
SeaWiFS Postlaunch Technical Report Series

Stanford B. Hooker and Elaine R. Firestone, Editors

Volume 6, SeaWiFS Postlaunch Technical Report Series
Cumulative Index: Volumes 1–5

Elaine R. Firestone and Stanford B. Hooker

November 2000
Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the lead center for NASA's scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA's institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- **TECHNICAL PUBLICATION.** Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA’s counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- **TECHNICAL MEMORANDUM.** Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- **CONTRACTOR REPORT.** Scientific and technical findings by NASA-sponsored contractors and grantees.

- **CONFERENCE PUBLICATION.** Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- **SPECIAL PUBLICATION.** Scientific, technical, or historical information from NASA programs, projects, and mission, often concerned with subjects having substantial public interest.

- **TECHNICAL TRANSLATION.** English-language translations of foreign scientific and technical material pertinent to NASA’s mission.

Specialized services that complement the STI Program Office’s diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results... even providing videos.

For more information about the NASA STI Program Office, see the following:

- E-mail your question via the Internet to help@sti.nasa.gov
- Fax your question to the NASA Access Help Desk at (301) 621-0134
- Telephone the NASA Access Help Desk at (301) 621-0390
- Write to: NASA Access Help Desk NASA Center for AeroSpace Information 7121 Standard Drive Hanover, MD 21076–1320
SeaWiFS Postlaunch Technical Report Series

Stanford B. Hooker, Editor
NASA Goddard Space Flight Center, Greenbelt, Maryland

Elaine R. Firestone, Senior Technical Editor
SAIC General Sciences Corporation, Beltsville, Maryland

Volume 6, SeaWiFS Postlaunch Technical Report Series
Cumulative Index: Volumes 1–5

Elaine R. Firestone
SAIC General Sciences Corporation, Beltsville, Maryland

Stanford B. Hooker
Goddard Space Flight Center, Greenbelt, Maryland

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

November 2000
The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) is the follow-on ocean color instrument to the Coastal Zone Color Scanner (CZCS), which ceased operations in 1986, after an eight-year mission. SeaWiFS was launched on 1 August 1997, on the OrbView-2 satellite, built by Orbital Sciences Corporation (OSC). The SeaWiFS Project at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC), undertook the responsibility of documenting all aspects of this mission, which is critical to the ocean color and marine science communities. The start of this documentation was titled the SeaWiFS Technical Report Series, which ended after 43 volumes were published. A follow-on series was started, titled the SeaWiFS Postlaunch Technical Report Series. This particular volume serves as a reference, or guidebook, to the previous five volumes and consists of four sections including: an errata, an index to key words and phrases, a list of acronyms used, and a list of all references cited. The editors will publish a cumulative index of this type after every five volumes.

1. INTRODUCTION

This is the first in a series of indexes, published as a separate volume in the SeaWiFS Postlaunch Technical Report Series, and includes information found in the first five volumes of the series. The SeaWiFS Postlaunch Technical Report Series has been written under the National Aeronautics and Space Administration's (NASA) Technical Memorandum (TM) numbers 1998-206892, 1999-206892, and 2000-206892, with the year part of the TM number changing with each calendar year of its existence. The volume numbers, authors, and titles of the volumes covered in this index are:

This volume serves as a reference, or guidebook, to the preceding volumes of the so-called Postlaunch Series. It consists of three main sections: a cumulative index to key words and phrases, a glossary of acronyms, and a bibliography of all references cited in the series. In addition, an errata section has been added to address issues and needed corrections which have come to the editors' attention since the volumes were first published.

The nomenclature of the index is a familiar one, in the sense that it is a sequence of alphabetical entries, but it uses a unique format because multiple volumes are involved. Unless indicated otherwise, the index entries refer to some aspect of the SeaWiFS instrument or project. An index entry is composed of a keyword or phrase followed by an entry field that directs the reader to the possible locations where a discussion of the keyword can be found. The entry field is normally made up of a volume identifier shown in bold face, followed by a page identifier, which is always enclosed in parentheses:

keyword, volume(pages).

If an entry is the subject of an entire volume, the volume field is shown in slanted type without a page field:

keyword, Vol. #.

An entry can also be the subject of a complete chapter. In this instance, both the volume number and chapter number appear without a page field:

keyword, volume(ch. #).

