A Boundary Condition for Simulation of Flow Over Porous Surfaces

N. Frink, D. Bonhaus, V. Vatsa, S. Bauer
NASA Langley Research Center
Hampton, VA

A. Tinetti
Virginia Polytechnic Institute and State Univ./VCES
Hampton, VA

19th Applied Aerodynamics Conference
June 11-14, 2001/Anaheim, California
A BOUNDARY CONDITION FOR SIMULATION OF FLOW OVER POROUS SURFACES

Neal T. Frink*, Daryl L. Bonhaus‡, Veer N. Vatsa**, Steven X. S. Bauer*
NASA Langley Research Center
Hampton, Virginia 23681

Ana F. Tinetti‡
Virginia Polytechnic Institute and State University / VCES
Hampton, Virginia 23681

ABSTRACT

A new boundary condition is presented for simulating the flow over passively porous surfaces. The model builds on the prior work of R.H. Bush to eliminate the need for constructing grid within an underlying plenum, thereby simplifying the numerical modeling of passively porous flow control systems and reducing computation cost. Code experts for two structured-grid flow solvers, TLNS3D and CFL3D, and one unstructured solver, USM3Dns, collaborated with an experimental porosity expert to develop the model and implement it into their respective codes. Results presented for the three codes on a slender forebody with circumferential porosity and a wing with leading-edge porosity demonstrate a good agreement with experimental data and a remarkable ability to predict the aggregate aerodynamic effects of surface porosity with a simple boundary condition.

INTRODUCTION

Passive Porosity Technology (PassPorT) [1] is an enabling flow alteration concept that can potentially resolve many aerodynamic problems. Its underlying principle is illustrated in the upper sketch of Fig. 1 that depicts a porous skin positioned over a closed cavity/plenum region. Local pressure differences within flow over the outer surface "communicate" through the plenum in concert with small amounts of mass transfer in and out of the porous surface to alter its effective aerodynamic shape. For a properly designed system, the hole size is small with respect to the boundary layer thickness and is less than or equal to the skin thickness, and the flow velocity into and out of the plenum is low. PassPorT was originally applied to transonic airfoils to reduce the normal shock strength and thus, eliminate shock-
induced separation and lower the drag levels [2-7].

More recently the concept was applied to a supersonic delta wing to reduce the crossflow, shock-induced separation [8]. During this study, it was discovered that connecting the plenum to high and low pressure regions on the wing, as conveyed in the middle sketch in Fig. 1, allowed for localized "lift dumping" thus, providing roll and yaw control. Subsequently, many applications were envisioned such as conformal control effectors on military aircraft as illustrated on the lower half of Fig. 1. The potential for broad application of this technology to aerodynamic concepts provided enough incentive to fund the fabrication of a number of porous models.

A family of four Tangent-Ogibe forebodies was built (two, 2.5 Caliber and two, 5.0-Caliber, each slenderness ratio consisted of one solid and one with 22% porosity surface). These models were tested in the NASA LaRC 7- by 10-Foot High Speed Wind Tunnel, 14- by 22-Foot Subsonic Wind Tunnel, and Unitary Plan Wind Tunnel. In addition, the 5.0-Caliber porous model was tested in the McDonnell Douglas Shear Flow Facility. The results from these tests [9,10] showed that passive porous systems could be used to eliminate asymmetric loading conditions that occur at high angles of attack on axisymmetric slender bodies even at zero sideslip angle. This side force is a result of asymmetric pressure loading caused by differences in the location of the separation-induced vortex on either side of the forebody. This phenomenon has been documented extensively [11-14]. Numerous studies have been conducted to develop devices that eliminate or minimize the asymmetric behavior of forebodies [15-18]. These "fixes" typically involve reshaping the nose or adding devices, such as strakes, to the existing geometry that add weight and are beneficial for only a limited range of conditions. In references 9 and 10, a passive porous system was investigated to alleviate the asymmetric loading on the forebody. These tests also showed that pitch and yaw control could be attained by opening or closing the porous surface on one side or the other on the forebodies.

