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RANGES OF APPLICABILITY FOR THE CONTINUUM-BEAM MODEL
IN THE CONSTITUTIVE ANALYSIS OF CARBON NANOTUBES:

NANOTUBES OR NANO-BEAMS?

VASYL MICHAEL HARIK*

Abstract. Ranges of validity for the continuum-beam model, the length-scale effects and continuum

assumptions are analyzed in the framework of scaling analysis of NT structure. Two coupled criteria for the

applicability of the continuum model are presented. Scaling analysis of NT buckling and geometric parameters

(e.g., diameter and length) is carried out to determine the key non-dimensional parameters that control the buckling

strains and modes of NT buckling. A model applicability map, which represents two classes of NTs, is constructed

in the space of non-dimensional parameters. In an analogy with continuum mechanics, a mechanical law of

geometric similitude is presented for two classes of beam-like NTs having different geometries. Expressions for the

critical buckling loads and strains are tailored for the distinct groups of NTs and compared with the data provided by

the molecular dynamics simulations. Implications for molecular dynamics simulations and the NT-based scanning

probes are discussed.

Key words, nanostructures, nanotubes, mechanical properties, scaling analysis, elasticity

Subject classification. Computational Materials Science

1. Introduction. Carbon nanotubes (NTs) are cylindrical molecules composed of carbon atoms in a periodic

hexagonal arrangement. NTs appear to possess extraordinary physical properties such as high stiffness-to-weight

and strength-to-weight ratios and enormous electrical and thermal conductivities [1-7]. Potential applications of

NTs range from new electronic devices and scanning probes to multifunctional structural components and control

systems for aerospace industries. To realize the potential benefits, fundamental understanding of nano-structured

material properties and their effect on the associated mechanical behavior is required in order to develop reliable

constitutive models for various design purposes.

Recently, the mechanical response of single wall nanotubes (SWNTs) had been evaluated via atomistic and

molecular dynamics (MD) simulations [1, 2]. In these studies, the structured cylinder models and the continuum

Euler beam theory were used to analyze or to deduce the Young's modulus of carbon nanotubes. Yakobson et al. [2]

presented a MD simulation of carbon NTs for compressive buckling, and an analogy with macroscopic continuum

beams and shells, which had some geometric similarities with NTs and their global behavior, was used. Such

analogy provided estimates for the NT Young's modulus, ENr, which may reach as high as 1,000 GPa. Such simple

models provide an attractive tool for data reduction and the analysis of structure-property relationships for nano-
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structuredmaterialsandcarbonNTs,inparticular.Amacromechanicalmodel"maysela, e as a useful guide, but its

relevance for a covalent-bonded system of only a few atoms in diameter is far flvm obvious" [2]. To ensure the

robustness of data reduction schemes that are based on continuum mechanics, a careful analysis of continuum

approximations used in macromechanical models and possible limitations of this approach at the nano-scale level is

required.

Govindjee and Sackman [6] considered an elastic multi-sheet model of carbon NTs to show the explicit

dependence of material properties on the system size when a continuum cross-section assumption is made for a

multi-shell system subjected to bending. The continuum assumption was shown to hold when more than 201 shells

were present. In the present study, geometric parameters of NT molecular structure are used to define a set of

restrictions on a series of assumptions that are used in the Euler beam model. Ru [7] proposed an intrinsic bending

stiffness for carbon NTs in order to decouple the bending shell stiffness of NTs from their ill-defined effective

thickness and to ensure a consistent use of the classical shell theory [8]. In the current analysis, it is shown the NT

thickness may have no direct effect on the buckling behavior of NTs for two classes of molecular structures.

Extensive atomistic and MD simulations of carbon NTs remain computationally expensive and limited in scope.

As a result, the continuum models that are appropriately tailored for a particular molecular structure and specific

loading conditions may be useful for the qualitative analysis of constitutive behavior of carbon NTs. Since the

mechanics of NT response is likely to depend on NT structure, a blend of scaling analysis and continuum mechanics

seems appropriate for the development of a methodology for inter-scalar extension of a continuum model to the

nano-structures under consideration. This study is focused on beam-like structures and elongated lattice shells that

have one dominant dimension as opposed to planar carbon sheets, for instance. Here, to examine possible length-

scale limitations of a linear beam model, the underlying continuum assumptions are analyzed in the framework of

scaling analysis and hierarchical dimensional analysis of NT buckling and the geometric and material parameters

(e.g., the bond length, radius, and elastic modulus).

Dimensional analysis is hardly a verification of physical units, as it may dramatically reduce the number of

system parameters by identifying one or two non-dimensional parameters that control the NT buckling behavior. It

also helps to select the key ratios that discriminate between different buckling modes and distinct classes of NTs:

short NT shells, long beam-like shells and thin beam-like NTs. Here, restrictions on the use of a beam model for the

last two classes of NTs are derived in the form of applicability criteria and presented along with the model

applicability map for different ranges of geometric parameters. Scaling analysis can provide general functional

relations for NT buckling response, which indicate the key elements that may appear in formulae for critical

buckling loads and strains. The resulting functional relations span the three length scales, which are associated with

the size of a carbon ring, the NT radius characterizing the NT cross-sectional size and the length of NTs

corresponding to the macromolecular scale. Hierarchical dimensional analysis is also instrumental in deriving a

mechanical law of geometric similitude for NT buckling in an analogy with continuum mechanics. Here, the

classical buckling formulae are tailored for different classes of NTs and the values of critical strains are compared

with the available data for carbon NTs. These formulae embedded into the scaling analysis allow one to consider

wide ranges of numerical values for the parameters involved through a few inter-scalar quantities.