Figures or tables that provide particularly important summary information are also indicated as separate entries in the page field (even if they fall within an already specified page range). In this case, the figure or table number is given with the page number on which it appears:

keyword, volume(Fig. # p. #).
or

keyword, volume(Table # p. #).

2. ERRATA

In Table 11 of Vol. 1, the value for p_1 for Channel 6 should read 1.12093×10^{-3}, not 1.12093×10^{-4}.
The authorship in the citation of Volume 4, listed on the last page of that volume should be "Johnson, B.C., E.A. Early, R.E. Eplee, Jr., R.A. Barnes, and R.T. Caffrey".

Note: Since the issuance of previous volumes, a number of the references cited have changed their publication status, e.g., they have gone from "submitted," "accepted," or "in press" to printed matter. In other instances, some part (or parts) of the citation, e.g., the title or year of publication, has changed or was printed incorrectly. Listed below are the references in question as they were cited in one or more of the first five volumes in the series, along with how they now appear in the references section of this volume.

Original Citation

Revised Citation

Original Citation

Revised Citation

Original Citation

Revised Citation

Original Citations

Revised Citation

Revised Citation

Original Citation

Revised Citation
Cumulative Index

Unless otherwise indicated, the index entries that follow refer to some aspect of the SeaWiFS instrument or project.

- A -

AMT-5, Vol. 2; 3(11).

ammonium uptake, 2(36-37).

biogasses, 2(39).

biogenic sulphur, 2(39, Fig. 21 p. 38).

bridge log, 2(Table C2 p. 57-65).

CHN sample log, 2(Table M1 p. 94).

cruise participants, 2(108-109).

CTD station, 2(4-8, Fig. 1 p. 5).

cruise strategy, 2(2-4, Table 1 p. 3).

DOC buffer log, 2(Table C1 p. 57).

FRRF, 2(27, Table H1 pp. 78-85).

Guamidinium buffer log, 2(Table O2 p. 107).

in-water optics, 2(19-24, Fig. 14 p. 23).

LoCNESS station log, 2(Table E3 p. 72).

microzooplankton, 2(41-43, Fig. 22 p. 42, Table N1 p. 95).

nitrate uptake, 2(36-37, Table K1 p. 92).

nutrients, 2(35-36, Table J1 p. 92).

OPC sample log, 2(Table L1 p. 92-93).

phytoplankton pigment distributions, 2(31-32, Fig. 18 p. 33).

primary productivity, 2(32, 35).

SeaBOARR, 3(2-17, Table 1 p. 3, Fig. 1 p. 4, Table 2 p. 4, Figs. 2 p. 5, Fig. 3 p. 6, Figs. 4-5 p. 7, Figs. 6-7 pp. 8-9, Figs. 8-9 pp. 10-11, Figs. 10-12 pp. 12-13, Fig. 13 p. 15, Figs. 14-15 p. 17).

- J, K, L -

LoCNESS station log, 2(Table E3 p. 72).

- M, N, O -

optics,

in-water, 2(19-24, Fig. 14 p. 23).

primary productivity, 2(32, 35).

SeaBOARR, 3(2-17, Table 1 p. 3, Fig. 1 p. 4, Table 2 p. 4, Figs. 2 p. 5, Fig. 3 p. 6, Figs. 4-5 p. 7, Figs. 6-7 pp. 8-9, Figs. 8-9 pp. 10-11, Figs. 10-12 pp. 12-13, Fig. 13 p. 15, Figs. 14-15 p. 17).

- P -

phytoplankton pigment distributions, 2(31-32, Fig. 18 p. 33).

primary productivity, 2(32, 35).

SeaBOARR, 3(2-17, Table 1 p. 3, Fig. 1 p. 4, Table 2 p. 4, Figs. 2 p. 5, Fig. 3 p. 6, Figs. 4-5 p. 7, Figs. 6-7 pp. 8-9, Figs. 8-9 pp. 10-11, Figs. 10-12 pp. 12-13, Fig. 13 p. 15, Figs. 14-15 p. 17).

- Q, R -

radiometer, see SXR.

radiometric calibration, Vol. 4; Vol. 5.

1993 calibration, 4(2-6, Tables 1-3 p. 3, Table 4 p. 4); 5(13, Table 5 p. 13, Figs. 6-7 p. 15, Table 15 p. 18).