A zero-sweep, porous, GA(W)-1 [General Aviation (Whitcomb) - 1] [19] wing model was built and tested in the NASA LaRC 14- by 22-Foot Subsonic Wind Tunnel. All surfaces on the model were constructed with porosity that could be closed by covering the holes with tape. Through selective opening and closing of porous regions, the locations on the wing that induced the most pitch, yaw, and roll control were identified, as well as, the locations responsible for either increased performance (i.e., increased L/D∞, and angle of attack that L/D∞ occurs) or increased drag. This model was later reskinned and modified to include actuators inside the plenums to open and close the porous surfaces. The results showed that no pressure lag occurred. The recorded forces responded as quickly as the porous surface could be actuated indicating no appreciable lag due to pressure equalization.

With the success achieved in the wind-tunnel tests, a series of research efforts were conducted to develop CFD models to represent a passive porous system. The first studies utilized Darcy's Law [20]. These had limited success and were fairly accurate as long as the coefficient required in the equation was chosen correctly. Later attempts with modified versions of Darcy's Law and utilizing some techniques used by researchers to determine oxygen transport through capillary walls were slightly more successful [21].

The work presented in this paper builds on a methodology first developed by McDonnell Douglas to simulate normal flow through a screen positioned at a zonal-grid interface boundary [22]. The primary contribution of this work is to reformulate that approach into a new boundary condition for simulating the flow over porous aerodynamic surfaces. This eliminates the need for constructing grid within an underlying plenum, thereby simplifying the numerical modeling of passively porous flow control systems and reducing computation cost. Code experts for two structured-grid flow solvers, TLNS3D and CFL3D, and one unstructured solver, USM3DNS, collaborated with an experimental porosity expert to develop the model and implement it into their respective codes. This paper describes the formulation of the new boundary condition and presents an assessment of its effectiveness in simulating the aggregate aerodynamics induced by surface porosity using wind-tunnel results for a 5.0 Caliber Tangent-Ogibe body and GA(W)-1 wing model. This technique was recently utilized in a passive porosity control effector design study [1] on the military aircraft configuration illustrated in Fig. 1.

NOMENCLATURE

- **A**: Area
- **a**: Speed of sound
- **b**: Wing span
- **C_d**: Drag force coefficient
- **CFD**: Computational Fluid Dynamics
- **C_l**: Lift force coefficient
- **C_p**: Pressure coefficient
- **c**: Wing chord
- **c_t**: Magnification parameter
POROUS SURFACE FLOW MODEL

The proposed porous surface flow model builds on the general approach of Bush [22]. The Bush model was derived to pass flow information across a continuous boundary separating an external computational grid zone from an internal plenum grid zone. The present approach is formulated as a surface boundary condition, thus eliminating the need for grid cells on the plenum side of a porous surface.

A schematic of the porous surface model is depicted in Fig. 2 as a cut through a section of solid surface and a hole. Porosity is defined by a solidity parameter \(s = A_{\text{por}} / A_t \) that quantifies the area ratio between solid and total surface. Three uniform states are assumed across the porous surface: upstream (1), minimum area (2), and downstream (fully mixed) (3). The upstream and downstream areas are equal \((A = A_{\text{solid}}) \). The area at 2 is assumed to be reduced by the solidity parameter \(s \), and a contraction coefficient \(\varphi \) that represents a further area reduction due to flow through the orifice, \(A = A_{\text{solid}} (1 - s) \) where \((\varphi = A_{\text{por}} / A_t) \). The contraction coefficient in Ref [22] is determined from curve fits to experimental data following guidelines provided by Cornell [23] and Rouse [24]:

\[
\varphi = 0.04137 / (1.0982 - (1 - s)) + 0.57293 + 0.005786(1 - s)
\]

and

\[
\varphi = 0.185s^{1/4}(p_1 / p_2 - 1).
\]

Figure 2 – Crosscut schematic of porous surface.

