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ABSTRACT 
A scale-invariant model of statistical mechanics is applied to present invariant forms of 

mass, energy, linear, and angular momentum conservation equations in reactive fields. The 
resulting conservation equations at molecular-dynamic scale are solved by the method of large 
activation energy asymptotics to describe the hydro-thermo-diffusive structure of laminar 
premixed flames. The predicted temperature and velocity profiles are in agreement with the 
observations. Also, with realistic physico-chemical properties and chemical-kinetic parameters 
for a single-step overall com bustion of stoichiometric methane-air premixed flame, the laminar 
flame propagation velocity of 42.1 cm/s is calculated in agreement with the experimental value. 

1. INTRODUCTION 
The universality of turbulent phenomena from stochastic quantum fields to classical 

hydrodynamic fields resulted in recent introduction of a scale-invariant model of 
statistical mechanics and its application to the field of thermodynamics [4]. The 
implications of the model to the study of transport phenomena and invariant forms of 
conservation equations have also been addressed [5J. In the present study, the invariant 
forms of the conservation equations are described and the results are employed to 
introduce a modified hydro-thermo-diffusive theory of laminar premixed flames. 

2- A SCALE-INVARIANT MODEL OF STATISTICAL MECHANICS 
Following the classical methods [I-31, the invariant definitions of the density pp and 

the velocity of atom 9, element vg, and system wg at the scale fl are given as [4] 

The scale-invariant model of statistical mechanics for equilibrium fields of. . . eddy-, 
cluster-, molecular-, atomic-dynamics . . . at the scale f3 = e, c, m, a, and the 
corresponding non-equilibrium laminar flow fields are schematically shown in Fig. 1. 
Each statistical field, described by a distribution functionfp(u$ = fp(rp up tB) &@dug. 
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defines a "system" that is composed of an ensemble of "elements", each element is 
composed of an ensemble of small particles viewed as point-mass "atoms". The 
element (system) of the smaller scale (p) becomes the atom (element) of the larger 
scale @+I). The three length scales associated with the atom, the element, and the 
system at any scale are (lg = hg-l, hg, Lg = Ag+l) where hg = <128>112 is mean-free- 
path of the atoms [5J. 

HYDRODYNAMIC 
SYSTEM ELEMENT EDDIES 

We = Vh 
. . . . . .  ve = Uh (J + 3/21 

FLUID 

(J + 1) 

wc= v, 
vc = u, (J + 1/21 

EDDY CLUSTER MOLECULES Uc = v, LCD 

ECD 
wm= v, 

urn= va LMD 

(J-  1) 
EMD CLUSTER MOLECULE ATOMS 

U,= V, LAD 

Fig.1 Hierarchy of statistical fields for equilibrium eddy-, cluster-, and 
molecular-dynamic scales and the associated laminar flow fields. 

The invariant definitions of the peculiar and the diffusion velocities have been 
introduced as [4] 

such that 

The above definitions are applied to introduce the invariant definitions of equilibrium 
and non-equilibrium thermodynamic translational temperature and pressure as [4] 



and 

3 kT g = m F ~ ' 2 p  , PB = n P F ~ " p l 3  

leading to the corresponding invariant ideal "gas" laws [4] 

P@V = N&Tp and PeV = N&Tp (2.6) 

3. SCALE-INVARIANT FORM OF THE CONSERVATION EQUATIONS FOR 
CHEMICALLY REACTIVE FIELDS 

Following the classical methods 11-31, the scale-invariant forms of mass, thermal 
energy, linear and angular momentum conservation equations [5] at scale are given as 

where cp = pghg, pg = PBVB, and ng = pBw are the volurne~ic density of thermal energy , 
linear and angular momentum of the field, respectively and = Vxvg is the vorticity. 
Also, Qp is the chemical reaction rate, and hg is the absolute enthalpy [S]. 

The local velocity v in (3.1)-(3.4) is expressed as the sum of convective wg = <vg> 
and diffusive velocities [ ! ] 

where (VBn,>,,, Vpg, VBbs) are respectively the diffusive, the thermo-diffusive, the 
linear hydro- fusive, and the angular hy dro-diffusive velocities. For unity Schmidt and 
Prandtl numbers Scg = Prg = vglDg = vglap = 1, one may express 



that involve the thermal VPt, the linear (translational) hydrodynamic Vp, and the angular 
(rotational) hydrodynamic Vp diffusion velocities defined as [5] 

Since for an ideal gas hB = cpBT8, when cpg is constant and T = TP Eq.(3.6a) reduces to 
the Fourier law of heat conduction 

where xg and a = x$(pPc,B) a are the thermal conductivity and diffusivity. Similarly, 
(3.6b) may be i entified as the shear stress associated with diffusional flux of linear 
momentum and expressed by the generalized Newton law of viscosity [q 