Thestructureofthispaperhasthefollowingcomponents.First,theproblemofnanomechanicalbucklingis

definedalongwithadescriptionofNTstructure,variationsofgeometricparametersandtheireffectongeometric
propertiesof NT shells(Section2.1). An estimateof NT thicknessis suggestedaswell. In Section2.2,the
macromechanicalconceptsofloading,loadtransferanddeformationareadjustedtothemolecularstructureofNTs.
BeforethecontinuumbeammodelisusedinSection3,theaspectsofbeam-likedeformationofNTstructuresare

discussedto illustratetheoriginandlength-scalelimitationsofthemacroscopicconceptofYoung'smodulusand
whenit canbeappliedto carbonNTs. In Section3.1,twokeycriteriafortheapplicabilityofa linearcontinuum
modelarepresented.Derivationofthemainnon-dimensionalparametersforNTbucklingiscarriedoutinSection
3.2. A mechanicallawof geometricsimilitudeispresentedin Section3.3. Rangesofvalidityforthecontinuum

beammodelaresummarizedin Section3.4inamodelapplicabilitymapandatable.Inthediscussion(Section4),
uniquefeaturesofthemechanicsofNTbucklingarelistedalongwithanoverviewofclassicalassumptionsofthe
Eulerbeamtheory. Implicationsfor MD simulationsandthedesignof NT-basedscanningprobesarealso
discussed.

2. A nanomechanical problem of NT buckling. Mechanical behavior of molecular structures is likely to

depend on the geometric parameters characterizing a particular structural arrangement of atoms and the force fields

between them. Here, the continuum model considered neglects all thermal, quantum and electromagnetic effects are

neglected. In the problem formulation, the geometry of carbon NTs is defined by a set of parameters and the ranges

for their values that characterize the three length scales involved in the buckling problem (Fig. 2). Depending on NT

radius and an estimate of NT thickness, the NT shells may be considered either thin or thick. In Section 3, it is

shown that both types of geometries are suited for a beam approximation under certain conditions. Here, the loading

conditions for the NT molecular structures are also specified along with the type of elastic deformation considered.

2.1. Molecular structure of carbon NTs. Carbon NTs have a lattice-like structure [9] that consists of periodic

hexagonal cells of bonded carbon atoms (Fig. 1). The geometric properties of NTs define their structural topology

that is similar to beams, for small radii, and cylindrical shells, for large radii. To describe the geometric properties

of NTs and their effect on the global behavior of NTs, one has to consider the characteristic parameters that define

the NT structural elements, shape, size, etc. In the NT molecules, the smallest dimension is the diameter of carbon

atoms (i.e., about 1 Angstrom or 0.1 nm). The adjacent atoms are separated by the distance of about 0.14 nm, that is

the length of the C-C bonds or the c-bond, 1cc. A SWNT consists of many hexagonal carbon rings that have the

width, al, of about 0.24 nm [5]. The diameter of NTs, dN_, may vary from about 0.4 nm to 100 nm, as a result of

various growth conditions (Table 1). The length of NTs, LN_, may also range from about 1 nm to 1 _tm or more,

depending on the processing conditions. As a result, the NT structure involves three length scales associated with

the carbon ring, NT diameter and its length (Fig. 2). A clear separation or collapse of the adjacent length scales

results into formation of different classes of NT geometries and structures.

The cross-section of the open molecular lattice of carbon NTs has no continuum thickness, although it has a

closed cylindrical structure. The effective thickness of NTs, hN_, can be only estimated. It is bounded by various



estimatesbetween0.066nmandthevalueofinterlayerspacing,t, [2, 5]. The interlayer spacing, t, in the multi-wall

NTs or layered carbon [5] is relatively large due to the van der Waals forces and is about 0.34 nm. Different

estimates are based on models that may address distinct physical effects. The highest interlayer-thickness estimate

[5] reflects the effect of van der Waals forces, which may not always play the main role in a deformation. The

lowest shell-based estimate [2] is linked to the shell-like buckling behavior of a NT that has a particular geometry.

An equivalent-truss model [10] for the planar carbon sheets offers an estimate of 0.28 nm, which is close to the

field-based approximation of 0.34 nm.

TABLE 1.

Ranges of the key geometric parameters for carbon NTs

Parameters

The C-C bond length, lc c
Diameter of SWNTs, tiNT

Length of SWNTs, LNT

Thickness of a SWNT, hNT

Typical Value
0.144 nm

10 nm

100 nm

Range of Values
0.140 - 0.144 nm

0.4 - 100 nm

1 nm- 1 pm
0.066 - 0.34 nm

For large radii, a NT shell can be defined as a curved, surface-like structure that possesses two characteristics of

a closed surface (i.e., LNT and tiNT) that are substantially larger than its maximum thickness. In this case, a NT-shell

has some dimensional characteristics of a macro-shell. The NT shells of the ratio, hNT/RNT, such that

1/1000 < hNT/RNT < 1/10 (thin shell assumption) (la)

can be considered thin, as the NT thickness is much smaller than its radius. If hNT/RNT < 1/1000, then they represent

membranes that have negligible bending resistance as in continuum mechanics. In the case of small radii, the NT

thickness may not be negligible as compared to the NT radius. In fact, the elastic shells such that

hNT/RNT > 1/10 (thick shell assumption), (lb)

are no longer thin as far as their cross-section is concerned (Table 2).

TABLE 2.