Governing equations

The governing equations are derived from conservation of mass and momentum (normal to the surface) for steady, one dimensional, isentropic flow of a perfect gas. Density and velocity are nondimensionalized by freestream density \(\rho_\infty \) and speed of sound \(a_\infty \), respectively, pressure by \(\rho_\infty a_\infty^2 \), and temperature by static freestream temperature \(\theta_\infty \).

It is also assumed that the flow is adiabatic (i.e., no heat transfer), and that there is no total pressure loss during jet formation. The latter assumption is valid as long as the fluid passing through the orifice has an inviscid core. Thus, the flow normal to the porous surface boundary is determined by the following equations.

Conservation of mass from 1-2:

\[
(\rho u)_1 = (\rho u)_2 \varphi (1 - s)
\]

(1)
Conservation of mass from 1-3
\[(\rho u)_1 = (\rho u)_3 \]
(2)

No loss in jet formation from 1-2
\[p_1 = p_{1.2} \]
(3)

Momentum balance from 2-3 with induced screen losses
\[p_2 \left[1 + \frac{\gamma - 1}{2} M_2^2 \varphi (1 - s) \right] = p_1 \left[1 + \frac{\gamma - 1}{2} M_3^2 \right] \]
(4)

Auxiliary isentropic flow relations:
\[(\rho u) = \frac{\gamma}{\sqrt{T_i}} \rho M \left(1 + \frac{\gamma - 1}{2} M^2 \right)^{\gamma/2} \]
(5)

\[p_i = p \left[1 + \frac{\gamma - 1}{2} M_i^2 \right]^\gamma/(\gamma + 1) \]
(6)

Assuming that a tangential pressure gradient exists across the surface and the net mass flux across a passively porous surface is zero, there will always be some flow transversing both into and out of the plenum at any given time. Thus, the application of the governing equations is dependent on the direction of the surface normal flow, which is a function of the local pressure gradient between the plenum and the domain. Formulations are presented below for the two conditions.

Implementation

A general assumption for the present model is that entire process from state 1 to 3 in Fig. 2 transpires over an infinitesimal distance. Hence, the application of the model is in the form of a surface boundary condition. The following will describe the proposed boundary condition for flow moving both into \((p_{\text{in}} < p_{\text{out}}) \) and out of \((p_{\text{out}} > p_{\text{in}}) \) the plenum. The local velocity, \(u_n \), is defined as the component normal to the surface.

Flow into plenum \((p_{\text{in}} < p_{\text{out}})\):

The configuration for flow into the plenum from the domain is presented in Fig. 2. The first step is to assume choked flow by assuming \(M_3 = 1 \) and solve Eq. 1 using Eq. 5 written at state 3, and Eq. 4 for \(M_1^2 \) via Newton iteration

\[\gamma + 1 \left[1 + \frac{\gamma + 1}{2} M_1^2 \right] \varphi (1 - s)^2 - M_1^2 \left[1 + \frac{\gamma - 1}{2} M_1^2 \right] = 0 \]
(7)

From this result compute the maximum mass flow using Eq. 5 written at state 3

\[(\rho u)_\text{max} = \frac{\gamma}{\sqrt{T_i}} \rho_3 M_3 \left(1 + \frac{\gamma - 1}{2} M_3^2 \right)^{\gamma/2} \]
(8)

If \((\rho u)_1 \leq (\rho u)_\text{max} \), i.e. not choked, then solve Eq. 2 using Eq. 5 written at state 3 for \(M_3^2 \):

\[M_3^2 = -1 + \left[2 \left(\frac{\gamma - 1}{\gamma + 1} \right) \right] M_1^2 \]
(9)

then solve Eq. 1 using Eq. 5 written at state 2, and Eq. 4 for \(M_3^2 \) via Newton iteration:

\[\frac{T_i}{\gamma^2} \frac{(\rho u)_3^2}{p_3^2} = 0 \]
(10)