Tj = pPgvjgVijjgh = - pp V V ~  = - pp dvjb/dxi (3.8) 

Finally, ( 3 . 6 ~ )  may be identified as the shear stress induced by diffusional flux of angular 
momentum (torsional stress) and expressed as 

; .-'W 

Substitutions from (3.5a)-(3.5d) into (3.1)-(3.4), neglecting cross-diffusion terms 
and assuming constant transport coefficients with Scg = Pr, = 1, result in 

The above forms of the conservation equations perhaps help to better reveal the 
coupling between the gravitational versus the inertial contributions to total energy and 



/ momentum densities of the field. Except for possible externally imposed sources, Ep, pg 
and ng have no internal sources as reflected in (3.2)-(3.4). However, in the presence of 
chemical reactions the loss of gravitational mass could result in the production of inertial 
thermal energy, or linear and angular momenta. For example, the first and the second 
parts of (3.1 1) respectively correspond to the gravitational and the thermal 
contributions to the total energy density of the field. For instance, the loss of 
aravitational mass induced by chemical reaction in the body of a person results in the b 

generation of thermal energy (heat) in this persons body. Similarly, the first and the 
second parts of (3.12) respectively correspond to the gravitational and the inertial 
contributions to the total linear momentum density of the field. Now, one considers a 
stationary person with no initial linear momentum that suddenly starts to run, thus 
producing substantial linear momentum without the action of any external forces. In 
this case, there is no violation of the conservation of momentum, but rather because of 
chemical reactions in the body of such a person, the first part of (3.12) changes thus 
leading to a compensating change in the second part. Finally, the first and the second 
parts of (3.13) respectively correspond to the gravitational and the inertial 
contributions to the total angular momentum density of the field. For example. (3.13) 
may be used to describe the change of angular velocity of a ballet dancer. Here, the 
loss of mass by chemical reactions in the body of a spinning dancer that pulls the arms 
inwards, thus doing work against centrifugal forces, leads to an increase in the dancer's 
angular momentum. Because of the large value of the velocity of light c in E = mc2, the 
actual loss of gravitational mass in the above examples will be exceedingly small. 

Substitutions from (3.10) into (311)-(3.13 result in scale-invariant forms of 
conservation equations [q 

~ P B  - + WP. Vpg - D ~ v ~ ~ ~  = S2g 
at 

- + w p . v w g  -vgv20g = - og. vwg - ogi2glpg 
at 

Equation (3.17) is the modified form of the Helmhoitz vorticity equation for chemically 
reactive flow fields. The last two terms of (3.17) respectively correspond to vorticity 
generation by vortex-stretching and chemical reactions. Also, equation (3.16) is the 
scale-invariant equation of motion in reactive fields [5] that includes the reaction term 
(-vgQg/pP) representing generation Qg < 0 (annihilation P g  > 0) of linear momentum 



accompanied by release (absorption) of thermal energy associated with exothermic 
(endothermic) chemical reactions. It is known that as flames propagate, they convert 
stationary reactants to moving combustion products because of thermal expansion. 
Another important feature of the modified equation of motion (3.16) is that it involves a 
convective velocity wg that is different from the local fluid velocity vg. Consequently, 
when the convective velocity vanishes wg = 0, equation (3.16) reduces to the diffusion 
equation similar to mass and heat conservation equations (3.14)-(3.15). Because the 
convective velocity wg is not locally-defined it cannot occur in differential form within 
the conservation equations [5]. This is because one cannot differentiate a function that 
is not locally, i.e. differentially, defined. To determine wg, one needs to go to the next 
higher scale (p+ 1) where wg = vg+l becomes a local velocity. However, at this new 
scale one encounters yet another convective velocity wg+l which is not known, 
requiring consideration of the higher scale (f3+2). This unending chain constitutes the 
closure problem of the statistical theory of turbulence discussed earlier [a. 

By summation of (3.1)-(3.4) over (P) one can arrive at the conservation equations 
at the next higher scale of (gel). By such procedure, one can move from rnolecular- 
dynamic to cluster-dynamic scale or from cluster-dynamic to eddy-dynamic scale 
within the cascade of embedded statistical fields (Fig. 1). The summation of Eq(3.1) is 
simple since 

and 

For Eq.(3.3), the summation of the first term is identical to that shown in (3.19) 

To treat the summation of the second term of (3.3), one starts with the relation based on 
(2.1)-(2.2) 

Multiplying (3.21) by (Yg+i ppg) and summing over (f3) and (b+ 1) leads to 



where Yp is mass fraction and use was made of the relation vg+l= wg+l+ Vg+l from 
(2.2) in the last step. The summation of the energy (3.2) and vorticity (3.4) equations 
follow procedures similar to those used above in (3.21)-(3.22). 

