resolution functions. The implications of

detector response model uncertainties were also investigated and the magnitude of such induced biases for

various uncertainties presented. Cuts in the detector response data were introduced to simulate a more

realistic cosmic-ray response spectrum and thereby provide a better description of the induced biases in the

spectral parameter estimates when detector parameters are incorrectly known. Introduction of these cuts

yielded the additional benefit of freeing the integral used in the ML procedure of requiring unique integra-

tion limits, thereby making this ML estimation procedure applicable to real cosmic-ray data.
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APPENDIX AnSALIENT RESULTS AND THEIR APPLICATION

TO DESIGN OF SPACE-BASED COSMIC-RAY DETECTORS

A number of the salient results from this research and their application to the design of space-

based cosmic ray deterctors are presented in appendix A.
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