If flow is choked, \((\rho u)_1 > (\rho u)_\text{max} \), then set \((\rho u)_1 = (\rho u)_\text{max} \) and \(M_3^2 = 1 \). Now use Eqs. 3 and 4 with 6 written at state 2 to compute \(p_{\text{out}} \):

\[p_{\text{out}} = p_3 \left(1 + \frac{\gamma - 1}{2} M_3^2 \right) \left[\frac{\gamma + 1}{\gamma - 1} \right] \left(1 + \frac{\gamma - 1}{2} M_3^2 \right)^{\gamma/(\gamma - 1)} \]
(11)

then compute \(M_1^2 \) using Eq. 5 written at state 1 via Newton iteration:

\[\frac{T_i}{\gamma^2} \frac{(\rho u)_1^2}{p_1^2} = 0 \]
(12)

We now have sufficient information to compute the boundary flux using \((\rho u)_1 \), \(M_1^2 \) and \(p_{\text{out}} \).

\[p_{\text{in}} = p_1 \left(1 + \frac{\gamma - 1}{2} M_1^2 \right)^{\gamma/(\gamma + 1)} \]
(13)

\[\rho_{\text{in}} = T_i \left(1 + \frac{\gamma - 1}{2} M_1^2 \right) \]
(14)

\(u_{\text{normal}} \) is zero for a viscous boundary or the inviscid tangential velocity for an inviscid boundary.
Flow leaving plenum \((p_{pl}>p_{b,wall})\)

The configuration for flow into the domain from the plenum is presented in Fig. 3. The first step is to once again check for choked flow by assuming \(M_{1}^{2} = 1\) and solving Eq. 1 using Eq. 5 written at state 1, and Eq. 3 for \(M_{1}^{2}\) via Newton iteration:

\[
\left(\frac{2}{\gamma+1}\right)^{\gamma+1}(1+\frac{\gamma-1}{2}M_{1}^{2})^{-\frac{\gamma+1}{\gamma-1}} \phi^{2}(1-s)^{2} - M_{1}^{2} = 0 \tag{13}\]

From this result compute the maximum mass flow using Eq. 5 written at state 1:

\[
(\rho u)_{\text{max}} = \frac{\gamma}{\sqrt{T_{1}}} p_{1} M_{1} \left(1+\frac{\gamma-1}{2} M_{1}^{2}\right)^{1/2} \tag{14}\]

If \((\rho u)_{1} \leq (\rho u)_{\text{max}}\), i.e. not choked, then solve Eq. 2 using Eq. 5 written at state 1 for \(M_{1}^{2}\):

\[
M_{1}^{2} = -1 + \sqrt{1 + 2 \frac{\gamma-1}{\gamma^{2}} T_{1} \left(\frac{\rho u}{p_{1}^{2}}\right)_{1}} \tag{15}\]

then solve Eq. 1 using Eq. 5 written at state 2, and Eq. 3 for \(M_{2}^{2}\) via Newton iteration:

\[
\left(1+\frac{\gamma-1}{2} M_{2}^{2}\right) \left(1+\frac{\gamma-1}{2} M_{3}^{2}\right) \left(1+\frac{\gamma-1}{2} M_{1}^{2}\right)^{1/2} \phi^{2}(1-s)^{2} \tag{16}\]

\[
-\frac{T_{1}}{\gamma} \left(\frac{\rho u}{p_{1}^{2}}\right)_{1} = 0
\]

If flow is choked, \((\rho u)_{1} > (\rho u)_{\text{max}}\), then set \((\rho u)_{1} = (\rho u)_{\text{max}}\) and \(M_{1}^{2} = 1\). Now Eqs. 3 and 6 to compute pressure at state 2:

\[
\begin{align*}
\rho_{p} & = \left(1+\frac{\gamma-1}{2} M_{2}^{2}\right) \left(1+\frac{\gamma-1}{2} M_{3}^{2}\right) \left(1+\frac{\gamma-1}{2} M_{1}^{2}\right)^{1/2} \\
\rho_{b} & = \frac{\rho_{p}}{T_{1}^{2}} \left(1+\frac{\gamma-1}{2} M_{3}^{2}\right) \\
\end{align*}
\]

\[
\begin{align*}
\mu_{b,normal} & = (\rho u)_{1} / \rho_{b} \\
\mu_{b,normal} \text{ is zero for a viscous boundary or the inviscid tangential velocity for an inviscid boundary.}
\end{align*}
\]