4. CONNECTION BETWEEN THE MODIFIED FORM OF EQUATION OF 
MOTION AND THE NAVIER-STOKES EQUATION 

The original form of the Navier-Stokes equation with constant coefficients is given 
as [I, 21 

when the coefficient of bulk viscosity is considered to be negligible [6]. Since 
thermodynamic pressure P, is an isotropic scalar, P in (4.1) is not PI. Rather, the 
pressure P is generally identified as the mechanical pressure that is defined in terms of 
the total stress tensor Ti, = - Pt 6ij + Tij as [6] 

The normal viscous stress is given by (3.8) as (1/3) t i i  = (1/3) pviVii = - (1/3) ~ V . V  and 
since VPt r 0 because of isotropic nature of Pt, the gradient of (4.2) becomes 

Substituting from (4.3) in (4. I), the Navier-Stokes equation assumes the form 

that is almost identical to the modified equation of motion (3.16) with Qg = 0 except that 
in the latter the convective velocity wp is different from the local velocity vg. However, 
because (4.4) includes a diffusion term and the velocities wg and vg are related by vg = 
wg + Vg, it is clear that (4.4) should in fact be written as (3.16). 

An example of exact solution of the modified equation of motion (3.16) was recently 
introduced [-/1 for the classical Blasius problem [2] of laminar flow over a flat plate. For 
this steady problem Eq.(3.16) in the boundary layer, with wty = 0 and Q = 0, reduces to 



/ where w', is the constant free-stream velocity outside of the boundary layer and (a', y ') 
are the coordinates along and nonnal to the wall, respectively. The local velocity vtx 
varies from vfX = 0 at the wall y' = 0 to vtX s w6 at the edge of the boundary layer at all 
axial positions. Therefore, the convective velocity wtX = <vtX>, i.e. the mean value of the 
local velocity vfx inside the boundary layer, will have the constant value of wtX = w'd2. 
Substituting for this convective velocity in (4.5) one obtains [7] 

in terms of the similarity variable q = yt1(2x'O.5), where vx = v', iw',. The solution of 
(4.6)-(4.7) is the predicted velocity profile vx = erf q that is in excellent agreement with 
the experimental observations of Nikuradze (21. 

The solution of (3.16) for the classical problem of Hagen-Poiseuille flow [2] in 
circular tubes has also been investigated [A. It was found that the geometry of the 
predicted velocity profile involving Bessel function was quite similar to the classical 
parabolic profile and hence in agreement with the experimental observations. Finally, 
the exact soIution of the modifled Helmholtz vorticity equation (3.17) was recently 
reported [a] for the steady problem of non-reactive flow within a stationary liquid droplet 
that is located at the stagnation-point between two axisymmetric counter-flowing 
gaseous streams. It was found that such a spherical flow could be expressed by the 
stream function [a] 

representing two rings vortices, rather than a single spherical Hill vortex for the 
classical problem of a droplet in a uniform stream [6], that are located above and below 
the stagnation plane. Therefore, the preliminary investigations discussed above show 
that the modified equation of motion (3.16) does indeed lead to realistic solutions in 
agreement with experimental observations for these classical problems for which exact 
solutions of the Nuvier-Stokes equation are available. 

5. MODIFIED HYDRO-THERMO-DIFFUSIVE THEORY OF LAMINAR 
FLAMES 

Theory of laminar flames is the most fundamental problem of combustion science 
and subject of many classical (9-181 as well as more recent [3, 19-24] studies. For one- 
dimensional propagation of a planar flame one introduces the dimensionless parameters 



The adiabatic flame temperature Tb, the Zeldovich number p, and the coefficient of 
thermal expansion x are 

and one assumes that #3 >21. Also, Q, E, and R are heat release per mole of fuel, 
activation energy, and universal gas constant. Prandtl, Schmidt, and Lewis numbers 
are assumed to be unity v = a = D, such that outside of reaction zone where A = 0, the 
0, y, and v fields will be similar under identical boundary conditions. Equations (3.14)- 
(3.16) for molecular-dynamic scale with the dimensionless coordinate, time, and 
velocity defined as x = x ' l ( a / ~ ' ~ ) ,  t = t ' / ( a / ~ ~ 2 ~ ) ,  and v = vf/v6 become 

where v', is the flame propagation speed. 

