CRYOGENIC TANK TECHNOLOGY PROGRAM (CTTP)

Timothy P. Vaughn
Marshall Space Flight Center
September 20, 2000
CRYOGENIC TANK TECHNOLOGY PROGRAM (CTTP)

OBJECTIVES

• DETERMINE FEASIBILITY AND COST EFFECTIVENESS OF NEAR NET SHAPE HARDWARE
• DEMONSTRATE NEAR NET SHAPE PROCESSES BY FABRICATING LARGE SCALE-FLIGHT QUALITY HARDWARE
• ADVANCE STATE OF CURRENT WELD PROCESSING TECHNOLOGIES FOR ALUMINUM LITHIUM ALLOYS
CRYOGENIC TANK TECHNOLOGY PROGRAM (CTTP)

- NEAR NET SHAPE TECHNOLOGIES
 - EXTRUDED BARREL PANELS
 - ROLL FORGED Y-RING ADAPTERS
 - ONE PIECE SPIN FORMED DOMES

- OTHER TECHNOLOGIES
 - LOW PROFILE, NON-TANGENT NET SHAPE SPIN FORMED BULKHEADS
 - FRICTION STIR WELDING
CRYOGENIC TANK TECHNOLOGY PROGRAM (CTTP)

PROGRAM STATUS

- ADAPTERS, BARREL PANELS, AND DOMES HAVE BEEN COMPLETED
- FRICTION STIR WELD TOOLING IN PLACE ON CIRCUMFERENTIAL TOOL
- BARREL PANEL WELDS COMPLETED
- EXCESSIVE POROSITY IN BARREL TO ADAPTER WELDMENTS PLACED TANK FABRICATION ON HOLD STATUS
CRYOGENIC TANK TECHNOLOGY PROGRAM (CTTP)

CONCLUSIONS

- Near net shape hardware can be cost effective for higher production rate cryotank hardware
- Large scale-flight quality hardware can be manufactured using near net shape processes
- Friction stir welding successfully demonstrated