Determination of Plenum Pressure

A plenum pressure must be determined which yields a zero net mass flux balance across the porous surface. This pressure is used for \(p_{3}\) in Eqs. 8-11. and for \(p_{1}\) in Eqs. 14-17. The following describes an iterative procedure for estimating plenum pressure.

First compute an area-averaged pressure and normal mass flux over the porous surface:

\[
P_{\text{avg}} = \frac{\sum_{i=1}^{N_{\text{por}}} (pA_{i})}{\sum_{i=1}^{N_{\text{por}}} A_{i}}
\]

\[
\text{[One could conceivably prescribe a non-zero net mass flux to simulate blowing or suction. This has not been tested in present work.]
\]
Assume the initial value of plenum pressure to be the averaged pressure \(\bar{p}_{\text{plenum}} = \frac{\sum_{i=1}^{N_{\text{PL}}} (p_i / A_i)}{\sum_{i=1}^{N_{\text{PL}}} A_i} \).

On the second iteration, compute a bracketed update to plenum pressure:
\[
\begin{align*}
p_{\text{update}}^* &= \min \left(1 + c_1 \bar{p}_{\text{plenum}} \right) \left(p_{\text{plenum}, n-1} + p_{\text{p}, \text{m}} \right) \\
p_{\text{update}} &= \max \left(p_{\text{update}}^*, 1.005 p_{\text{min}} \right)
\end{align*}
\]
where \(c_1 = 10 \) is a magnification parameter, \(p_{\text{p}, \text{m}} \) the freestream total pressure, and \(p_{\text{min}} \) the minimum value of pressure on porous surface from summation for \(p_{\text{p}, \text{m}} \).

It is necessary to impose a filter on the pressure updates to damp the temporal oscillations.
\[
p_{\text{plenum}, n} = \left(c_2 p_{\text{plenum}, n-1} + p_{\text{update}}^* \right) / (c_2 + 1)
\]
where the relaxation parameter \(c_2 = 50 \).

DESCRIPTION OF FLOW SOLVERS

The porous boundary condition has been implemented in two structured-grid flow solvers, TLNS3D and CFL3D, and one unstructured solver, USM3Dns. A brief description of the salient features of each code is included below.

TLNS3D

The TLNS3D (Thin Layer Navier-Stokes Solver for 3-D flows) code [25,26] uses a cell-centered, finite-volume approach for solving inviscid and viscous flows over complex configurations on general multi-block structured grids. A suite of algebraic and one- and two-equation turbulence models is used for simulating turbulent flows. Artificial dissipation is added to the central-difference scheme for stability. TLNS3D also makes use of local time stepping, implicit residual smoothing and multigrid techniques in conjunction with multi-stage Runge-Kutta time-stepping scheme to accelerate the convergence of the code to steady-state solutions.

CFL3D

CFL3D [27] solves the three-dimensional, time-dependent, thin-layer approximation to the Reynolds-Averaged Navier-Stokes (RANS) equations using a finite volume formulation in generalized coordinates. It uses upwind-biased spatial differencing with Roe’s [28] flux-difference splitting or Van Leer’s [29] flux-vector splitting methods for the inviscid terms, and central differences for the viscous and heat transfer terms. The code, which is second-order accurate in space, is advanced in time with an implicit three-factor approximate factorization (AF) scheme. Temporal subiterations with multigrid are used to recover time accuracy lost as a result of the AF approach during unsteady calculations. The code includes several grid connection strategies, a vast array of zero-, one-, and two-equation turbulence models (linear as well as nonlinear), and numerous boundary conditions. The results presented in this paper were obtained using the two-equation k-\(\omega \) SST model of Menter [30].