Classification of carbon NT shells based on the thickness-to-radius ratio, hNr/RNr

Estimates for NT thickness, hNT Thin shells, RNT Thick shells, RNT

0.34 nm (based on van der Waals forces [5]) 3.4 nm - ... 0.2 - 3.4 nm

0.28 nm (based on a truss model [10]) 2.8 nm - ... 0.2 - 2.8 nm

0.072 nm (a half of the C-C bond length) 0.7 nm - ... 0.2 - 0.7 nm

0.066 nm (based on a shell analogy [2]) 0.6 nm - ... 0.2 - 0.6 nm

Inequalities (1) can be considered as the separation criteria for the lowest two length scales (Fig. 2) represented

by the thickness of a carbon ring, hNr, and the NT radius, RNr. These length scales merge when the criterion (lb)

holds and a class of thick NTs is formed (Table 2). The thin-shell model [2] is most suited when these length scales



areseparated,i.e.,thecriterion(la) issatisfied.TheinfluenceofthelargestscaleassociatedwiththeNTlengthis

criticalfortheapplicabilityofabeammodeltoNTbucklingastheloadingactsalongtheNTthatisabouttodeform
inadeformationmodedependentonitslength.

2.2.Loading and deformation of carbon NTs. In continuum mechanics, the material particles of the thin

layer that comprises a deforming shell are contained within a top and a bottom bounding surfaces and the edge

faces. The middle surface is often used as the reference surface. All of the surfaces are assumed smooth. Here, NT

shells are defined by the smooth surface generated by an extension of the 2D lattice of covalent bonds and

intersecting centers of the atoms. This middle surface of the equivalent shell is linked to the equilibrium positions of

carbon atoms and the lines of relaxed covalent bonds. For NTs, the deforming material is represented by the

discrete atoms and the surrounding electron "clouds" that are concentrated along the C-C bonds. The interlayer

spacing, t, provides an upper bound for the "thickness" of carbon NTs and a single carbon sheet. Mechanical

loading is transferred between the adjacent atoms via highly directional covalent bonds. This open lattice-type

structure contributes to the reduction in the effective thickness of carbon NTs. Any considerations of

homogenization require a minimum number of NT cells along the NT length before any material averaging can be

considered unique, i.e.,

LNr/al > 1/10, (2)

where a/ is the width of a carbon ring [5], i.e., the characteristic dimension of the NT periodic structure. In

continuum theories, quantities like LNr/al tend to infinity, while in nanomechanics it may be just a large number:

LNr/al >> 1. The NT length, LNr, is bounded from above by the onset of tube coiling during manufacturing, which is

likely to depend on the ratio, Lc = LNr/dNr. Even when the homogenization criterion (2) holds, the compressive

mechanical load is still introduced by a uniform axial displacement as opposed to macroscopic theories, which

involve axial loads or stresses that are associated with the concept of cross-sectional area [6].

From the mechanical viewpoint, the elastic deformation is limited by the extent of allowable straining during a

time period, AT. For carbon NTs, the process of elastic deformation should be completely reversible from the

thermodynamic point of view. The deforming NT should pass through a sequence of the equilibrium states. This

sets a time-scale limit for a continuum model applied to the molecular structures that have significant relaxation

time, Atx, i.e., Atx << AT. Relaxation of molecules depends on their temperature.

Linear buckling theories for elastic beams and shells describe the deflections that are smaller than the wall

thickness and exhibit very small elastic strains. That is the axial strain should be smaller than the estimated

thickness, hNr. Since the mechanical loads are transmitted through the force field of highly localized covalent

bonds, the inter-atomic interaction during elastic deformation can be approximated by the harmonic force field and

all strains should be smaller than one half of the bond length, lc c/2. One half of the bond length, lc c, may serve as an

estimate t for the NT thickness, hNr, associated with the transfer of mechanical loads (Fig. 1). This estimate of the

NT thickness is close to the shell-based value [2], but it has somewhat different physical nature.

-t-The NT thickness can be estimated by evaluating the transverse dimension of a symmetric electron "cloud" in a

half of the bond transferring the mechanical load (Fig. 1), i.e., approximately a half of the C-C bond length.



Thisstudyof NT bucklingcoversall rangesof geometricparametersshownin Table1 asopposedto a

particularcaseof NT geometry.Thedimensionsof NT molecularstructureareintegratedintotheanalysis
presentedbycombiningtheelementsof continuummechanicsandscalinganalysis.Theconceptsof classical
mechanicsareextendedacrossthelengthscalesalongwithcarefulconsiderationofpossiblelimitationsandtheir
sensitivitytothevariabilityinNTdimensions.

3. Analysis of carbon NTs with the continuum beam model: applicability criteria, the key parameters and

a law of geometric similitude. To examine possible length-scale limitations of the macroscopic Euler beam theory,

all underlying continuum-based assumptions must be scrutinized (Appendix). The range of validity of different

assumptions may be defined by using geometric parameters of NT molecular structure (Section 3.1). This approach

provides a link between the molecular structure of carbon NTs, their mechanical properties and the beam model for

NTs. Here, the analysis is restricted to the linear elastic behavior of the equivalent NT shells, although NTs are

capable of relatively large elastic deformations that are potentially nonlinear [5]. This requires a general load-

displacement relation,

P/ANT _ (LNT LNTo)n/LnNTo, (3)

to be linear with respect to the NT elongation or compression, LNT LNTo, i.e., n = 1, where LNTo is the original NT

length.

The constant of proportionality in the relation (3) defines the initial value of the elastic modulus, ENT, of a beam

having cross-sectional area, ANT , [6, 8]. The applicability of the continuum area concept is limited to a group of the

thick NT shells of small radii that are defined by inequality (lb). As the ratio of NT radius of curvature to the size

of a representative structural cell, al (i.e., the ratio Za, za=RNT/al) approaches unity, the closed molecular structures

that have large aspect ratios, LNT/dNT, become similar to a nano-beam in their mechanical response (Section 3.2).

