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TECHNICAL PUBLICATION

ESTIMATING COSMIC-RAY SPECTRAL PARAMETERS FROM SIMULATED DETECTOR
RESPONSES WITH DETECTOR DESIGN IMPLICATIONS

1. INTRODUCTION

This Technical Publication (TP) develops statistical methods for estimating the three spectral
parameters of the broken power law energy spectrum. Estimation of these parameters and quantification of
the surrounding uncertainty of the estimates are of considerable importance to designers of cosmic-ray
detectors.

Analytical methods were developed in conjunction with a Monte Carlo simulation to explore the
combination of the expected cosmic-ray environment with a generic space-based detector and its planned
life cycle, allowing us to explore various detector features and their subsequent impact on estimating the
spectral parameters. This study thereby permits instrument developers to make important trade studies in
design parameters as a function of the science objectives, which is particularly important for space-based
detectors where physical parameters, such as dimension and weight, impose rigorous practical limits to the
design envelope.

A simple power law model consisting of a single spectral index () is believed to be an adequate
description of the galactic cosmic-ray (GCR) proton flux at energies below 1013 eV, with a hypothesized
transition at knee energy (E,) to a steeper spectral index 0> ¢ above E,. Methods for estimating these
three spectral parameters are developed in this TP. Because many of the features and analytical tools
related to a simple power law have natural extensions to the analysis of this so-called broken power law,
these methodologies will be discussed in detail first.



2. SIMPLE POWER LAW

The simple power law suggests that the number of protons detected above an energy (E) for an
assumed collecting power (product of size and observing time) is given by:!

E —a,+]
No(>E)= NA(E—J , (1)
A

where E is in units TeV, ¢ is believed to be =2.8, and N 4 and E 4 are numbers determined from the detector
size and exposure time in the environment, respectively. For a typical space-based detector of | m2 witha
3-yr program life, N , and E 4 are 160 and 500 TeV, respectively, implying that this detector is expected to
observe 160 proton events above 500 TeV over its expected life cycle. In statistical terms, N is assumed to
represent an average number of events while the actual number to be observed on any given mission would
follow the Poisson probability distribution with mean number Ny. The number of particles detected 1s
taken to depend only on the geometrical factor of the assumed detector and its material composition. The
detection efficiency is a convolution of the geometry and material composition and is taken to be indepen-
dent of energy.

The associated cumulative probability distribution function (cdf) for E over some energy interval
of interest [E|,E,] is then given by

_ N0(> E)—N0(> Ez)

®n(E) =1
o(E) NoG Ey)— No(> Ey)

for Ey<E<E,

—o+1 -
ETTT-E T )




Thus, the corresponding probability density function (pdf) for E is

d®(E)
dE

$o(E) =

o -1

L <E< (3)
El al_E%_alE for E|<E<E, .

To randomly sample GCR proton event energies from the simple power spectrum over the interval
[E|.E,], u=®y(E)) is solved in terms of E, to obtain

|

E; =5 () = |E EIO 4BV - El | “)

where y; is a simulated random number from a standard uniform distibution and ! represents the inverse
functlon of @, which is a conventional notation that will be used in subsequent sections. The mean of the
simple power law distribution is determined by the expected value operator <E> which gives

E,
tp =<E>= J’ E¢y(E)dE
Ey
2- 7—0:
al _2 E[I o El [24]

The variance is given as 62, = <E*> — (<E>)?, where the general form of <E™> is

E,
<E™>= [ E"9(E)E
£
m+l-o n1+l;a
_[_o-1 g '-E, ' (6)
oy —m—1 E]l_a‘ - Eé_al

At this time, note the critical point that <EZ> becomes infinite, as do all other higher moments, as
E, goes to infinity, as is easily seen in eq. (7):

b
lim [ x®x*dv=c forall A<3anda>0 . (7

b—oe™d



This observation suggests the need for a careful look at the effects of the large variance and other
higher moments associated with all power law distributions, even when E, is kept finite. A measure of the
relative dispersion of the energies of the incident protons, which is independent of units, is defined by
V=0g/ug for the simple power law and is called the coefficient of variation in the statistical literature. An
important concept in detector design is the energy resolution p of the detector that provides a measure of
the relative accuracy of a cosmic-ray detector, which is the fractional error in measurements of a
monoenergetic beam. The resolution p is defined as the standard deviation divided by the mean response
with typical values of 30 to 40 percent.

As will be shown in this TP, the precision with which the spectral parameter ; can be estimated
from a set of detector responses (energy deposits), measured in terms of its standard deviation, is a function
of both the variance of the incident energies and the uncertainty induced by the detector. The dominating
component of this measurement precision will be shown to be attributable to the variance of the incident
energies Oy, which in turn can only be controlled through collecting power. Since V and p are dimension-
less and provide a measure of relative dispersion for the power law distribution and detector, respectively,
an instructive comparison will show that V>>p. To illustrate these points, a detector-life cycle having
parameters N ,=160 and E 4,=500 TeV will observe 52,200 events on average in the energy range E ;=20
TeV to E,=5,500 TeV from a simple power law spectrum when ¢, is 2.8, which gives a mean GCR event
energy g =44.5 TeV, a standard deviation 6z=74.10 TeV, and a coefficient of variation V=166.5 percent.
In comparison, the resolution p of most detectors is between 30 and 40 percent. E; is chosen for this
detector-life cycle combination as 5,500 TeV, since the expected number of events above this energy are
negligible, while E| is taken to be 20 TeV for purposes of this discussion.

Since the number of events and their incident energies will vary because of the finite detector size
and exposure time, the statistical behavior of the GCR event energies in combination with a detector
having energy resolution p and the subsequent spectral parameter estimates over multiple missions will be
studied. Thus, for each mission, a random number N of GCR events from a Poisson distribution with mean
52,200 to represent the number of simulated events that the detector will observe in the energy range 20to
5,500 TeV on any given mission will be generated.

Next, the incident energy of each of these N events using eq. (4) is simulated. For example, for one
such simulated mission, N=51,883 and the mean and standard deviation of the simulated GCR incident
energies are calculated to be 43.85 and 66.39 TeV, respectively. To illustrate the large fluctuations associ-
ated with power law distributions, the same number of events (51,883) are simulated from a normal distri-
bution having a mean of 44.5 and standard deviation 74.1 so as to match the power law’s mean and standard
deviation for this energy range when ;=2.8 and observe that the sample mean and standard deviation are
44.51 and 74.17, respectively, for a single sample mission, which are much closer to the population mean
and variance than those from the power law random samples. This process is repeated for 100 missions,
and the standard deviation for each mission is plotted in figure 1.

Note the large fluctuations of the standard deviations for the power law samples from mission to
mission, while in contrast, the standard deviations of missions generated from a normal distribution are
very stable. As will be seen in subsequent sections, this is why the variation in detector responses is domi-
nated by the variation of GCR event energies, while the additional variation induced by the detector’s
energy resolution plays a rather minor role. This in turn contributes the dominant component of the stan-
dard deviation of the spectral parameter estimator.

4
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Figure 1. Standard deviation of simulated incident energies from power
law (ragged curve) for 100 missions compared with that from
normal distribution having same mean and variance.

The variation of the sample standard deviation s, measured by its standard deviation, is given by

: | ,
o = |Fa" K2, (8)
' 4[12N

where y,. is the rth central moment about the mean,? defined for the simple power law as

= [(E—u.) ¢y (E)E . ©)

Thus, the large variation in mission standard deviations is due to the term i, which again is only
finite by setting E, to a finite value, but nevertheless is responsible for the erratic behavior of the mission-
to-mission sample standgdi dgylatxom as deplcted in figure 1. This erratic behavior of the observed mis-

sion standard deviations will necessanly be true for any power law havmg spectral mdex a1£5 Note that
for the normal distribution,

=2, (10)
o=

and evaluation of these two formulae yield o,=5 TeV for the simple power law and 0.229 for the normal
distribution, which is roughly a factor of 22.



2.1 Estimation of the Spectral Parameter o.;

Of particular interest in the study of cosmic-rays is the estimation of the spectral parameter o, from
a set of data. Even though in practice the actual incident GCR energies are never observed, but only
a measure of their energy deposition from their passage through the detector, it is important to consider the
concept of an ideal detector having zero resolution. Thus, such a detector would measure the GCR event
energies exactly.

2.1.1 Method of Moments

The method of moments consists of equating the sample moments with the population moments,
which in general leads to & simultaneous nonlinear algebraic equations in the & unknown population
parameters. For the simple power law, there is only one parameter to be estimated, so the sample mean £
is set to the population mean f in eq. (5) and then this nonlinear equation is solved in terms of &, where

A 2-a 2-a
po(S-l\E__—H . (1
;-2 El] a'—Eé a

Thus, for a given sample of size N, this equation is solved in terms of & by numerical methods to
provide an estimate of ¢,. This estimator, which is a function of the random variable E , has its own
associated pdf. Since the GCR incident energy E has mean ug and finite variance O'E (only because the
upper energy E, is finite), it is known by the Central Limit Theorem that the distribution of the sample
average E follows a normal distribution with mean ug and variance & £2/N.

For example, when o;=2.8, E;=20 TeV, E,=5,500 TeV, E is normally distributed with mean
44.5 TeV and standard deviation (74.1 TeV)/N . "2, These results can be used to obtain the probability
distribution of the estimator by solving the probability equation:

[/ . 2-a 2-&
-1\E; ! ) !
[‘3‘1 ;) -G 1 g 44 z o
o —=)E T'-E, 1
1 2 — 2 Jv 12
PrT =71 $Z>—J- 271'9 dx (12)
_‘r—-N -0

in terms of ¢, for various values of Z. Letting Z vary from —4.7 to 4.7 and setting N=52,000 events gives
the probability distribution of &; shown in figure 2. Also depicted in figure 2 is the relative frequency
histogram of the estimates &, based on 5,000 simulated missions; where for each mission, 52,000 events,
on average, are simulated and the estimate of ; obtained by solving eq. (11). Furthermore, even though an
explicit mathematical form for the pdf is not readily available, its mean and standard deviation can be
calculated by numerical methods. For the distribution shown here, a numerically evaluation reveals its
mean to be 2.800 and standard deviation as 0.0115 when N=52,000, which compares to the mean and
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Figure 2. Probability distribution of method of moments estimate of ¢«
with relative frequency histogram of spectral parameter estimates
obtained from simulation.

standard deviation of the 5,000 simulated estimates with 2.800 and 0.0114, respectively. With the ability to
numerically construct this estimator’s pdf and moments, the important result is that its variance is inversely
proportional to the sample size N, which is also true for many common estimators; €.g., the sample mean,
standard deviation, and median. For example, if the number of events is doubled, then the variance is
halved; and if the number of events is halved, then the variance doubles. Note that this relationship be-
tween sample size and the standard deviation of the estimator &, is based on keeping E| and E, fixed, so
that in practice, the variance can be reduced by increasing the size and/or observing time.