USM3Dns

USM3Dns [31] is a tetrahedral cell-centered, finite volume Euler and Navier-Stokes flow solver. Inviscid flux quantities are computed across each cell face using Roe’s [28] flux-difference splitting. Spatial discretization is accomplished by a novel reconstruction process that is based on an analytical formulation for computing solution gradients within tetrahedral cells. The solution is advanced to a steady state condition by an implicit backward-Euler time-stepping scheme. Flow turbulence effects are modeled by the Spalart-Allmaras one-equation turbulence model [32]. The model can be integrated all the way to the wall, or can be coupled with a wall function to reduce the number of cells in the sublayer.

RESULTS AND DISCUSSION

An assessment of the new porous boundary condition is made with two selected examples using the three flow solvers. The first is a 5.0 caliber tangent-ogive with and without forebody porosity. Without porosity, the forebody develops strong wake asymmetries at high angles of attack that generate severe yawing moments. Surface porosity alleviates these asymmetries.

The second case is the General Aviation (Whitcomb) – 1 wing (GA(W)-1) with and without leading-edge porosity. The effect of the porosity is to reduce lift and increase drag. Such porosity is conceived as a conformal control device when applied asymmetrically to a wing to generate rolling and yawing moments.
5.0 Caliber Tangent-Ogive Forebody

A 5.0 caliber tangent-ogive forebody was tested, as one of a family of ogives, in the Langley 7X10 Foot High-Speed Wind Tunnel to investigate the effect of fineness ratio on the asymmetric loading of slender forebodies and the effectiveness of passive porosity in alleviating these asymmetries [10]. Figure 4 presents a full surface representation of the forebody. The original sting-mounted wind-tunnel model is 30 inches long and 4 inches diameter. For the computational geometry depicted in Figure 4, the sting has been removed and the body extended to 40 inches in length where it is terminated at an outflow boundary. Surface porosity is applied to the darkened region which extends from x=1 to 20 inches.

The computation of asymmetric vortex flows on slender ogive bodies at high angles of attack presents a challenging problem [33,34] that is beyond the scope of this paper. Such flows are characterized by massive crossflow separation with asymmetric feedback through the boundary layer, and are highly sensitive to laminar-to-turbulent transition location, turbulence models, and numerical discretization. The present work is focused on the formulation and verification of the porous boundary condition. Since surface porosity restores flow symmetry, most of the following assessments will be performed on symmetric half-plane grids. One full-body asymmetric flow solution will be included for completeness.

Both structured-hexahedral and unstructured-tetrahedral grids were constructed for the study. The structured grid for TLNS3D and CFL3D contained 177X97X65 cells, and the unstructured grid for USM3Dns had 1,009,929 cells. The USM3Dns grid is mirrored for the full-body computation. Farfield boundaries were placed at x_{max}, y_{max}, and z_{max} of -120, 0, and -150 inches, and x_{min}, y_{min}, and z_{min} of 40, 180, and 150 inches, respectively. A characteristic inflow/outflow boundary condition was applied to the inflow, top and side boundaries. An outflow extrapolation condition was prescribed to the aft boundary. The no-slip condition was applied to the solid surfaces on the ogive, with the exception that USM3Dns utilized a wall function. A 22-percent porosity (s=0.78) boundary condition is applied to the darkened forebody surface region denoted in Fig. 4.

Navier-Stokes solutions were computed on the ogive body with the three flow codes at M_a=0.3, \alpha=30 and 40 degrees, and Re_{\alpha}=0.4 million. TLNS3D and USM3Dns utilized the Spalart-Allmaras one-equation turbulence model and CFL3D the Menter SST two-equation model. The solid solutions were computed first. Then the porous boundary condition was activated and the solutions restarted. Figure 5 presents the typical convergence of the surface net mass flux, and the plenum and surface averaged pressures for the porous region after restarting from a converged solid surface solution. Note that the plenum pressure is substantially different than the surface-averaged value. Earlier studies assessed the use of surface-averaged pressure as the plenum pressure with the porosity boundary condition. This approach was determined to yield inaccurate results, which led to the development of the iterative procedure for plenum pressure described earlier.