That is a carbon NT reaches its nano-beam radius when RNT/al = 1. This condition is valid only for NTs with small

radii, and it can be violated by a class of larger NTs [2] since the NT buckling is not always affected by the

continuum area nor by the problems of thickness estimates [7]. Here, in contrast to other studies [2, 6, 7], both

classes of NTs are investigated.

3.1. Criteria for the validity of continuum assumptions. The classical Euler beam theory of continuum

mechanics is based on a number of assumptions (Appendix) that provide a rigorous framework for deriving

governing equations for the deformation of solid beams and specify possible limitations for the beam theory [8]. For

the validity of most assumptions, all elastic strains have to be negligible as compared to the NT axial strain, Ell. It

can be approximated by Ell= (LNT LNTo)/LNTo, where LNTo is the original NT length. In the lattice-beams [9] that

are susceptible to transverse shear, the shear may not be small unless the axial strain is infinitesimal, i.e., the length

of a NT remains essentially constant. Such constraints hold if

Ell _" (LNT LNTo)/LNT o << 1. (4a)



Criterion(4a)maybesatisfiedonlybylongNTs.

Thekeygeometricassumption,whichisnotalwaysquantified,andthevalidityofotherassumptionsdependon
theaspectratioofcarbonNTs(i.e.,theratiooftheirdiameter,dNT, to the length, LNT). AI1 appropriate range of

aspect ratios can be defined by the following inequality

dNT/LNT < 1/10. (4b)

This requirement, which is less restrictive than a condition: dNT/LNT << 1, is satisfied by two classes of NTs: long

NT shells and thin beam-like NTs. It also sets a lower limit for the size of the molecular systems in the MD

simulations that use the beam model in data reduction. Moreover, it ensures the separation of molecular length-

scales (i.e., LNT/al >> 1), which is required for obtaining the effective material properties via averaging or

homogenization of NT structure. Criterion (4b) also distinguishes the beam deformation modes from the shell

buckling modes for NTs with moderate and large radii. The MD data [2] supports the last conclusion.

Applicability of the continuum beam model that is based on the Euler beam theory is limited to the NTs of high

aspect ratios, i.e., inequality (4b) should be satisfied. The compressive axial strains should be small as required by

inequality (4a) for linear elastic deformation. Two classes of carbon NTs defined by inequalities (la) and (lb) may

satisfy these requirements (i.e., thin and thick NT shells in Table 2). The value of NT Young's modulus, ENT,

however, should not depend on the size of a NT. As a result, the concept of NT Young's modulus, ENT, is most

applicable when a carbon NT reaches its nano-beam radius, RNT/al = 1. For large values of NT radius, the

continuum assumption about the cross-sectional area of a NT does not hold, and the Young's modulus of NT lattice

is more appropriate along with the stiffness parameters for shells [2]. However, the continuum beam model may be

utilized to estimate the critical buckling strain of thin high-aspect-ratio shells.

3.2. The key non-dimensional parameters for the buckling of thick NT-shells. For carbon NTs of small radii,

the Euler beam model (Appendix) may qualitatively describe the process of buckling. In the Appendix, it is noted

that the critical load, Pc,-, for the initiation of buckling deformation mode strongly depends on the end conditions of a

NT. The global response of a beam depends on the product of its Young's modulus, ENT, and its moment of inertia,

INT, which also depends on the continuum cross-sectional area, INT = ANT R2NT. Since the dependence of the NT

moment of inertia, INT, on its radius is explicit, INT = rCR4NT,general expressions for the critical load, Pc,-, stress, o-c,.,

and strain, ec,., can be written without it, i.e., their functional dependence on NT parameters is given by

_Yc," = fl(ENT, LNT, tiNT, al), (5a)

or, after introducing three non-dimensional quantities,

ac,. o (_RNT 2 RNT )

EN T -- Jbeam _ ' al ,
(5b)



wheref/and fb .... are real-valued functions in the dimensional analysis of the onset of buckling. Here, parameters

LNT, RNT, and al represent the three length scales involved in this nanomechanical problem. Hence, the scaling

analysis is carried out with the hierarchical dimensional analysis. The number of independent non-dimensional

quantities is determined by the dimensional analysis. It is given by the difference between the number of

independent parameters and the number of fundamental physical dimensions (i.e., length, time, force). Relation (5b)

shows the groups of parameters that are important and may occur in any formulae for linear or nonlinear buckling.

Note that the critical strain, ec,., and the moment of inertia, INT, are dependent parameters in the functional relations

of the dimensional analysis. An important role of the moment of inertia, INT, in the mechanics of beams is still

reflected by the cross-sectional area in the relation (5b). An explicit form of the relation (5b) for a special case of

fbeam(TrR2NT/L2NT,RNT/al _ 1) can be given by modifying the Euler buckling formula: s

O"
CF

ENT

__ Pr -4zclzcReNTI
J:'c,'"

(5c)

Here, the ends of a NT are fixed, i.e., the end layer of atoms is constrained. The critical stress, O-c,.,and the critical

strain, ec,., ec,._ (LNr LNro)/LNro, are proportional to the square of the NT aspect ratio, dNr/LNr or the NT cross-

sectional area, zrR2Nr, normalized by the NT length, LNr. The form of formula (5c) illustrates that even small

variations in the value of NT radius or its length may affect the resulting strains or critical loads. Formula (5c) is

valid only when the NT aspect ratio, dNr/LNr, satisfies inequality (4b). The assumption of continuum cross-sectional

area, ANT, requires that the ratio za=RNT/al is to be small and close to unity. Note that the ratio LNT/al is large when

the condition (4b) holds. As a result, the NTs that satisfy these conditions behave as nano-beams of carbon or other

material properties.

