Structure-Property Relationship in High T_g Thermosetting Polyimides

Kathy C. Chuang, Mary Ann B. Meador
NASA Glenn Research Center, Cleveland, Ohio 44135

DeNise Hardy-Green
University of Akron, Akron, Ohio 44325

This is a preprint or reprint of a paper intended for presentation at a conference. Because changes may be made before formal publication, this is made available with the understanding that it will not be cited or reproduced without the permission of the author.
OBJECTIVE

1) Replace MDA in PMR-15 with 2,2'-substituted benzidine

2) Evaluate the thermo-oxidative stability and mechanical properties of DMBZ-15 against PMR-15.
Glass Transition Temperatures (Tₐ’s) of Polyimide Resins

<table>
<thead>
<tr>
<th>Resins</th>
<th>Tₐ by TMA, (°C)</th>
<th>Tₐ by TMA, (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Non-postcure</td>
<td>Postcure at 316 °C</td>
</tr>
<tr>
<td>PMR-15</td>
<td>276</td>
<td>350</td>
</tr>
<tr>
<td>DMBZ-15</td>
<td>333</td>
<td>391</td>
</tr>
<tr>
<td>PEBZ-16</td>
<td>341</td>
<td>407</td>
</tr>
<tr>
<td>BFBZ-18</td>
<td>370</td>
<td>360, 404</td>
</tr>
<tr>
<td>PHBZ-18</td>
<td>250</td>
<td>348</td>
</tr>
</tbody>
</table>
X-Ray Crystal Structure of 2,2'-Bis(trifluoro)benzidine (BFBZ)

Dihedral Angle $\varphi = 59^\circ$

X-Ray Crystal Structure of 2,2'-Dimethylbenzidine (DMBZ)

Dihedral Angle $\phi = 75^\circ$
Isothermal Aging of Polyimide Resins at 288 °C (550 °F) under 1 atm of Circulating Air

![Graph showing weight loss vs. hours at 288 °C for different polyimide resins.](image)
Thermoplastic Polyimides

Polyimides with Substituted Benzidine

<table>
<thead>
<tr>
<th>Substituent</th>
<th>Tg</th>
<th>TGA</th>
</tr>
</thead>
<tbody>
<tr>
<td>CF₃</td>
<td>290 °C</td>
<td>600 °C</td>
</tr>
<tr>
<td>CH₃</td>
<td>300 °C</td>
<td>500 °C</td>
</tr>
<tr>
<td>Ph</td>
<td>unclear</td>
<td>600 °C</td>
</tr>
</tbody>
</table>

CP-MAS 13C NMR of DMBZ-15 imidized powder (top) and cross-linked resin (bottom)

Imidized powder

a. Benzophenone carbonyl
b. Nadic imide carbonyl
c. BTDE imide carbonyl
d. DMBZ carbon next to nitrogen
e. Endcap double bond; BTDE next to benzophenone; DMBZ biphenyl link
f. Other aromatics
h. Nadic bridge
i. Other aliphatic nadic peaks
j. DMBZ methyls

Cross-linked resin (changes only)

e. BTDE next to benzophenone; DMBZ biphenyl link
h. Other nadic aliphatics
i. Nadic bridge
Compressive Strength of Polyimide Composites

One hot-wet cycle = 93 °C water soak to >1% weight gain,
Dry out at 288 °C to < 0.1% moisture
Degradation Products of DMBZ-15 by TGA-MS
Gas Evolution Profile of DMBZ-15 Polyimide Resins

- CO$_2$
- Phenyl Isocyanate
- Aromatics
- CO
- Water
- Methane
- Water

Absorbance vs. Wavenumber (cm$^{-1}$)
Conclusion

1) PMR polyimides containing substituted benzidines displayed high T_g's (350 – 407 °C), due to hindered rotation of noncoplanar biphenyldiamines

2) Stability of substituents in BTDA-based PMR polyimides: $\text{CH}_3 > \text{Ph} > \text{CF}_3$, in contrast to thermoplastic polyimides: $\text{CF}_3 \sim \text{Ph} > \text{CH}_3$

3) Phenylethynyl endcap is more stable than nadic endcap

3) DMBZ-15 (BTDE/DMBZ/NE) composites exhibited comparable mechanical properties to PMR-15