5.1 Far-Field Convective Coordinate 
For laminar flames propagating in quiescent reactive fields, there is no forced 

convection w = 0, and (5.3)-(5.5) reduce to non-homogeneous diffusion equations with 
nonlinear sources. Because of thermal expansions in the flame, the stationary cold 
reactants are converted to moving hot combustion products resulting in a velocity jump 
across the flame sheet as schematically shown in Fig.2a. When viewed from the 
perspective of the physical or far-field coordinate x', the flame appears as a 
mathematical surface of discontinuity without any spatio-temporal structures. 

Fig.2a A propagating laminar flame Fig.2b A stationary laminar flame 
viewed from far-field coordinate x'. viewed from far-field coordinate z'. 
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Outside of the thin flame zone chemical reactions will be frozen A = 0, and the govemi~ig 
equations (5.3)-(5.5) become 

TO an observer in the coordinate x' only the mean velocity w'f = - v', - v1d2 will be 
detectable and this velocity will be without any spatial structure. If one introduces a 
coordinate system that moves with the flame z' = x' - w'f t', one obtains from (5.6) 

and the flame becomes stationary with velocity jump (-v ', , -v ', -v Ib) across the flame 
front (zl= o+, z'= 0 -) as shown in Fig.2b . However, the hydro-thermo-diffusive structure 
of the flame will be hidden from this observer in the far-field coordinate 2'. 

5.2 Outer Convective-Diffusive Coordinate 
In terms of the convective-diffusive stretched coordinate x = x'/lT, where 1 ~ i s  the 

flame thermal thickness IT= aJv6, the hydro-thermo-diffusive structure of the flame 
becomes visible as shown in Fig.3a. However, the convective-diffusive coordinate is 
being applied to the colder regions outside of the thin reaction zone such that chemical 
reactions remain frozen A = 0 because fi >>I. With linear approximation, the values of 
velocities (v, w, V) within the flame structure at the locations x = (- 1/2,0, 1/2) will be 
v = ( - vb, - vd2,0), w = (- 3vd4, - vd2, - vd4), and V = (- vd4,0, vd4) as shown in 
Fig.Sa, when vb= v'dv',. Hence, the flame hydrodynamic structure involves a variable 
convective velocity w, and the relation v = w + V is satisfied, while the sign of V as well 
as that of curvature of the velocity profile change across x = 0. 

x = -  00 x =  w 

v = o  

PRODUCTS 
REACT ANTS 

v = -  Vb v'o 

PRODUCTS I REACTANTS 

v  = -1 
v = -1 - vb ( 1  + erft)/2 

Fig.3a Hydrodynamic structure of a Fig.3b Hydrodynamic structure of a 
propagating laminar flame viewed stationary laminar flame viewed from 
from thermo-diffusive coordinate x. thermo-diffusive coordinate z. 



The velocity of the burned gas vtb will be related to the laminar flame propagation 
velocity v6 by the mass conservation across the flame pov 6 = pb (V ', + vtb) that is valid to 
a very high degree of accuracy. It is important to emphasize however that mass is not 
strictly conserved across flame fronts and in fact an exceedingly small amount of 
gravitational mass (rest energy) of the reactants will be converted to other forms of 
energy (inertial energy) such as thermal energy of products of combustion and photons 
as discussed in sec. 3. 

For the steady problem, the convective-diffusive coordinate that moves with the 
flame is z = x - w t where w = w'/vl,, z = zt/lT, and t = t'/(lT/vt0). One notes however 
that in terms of the stretched coordinate z, the velocity w = - 1 + vb (z - 1)/2 is no 
longer constant but has spatial structure as shown in Figs.3a-3b. One further notes that 
the average value of w at the flame center z = 0 is wf = - 1 - vd2 that is exactly the 
mean flame speed as seen by the far-field coordinate z' discussed in sec.5.l above. 
Furthermore, for an observer that moves with the flame front, this velocity profile 
w = <v> = - 1 + v b  (Z - 1)/2 remains invariant such that Eq.(5.7) becomes 

Introducing the new variable m< = 1 - vb(z - 1)/2 into (5.8)-(5.10) gives 

with the solutions 

According to (5.14), the steady flame structure is given by a traveling error function 
schematically shown in Fig.4b. This result, while being in harmony, is fundamentally 
different from that discussed in an earlier study [25], and perhaps provides a clearer 
description of the steady flame structure. The predicted geometry of the temperature 
profile involving error function (5.14) is in close agreement with the experimental 
observations [26-281. In addition, the predicted profiles are consistent with the 
measured temperahlre profiles of counterflow premixed flames [29] in the limit of 
vanishing rates of stretch. On the other hand, the temperature profile within the flame 
structure according to the classical theories of laminar flame is given by an exponential 
function as schematically shown in Fig.4b. More experimental measurements of 
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temperature profiles in unsteady propagating laminar flames are needed in order to 
further test the validity of the r n m i e d  versus the classical theory. The slope of the 
temperature profile of the outer convective-diffusive zone at the position of the reaction 
zone ti (Fig.4)  is obtained from (5.14) as 

that will be matched with the solution within the reaction zone to be described next. 