Note that the two criteria, (4a) and (4b), for the validity of key beam-model assumptions are coupled. Both

criteria involve the length, LNT, of NTs that leads to some coupling effects. Figure 3 shows dependence of the

critical buckling strain, ec,., on the aspect ratio of NTs for different values of NT diameter. NT buckling is described

by the formula (5c). Notice that for NTs with diameters: dNT ---- 1 and 2 0 nm, the critical strain, ec,., is less than 2%

only for high values of length, LNT, where both criteria are met. When RNT/al = 1, the beam model is perfectly

applicable (i.e., all values of the strain, ec,., are below the maximum linear strain of 2%, say) as the NT has reached

the nano-beam radius at RNT = 0.2 rim. Note that the three graphs correspond to distinct classes of NTs (Table 2) on

the model applicability map (Section 3.4). The coupling effect requires larger NT lengths for larger NT diameters

when the linear beam theory is implemented.

Dimensional analysis provides the key non-dimensional quantities that control the physical phenomenon of NT

buckling. It means that

the process of NT buckling should remain the same when the NT length, LNT, and NT radius, RNT, change as

long as the non-dimensional quantity, zCR2Nr/L2Nr, determined by the dimensional analysis has the same

numerical value.

Similarly to the laws of similitude in the dimensional analysis of problems in continuum mechanics, this constitutes



a mechanical law of geometric similitude for the buckling of NTs with small radii.

3.3. The key non-dimensional parameters for the buckling of thin NT-shells. The global response of NT

shells, for which the assumption of continuum cross-sectional area, ANT, is not valid due to large values of NT

radius, can also be qualitatively described by the beam approximation [2]. Here, dimensional analysis can also be

carried out for such NTs as it is shown above, to determine the key non-dimensional ratios that control the buckling

behavior. For NT shells, a general functional dependence on NT parameters is given by

_cr = f2(CNT, DNT, LNT, RNT, hNT), (6a)

or, after introducing non-dimensional quantities,

ecr = fshell(-" _ - , 7rRNT , hNT.)
NT LNT RUT

(6b)

where f2 andfsheu are real-valued functions, DNT is the bending stiffness and CNT is the axial stiffness of a NT. Note

that the critical strain, ec,., is more appropriate for NTs with no continuum cross-sectional area. Here, NT thickness,

hNT , represents the smallest of the three length scales involved as opposed to the cell size, al, in the previous class of

NTs. For NT shells, when hNT/RNT << 1, an explicit form of the critical strain relation (6b) can be again derived by

modifying the corresponding Euler formula: s

rcR 2
e =4('"'NTI --LNT--LNT° (6C)

cr _ LNT ) Lu_o

is valid for a special case when RNT/LNT << 1, while the condition, DNT/CNT << 1, is automatically satisfied. These

restrictions and the applicability criteria (4) should be specified, when these or similar formulae for buckling are

used [2]. The scaling analysis extends the applicability of formula (6c) for a class of NT shells having various

geometric parameters (Table 1). A factor "4" in formula (6c) depends on the boundary conditions (Appendix).

Significance of non-dimensional ratios such as hNT/RNT, RNT/LNT or dNT/LNT, 7gRNT/LNT, and DNT/CNT is underscored

here by the dimensional analysis. Note that the important non-dimensional quantity, R2NT/RNTLNT, describing the

ratio of the NT cross-sectional area, ANT, to its lateral surface, 27CRNTLNT, is dependent on the NT aspect ratio,

dNT/LNT. The ratio hNT/RNT is critical for NTs of low aspect ratios, i.e. when the criteria (4a) is not met by the NT

geometric parameters. The data of MD simulations [2] confirm these conclusions.

The molecular structure of thin NTs is different from that of the "thick" NT shells (Section 3.2). However, there

are conditions under which NTs of large radii (or the thin shells in Table 2), may behave as beams. When the

formula (6c) is valid under the aforementioned conditions, the critical strains for the onset of NT buckling is shown

in Fig. 4 for the cases of relatively large radii. Dependence of the buckling strain, ec,., on the aspect ratio of NTs is

quadratic as in the case of thinner NTs (Fig. 3). However, the coupling of two criteria, (4a) and (4b), through the

length, LNT, imposes some restrictions on the range of aspect ratios, dNT/LNT, in order to preserve the validity of



beam-model assumptions. The larger is the NT diameter, the smaller the aspect-ratio value should be. For NTs with

diameters: tiNT = 5 and 10 nm, the critical strain, ec,., is less than 2% only for very high values of length, LNT, where

both criteria are met.

Note that the correctness of dimensional analysis is illustrated by the fact that the critical values of loads (5c) and

strains (6c) for the onset of buckling are expressed only in terms of non-dimensional ratios of geometric parameters

without adding additional parameters. Although, the aspect ratio, dNT/LNT, controls the key values in both

equations (5c) and (6c), the numerators of both non-dimensional quantities have different physical nature that

emphasize the known sensitivity to geometric variations in the cross-sectional area and perimeter for beams and

shells, respectively. As a result, a more general form of the mechanical law of geometric similitude stipulates that

NTs and nano-rods with different values Of dNT and LNT have identical buckling behavior and strains as long as the

aspect ratio, dNT/LNT, remains the same. This law also holds for non-carbon nano-rods. For short NTs, the key ratio

is hNT/RNT. Therefore, this law allows one to reduce the number of MD simulations that are needed to describe a

class of NTs or nano-rods.