Figure 4 - Surface representation of 5.0 caliber tangent ogive configuration. Porous region denoted by shading.

Figure 5 - Convergence of the net mass flux, and the plenum and surface averaged pressures over the porous region of 5.0-caliber tangent-ogive forebody from USM3Dns; M_a=0.3, \alpha=30 deg, and Re_{\alpha}=0.4 million.
Implementation of this procedure was only completed for USM3Dns in time for publication. For the results presented herein, the values for plenum pressure were determined from the USM3Dns solutions and provided as input for the other codes. The final nondimensional plenum pressures for $\alpha=30$ and 40 degrees were 0.7118 and 0.7099, respectively, where nondimensional free-stream pressure is 0.7143. Nondimensionalization is discussed in earlier section on Governing Equations.

The effect of porosity on the ogive flow field is evident in Fig. 6. Contours of density are shown at station $x=10$ inches ($x/D=2.5$) for $\alpha=30$ deg for the solid-surface solution (left) and porous-surface solution (right). The tightly clustered contour lines over the solid surface denote the presence of a strong vortex core, whereas the lines over the porous surface suggest a more diffused vortical system.

A comparison of surface circumferential C_p distributions is shown in Figs. 7 and 8 at $x=10$ inches ($x/D=2.5$) for angles of attack 30- and 40-degrees, respectively. A strong asymmetry is evident in the experimental distributions for the solid surface, which is the source of unwanted load asymmetries on the ogive. The beneficial effect of passive porosity is evidenced in the companion data by a diffusion of the vortex suction peaks into a symmetric distribution.

A full-grid solution from USM3Dns is included in Figs. 7 and 8 to illustrate the difficulty of computing accurate surface pressure distributions with a solid (non-porous) surface for this class of problem. Note that asymmetric solutions are produced, but accuracy is marginal. These solutions were generated at zero sideslip with an initial asymmetry triggered by applying asymmetric viscous boundary conditions on the nose ahead of $x=1$; a wall function on the starboard and a no-slip condition on the port. Subsequent porous computations (not shown) were

![Figure 6](image1.png)

Figure 6. – Contours of density at $x/D=2.5$. (Solid surface – left; porous surface – right.) 5.0 caliber tangent-ogive forebody from USM3Dns; $M_a=0.3$, $\alpha=30$ deg, and $Re_\theta=0.4$ million.

![Figure 7](image2.png)

Figure 7 - Code to code comparison of circumferential C_p distribution on 5.0 caliber tangent-ogive forebody with and without porosity. Station $x/D=2.5$, $M_a=0.3$, $\alpha=30$ deg, and $Re_\theta=0.4$ million.

![Figure 8](image3.png)

Figure 8 - Code to code comparison of circumferential C_p distribution on 5.0 caliber tangent ogive forebody with and without porosity. Station $x/D=2.5$, $M_a=0.3$, $\alpha=40$ deg, and $Re_\theta=0.4$ million.
restarted from the asymmetric solutions. Flow symmetry was restored even with the asymmetric viscous boundary conditions set ahead of \(\alpha = 1 \).

The computational \(C_f \) distributions on the half-plane grids are presented on Figs. 7 and 8 between \(\phi = 0 \) and 180 degrees. The distributions from the solid (non-porous) solutions are included to facilitate code-to-code comparisons, and are not intended to reflect a correct solution to an inherently asymmetric problem. Some differences in \(C_f \) distribution are noted between codes, but each qualitatively captures the dominant vortex flow features. The focus is on the porous surface results which demonstrate good quantitative agreement with the experimental data. This confirms the adequacy of the new porous surface boundary condition for computing aggregate aerodynamic effects of passive porosity for this class of problem.