2.1.2 Method of Maximum Likelihood

The likelihood function of a random sample from the simple power law, regarded as a function of
the single unknown parameter 0., is

N
04 -1
L(al) = I a, o HE, s El < Ei < E2 . (13)

The method of maximum likelihood (ML) seeks as the estimate of o, that value (say, 0y ) which
maximizes the likelihood function so that L(oyy ) 2 L(t)) for all a,. Statistically speaking, this means that



the ML estimator leads us to a choice of o, that maximizes the probability of obtaining the observed data.
In practice, it is often simpler to work with the logarithm of the likelihood function and seek solutions of
(log LY'=0 for which (log L)” <0 (indicating a maximum), where the prime and double prime indicate the
first and second derivative, respectively. Thus, eq. (14) is numerically solved in terms of o, to obtain the
ML estimate 0y

->Ylogk; =0
aa, (24 -1 Ell_al _.E;—al Z g5

l-o I-a N
dlogL __ N __ N[(logEl)E, ' —(log By )ES ™ ] _ (14)
i=1
The second derivative of the log-likelihood function is obtained next. Note that (log L) ” <0 for all
@,, indicating that log L is concave; hence, there is a unique maximum, which was graphically observed by
plotting log L as a function of ¢:

] | 2
Plogl _ [ 1 |ENE ™ (logkp ~logEy)" || | (15)
80(12 (o) - 1)? (EzElO‘l - E|Eg‘ )2

By the Cramer-Rao inequality, the lower bound of the variance of any estimator & of « is given
by:3

Var(Q) Z'éﬁl—f : (16)
og
E)oq2

which is asymptotically attained by the ML estimator. Also note that it is inversely proportional to the
number of events N as was the variance of the estimator obtained using the method of moments. Other
important properties of ML estimators are (1) asymptotically normally distributed and (2) consistency or
asymptotically unbiased. Thus, a key question is, “For what values of NV are these asymptotic properties
achieved by the ML procedure?”

Based on the same 5,000 mission set discussed in the previous section, the mean and standard
deviation of the 5,000 ML estimates are 2.800 and 0.00782, respectively. Using egs. (15) and (16), the
Cramer-Rao bound is computed to be 0.00786 when N=52,000 and o4 =2.800, which compares very well
with the simulation results. Furthermore, the frequency histogram of these 5,000 ML estimates resembled
the normal distribution as stated in (1) of the above paragraph. A separate simulation study was conducted
in which the sample size N was gradually reduced from 52,000 to 200, and the two asymptotic properties
(1) attaining the Cramer-Rao bound and (2) consistency, were achieved by the ML estimates until around
N=1,200. A bias on the high side of oy and failure to attain the Cramer-Rao bound became more and
more evident as the number of events N diminished from 1,200 to 200.

Another very important comparison is the ratio of the standard deviation of ¢y to that of the
estimator obtained using the method of moments. Direct calculation shows this ratio is roughly 1.45,
implying that the ML procedure is significantly better than the method of moments when dealing with the



simple power law. This result is not too surprising, however, because ML estimators, in general, have
better statistical properties than the estimators obtained by the method of moments.?

2.2 Detector Response Function

An original goal of this research was to create a Monte Carlo simulation in which various detector
response functions describing the distribution of energy deposition in the detector as a function of incident
GCR proton energy could be inserted. This desired flexibility led us to seek a numerical solution instead of
a completely analytical approach.

Based on GEANT simulations of energy deposition for monoenergetic protons at specified ener-
giesat 0.1, 1, 10, 100, 1,000, and 5,000 TeV, the Gaussian distribution provided a reasonable description of
the distribution of energy depositions at each of these incident energies.” Furthermore, the mean detector
response was found to be well approximated by a linear function of incident energy in the range of interest
for this study, which is typically between 10 and 5,500 TeV. Other detector response functions, such as a
gamma distribution and another response function constructed from a combination of normal distributions
having different parameters, have also been investigated and are presented in the broken power law section
of this TP.

The random variable Y is introduced to represent the detector’s response in terms of energy deposi-
tion of a GCR proton of incident energy F, and the conditional mean response and standard deviation of ¥

for a given event energy E modeled as Uy =(a+bE) and Oy =(c+ dE), respectively, where the four
coefficients a, b, ¢, and d are estimated using linear regression on the GEANT simulation results. Thus, for
each simulated incident GCR proton energy £, the detector response is simulated as

Y = uyig, +oyig i a7

or

Y, =(a+bE)+(c+dE)Z; | (18)

with the nonnegativity constraint ¥;,>0 and where Z; is a standard normal random number having zero
mean and unit standard deviation. Thus, the detector response function is defined as

B (_\‘—Hyw)z
eI Ey=—DRE_, 25y (19)

2705

where 1 is a normalizing coefficient related to the truncation of the normal distribution resulting from
the constramt y>0. It is worth noting for constant resolution studies in which a Gaussian response function
is assumed and p=o7u is set to values 0.4 and 0.6, the corresponding detector energy resolution is 39 and
51 percent, respectively, and is rounded to 40 and 50 percent in the figures and tables in this TP.



Thus, 1,¢ is determined from

[

-

b j ' 24, (20)

MyE 2r

PYIE
where the lower limit of integration is —1 divided by the resolution function given as

First, it is worthwhile to consider a detector having energy resolution p,;=Cy¢ /Uy, a constant p
and independent of the cosmic-ray’s energy (E) so that Oy, = p Uy , Where typical values of interest for p
are 0, 0.2, 0.3, 0.4, and 0.6. It should also be noted that the normalizing coefficient 17 in eq. (20) is constant
whenever the detector resolution p is energy independent.

Second, a case where Uy, and Oy are linear but their ratio is not a constant so that the detector’s
resolution is a nonlinear function of incident energy E was investigated. For this second scenario, two
studies were conducted in which the resolution is getting better from 40-percent resolution at 20 TeV to
30-percent resolution at 5,500 TeV and then getting worse from 30-percent resolution at 20 TeV to 40-
percent resolution at 5,500 TeV. These two energy-dependent cases are presented in the broken power law
section.

For detectors having constant energy resolution p, 1 is also a constant but depends on p. and is
given in table 1 for several values of energy resolution.

Table 1. Normalizing coefficient 1) for Gaussian response function.

Constant Resolution (p)
10% 20% 30% 0% 50% 60%

Truncated 0 2.96-07 | 0.00043 | 0.00621 | 0.02275 | 0.04779
Probability

n 1 1 1.00043 | 1.00625 | 1.02328 | 1.05019

2.3 Probability Distribution of the Detector Response

The probability distribution for the detector response in the presence of the simple power law
energy spectrum over the energy range [E,E,] is:

10



E,
o0 = [ gOIEP) go(E;adE, y>0 . 22)
E,

The spectral parameter ¢; has been explicitly included in the argument list of both the simple
power law pdf as ¢y(E:cx;) and the detector response distribution g,(y;@)) in eq. (22) to indicate that this
spectral index is inherited through the integral.

2.4 Ideal Detector

The concept of a zero-resolution or ideal detector is very useful because it sets an upper bound on
the expected performance of any real detector. Furthermore, it allows quantifying the magnitude of the
uncertainty in the estimate of the spectral parameter, measured in terms of the standard deviation of the
estimator, attributable to event statistics (statistical fluctuation of incident GCR proton energies) relative to
the uncertainty in measuring the spectral parameter estimate induced by the detector’s nonzero energy
resolution.

Thus, for an ideal detector, p=0 so that the standard deviation oyz=0 for all GCR event energies E.
Hence, the detector response to a GCR of energy E is given by Y=a+bE so that the incident energies may
be directly obtained as E;=(Y;—a)/b; therefore, the estimation procedures developed in sections 2.1.1 and
2.1.2 apply.

2.4.1 Method of Moments for a ‘“Real” Detector

The conditional expected value theorem, which says that the expected value of the conditional
expected value is the unconditional expected value,® or in the notation of the mathematical expectation
applied to the detector response Y,

Uy =<Y >=<<YIE>> » (23)

to obtain the mean detector response Uy for a detector having constant resolution p:

X T

wy =(a+bug)| 1+ pn(p) | e 2dr|

/o

where fy is the mean detector response (energy deposit) and yig is the mean of the simple power law
distribution. The term involving the integral can be thought of as a correction term to the mean for the
truncation given in table 1 and can be ignored whenever p<0.30; i.e., 30-percent resolution or better. Using
the method of moments, y is estimated with the sample average Y and when combined with eq. (5) for g,
yields eq. (25) that can then be solved in terms of ¢ by numerical methods:

(24)
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%

For example, when the resolution is a constant 40 percent (p=0.40), the point estimate of the spec-
tral parameter ¢, based on the 5,000 missions is 2.801 using eq. (25) and 2.79 using the same equation but
with the correction term set to zero in the denominator, resulting in a bias of =0.01 that can be removed by
including this correction term. This effect is much more pronounced when p=0.60 and results in a bias of
0.1 in the point estimate of &, so that the correction term is critical.

When the detector response distribution is symmetric and truncation is negligible so that Hy=(a+bug),
then ¢ can always be estimated using the mean of the detector responses Y to estimate ity ineq. (24). This
implies that knowledge of the variance of the detector distribution, and hence the resolution, is really not
required in order to estimate ¢, provided knowing that the resolution is <30 percent so the effect of
truncation can be ignored.

This is a useful result, because if the uncertainty regarding the true resolution is non-negligible,
then the method of moments provides a way to proceed with the estimation of o; e.g., the detector’s
energy resolution is known to be <30 percent but nothing more. However, as already noted, the method of
moments does not provide the minimum variance estimator that the ML method does which requires a
complete specification of the detector parameters a, b, ¢, and d of this assumed Gaussian response func-
tion. Furthermore, the energy resolution of most real detectors is worse than 30 percent.