3.4. A model applicability map. Ranges of applicability for the continuum beam model span two different

groups of geometric parameters that define two different classes of NTs with small and large values of radius

(Tables 2). It is shown above that NTs may have the same buckling behavior, although other mechanical properties

(e.g., transverse stiffness) may diverge due to different structural characteristics [1]. Identification of the key non-

dimensional ratios of geometric parameters is important for the ability to apply the classical Euler formula across the

length scales for a variety of NT geometries. These non-dimensional quantities may also be used to subdivide NTs

into several classes of SWNTs that have distinct mechanical behavior due to different structural characteristics. For

example, NTs with the small values of a ratio, Zi, Zi = RNr/lc c, (1.5, say) have high transverse stiffness due to their

tight structure, significant curvature and highly pre-strained and pre-stressed covalent bonds. Such NTs loose thin

shell characteristics (Table 2). For large values of the ratio Zi (100, say), NTs have large diameters, lower curvature

and the covalent bonds in the form which is close to or identical to those in a sheet of carbon atoms [4, 5]. Such

NTs are prone to inward buckling [1] or even flattening. These structural differences in the SWNTs may lead to

different overall mechanical responses that would require different mechanical models. Mechanical behavior of

different classes of SWNTs can be characterized by dimensional analysis of the NT buckling and their geometric

parameters. Tables 1 and 2 provide a summary of ranges for the NT geometric parameters and classes of NTs

considered in this study.

Applicability of the continuum beam model for NT buckling can be described by a model applicability map with

two regions having different ranges of geometric parameters (Fig. 5). It shows that the beam model fits best for the

parameters along the limiting line corresponding to the nano-beam radius and the neighboring band. An extension

of that band for larger radii and beyond the value of 1/10 would likely involve some micropolar effects [9] in a beam

model or an introduction of a shell model. The NT-shells can be also described by the beam model when their

aspect ratios, dNT/LNT, are high (i.e., small numerical values of the ratios) even if their radii are relatively large (Table

3). The two classes of NTs may be replaced by the corresponding groups of non-carbon nano-rods (e.g., Co, Fe) as

long as they satisfy the two key applicability criteria (4) for a continuum model. This applicability is limited to the
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buckling behavior, of course.

TABLE 3.

Restrictions on non-dimensional parameters for the applicability of the continuum beam model

Thin NT shells Thick NT shells Carbon nano-beams

1/Lc< dNT/LNT<I/IO I/Lc<dNT/LNf<I/IO I/Lc<dNf/LNf<I/IO

10 < LNT / al < dNTLc/al 10 < LNT / al < dNTLc/al 10 < LNT / al < dNTLc/al

12 < RNT / al 0.8 < RNf / al < 12 RNf / al -_ 1

hNT/RNT < 1/10 1/10 < hNT/RNT 0.33 < hNT/RNT < 1.7 :t:

DNT / CNT << 1 DNT / CNT << 1 DNTb .... / CNTb .... << 1

4. Discussion of the analysis results on NT buckling. One of the general results of this study is a methodology

for the extension of the continuum models across hierarchy of length scales to various nano-structured materials.

This study is focused on the molecular lattices that have either one-dimensional beam-like structures or closed

cylindrical shapes of elongated shells as opposed to the two-dimensional carbon sheets considered by Odegard et al.

[10]. This methodology is defined by a set of criteria that should be satisfied and the hierarchical dimensional

analysis that provides the key parameters and the ranges of their values, which control the phenomenon of NT

buckling. Some of the results provide useful guidance for MD simulations (Section 4.3) and the design of NT-based

scanning probes (Section 4.4). Unique features of the nano-structural buckling are discussed in the next section.

4.1. Mechanics of carbon NTs. The nanomechanical buckling problem has a few distinctions from its

macromechanical counterpart [8]. First, the thermodynamic conditions under which the total energy of a molecular

system can be equated with the elastic strain energy are important when a linear elastic model is used (Sections 2

and 3). Second, a homogenization criterion for the averaging of material properties has to be introduced, as the

macromechanical assumption about an infinite number of atoms does not hold. Third, validity of the assumptions

used in the continuum beam model depends on the characteristics of molecular structure of carbon NTs (Section

3.1). Moreover, the physical stresses and strains depend on the local structure of NTs and the corresponding

mathematical expressions involve parameters that describe molecular structure of NTs (Sections 3.2 and 3.3).

The displacement boundary conditions are more appropriate and easier to implement for NTs than the load and

traction boundary conditions, as the force-displacement relation (3) and the applicability criteria (4) involve either a

change in NT length or the NT length itself. The moment of inertia, IN_, is shown to be a dependent parameter

(Section 3.2), which can be excluded from the formulae (5) for critical buckling load that involve only independent

parameters. Formulae (5) for the critical buckling load are applicable only to NTs of small radii when the concept of

continuum cross-sectional area is valid. The applicability of concepts such as the continuum area and the Young's

modulus depend on the NT molecular structure (Section 3). Formulae (6) for the critical buckling strain are valid

:t:These bounds depend on the estimates for NT thickness, hNT (See Table 2).
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only for the high-aspect-ratio thin NT shells (Section 3.3). Applicability of these formulae is restricted by the

conditions that depend on the length scales involved (Table 3). This analysis is valid only for the linear range of NT

deformations that exclude any plastic effects [11].

For small values of the NT radius, the continuum assumption about the cross-sectional area of the NT beam is

best satisfied as the ratio RNT-/al is close to unity. Note that the geometry of such NTs approaches a topological

anomaly (i.e., a collapse of a tubular structure) as the two smallest length scales merge into one. The concept of