GA(W)-1 Wing

The GA(W)-1 [General Aviation (Whitcomb)] - 1] wing was tested in the 14- by 22-Foot Subsonic Wind Tunnel. This model had a 9-foot span, 3-foot chord, and 0° leading-edge sweep. Surface pressure taps were located at 3 spanwise locations. The model was also equipped with porous skins to represent a passive porous test article (porous surface with plenum cavity).

The semispan surface definition used for the computations is shown in Fig. 9. Porosity was applied to the shaded leading-edge region ahead of the 18-percent chord station. Computational grids were constructed for each of the flow solvers. The grid for TLNS3D an CFL3D contained 193X65X33 hexahedral cells, whereas for USM3Dns the grid contained 1,681,831 tetrahedral cells. Farfield boundaries were placed 10 chord lengths away from the wing in all directions on which a characteristic inflow/outflow boundary condition was applied. The no-slip condition was applied to the wing solid surfaces, with the exception that USM3Dns utilized a wall function. When applying leading-edge porosity, a 22-percent condition \((\varepsilon = 0.78) \) was prescribed to the darkened region denoted in Fig. 9.

Navier-Stokes flow solutions were computed at \(M_* = 0.2, \alpha = 0 \) and 8 degrees, and a chord Reynolds number of 3.5 million. As before, the plenum pressure was determined from USM3Dns and provided as input for the other codes. The nondimensional plenum values used for \(\alpha = 0 \) and 8 degrees were 0.7130 and 0.7156, respectively.

Figures 10 compares the chordwise \(C_p \) distributions at \(\alpha = 8 \) deg. and \(2y/b = 0.67 \) (one chord length from the symmetry plane) between the code results and experimental data for the solid and porous surfaces. The experimental data reveals a dramatic loss of leading-edge suction peak and consequent loss of lift due to passive porosity. The solid surface computational results are nearly identical between the codes and are in generally good agreement with the experimental data, with the exception of the leading-edge suction peak. The porous leading-edge computations show some variation between codes, but are in reasonably good agreement with the data.

Figures 11 and 12 illustrate the large impact of leading-edge porosity on lift and drag coefficients.

![Figure 9 - Semispan surface geometry for GA(W)-1 wing. Porosity applied to shaded region around leading edge](image)

![Figure 10 - \(C_p \) comparison of solid and porous GA(W)-1 wing for TLNS3D and USM3Dns with experiment at \(2y/b = 0.67, M_* = 0.17, \alpha = 8 \) deg., and \(Re_c = 3.5 \) million.](image)
and demonstrate that the porosity boundary condition model yields correct estimates of those effects at angles of attack of 0 and 8 degrees. With leading-edge porosity having such a large effect on lift and drag, an asymmetric application of this device could be envisioned for lateral-directional control in place of moving control surfaces. The computational model presented herein should be useful as a supplemental design tool in what was previously an experimental intensive process.

CONCLUSIONS

A new boundary condition is presented for simulating the flow over porous surfaces. The model builds on the prior work of Bush to eliminate the need for constructing grid within an underlying plenum, thereby simplifying the numerical modeling of passively porous flow control systems and reducing computation cost.

Code experts for two structured-grid flow solvers, TLNS3D and CFL3D, and one unstructured solver, USM3Dns, collaborated with an experimental porosity expert to develop the model and implement it into their respective codes. Results presented for the three codes on a slender forebody with porosity, and a wing with leading-edge porosity demonstrate good agreement with experimental data and a remarkable ability to predict the aggregate aerodynamic effects of surface porosity with a simple boundary condition.

Experimental studies of surface porosity have shown the strong potential for this technology as a flow control device. Porosity has many potential applications for aerodynamic control, drag reduction/production, separation control, and lift improvement. The present work should facilitate a more complete understanding of surface porosity in the future by enabling complementary computational studies and more timely design trades.

REFERENCES