This estimator based on the method of moments is a function of the random variable ¥ and has its
own associated pdf. Since Y has mean 1y and variance 0y, it is known by the Central Limit Theorem that
the distribution of ¥ follows a normal distribution with mean ¢y and variance GEY/N. Thus, the variance of
the detector response Y is 0'% —<V?s _u%, , where

2
N2 -
(—lin/—gi‘-z—e 2dx| - (26)
T

o0

<Y?>=(d? +2abug +b20'%5 +b2y125)n(p) J.
-1
/b

For example, when o;=2.8, E,=20TeV, E,=5,500TeV, and p=0.40, Y is normally distributed with
mean 131.58 GeV and standard deviation (213.69 GeV)/N Y. The probability distribution of &j, along
with its mean and standard deviation, can be obtained by solving the probability equation in eq. (27) using
the methods discussed with eq. (12):

12
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If the truncation effect is assumed to be negligible in eq. (26), then the following succinct formula

for the variancezc')fwthé detector response as a function of detector parameters a, b, and p and the mean fig
and variance O of the power law distribution is obtained:

0')2, = bzaé + pz[(a +bug)’ + bza,?:;] - (28)

In terms of the standard deviation of the detector response o, the approximation in eq. (28) is seen
to be actually quite good, for when p=0.40, this formula yields, ,=213.37 GeV as compared to the exact
value of 213.69 GeV obtained from eq. (27) using the integral correction terms. When p=0.60, this
approximation yields ¢, =237.31 GeV as compared to the actual value of 239.78 GeV. Thus, ignoring the
truncation is not too serious when estimating the standard deviation but can be devastating for p>0.40
estimation of the spectral parameter a; can be gleaned from eq. (28) because it shows the relationship
between the variance Oy of the detector response distribution, the variance G of the GCR proton energy
spectrum, and the detector response function parameters a, b, and p.

The influence of the variance and other higher moments of the simple power law energy spectrum
is visualized in figure 3 which shows the mean detector response (mean energy deposit) per mission for 30
simulated missions in comparison with the mean incident proton energy for 30 missions. Corresponding
standard deviations per mission are plotted in figure 4. Note that the detector response mean and standard
deviation per mission tend to track the mean and standard deviation of the incident energies for the 30
missions, illustrating the strong influence of the GCR energy mission-to-mission fluctuations on the detec-
tor response variation, even in the presence of the “smearing” induced by this detector having 40-percent
energy resolution. As will be seen in section 2.4.2, the component of variation due to the GCR event
statistics will be the dominating component of the total variation in the standard deviation of the estimator
of the spectral index ¢ - '
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Figure 3. Comparing the mean incident energy with the mean
of the detector responses for each of 30 missions.
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Figure 4. Comparing the standard deviation of the GCR incident energies
with the standard deviation of the detector responses for each
of 30 missions.

2.4.2 Maximum Likelihood for a ‘“Real” Detector

As in section 2.1.2, the method of ML seeks o4 which maximizes the log-likelihood function so
that Tog L(ogy, )= log L(e) for all o) where the likelihood function for the detector response in the
presence of the simple power law energy spectrum of N incident GCR protons over the energy range
[E|.E,5] is

14



N N £y
logL(ery) = Y. loglgo(yjsa)]1= . log I g E)¢o(E;00)dE | (29)
j=1 =t | E

Because of the complexity of the integral and the desired capability to easily change the functional form of
the detector response function g in eq. (29), a numerical approach for obtaining o4y was chosen. Two
optimization algorithms that do not require gradient information (derivatives) were selected for use; i.e.,
the multidimensional minimization algorithm called the Nelder-Mead downhill simplex method and Powell’s
direction set method.” While both methods provided matching results and were about the same in terms of
computer run time, the Nelder-Mead downhill simplex method was easier to control and modify the termi-
nation criteria. Furthermore, the simplex method proved to be more robust with the emergence of multiple
maxima in the likelihood function which occurred at the higher values of the knee location investigated in
the broken power law section of this TP. Therefore, the discussion that follows is specific to the downhill
simplex method. Since this is a minimization algorithm, the objective function is defined as

N £,
O(a)) = —log L)) =—Z log J. gy 1E) ¢o(Esay)dE | (30)
j=1 E|

so that minimizing O(«,) maximizes log L(«;) as desired, where the integral is numerically evaluated. The
following two termination criteria are used to halt the search procedure for the ML estimate at the (m+1)th
iteration:

() 10ty 01 = O 1<€
and ' S "
(i) 100 )~ OOy )I<ey - G

-

The search procedure continues until the termination criteria are met, which in words are: (i) the
movement in successive step sizes of ¢ is <€, and (ii) the objective function is changing by an amount <¢,.
Typical values used for these two stopping tolerances are on the order of 10~ and seem reasonable in light
of the magnitude of the parameter being estimated (=2.8) and the value of the objective function in the
vicinity of the ML solution, O(c; ) being of the order of magnitude 10° when E | is taken to be anywhere
~ between 10 and 30 TeV, so the number of terms in the sum is between 182,000 to 26,000, respectively.
Furthermore, changing &, and/or &, in either direction by an order of magnitude provided no noticeable
change in results. ' U

Figure 5 shows the ML estimates of ¢, for a zero-percent resolution detector obtained from eq. (14)
in comparison with the ML estimates obtained from a 40-percent resolution detector and applying the
downhill simplex algorithm to eq. (30) for 30 missions. This very close comparison suggests that the GCR
event statistics are the dominating component of uncertainty in the estimation of the spectral parameter o).
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Figure 5. Maximum likelihood estimates for zero- and 40-percent
resolution detector for 30 missions.

2.5 Summary Remarks and Conclusions for the Simple Power Law

Two methods for estimating the single spectral index (o.,) of a simple power law have been inves-
tigated. The first method—the method of moments—was found to be very useful in studying the general
nature of the statistical estimation problem as well as yielding an analytical solution that could be com-
pared with Monte Carlo simulation results. Furthermore, when the detector resolution is better than
30 percent so that the truncation of the detector response function is negligible, the method of moments
provides an estimator of ¢, without requiring specific knowledge of the detector resolution p but only that
it is better than 30 percent. This does not imply p is insignificant when it is <30 percent, but only that the
correction terms previously discussed can be ignored and thus explicit knowledge is not needed of the
value of p to estimate ;. In fact, the standard deviation of the estimator increases as p increases as one
would expect and results from the fact that whatever phappens to be, its impact is communicated to the
estimate of «, through the variance of the detector mean response Y which is a function of p as indicated

in egs. (26)—(28).

Another interesting result is that when the resolution is <30 percent, it is not necessary to know the
explicit functional form of the detector model, but only that it is symmetric. Unfortunately, most detector
response functions are worse than 30-percent resolution and may be asymmetric as well.

The method of ML estimation clearly stands out as the method of choice for estimating @, in terms
of minimum variance and consistency (asymptotically unbiased), as well as asymptotic normality which
allows for probabilistic statements, such as confidence intervals for the unknown spectral parameter. These
results as a function of detector resolution are shown in figure 6.
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Maximum Likelihood and Method of Moments
Estimator of Spectral Prameter o,
(Simple Power Law) Versus Detector Resolution
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Figure 6. Comparison between method of moments and maximum
likelihood as a function of detector resolution.

When compared to the standard deviation of the method of moments estimator, the ratio varies
from 1.47 for the zero-percent resolution detector to 1.33 for the 50-percent resolution detector, which is
roughly equivalent to giving away half of the detector’s collecting power by choosing the inferior method
of moments estimation technique.

Also shown was that the standard deviation of the estimate for both estimation procedures is
inversely proportional to the square root of the sample size, so that halving the collecting power increases
the standard deviation by a factor of «/5 . This holds true for the standard deviation of ML estimate as long
as it attains the Cramer-Rao lower bound, which it does when the number of GCR events exceeds =1,200.

~ Another important result is the relationship between the collecting power and the energy resolution
of the detector. A measure of the detector’s ability to estimate the spectral parameter ¢, is its standard
deviation and as seen in figures 6 and 7, the dominant component of the standard deviation of o4y is
attributable directly to the large fluctuations in GCR incident energies, being driven by the large variance
and other higher moments of the simple power law distribution. This large component can only be reduced
by increasing the number of events N that is controlled by the collection power of the dectector. A compari-
son of the standard deviation of oy for the generic detector discussed in this TP and when its collecting
power is halved is given in figure 7. Table 2 provides the numerical results used to construct many of the

figures in this section.
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Geometry Factor Comparison: Half as Many Events
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Figure 7. Comparing the effect of collecting power on the standard
deviation of the maximum likelihood estimate of the

spectral index o;.

Table 2. Numerical values used to construct figures 6 and 7.

Detector Resolution

E=20 TeV, £,=5,500 TeV, c11=2.8, Nayerage=52,000

gvents. 5,000 mission averages for simulation results. 0% 20% 40% 50%
1. Method of moments (theory) 0.0115 0.0116 0.0128 0.0136
2. Method of moments (simulation) 0.0114 0.0117 0.0125 0.0133
3. Maximum likelihood (Cramer-Rao lower bound) 0.00786 Analytical solution not available
4, Maximum likelihood (simulation) 0.0078 0.0083 0.0092 0.0100
5. Mean detector response (GeV) (theory) 130.66 130.66 131.58 138.85
6. Mean detector response (GeV) (simulation) 130.66 130.64 130.64 138.81
7. Standard deviation (theory) 192.07 197.61 213.69 239.77
8. Standard deviation (simulation) 191.47 196.86 213.33 238.82
9. Coefficient of variation Vy (detector, %) 147 151 162 173

(=20 TeV, £»=5,500 TeV, 01,=2.8, Nyyerape=26,000

gvents. 5,000 mission averages for simuFation results.

10. Maximum likelihood 0.0110 0.0118 0.0132 0.0144

11. Ratio of line 4 to line 10, compare to sqrt(2) 1.41 1.42 1.43 1.44




3. BROKEN POWER LAW

This energy spectrum suggests a transition from spectral index o, below the knee location energy
E. to a steeper spectral index ¢, > a; above the knee. The broken power law predicts that the number of
k per sp 1 p p
protons detected above an energy E is given by:l

[ B —oy+1 -5 +1
NA(O(1 1)[55—] (i) for E2E, »
N E={ ‘(%2 Dk Eq : 32)

| NoG E)=[NoG Ex) - N\ (> E; )] for E<Ej

where F is in units TeV, N, and E 4 are 160 and 500 TeV as before, and currently available measurements
suggest that ¢, is =2.8, o, is thought to be somewhere between 3.1 and 3.3, and E is parameterized in the
range 100-300 TeV for this research. Ny(>E) is the number of protons detected above an energy E as
defined in eq. (1); and as in the simple power law section, these simulation studies assume the number of
events for a given mission follow the Poisson probability distribution with mean determined by eq. (32).