Young's modulus, ENT, is also most applicable at this limit, although, its value should not depend on the size of a

specimen [6, 8]. The importance of cross-sectional area, ANT, for the understanding of NT behavior can also be

illustrated by re-writing relation (3) for the linear elastic limit, n = 1, as

F = g(RNT_ ENT)(LNT LNTo)/LNTo,

where F is the force applied to a NT, function g depends on the NT modulus, ENT, and is proportional to the NT

radius, i.e., g(RNT. ENT) _ R2NT •

Assumptions (B 1) and (B4) in the Appendix allow the use of one-dimensional theory for capturing the dominant

global response features and in deriving the elastic beam equation. Assumption (B2) restricts the direction of

displacement of carbon atoms located near the NT edges and the orientation of a single NT. Note that for the type of

loading in the assumptions (B1) and (B2), the work done by the applied load is independent of the path it follows

during deformation. Requirement (B3) about the constant cross-sectional area leads to the constant moment of

inertia, INT. It is satisfied in the absence of vibrations and temperature gradients. Note that the existence of

continuum cross-section is not required for the analysis of NT buckling, in general (Section 3.3). Carbon NTs have

very high axial stiffness that satisfies the condition (B5). Assumption (B6) implies that the beam cross-sections do

not deform in their planes and their products of inertia are negligible. It requires all cross-sections remain

perpendicular to the original image of the beam reference axis during deformation. To control stresses according to

the assumption (B9) is problematic for NTs of small radii. In the initial state of relaxed lattice structures, Halicioglu

[4] found that the radial stresses are tensile, while the tangential or circumferential stresses are compressive. These

stresses are noticeable for the NT diameters such that dNT < 1 rim, however their value is small compared to the NT

modulus. These internal stresses diminish as the diameters of NTs increase.

4.2. Hierarchical dimensional analysis. The functional relations (5) and (6) have resulted from the hierarchical

dimensional analysis that spans the three length scales associated with the size of a carbon ring and the bond length,

the NT radius characterizing the NT cross-sectional size and area and the length of NTs corresponding to the

macromolecular scale. This analysis is based on a set of inter-scalar non-dimensional quantities (see Table 3). This

study is focused on cases when the length scales are well separated. Equations (5) and (6) provide structure-

property relationships that link the buckling loads and strains of carbon NTs with geometric characteristics of their

molecular structure under certain restrictions.

A unique feature of the dimensional analysis is that it allows one to reduce the number of important parameters

that characterize a problem and identify the key non-dimensional ratios of such parameters. For example, the
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mechanicalresponseofabeamdependsontheproductofitsYoung'smodulus,ENT, and its moment of inertia, INT,

which also depends on the area, INT = ANT R2NT • This is reflected in the governing equation for the deflection of

beams (Appendix). In Section 3.2, it is proven that this important parameter is not directly relevant. Moreover, in

this analysis, the restrictions are formulated with inequalities that allow one to consider wide ranges of numerical

values for the parameters involved (see Table 1). Therefore, such analysis is applicable to NTs having different

values of geometric parameters. It also reduces the number of ME) simulations that are needed to describe a class of

carbon NTs (Section 4.3).

4.3. Guidelines for MD simulations. Yakobson et al. [2] have carried out the MD simulations of NTs having

tint = 1 rim. This NT size belongs to the transitional range between thin and thick NT shells (Table 2). Such NTs

satisfy the homogenization criterion (2) that sets a lower limit for the size of the molecular systems in the MD

simulations, which use the beam model in data reduction. For NTs with LNT > 10 rim, the tube preserved its circular

cross-section as it buckled sideways like a beam and as well as during post-buckling. The critical strain was close to

that for a beam [2]. For shorter NTs, the buckling behavior was dramatically different. Analysis in Section 3

identifies the critical parameters such as an aspect ratio, dnr/Lnr, and the inequality, dnr/Lnr < 1/10, which control

this change in the buckling mode. That critical parameter and the criteria for changes in the NT buckling mode are

applicable for other NT geometries as well. This fact extends the value of a single MD simulation to other NT

geometries.

The dimensional analysis and equations (5) and (6) suggest that the buckling behavior of NTs having the same

values of non-dimensional quantities should be similar even if the numerical values of two geometric parameters are

different. Indeed, dimensional analysis of the NT shells having finite diameters and large aspect ratios demonstrates

that their buckling behavior shown in Fig. 4 should be similar to that of nano-beams (Fig. 3). Similarly to the

macromechanical laws of similitude, a mechanical law of geometric similitude is introduced for the nanomechanics

of buckling of NT molecular structures. As a result, a single set of MD simulations for NTs within a class of similar

NTs can describe the buckling behavior of other NTs as well, according to the law of similitude (Section 3.3). This

law allows one to reduce the number of required MD simulations for a group of NTs.

4.4. Design of NT-based scanning probes. Design of NT-based sensory or scanning probes (e.g., AFM tips)

may involve selection of NTs with certain mechanical properties (e.g., beam-like behavior). Analysis of Section 3

outlines the conditions under which a NT molecular structure would have a beam-like response, which is required

for the effective NT-based AFM probes. The wide range of geometric parameters considered in Tables 2 and 3

allows for the optimization of such probes. NTs with the smallest diameters (the class of carbon nano-beams in Fig.

5) are the closest to the beams as far as their properties and the structure are concerned. In experiments, the

direction of loading may not be easily controlled for such NTs at the nano-scale level as the orientation of a single

NT, its bonding to the testing device and the control of testing nano-devices are problematic [5].

Implementation of the nano-beam model in data reduction for the sensory experiments that depend on the state of

stress in carbon NTs can be affected by the violation of the "stress-free beam" assumption (B7) discussed in the

Appendix. It is known that the Young's modulus, ENT, of beam-like NTs can be evaluated as a second derivative of
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theelasticstrainenergy,Eelastic, with respect to the axial strain [2, 8]. The macroscopic expression for the potential

energy can be given in terms of the elastic energy: Eelastic = O'ijEij/2. For NTs having small radii, RNr, the stress state

would be affected by the NT curvature [4]. This fact limits the applicability of this approach for the data reduction.