REACTION ZONE 
STRUCTURE 

8 = (l+erf 012 
PRODUCTS PREHEAT 

ZONE REACTANTS 

REACTION ZONE 
STRUCTURE 

0 = 1  

8 = ec 
PRODUCTS 

t = o  
FigAa Flame structure according to FigAb Flame structure according to 
the modified theory of laminar flame. the classical theories of laminar flame. 

5.3 Inner Reactive-Diffusive Coordinate 
The analysis of the thin reaction zone follows the classical methods [3, 19-24] and 

involves the stretched coordinate 

along with the temperature and concentration expansions 

8 = 1 + Ol/P + ... and y=0+Y1/P+  ... (5.17) 

that are introduced into Eqs.(5.3)-(5.4) to obtain, to the first order in E = llf3 << 1 
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J From the coupling of Eqs.(5.18)-(5.19) and the boundary conditions at 5 -. r m, one 
obtains 01 + Y = 0 such that Eq(5.19) becomes 

that may also be expressed as 

The first integral of the above equation, and matching of the slopes of the temperature 
profiles on either side of the reaction zone with the outer solutions in Eq.(5.15) results in 

12 2 - p/x exp (- 25:) = [8n ~ ~ W ~ B a / ( p v b v  o fi )I e (5.22) 

that relates the reaction zone position & and hence the ignition temperature Oi, to the 
flame propagation velocity v',. The parameter B in (5.1) is related to the actual 
preexponential factor B' in the law of mass action [3] under Arrhenius kinetics by 

Also, the mass balance across the flame front p,vl, = pb(vt,+ v'b) leads to 

By substitution from (5.23)-(5.24) into (5.22), one obtains the analytic expression 

for calculation of laminar flame propagation velocity. 
For single-step overall combustion of stoichiometric premixed methane-air flame at 

the flame temperature of 2100 K the relevant physico-chemical properties are v~ = 1, 
po = 1.38 kg/m3, Wo = 32, a = 6x 10-4 m2/s (thermal diffusivity of air at the flame 
temperature of 2100 K), E = 46 kcaVmole , B' = 4 . 3 3 ~  lo7 m3/kmol-s [30], x = 0.86, 
fi = lo, and the ignition temperature of Bi = 0.99 that by (5.13) gives the reaction zone 
position t = 1.75. Also, from the temperatures of reactants 300 K and combustion 
products 2100 K and the idea. gas law under constant pressure, one obtains the density 
ratio p, /pb = 7. With these realistic values of the physico-chemical properties, the value 
of flame propagation velocity calculated from (5.25) is about vt0 = 42.1 cm/s in close 
agreement with the experimentally observed value [27, 28,31-321. Although this level 
of agreement between the theory and experiments is considered to be encouraging, it 
should be viewed with caution because of the well-known uncertainties in the overall 
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chemical-kinetic parameters (E, B'). The value of about v', = 42 cmls has also been 
I 

obtained in a n u d e r  of numerical investigations using complex multi-step kinetic 
models [33-361. 

6. CONCLUDING REMARKS 
A scale invariant model of statistical mechanics was applied to present invariant 

forms of mass, energy, linear, and angular momentum conservation equations in 
chemically-reactive flow fields. The summation procedures for relating adjacent 
families within the hierarchy of statistical fields was described. Also, the coupling 
between the gravitational versus the inertial contributions to the energy-momentum 
density of the field was discussed. The connection between the modified equation of 
motion and the classical Navier-Stokes equation was established. The exact solution of 
the modified equation of motion for the classical problem of Blasius for laminar flow over 
a flat plate was presented. Also, a modified form of the Helmholtz vorticity equation 
was presented with a source of vorticity due to chemical reactions. The conservation 
equations at the molecular-dynamic scale were then applied to present a modified 
hydro-thermo-diffusive theory of laminar flames. The predicted flame structure was 
found to be in agreement with experimental observations as well as numerical 
calculations. With realistic phy sico-chemical properties for one-step combus tion of 
stoichiometric methane-air premixed flames, the flame propagation velocity of 42.1 c d s  
was calculated in accordance with experimental observations. 
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