Writing Ny(>F) in eq. (32) as

-0+l -0+l ’
No(>E)=N, (ﬂ] (i) (33)
E, E;

and constructing the cdf as in eq. (2), then differentiating, gives the pdf of the broken power law over
energy range [E,E,] as

EY™
A(E—J for El <E< Ek
& (E ;0,00 ,E1) = k o, s (34)
A(-E-) for E SESE,
L Lk
where the normalizing coefficient A is given by
(g — Dl =1 : (35)

A= A(Of],az,Ek) =

E l—al E l—az
E |ay—op +(ay =D =L —(ay - D[ =2
k l:al (045 (a2 )( Ek ) ( 1 )( Ek J }
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Note that ¢, has “slope” /o, below/above the knee location £y and is continuous at E, as
required, and the single normalizing coefficient A in both mathematical terms of ¢, in eq. (34) provides a
succinct mathematical form, making calculation of the log-likelihood function in the ML search algorithm
computationally more efficient than other equivalent mathematical representations of ¢,. The mean, vari-
ance, and other important moments of the broken power law distribution can be obtained from the general
form of <E™> given as

£,
<E™>= [ E"¢(E)dE
E,
m+l-a m+l-o;
=AE,1"+1 _ 1— £ _ - E (36)
m+1—al E/( m+l—-a2 E/\'

which necessarily has dimension (TeV)” since A has dimension (TeV)~!. A random sample of GCR proton
event energies are obtained from the broken power law spectrum over the range [E pEs]as B = CDl‘l(u,-),
where u; is a random number from a standard uniform distibution and <I>l"' represents the inverse function
of the broken power law cdf ®@,.

Figure 8 shows N,(>E) with a histogram (the ragged curve in fig. 8) constructed from simulated
events from the broken power law. Ny(>E) is included in figure 8 for comparison with N,(>F) and clearly
shows the transition from ¢, to o, at the knee E;, with the plots cropped at 1,000 TeV to better illustrate
this so-called knee region. Parameters used in this example are 0,=2.8, ,=3.3, E;=100 TeV, E=20TeV,
and E,=5,500 TeV.

Note that at the knee, the difference between Ny(>100 TeV) and N (>100 TeV) is 626 events and
reduces to 412 events when ¢, drops to 3.1. Another important observation is the significant reduction in
the standard deviation of the incident energy when compared to the simple power law, which suggests that
detector resolution will play a somewhat larger role in the overall contribution to the estimator’s standard
deviation than it did in the case of a simple power law. The mean U, standard deviation 0, and coefficient
of variation V=0p/lt are given in table 3 for selected parameters for comparison.
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Figure 8. Comparison of N|(>E) with Ny(>E). A histogram of

simulated events from the broken power law are also
included.

Table 3. Means, standard deviations, and coefficient of variation (mathematically
the same as resolution) for the simple power law and broken power law.

Energy Range Mean Standard Coefficient

20-5,500 TeV Spectral Parameters (TeV) Deviation (TeV) of Variation (%)
Simple power law oy=2.8 44.50 741 166
Broken power law | oy=2.8, 01p=3.1, Ex=100TeV | 41.83 54.17 129
Broken power law 04=2.8, 0,=3.3, E,=100 TeV | 40.67 45.54 101
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3.1 Estimation of the Spectral Parameters @, o, and E;

As suggested in the simple power law study in section 2, the ML procedure offers a superior
approach for estimating the spectral parameters in terms of their known favorable statistical properties.
Thus, concentration will be on obtaining the ML estimates of the three spectral indices of the broken power
law distribution. For notational convenience, the vector 8=(¢;, 05, E;) consisting of the three broken
power law spectral indices is introduced.

The ML estimation procedure will be illustrated for a single mission by first estimating @ directly
from the incident energies E, (equivalent to the so-called ideal detector having zero energy resolution), and
then from their simulated detector responses Y; using the same detector response function described in the
simple power law section and for the case where ¢ =2.8, oy =3.3, E;=100 TeV, E;=20 TeV, and E5»=5,500
TeV. The results from many other parametric scenarios of interest will also be presented.

3.1.1 Method of Maximum Likelihood for the Ideal Detector

The likelihood function of a random sample of size N from the broken power law, regarded as a
function of the unknown vector of parameters 8=(q, 0, E;) is

- =0
E. E:
L©)=A®"| T] E’— I1 -E—J JESELE[<E) , (37)
E<k k) \E2E K

where the first product is over the energies below the knee energy () and the second product is over those
energies above E,, and they total in number to N, and A(8) is the coefficient given in eq. (35). The Nelder-
Mead downhill simplex method is used to find the ML solution 8y, that minimizes the objective function
(minus the log-likelihood) defined as

. E;
0(0)=-L(0)=-Nlog A(6)+ Z log[—g} + 0y Z ]og[—j-] . 38)

Ei<Ek k EJZEA E]\

For the sample mission under consideration, the number of simulated events is N=51,259 and isa
random number generated from a Poisson distribution with mean N 1(>20 TeV)=51 ,576 (recall Ny=52,200
for the simple power law). Note that 2,165 of these events are above the assumed knee location at 100 TeV.
Also, the mean of these simulated incident energies is 40.28 TeV and standard deviation 40.79 TeV and can
be compared with the bottom row of table 3.

To obtain a reasonable starting point for the search procedure, it is first assumed that ¢ will be
largely influenced by those energies (E;) thought to be well below the knee energy (Ey), even though the
true value of E, is unknown. For example, if all energies below 70 TeV (of which 49,094 are below 70 TeV,
or 96 percent), with the assumption that a simple power law will dominate the statistical description of
these event energies, then the ML estimate of ¢, is 2.81 using eq. (30). Next, keeping o, fixed at 2.81
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and using the full set of simulated event energies, the other two parameters are fit using a two-dimensional
simplex search for (a,,E,), which yields y=3.317 and E;=95.44 TeV. The two-dimensional simplex search
is illustrated in figure 9 and three things should be noted: (1) The knee energy (E;) has been scaled by a
factor of 0.1 so that it is fairly close in magnitude to the other two spectral parameters, (2) the simplex can
leave the initial simplex region (but in this example, it returned), and (3) the simplex moves only one

vertex per iteration.

Simplex Search for o, and £,
14 -

13 | [Initial Simplex

(Bold)
12} \

3 11}
S 10}
w
g -
g Covergence Point
7 1 I . J
2.9 3.1 3.3 35 37

&

Figure 9. Two-dimensional simplex search for (a,,E})-

Next, 0 =(2.810,3.317,95.44) is defined and used to construct the initial simplex for the three-
dimensional search for 8y, , where this simplex consists of the vertices of a tetrahedron centered at 6, ;.
with edge lengths in each coordinate axis taken to be 20 percent of each component of 0, ,;ia1- FOr the two-
and three-dimensional searches, slightly different termination criteria are used and the relative difference
in magnitudes of the three spectral parameters are considered. The search halts when (1) the maximum of
the greatest relative distance of each of the three spectral parameters is each smaller than €, and (2) the
maximum change in the objective function over each of the four vertices is <g&,, so the simplex essentially
shrinks to a very small, nonmoving tetrahedron at 8,y Setting the €’s to the values discussed in the simple
power law section, 8y, =(2.801, 3.324, 94.95) is obtained. At this ML solution, note 2,434 of the 51,259
simulated GCR energies are above the estimated knee location at 94.95 TeV, whereas only 2,1 65 are above

the “true” location at 100 TeV.

Also note that the two-stage approach for constructing a suitable initial simplex for the three-
dimensional search produced in this example values of 8;;;,; that are quite close to 8y , which of course
is very desirable. However, in subsequent studies where the true knee location (E}) is set to higher values
such as 300 TeV, it was necessary to introduce a more sophisticated search because of the situation of
multiple minima arising from the erosion of the asymptotic properties of the likelihood function as the
number of events above the knee diminished.
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Figure 10 shows a stereoscopic pair of the initial simplex tetrahedron and the first few steps, where
only one vertex is moved per iteration. &, ¢, and E; are along the xy- axis. The dot in the center is the
tetrahedron at termination, and 8, is obtained from the coordinates of the last step upon halting. Dimen-
sions have been scaled according to the termination criteria and also to facilitate viewing.

z y

Figure 10. Stereoscopic view of the first few movements of the
Nelder-Mead downhill simplex search (cross-eyed stereo).

As a check on the found solution, a coordinate frame is centered at 8y and then the objective
function evaluated along each axis by an amount of £10 percent of each value to measure the behavior of
0(0) in the vicinity of 8yy; The results are depicted in figure 11 and show that 0(0) is indeed a minimum
at By . Note that variation in ¢ produces the greatest variation in the objective function, as one would
expect, since it is a coefficient of 48,825 (95.2 percent) of the event energies below the estimated knee
location at 94.95 TeV.

Objective Function Around the Maximum Likelihood Solution
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Figure 11. Objective function in the vicinity of the maximum likelihood solution 6y .



3.2 Estimation of the Spectral Indices With a “Real” Detector

For each simulated GCR event energy E; from the broken power law spectrum, there is an associ-
ated simulated detector response Y, according to the detector response function defined in eq. (19). The pdf
of the detector response in the presence of the broken power law spectrum is thus given by

£,

qi(ie.00.E) = [ sWEp) (E on.00.E)dE,  y>0, (39)
E

where the integral limits [E | ,E,] must be splitas [E|.E}] and [E,.E,] in the numerical integration. Figure 12
depicts this pdf for several different values of the detector energy resolution (p).

Broken Power Law, o,=2.8, 0=3.3, E,=100 TeV
E;=20 TeV, £,=5,500 TeV
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Figure 12. Detector response probability density function for resolutions
10, 20, 40, and 50 percent.