Experiments that are sensitive to the Poisson's ratio of carbon NTs may also benefit from the consideration of

size effects. The Poisson's ratio of graphite is 0.19, same as from the radius reduction in the MD simulations of

Yakobson et al. [2]. However, Halicioglu [4] showed that this value is smaller, for NTs with the radii that less than

0.5 nm, and then it reaches a constant for larger NTs. Since the Poisson's ratio is an intrinsic property of a material,

it may also serve as an indicator for the nano-beam behavior. As a result, the model applicability map (Fig. 5) may

also indicate the structural parameters that define a distinct carbon material, the carbon nano-beam, which has

intrinsic properties different from those of a NT shell.

5. Conclusions. Analysis of validity of continuum beam theory for the constitutive behavior of carbon NTs and

other nano-rods of non-carbon materials is presented along with the applicability criteria and a model applicability

map for the Euler beam model. In particular, the continuum beam model can be used for the qualitative analysis of

carbon NTs when

- the homogenization criterion, LNT/al > 1/10,

- the aspect ratio criterion, dNT/LNT < 1/10, and

- a criterion for the linearity of strains, (LNT LNTo)/LNTo << 1,

are satisfied. These criteria set certain requirements for the MD simulations as well. The coupling between the last

two applicability criteria for geometric parameters is examined to show the ranges of allowable aspect ratios for

different NT diameters. The key non-dimensional parameters that control the onset of NT buckling and the change

in buckling modes are identified by the dimensional analysis of NT buckling and the structural parameters

characterizing NT molecules. It is shown that the moment of inertia, 1Nr, is relevant to NT buckling only indirectly.

A set of explicit restrictions on these non-dimensional parameters and the applicability of beam models in the data

reduction for MD simulations are presented.

A mechanical law of geometric similitude for NT buckling and its generalization are presented for different

molecular structures that have the same aspect ratio, dNr/LNr. A model applicability map for two classes of beam-

like NTs is constructed for dissimilar ranges of non-dimensional parameters. The law of similitude and the

applicability map provide a guide for the extension of applicability of MD simulations from one NT structure to a

broad range of NT geometries. Among various NTs that have drastically different geometric properties, a class of

carbon nano-beams is identified at the limit of decreasing NT radii. The design of NT-based scanning probes is

discussed. Formulae for the buckling loads and strains are tailored for the two classes of NTs and compared with

the data provided by the MD studies.

In the hierarchical dimensional analysis, three length scales are represented (i.e., the carbon ring, NT diameter

and its length). Such analysis provides a number of functional relations between the physical parameters, O-c,.and

ec,., and the geometric parameters that form fewer non-dimensional quantities. It results in structure-property

relationships that link the buckling strains and critical loads for carbon NTs with the geometric characteristics of

their molecular structure. A methodology for the extension of continuum models across the length scales involved
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is developedalongwitha setof criteriathatshouldbesatisfiedandthehierarchicaldimensionalanalysisthat

providesthekeyparametersandtherangesoftheirvalues,whichcontrolthephenomenonofNTbuckling.
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Appendix: The Euler Beam Problem

The beam equilibrium equations for the deflection, w(x), are given by

E1 d2W+ pw=O,
dx 2

where E is the Young's modulus, I is the moment of inertia and P is the load [8]. Derivation of this equation is based

on the following assumptions

B 1) deformation of the beam is linear elastic,

15



B2)thedirectionoftheappliedloadremainsconstantduringdeformation,

B3)thecross-sectionofthebeamdoesnotvaryalongitslength,
B4)thelength,L, is much larger than the radius, R, of the beam,

B5) the axial stiffness of the beam is large compared to the bending stiffness,

B6) all deformations of the column occur in the X-Y plane and all cross-sections of the beam remain planar

during deformation,

B7) transverse shear deformations are negligible in the beam,

B8) strains in the column are small, but the rotations of the cross-section may be finite,

B9) all stresses are negligible as compared to the axial and shear stresses that act on each cross-section of the

beam and in the X-Y plane.

A general solution of the governing equilibrium equation is

w(x) = A sin kx + B cos kx + Cx + D

where k2=p/EI and A, B, C, D are constants, those values are determined by the boundary conditions. Typical

nontrivial solutions, Pc,- = n2_EI/L 2, are available for various beams. Here, n = 1, 2 .... ; and Pc,- is the critical or

Euler load (for n = 1) for a beam with free ends. For pin-joined beams, the critical load is four times lower. For a

beam with the ends fixed, it is four times higher (see Timoshenko and Gere [8]).
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Figure 1. Schematic of a carbon lattice sheet composed of carbon atoms in a periodic hexagonal arrangement. The

"thickness" of highly directional covalent bonds, which are formed with electrons from each atom, may approximate

the effective thickness of lattice.
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Figure 2. Schematic of a carbon ring, a cross-section of an arm-chair carbon NT and a carbon NT which represent

the three length scales involved in the NT buckling problem. Separation and collapse of these length scales result in

different classes of NTs.
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Figure 3. Dependence of the critical buckling strain of carbon NTs on their aspect ratio for various NT diameters.

The curve corresponding to the carbon nano-beam limit (dNr = 0.4 nm) lies below the max-strain limit (0.02) for all

NT lengths, while other curves require large lengths for the model applicability.
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Figure 4. Dependence of the critical buckling strain of carbon NTs on their aspect ratio for relatively large NT
diameters. The larger the NT diameter, the larger length of NTs is required for the applicability of the continuum

beam model, i.e., the critical strains should stay below the max-strain limit of 2%.

19



..=

Z

dlnax

1/100 1/20 1/10

Aspect Ratio, dNT/LNT

Figure 5. A model applicability map for the continuum beam model depending on non-dimensional ratios of
geometric parameters, which are found by the scaling analysis of the constitutive behavior of carbon NTs that

belong to two distinct classes of structures and geometries.
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