Detector responses Y; for a detector with constant resolution p=0.40 are simulated and all other
detector response function parameters are defined in the simple power law case, using the same set of
51,259 incident energies E; from the broken power law spectrum considered in the zero-resolution case.
The mean is calculated as 120.37 GeV and the standard deviation 123.99 GeV. Figure 13 compares prob-
ability curves (greater than) on a log-log scale for the detector response distributions in the presence of the
broken power law ¢, and the simple power law ¢,. A log-log scale helps illustrate the difference between
detector response distributions to the two different GCR energy spectra ¢y and ¢;. A frequency histogram
of the simulated detector responses to a broken power law is also provided in figure 13 (lower curves),
although it is virtually indistinguishable from the theoretical function.
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Detector Response Probability Distribution A(Y>y) to Broken
Power Law ¢, and Simple Power Law ¢
=28, ,=3.3, £;=100 TeV, £,=20 TeV, £,=5,500 TeV
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Figure 13. Detector response distributions Pr(¥>y) in the presence of
a simple power law and and broken power law. Histogram
of simulated responses to broken power law is also
included.

The simplex procedure is used to obtain the ML estimates By for the three spectral indices that
minimize the objective function (minus the log-likelihood):

N E,
0®)=- Log| | ¢(yi1E:p)61(E;0)dE | . “0)
=1 E

Selection of a starting point for the three-dimensional search follows along similar lines to the zero-
resolution energy case, but here only the detector responses Y; are used. Again, assume the estimate of o
will be largely influenced by those detector responses Y; thought to be below the detector’s mean response
to some GCR event believed to be below the knee E; e.g., a 70-TeV event. Thus, a simple power law is fit
to those detector responses below 196.76 GeV (mean response to a 70 TeV GCR proton and accounts for
89 percent of all the detector responses in this simulated set), with the assumption that a simple power law
will dominate the statistical description of these events. It is important to note that the present goal is to
obtain a reasonable starting value of ¢;. Even though some detector responses to incident energies below
E, will end up above the detector mean response to £y and visa versa, the set of response energies below
the mean detector response to a 70-TeV event given by u(70 TeV)=196.76 GeV should be well represented
by a simple power law. Thus, the conditional pdf go(y,e; | y< 196.76 GeV) is used and its associated
objective function minimized in terms of ¢, to obtain 2.8. In practical terms, the front end of the detector
response pdf g, is approximated with the detector response pdf g associated with a simple power law.
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Figure 14 shows the fitted detector response distribution 1-G, (Y 1 ¥< 196.76 GeV) with the detec-
tor response histogram in the presence of the broken power law. Their difference is provided since the two
curves are visually on top of each other.
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Figure 14. Approximating the front end of G| with G
(cumulative detector response distribution to
simple power law).

Holding «; fixed at 2.8 and using the full set of detector responses, a two-dimensional search for
(0, E,) yields 0y=3.32 and E;=96.8 TeV. Figure 15 shows the fitted distribution making the transition
along the two parts of the broken power law distribution joined at the knee E;, and tracks the histogram of
simulated detector responses. A simple power law response distribution given by Pr(Y>y)=1-G(y) is pro-
vided for comparison. As before, a tetrahedron about 8, ;. = (2.80, 3.32, 96.8) provides the initial simplex
and then a three-dimensional search using all the detector responses yields 8y =(2.81, 3.38, 102.9).

To check the ML solution, a coordinate frame is centered at 0,4 and the objective function evalu-
ated along each axis by an amount of £10 percent of each value to measure the behavior of 0(0) in the
vicinity of 8y . The results are depicted in figure 16 and indicate that the objective function is indeed a
minimum at 8 . A slightly more rigorous check was also performed in which the objective function was

~ evaluated at each point of a random cloud consisting of 1,000 points surrounding 8y, and for which
O(By; ) was observed to be the smallest.
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4. RESULTS

Methods for obtaining the ML estimates of the three spectral parameters of the broken power law
distribution from simulated detector responses have been developed, thereby enabling us to study various
calorimeter design parameters and their impacts on the statistical properties of these ML estimates. The
following studies are of particular interest and are included: (1) Statistical properties of the ML estimates
and variation of the knee location and spectral break size, (2) data analysis range, (3) energy-dependent
resolution, (4) non-Gaussian detector response functions, (5) collecting power versus energy resolution,
and (6) 1mplxcat10ns of detector re%ponse model uncertainties.

4.1 Statistical Propertles of the Maximum leehhood Estimates
and Variation of the Knee Location and Spectral Break Size

In this section, the statistical behavior of the ML estimates of the three spectral parameters based on

simulating many missions is explored. Figure 17 shows relative frequency histograms of these estimates
based on 1,000 simulated missions in which the spectral parameters were set to @;=2.8, &;,=3.3, and £,=100
TeV for the data analysis range 20-5,500 TeV and a detector having a Gaussian response function with
40-percent constant energy resolution. Note that the histograms are roughly Gaussian in shape but with a
slight skewness to the right, exhibited for «, and E; but not .

Relative Frequency Histogram of £,
. . 1,000 Missions, Broken Power Law With o,;=2.8,
Relative Frequency Histogram of oy and a, 0,=3.3, £,=100 TeV, and Incident Energy 20-5,500 TeV
1,000 Missions, Broken Power Law With 0,=2.8,

a,=3.3, E,=100 TeV, and Incident Energy 205,500 TeV Detector Resolution 40%

) 0.035
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Figure 17. Relative frequency histograms vof the maximum likelihood estimates of the spectral
parameters @, ¢, and E; of the broken power law energy spectrum.
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These observations lead to a more general investigation of the asymptotic behavior of ML esti-
mates. Table 4 provides a summary of these findings. The first column lists the Gaussian response function
resolution (zero and 40 percent) for the studies presented in table 4, and the second column gives the
average number of events above E =20 TeV used in each simulated mission, along with the average num-
ber of events above the knee location E; given in parentheses for values of £;=100, 200, and 300 TeV. For
example, the entry 51,576 (2,255) appearing in the first row indicates there are 51,576 events on average
above 20 TeV for the baseline detector of which 2,255 of them would be above the knee location, E;=100
TeV. The next three columns give the mean of each spectral parameter based on the simulation results,
followed by the last three columns that give their respective standard deviations. The rows labeled as
“Theoretical Limits” provide the input parameters for these simulation studies along with the Cramer-Rao
bound which is the bound below which the variance of an estimator cannot fall> and is thus very important
when comparing different estimation techniques.

First, note in table 4 that as the true knee location (E,) is set at 100, 200, and 300 TeV in the
simulations, an ever-increasing amount of bias is observed in the mean estimate of &, and E; due to the
erosion of consistency (asymptotically unbiased) and is a direct consequence of the diminishing number of
events above the knee, whereas the ML estimate of &, continues to enjoy this favorable statistical property.

The Cramer-Rao lower bound is provided for comparison with the standard deviations of the ML
estimates obtained from the simulations. Note that while this theoretical minimum variance bound is nearly
attained when the true knee location (£}) is 100 TeV and the number of events above E, is over 2,000, the
ability to achieve this lower bound gradually declines as the true knee location E; increases to 200 Te'V, and
then even more so when E,=300 TeV. The gradual growth in bias and inability to achieve the Cramer-Rao
lower bound, coupled with a growing skewness in the frequency histograms of the estimates for o, and E;
that indicate the asymptotic normality property is slipping away too, are symptoms of the increasing diffi-
culty in estimating the spectral parameters when the true knee location (E) is too high for this baseline
detector. Furthermore, an investigation of the behavior of the objective function defined in eqs. (38) and
(40) shows the emergence of multiple minima at these higher values of E; and is a condition that is
observed to worsen with increasing E|.
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Table 4. Asymptotic behavior of the maximum likelihood estimates for E;= 100, 200, 300
TeV, collecting power 1X (baseline) and 5X, with a special 6.4X detector only for
the E,=300 TeV case.

Detector E,(TeV) Mean Standard Deviation
Resolution | N¢(>20 TeV) : :
(%) (N1(>Ex)) 04 o ! E 04 o, | &
0 100 280 330 100 0012 0.049 66 1X Theoretical Limit
51,576 (unbiased, Cramer-Rao LB)
0 (2,255) 2.80 331 101 0.012 0.053 7.6 | Simulation (3,000 missions)
40 2.80 331 102 0.020 0.076 14.0 | Simulation (3,000 missions)
0 100 280 330 100 0.0052 0.022 3.0 5X Theoretical Limit
257,880 (unbiased, Cramer-Rao LB)
] (11,275} 280 330 100 0.0052 0.022 32 Simulation (3,000 missions)
40 2.80 330 101 0.0088 0.033 6.2 | Simulation (3,000 missions)
0 200 280 3.30 200 0.0094 0.092 234 1X Theoretical Limit
52,022 {unbiased, Cramer-Rao LB)
0 (647) 2.80 332 202 0.0096 0.11 303 | Simulation (2,000 missions)
40 2.80 333 205 0.013 016 47.7 | Simulation (2,000 missions)
0 200 2.80 330 200 0.0042 0.041 105 5X Theoretical Limit
260,110 (unbiased, Cramer-Rao LB)
0 (3,235) 2.80 3.30 200 0.0042 0.043 11.8 | Simulation (2,000 missions)
40 280 331 201 0.0059 0.063 20.3 | Simulation (2,000 missions)
0 300 2.80 330 300 0.0088 0.13 50.0 1X Theoretical Limit
52,116 (unbiased, Cramer-Rao LB)
0 (312) 2.80 334 310 0.0087 0.18 71.0 Simulation (3,000 missions)
Simulation (3,000 missions)
40 Further Study
Required
0 300 2.80 330 300 0.0039 0.060 22.3 5X Theoretical Limit
260,580 {unbiased, Cramer-Rao LB)
0 (1,560) 280 3.31 302 0.0040 0.067 26.3 | Simulation (3,000 missions)
40 2.80 331 304 0.0053 0.092 39.8 | Simulation (3,000 missions)
0 300 2.80 3.30 300 0.0035 0.053 19.7 6.4X Theoretical Limit
333,542 {unbiased, Cramer-Rao LB)
0 {2,000) 2.80 3.30 300 0.0036 0.056 22.4 | Simulation (1,500 missions)
40 2.80 331 301 0.0046 0.078 35.3 | Simulation (1,500 missions)
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As noted in table 4, the case where E,=300 TeV and the detector’s energy resolution is 40 percent
resulted in several errant estimates of @, and E,, which is perhaps an indication that a simple power law
would provide an adequate explanation of these particular simulated “missions.” However, as indicated in
table 4, these favorable statistical properties are largely restored when the collecting power is increased by
a factor of 5 and reinforces the importance of collecting power. Furthermore, no errant estimates were
observed. Figure 18 shows the effect of collecting power on the histograms of the estimate of the knee
location when E;=200 TeV and compares the baseline (outer curve) with a 2X (middle) and 5X (inner)
detector.

Frequency Histogram of ML Estimate of Knee Location E,
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Figure 18. Effect of collecting power on histogram of knee location estimates.

It should be noted that the Cramer-Rao bound was derived for the ideal detector having zero energy
resolution and shows those values of the knee location E, where one begins to see an erosion of the asymp-
totic properties of ML estimates and the difficulties encountered with the multiple minima of the objective
function. Attempts to derive the Cramer-Rao bound for a “real” detector having a nonzero resolution and
involve the convolution integral in eq. (39) were found to be mathematically intractable. However, they
can readily be numerically constructed using record-order difference equations.

Also of interest is the correlation between the ML estimates of the three spectral parameters, a
direct consequence of the mathematical definition of the broken power law in which the knee £, acts as a
“hinge,” connecting the lower part of the distribution controlled by &, with the upper part controlled by a,.
Thus, one can easily visualize a correlation between ; and E and &, and E, while ¢, and o, appear to be
only slightly correlated according to the simulation results.
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For example, when o,=2.8, y=3.2, E;=125 TeV, E,=20 TeV, E,=5,500 TeV, and the detector
resolution is zero, the correlation matrix given in table 5 is based on 25,000 simulated missions. When the
detector resolution is 40 percent and a Gaussian response function used, the correlation was seen to be
slightly greater among the estimates of the three spectral parameters.

Table 5. Correlation matrix based on 25,000 simulated missions.

Correlation Matrix

o4 o Ey

o | 100 | 008 | 042
op | 0.08 100 | 072

E | 042 | o072 1.00

4.1.1 Spectral Break Size of 0.3

The case where @, is set to 3.1 in the simulations and the so-called spectral break size is reduced to
0.3 when ¢, remains fixed at 2.8 is of particular interest. Figure 19 shows relative frequency hlstograms of

three estimates (o o, E; )ML based on 1,000 simulated missions in which the GCR events were simulated
from the broken power spectrum with ;=2.8, &,=3.1, and E;=100 TeV over the range 20-5,500 TeV for
which the average number of events above 20 TeV is 51, 800 and of which 2,500 are above the assumed knee
location at 100 TeV. The detector is assumed to have a constant 40-percent energy resolution with a Gaussian
response function.

Relative Frequency Histogram of o, and o, Relative Frequency Histogram of E,
1,000 Missions, Broken Power Law With o,=2.8, 1,000 Missions, Broken Power Law With =28,
o,=3.1, £,=100 TeV, and Incident Energy 20-5,500 TeV a,=3.1, £,=100 TeV, and Incident Energy 20-5,500 TeV
Detector Resolution 40% Detector Resolution 40%
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Figure 19. Relative frequency histograms of the maximum likelihood estimates of the three
spectral parameters o, o,, E; of the broken power law energy spectrum.
Detector response function is Gaussian having 40-percent constant energy
resolution.
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Also note that the mean and standard deviation of the incident GCR energies are pp=42 TeV and
0;=54 TeV, respectively, for this simulation scenario. Comparing to the case where 0,=3.3 and the other
parameters the same shows an average of 51,600 events above 20 TeV of which 2,250 are above the
assumed knee location at 100 TeV and with pz=41 TeV and 0g=46 TeV. Thus, the standard deviation is
considerably larger for the a,=3.1 case but also has =10 percent more events above the knee E;.

Figures 20a and 20b compare standard deviations of the ML estimate of ¢ and a,, respectively, for
the oy=3.1 with a,=3.3 case as a function of detector energy resolution. A somewhat surprising result is
observed in figure 20b where the standard deviation of the ¢, estimate actually decreases when the spectral
break size decreases from 0.5 to 0.3 and is attributable to the 10-percent increase in events above the knee,
despite the increase in GCR incident energy variance (0, increases as the break size decreases, and hence
so does the standard deviation of the detector responses oy which would tend to increase the standard
deviation of the estimate of o). Thus, as seen in figure 20b, the increase in events above the knee slightly
outweighs the increase in variance associated with the decrease in spectral break size. Note in figure 20c
the standard deviation of the E, estimate almost doubles when the spectral break size decreases from 0.5 to

0.3, a more intuitive result.

Standard Deviation of Spectral Parameter o,
When ,=3.1and 3.3
Energy Range 20-5,500 TeV
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Figure 20a. Standard deviation of the maximum likelihood
estimate of ¢; for the 0p=3.1 and ,=3.3 case
as a function of detector (assumed Gaussian)
resolution.
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Figure 20b. Standard deviation of the maximum likelihood
estimate of o, for the oy=3.1 and ®,=3.3 case
as a function of detector (assumed Gaussian)
resolution.
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Figure 20c. Standard deviation of the maximum likelihood
estimate of E; for the @,=3.1 and a,=3.3 case
as a function of detector (assumed Gaussian)
resolution.
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Last, the asymptotic properties and correlation among the estimates is explored by simulating 100,000
missions from the broken power distribution with @;=2.8, 0,=3.1, and E;=100 TeV over the range of
20-5,500 TeV. This is accomplished using a detector having twice the collecting power of the baseline
detector and thus providing 103,600 events on average above 20 TeV, of which =5,000 are above the
assumed knee location at 100 TeV. The ideal or zero-resolution detector is also used for comparison with
the Cramer-Rao bound which has only been derived for zero-resolution detectors. Table 6 gives the means,
standard deviations, and Cramer-Rao bound for this scenario and table 7 gives the correlation matrix based
on these 100,000 simulated missions.

Table 6. Means, standard deviations,
and Cramer-Rao bounds.

Standard Cramer-Rao
Mean Deviation Bound
oy 2.80 0.0084 0.0083
Oy 3.10 0.032 0.031
Ey 100.5 TeV 8.6 Tev 7.6 TeV

Table 7. Correlation matrix.

o o E
@ | 1.00 0.06 0.47
o | 006 1.00 0.68
E, 0.47 0.68 1.00

4.2 Data Analysis Range Study

The energy range [E | ,E,] from which GCR proton events are simulated has a significant impact on
the statistical properties of the ML estimates. While increasing E, beyond 5,500 TeV has no noticeable
effect since events of energy exceeding 5,500 TeV are very unlikely, lowering E| does have a significant
impact on the standard deviation of the estimates of ¢, and E;. By lowering £/, many more events repre-
sentative of that part of the broken power law below the knee and controlled by o will be detected, along
with the extension of the estimation range or “moment arm” for ¢, the combination thereby providing
greater precision in the estimation of ¢;. Furthermore, as ¢, is estimated with greater precision, E; can be
measured with somewhat greater precision too since reducing the variation in @, removes additional varia-
tion in the “hinge” E,. Hence, lowering the data analysis range results in a reduction in uncertainty of o
and E, and thus reduces the total uncertainty so that very slight gains in variance reduction in the estimate
of a, is also realized. These results are depicted in figures 21a-21c¢ for ¢}, o, and E;, when E,=30, 20, 15,
and 10 TeV and for which there were on average 24,500, 51,500, 87,000, and 181,000 events, respectively,
with =2,250 above the knee for each. Other parameters are o;;=2.8, 0,=3.3, E;=100 TeV, E»=5,500 TeV,
and the response function is assumed Gaussian.
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Figure 21a. Effects of lowering E, on the standard deviation of the estimate of ¢;.
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Figure 21b. Effects of lowering E| on the standard deviation of the estimate of E.
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Figure 21c. Effects of lowering E, on the standard deviation of the estimate of ¢,.

4.3 Energy-Dependent Resolution Study

The situation in which the detector response function is assumed to be Gaussian but the detector
energy resolution varies with incident GCR event energy is of particular interest to designers of cosmic-ray
detectors. In previous studies presented so far in this TP, the detector response function is assumed to be
Gaussian with a linear mean response (energy deposit) of the form (a + bE) and with constant detector
energy resolution p so that the parameter ¢ in the Gaussian response function is defined as o(E)=p(a + bE).
Two cases of interest are (1) energy resolution is “getting better” from 40-percent resolution at =20 TeV
to 30 percent at E,=5,500 TeV and (2) “getting worse™ from 30-percent resolution at £,=20 TeV to
40 percent at E,=5,500 TeV. These two cases are modeled by assuming that o(E) is a linear function of
incident GCR energy of the form (¢ + dE) and then the coefficients ¢ and d are determined by matching the
conditions for each of the two cases. Doing so yields the energy-dependent resolution curves depicted in
figure 22.

Table 8 shows the results based on 100 simulated missions using the same incident GCR energies
for both cases and the mean estimates shown are essentially unbiased, with standard deviations having
expected comparisons; e.g., standard deviations slightly larger for the “getting worse” case. The constant
40-percent case is included for comparison.
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Nonconstant Resolution Curves
for Energies Between 20-5,500 TeV
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Figure 22. Energy-dependent resolution curves.
Table 8. Nonconstant energy resolution results.
Mean and Standard Deviation of the Estimates Based on 100 Missions
Resolution
Nonconstant Nonconstant
Constant 40% (Getting Betler) (Getting Worse)
Spectral Standard Standard Standard
Parameter Mean Deviation Mean Deviation | Mean Deviation
04 2.80 0.02 2.794 0.018 2.794 0.018
[+7) 3.33 0072 3.309 0.067 3.312 0.073
E 1007 14.4 99.63 12.6 99.93 135

4.4 Non-Gaussian Detector Response Functions

The simulation studies presented so far have assumed a Gaussian detector response function. While
reference S suggests that a Gaussian function is reasonable, there is concern that perhaps the response
function is skewed slightly to the right and that this “tail” will contribute to greater difficulties in estimat-
ing the broken power law spectral parameters. The gamma response function, capable of describing a wide
variety of shapes with right-hand skewness (outer curve from the right in fig. 23) and the broken-Gaussian

‘consisting of two blended normal distributions (middle curve from right) suggested by reference 8 for its
closeness to the Gaussian response function but with the tail region, as desired, were introduced to address
this concern. Both were used as detector response functions in 1,000 simulated missions using the baseline
detector collecting power and simulating GCR events from the broken power law with parameters &;=2.8,
,=3.3, E;=100 TeV, from the range 20-5,500 TeV. The results are shown in table 9. Note that the gamma
response function produces a slight bias in the estimate of the knee location that was removed in a subse-
quent run with the collecting power doubled. Also note that the standard deviation of the estimate of a,
increases by =13 percent for both response models relative to the Gaussian response function having
40-percent resolution. It should also be noted that while the gamma response function has a constant
energy resolution of 40 percent, the broken Gaussian has a 41-percent resolution because of the added
skewness while keeping the rest of the distribution matching the Gaussian.
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Figure 23. Gamma, broken Gaussian, and Gaussian response functions.

Table 9. Gaussian, broken Gaussian, and gamma response function study.

Mean and Standard Deviation of Maximum Likelihood Estimates of Spectral Parameters (1,000 Missions)
o o Ey,
Response Model Standard Standard Standard
(40% Resolution) Mean Deviation Mean Deviation Mean Deviation
Gaussian 2.80 0.020 3.31 0.072 100.7 144
Broken Gaussian 2.80 0.021 3.31 0.082 100.8 14.9
Gamma 2.80 0.023 3.31 0.082 102.3 16.1

4.5 Collecting Power Versus Resolution Study

Cosmic-ray instrument developers must often make trade studies in design parameters as a func-
tion of the science objectives, which is very important for space-based detectors where physical param-
eters, such as dimension and weight, impose rigorous practical limits to the design envelope. Particularly
important is the comparison between detector energy resolution and collecting power (combination of
detector size and observing time) two parameters often played against each other in the design phase of a
new detector program. As seen in the simple power law section, the ability to measure the spectral param-
eter &), measured in terms of the standard deviation as its estimator, depends rather weakly on resolution
and strongly on collecting power as is evidenced in figure 7. Also observed was that the standard deviation
is inversely proportional to the square root of the number of events, so that halving or doubling the collect-
ing power scales the standard deviation by a factor of J2 for the ML estimate when the number of events
exceeds around 2,000. As noted in table 3, the variance of the broken power law distribution (and its higher
moments too, although not shown in table 3) is somewhat smaller than the variance of the simple power
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law, implying the detector’s energy resolution will play a somewhat stronger role in the estimation of the
three spectral parameters. Figures 24a-24c illustrate the relationship between collecting power and detec-
tor energy resolution by showing the impact on the standard deviation of the three spectral parameters
when the collecting power of the baseline detector is halved and then doubled. In this study, GCR events
were simulated from the broken power law with parameters ¢¢;=2.8, 0,=3.3, E;=100 TeV, from the energy
range 20-5,500 TeV, and the baseline number of events is 51,600 above 20 TeV of which 2,250 are above
the assumed knee at 100 TeV. In approximate terms, note that doubling the collecting power compares with
about a 20-percent trade in resolution for ¢; and E; but also note that a 40-percent resolution detector is
better than a zero-resolution detector of half its size relative for the event-starved o, parameter.

Standard Deviation of Spectral Parameter o,
for 0.5X, 1X, 2X Collecting Power
Energy Range 20-5,500 TeV
- 0.5X (N=25,800)

~@- X (N=51,600)
—/\- 2X (N=103,200)

0.05

0.04

0.03

0.02

Standard Deviation of o,

0.01

Resolution (%)

Figure 24a. Relationship between collecting power and energy
resolution measured in terms of the standard deviation

of the maximum likelihood estimate of o;.
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Standard Deviation of Spectral Parameter o,
for 0.5X, 1X, 2X Collecting Power
Energy Range 20-5,500 TeV

- 05X (V=25,800)

-@- X (V=51,600)
~/\- 2X (N=103,200)

Standard Deviation of o,

Resolution (%)

Figure 24b. Relationship between collecting power and energy
resolution measured in terms of the standard
deviation of the maximum likelihood estimate of .

Standard Deviation of Spectral Parameter E,
for 0.5X, 1X, 2X Coliecting Power
Energy Range 20-5,500 TeV

— 05X (N=25,800)
—— 1X (N=51,600)
———- 2X (N=103,200)

n
w
1

Standard Deviation of £ (TeV)

Resolution (%)

Figure 24c. Relationship between collecting power and energy
resolution measured in terms of the standard deviation
of the maximum likelihood estimate of E;.



It is important to note that the relationships illustrated in figures 24a-24c are independent of the
energy range as similar comparisons were observed when E/;was lowered to 15 TeV and to 10 Te V. Raising
E, has no effect since the number of events above E,=5,500 TeV is negligible for detectors with this
collecting power.

Because the Cramer-Rao lower bound always scales by 4/~ for each of the three spectral param-
eters and, as noted in table 4, the asymptotic properties (including attainment of the Cramer-Rao bound) of
the ML estimates of @, and E are nearly met whenever the number of events above the knee exceeds
2,500, which is about the situation for the baseline detector collecting power when E;=100 TeV, it can be
seen that doubling the collecting power means the standard deviation of the &, and E estimators scales by
JZ, but halving results in a factor of around 1.5 instead of 1.41, as attainment of the Cramer-Rao bound is
slipping away faster for the smaller detector. Obviously, as E; increases to 200 and 300 TeV as in table 4,
the number of events above the knee diminishes too so that the bound is not attained, so scaling will not go
by the ¥~ until the collecting power is such that the number of events above E, is =2,500 or more. This
latter result is the rationale for selecting the hypothetical 5X detector in table 4 so that the number of events
above E;=200 is 3,235. Of course since the number of events representative of «; is always quite large and
is on the order of 50,000 or greater when the lower limit of the data analysis range is 20 TeV or less for the
baseline detector, scaling by v~ will hold for the standard deviation of the ML estimate of «;.

4.6 Implications of Detector Response Model Uncertainties

Maximum likelihood estimation of cosmic-ray spectral parameters as presented in this TP requires
the complete specificity of all detector response model parameters. The reality of actually knowing these
parameters with little or no surrounding uncertainty depends largely on designers being able to calibrate
the detector at different incident energies at a particle accelerator facility. However, because space-based
detectors will be exposed to GCR events having energy much greater than those energies available at
accelerator facilities, it becomes essential to gain an understanding of the detector’s response function
using Monte Carlo simulations of the detector’s response (energy deposit) to those energies that cannot be
attained at accelerator facilities. These simulations, coupled with a favorable comparison between simula-
tion results and accelerator results at energies available in a test facility, will provide a better understanding
of the detector response function.

By way of example, the impacts on spectral parameter estimation when certain detector response
function parameters are incorrectly known are investigated next. This state of ignorance will manifest
itself as a bias in the mean or point estimate of the spectral parameters. This situation is modeled by
simulating detector responses according to one set of detector response function parameters and then using
a different set of parameters in the detector response function g in eq. (40) of the ML estimation procedure.

Since detector resolution is an important design parameter, the case is first considered where the
detector has a constant energy resolution; however, a different resolution value was used in an assumed
state of misunderstanding in eq. (40). For example, suppose the real detector resolution 1s a constant
35 percent, but in the simplex search the resolution parameter (p) is set to different constant values in
eq. (40) corresponding to resolutions ranging from 31 to 39 percent. This situation is modeled by simulat-
ing the detector responses Y; as
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Y;=(a+bE)1+035Z) (41)

according to eq. (18) and for GCR event energy E; from an assumed broken power law with parameters
o,=2.8, 0,=3.3, and E;=100 TeV, from the energy range 20-5,500 TeV and for an assumed Gaussian
response model having 35-percent energy resolution. Z; is a Gaussian random number having zero mean
and unit variance, along with the nonnegativity constaint ¥; >0. Next, in the ML procedure, p is set to the
different values in eq. (40) to obtain the ML estimates of the three spectral parameters. Table 10 at the end
of this section shows the mean for each of ML spectral parameter estimates based on 100 simulated mis-
sions, each where p is set to 0.31,0.32, ..., 0.39 in eq. (40).

Table 10. Implications of detector response model uncertainties.

Assumed
Resolution o9 o2 E, (TeV)
Constant resolution versus 31% 2.76 3.29 96.6
assumed constant 35% 32% 276 3.29 96.8
33% 277 3.30 97.4
34% 279 3.30 98.2
35% 2.80 3.30 994
36% 2.81 3.31 101
37% 2.83 3.31 103
38% 2.84 3.32 106
39% 2.86 332 109
Nonconstant resolution versus Getting worse: 2.88 3.34 145
assumed constant 35% 30% to 40% over
20-5,500 TeV
Getting better: 2.65 3.25 67
40% to 30% over
20-5,500 TeV
Gaussian versus assumed Method 1 298 3.38 171
Broken Gaussian
Broken Gaussian versus Method 1 253 3.21 67
assumed Gaussian
Broken Gaussian versus Method 2 2.85 3.32 115
assumed Gaussian

Note that the mean estimates exhibit a bias as a result of using incorrect values of p in eq. (40). Also
see in table 10 that when p=0.35 in eq. (40) and matches the “correct” resolution as used in eq. (41) to
simulate the detector responses, the means of the ML estimates match the assumed spectral parameters
used in the simulation, and thus there is no bias in the estimates. It was also noted that their variances were
essentially unaffected and this example is akin to a misaligned riflescope that results in the rifle shooting
off-axis from the line of sight but the shot group size remains unaffected.
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Next, consider the situation where the real detector resolution is energy dependent, but a constant
resolution of 35 percent is used in eq. (40). For example, if the real detector resolution is “getting better”
over the simulated GCR energy range 20-5,500 TeV as shown in figure 22 but instead a constant p=0.35 is
used in eq. (40) in the simplex search for 8y and 100 simulated missions, very large biases result (given
in table 10). Another case where the real resolution was “getting worse,” depicted in figure 22, was when
a constant of 35-percent resolution was again used in eq. (40), resulting in the other large biases given in
table 10. Based on these studies, one concludes that the real key is to understand what the true energy-
resolution relationship is and not so much a matter that it has a particular mathematical form. However, as
these studies indicate, designs having a constant resolution are more forgiving as long as the error amount
IS a constant.

Another important study regards the so-called tails of the response function. The response func-
tions depicted in figure 23 were used to address this concern. The results from these simulations are pre-
sented in table 9 and indicate that while a “smaller tail” is desirable, having a larger tail is not as bad as
perhaps feared. Of particular interest is the situation in which the real detector response function is Gaussian
but in a state of ignorance, the broken Gaussian function is inserted as the detector response function g in
eq. (40) in the ML search for 8. Based on 1,000 mission averages, a large bias in the mean estimates of the
spectral parameters is noted in table 10. In the case where the real detector response function is the broken
Gaussian function, the Gaussian function was incorrectly used in eq. (40) and is also included in table 10,
and again large biases are seen. These two cases are labeled as method 1 and will be compared to a revised
technique labeled method 2. ‘

It should be noted that in method 1, as well as in all simulation studies presented so far in this TP,
GCR events are simulated from an energy range E| to E,, where typically £,=5,500 TeV and E is a value
between 10 and 25 TeV. The choice of E, is based on the collecting power of the detector and is chosen
such that there will only be a negligible number of events above E,. The selection of E| is largely dictated
by the practical number of events that can be handled in the simulation and for a thousand or more mis-
sions. Setting E| to =20 TeV proved to be a good working value since 50,000 events on average are
generated for the baseline-sized detector that are representative of ¢, and hence provides a robust estimate
of ¢ for the unconstrained multistage approach of estimating the three spectral parameters; i.e., first
fitting ¢, then keeping o fixed at this value and fitting o, and E, followed by the three-dimensional
search for (&, a,, E)py on the full set of energy deposits. The adequacy of this working value of £,=20
TeV is further reinforced by noting in figure 2 Ic that the critical parameter o, is essentially independent of
lowering E| below 20 TeV when the knee location is 100 TeV or greater.

Next, for each of these simulated GCR events, a detector response is simulated according to the
assumed detector response function and then the full set of simulated responses are used to estimate the
spectral parameters. However, because no energies below E, are simulated, frequency histograms of the
simulated detector responses, which resemble the appropriate detector pdf shown in figure 12, do not
match the front-end portion of a real cosmic-ray energy spectrum which does look like those depicted in
figure 8. This difference or mismatch is an artifact of not generating events from below E, that would have
otherwise had the effect of filling in this front-end portion of the histogram and consequently resembling a
real cosmic-ray energy spectrum.

45



This difference is not critical when making relative comparisons of the effects of design parameters
or energy spectrum parameters when detector response function parameters used to generated the simu-
lated responses match those detector response function parameters used in eq. (40) in the simplex search
for @y ;s i.e., implies a perfect understanding of the response function. However, when the impacts of
response function uncertainties are studied, it is more important that the simulation techniques produce
results that are closer to a real cosmic-ray energy response spectrum. To illustrate this point, suppose E| is
set to 5 TeV in the simulation and the baseline detector collecting power is used, along with a broken power
law energy spectrum with parameters &,=2.8, @,=3.3, and E;=100 TeV, and E,=5,500 TeV so that there
will be around 634,000 events above 5 TeV. Next, if detector responses assuming a Gaussian response
function with a constant 40-percent energy resolution are simulated, then there will be 477,400 responses
on average <50 GeV, whereas there will be 459,400 responses <50 GeV if the broken-Gaussian response
function depicted in figure 23 is used, or a difference of 18,000 events. This region of energy deposits <50
GeV results in that portion of the histograms that are of the greatest mismatch between the Gaussian and
broken-Gaussian detector response histograms and is an artifact of not having any events <5 TeV in the
simulation, and it is also the same region that does not match a real cosmic-ray response spectrum. Thus, it
is this large mismatch that is driving the large biases seen in table 10 for ¢¢; and £ when responses accord-
ing to one of these response functions are simulated and then the other response function is used in eq. (40)
of the simplex search for 0y, to study the impact of incorrectly understanding the “tail” of the detector
response function.

The goal of method 2 is to make the histogram of the simulated detector responses match a real
cosmic-ray energy spectrum when studying the effects of incorrectly known detector response function
parameters so that a better estimate of their impact on the spectral parameter estimates is gained. This is
achieved by placing a cut y,. in the simulated detector responses and then dropping all responses <y,.. In the
simulation, the choice of y, dictates the value of E| because E| must be chosen so that the probability of
events having energy <E, but producing detector responses >y,. is negligible, which obviously depends on
the detector’s energy resolution. For example, if y =60 GeV and a Gaussian response function having a 40-
percent  energy resolution and a mean response (a + bE) is considered, as used for the baseline detector
and defined in eq. (18), then E, can be any value <7 TeV, since only a negligible number of events from
below 7 TeV will deposit more than 60 GeV. Selecting E =5 TeV provides =634,000 GCR events and
setting y, =60 GeV and dropping all simulated detector responses smaller than y,. produces a simulated
response spectrum that does indeed look like a real response spectrum. Estimating the spectral parameters
using only the simulated detector responses that are >y, as described here and for the case where the real
detector response function is the broken Gaussian but a Gaussian function is inserted in eq. (40) in the
simplex search for 8y;; which results in the much more modest and intuitive biases shown as method 2 in
the last row of table 10. Varying the cut y, between 60 and 100 GeV produced similar results for all three
spectral parameters, while lowering y, below 55 GeV resulted in the more severe bias obtained using
method 1 and associated with the large front-end mismatch of the histograms.

A very important practical benefit realized by introducing the cut y,. is that the lower limit of inte-
gration in eq. (40) can be any value E; <E |, which means that the ML procedure can be made independent
of the range of integration, as long as E; is chosen wisely. Thus, the ML estimation procedure herein
developed can now be applied to real cosmic-ray detector response data. It should be mentioned that cuts
on the high end are not required, since any value E,2E, is suitable because the probability of events >E,

46



are essentially zero. However, setting £,; unnecessarily high would result in many unnecessary calcula-
tions in the numerical integration of eq. (40).

Introducing the cut y,. requires a modification to the objective function in eq. (40) to handle the
conditional detector response distribution. Thus, the objective function for method 2 becomes

N .
O(ay, 000, Ey ) =—log L=— " loglg;(y; 1y} > ye;00.02. Ep)] (42)
J=1
where
Ey
Jo 8O 1E:p) 91 (E 01,00, E()dE A
iy ly;>yei0,00.E) = L Yo » YjiZ Ve - (43)
I- J g1y 501,00, E)dy
0

From a simulation point of view, E,=5 TeV is about the lowest value that was used because of the
vast number of generated events and the requirement to handle thousands of simulated missions which are
needed to make meaningful inferences. Consequently, cuts much less than 60 GeV are generally not fea-
sible in simulations designed to study detector response function uncertainties. However, cuts in real
cosmic-ray data can be taken to be much lower since the spectrum is already filled in from events having
energies much less than 5 TeV.
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5. CONCLUSIONS

Methods for estimating cosmic-ray spectral parameters from simulated detector responses with
implications for detector design are presented in this TP. The method of ML estimation is seen to be the
method of choice for estimating the single spectral parameter o, of a simple power law spectrum in terms
of minimum variance and other important statistical properties and was thus selected as the estimation
procedure for the broken power law spectrum. Again, the ML estimates attained these favorable statistical
properties when the true knee location was around 100 TeV, but then these properties gradually slipped
away for knee locations of 200 TeV and greater. The case of a spectral break size of 0.3 was also investi-
gated and the results compared with the 0.5 break-size case in figures 20a—20c. A data analysis range study
was conducted and showed that significant improvements in the precision in estimating the slope o) below
the knee and the location E, (but to a lesser degree) can be realized by lowering the lower limit of the
simulation range E, but had essentially no impact on the estimation of the slope parameter ¢, above the
knee.

The effects of detector energy resolution, collecting power, as well as various functional forms for
the detector response function and energy-dependent resolution functions have also been studied and these
results presented in this TP. While the energy resolution observed plays a somewhat stronger role in the
estimation of the spectral parameters of a broken power law energy spectrum relative to a simple power
law, the ability to estimate these spectral parameters, measured in terms of their standard deviations, still
depends rather weakly on resolution and strongly on collecting power.

While increasing the size of the right-hand tail of the detector response function did indeed cause a
slight rise in the standard deviation of the estimates of the three spectral parameters (greatest for o), the
ML estimation procedure yielded estimates that, from a practical point of view, are unbiased. Similar
results were gleaned from the studies using energy-dependent resolution functions. The implications of
detector response model uncertainties were also investigated and the magnitude of such induced biases for
various uncertainties presented. Cuts in the detector response data were introduced to simulate a more
realistic cosmic-ray response spectrum and thereby provide a better description of the induced biases in the
spectral parameter estimates when detector parameters are incorrectly known. Introduction of these cuts
yielded the additional benefit of freeing the integral used in the ML procedure of requiring unique integra-
tion limits, thereby making this ML estimation procedure applicable to real cosmic-ray data.
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APPENDIX A—SALIENT RESULTS AND THEIR APPLICATION
TO DESIGN OF SPACE-BASED COSMIC-RAY DETECTORS

A number of the salient results from this research and their application to the design of space-
based cosmic ray deterctors are presented in appendix A.
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2-D Histogram of Standardized (o, E, )y, and (@, ,E, ). . Zero Resolution

3]

Events from ¢, with o, =2.8, 0, =3.2,E, =125 TeV over the range

1
2 E 3

o 2

2855

- 3 O —

N =323
BN o 2= <
> \ (a7 i Bia o)

W LI 5 : :
S P A : : :
3 S Su i SRR
4 VAL : :

S oL
< = L
| : :

5\ L

© ~ ¥ o
| bl g o Co
7 & < o Do
@\ =4 8 o Lo
—t 3 . . . . N

< . . : : :
AN 5 o oo

§ Lo Lo :
S BLOo b
o 2 Lo Do :

. b o N . M N H .
o 2 . H ! i ) N
~ H Sl - :

H o E o
8 £ Do : :
=} s Co : E
— k] P :
ig g & Lo :

. g - —

[3) o s : .

o - x ; :

< w w 5 : Ty
z. [ i
) < SNRNERETRAL S ;
(._)4 ~T ® 3T & 2 © © o~
= d fousnbusy wAgemy

2
5
“— :

. = NN O
> —HIA DL
= c 0 O N
e o 5|le.e~
Tl ® © O~ O
\Y B ol :

o T L |9 o o

s Bie.e.

A\ O - O O
% — N Y3 D
= 8 3 W R
< = <+ N o e
~ S o] g Qs ged g b :
S888838883 <
%]
>

g
)
g
w
2

35

2.9

28

27

Slope Value



2-D Histogramof Standardized(c.,, E, )y, and (o, E, ). .ZeroResolution

Events frorfy witha, =2.8,a, =3.1,E, =100TeV over the range
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Gamma

Detector Response Surface

Energy Range 20 — 100 TeV, 40%-resolution

75 Detector Response (GeV)

Gamma Detector Response Surface

Incident Energy (TeV)
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