1997 calibration, 5(13, Table 5 p. 13, Figs. 6-7 p. 15, Table 15 p. 18).

measurement procedures, 4(9-14, Table 8 p. 13).

SeaWiFS, calibration and validation of, 2(43-46, Fig. 23 p. 45-46).

station filtration log, 2(Table 15 pp. 85-91).

sun photometer, 2(25-27, Figs. 28-30, Table F1 p. 73-77).

surface optics, 2(24-25, Figs. 15 p. 25).

TOPEX, 2(13-14, Figs. 10-11 p. 15).

uranium optics, 2(27).

XBT casts, 2(Table D1 pp. 65-67).

XOBT cast log, 2(Table G1 p. 77).

zooplankton, 2(39-41, Table M1 p. 94).

Atlantic Meridional Transect, see AMT-5.

atmospheric transmittance, 5(9, Figs. 4-5 pp. 10-11).

diffuser, 5(9-11, Tables 1-4 pp. 11-12).

detector-based radiometry, see SXR.

ground measurements, 5(11-12).

- H, I -

integrating sphere sources, Vol. 1; Vol. 4.

interference filter, see SXR.

instrumentation,

AMT cruise, 2(19-25, 27).

SeaBoarr, 3(2-17, Table 1 p. 3, Fig. 1 p. 4, Table 2 p. 4, Figs. 2 p. 5, Fig. 3 p. 6, Figs. 4-5 p. 7, Figs. 6-7 pp. 8-9, Figs. 8-9 pp. 10-11, Figs. 10-12 pp. 12-13, Fig. 13 p. 15, Figs. 14-15 p. 17).

- J, K, L -

LoCNESS station log, 2(Table E3 p. 72).

- M, N, O -

optics,

in-water, 2(19-24, Fig. 14 p. 23).

primary productivity, 2(32, 35).

SeaBOARR, 3(2-17, Table 1 p. 3, Fig. 1 p. 4, Table 2 p. 4, Figs. 2 p. 5, Fig. 3 p. 6, Figs. 4-5 p. 7, Figs. 6-7 pp. 8-9, Figs. 8-9 pp. 10-11, Figs. 10-12 pp. 12-13, Fig. 13 p. 15, Figs. 14-15 p. 17).

- P -

phytoplankton pigment distributions, 2(31-32, Fig. 18 p. 33).

primary productivity, 2(32, 35).

SeaBOARR, 3(2-17, Table 1 p. 3, Fig. 1 p. 4, Table 2 p. 4, Figs. 2 p. 5, Fig. 3 p. 6, Figs. 4-5 p. 7, Figs. 6-7 pp. 8-9, Figs. 8-9 pp. 10-11, Figs. 10-12 pp. 12-13, Fig. 13 p. 15, Figs. 14-15 p. 17).

- Q, R -

radiometer, see SXR.

radiometric calibration, Vol. 4; Vol. 5.

1993 calibration, 4(2-6, Tables 1-3 p. 3, Table 4 p. 4); 5(13, Table 5 p. 13, Figs. 6-7 p. 15, Table 15 p. 18).

1997 calibration, 5(13, Table 5 p. 13, Figs. 6-7 p. 15, Table 15 p. 18).

measurement procedures, 4(9-14, Table 8 p. 13).

SeaWiFS, calibration and validation of, 2(43-46, Fig. 23 p. 45-46).

station filtration log, 2(Table 15 pp. 85-91).

sun photometer, 2(25-27, Figs. 16-17 pp. 28-30, Table F1 p. 73-77).

surface optics, 2(24-25, Figs. 15 p. 25).

TOPEX, 2(13-14, Figs. 10-11 p. 15).

uranium optics, 2(27).

XBT casts, 2(Table D1 pp. 65-67).

XOBT cast log, 2(Table G1 p. 77).

zooplankton, 2(39-41, Table M1 p. 94).

Atlantic Meridional Transect, see AMT-5.

atmospheric transmittance, 5(9, Figs. 4-5 pp. 10-11).

diffuser, 5(9-11, Tables 1-4 pp. 11-12).

- B, C, D -
detector-based radiometry, see SXR.

- E, F, G -
ground measurements, 5(11-12).
SeaBOARR cont.
- SeaSAS, 3(7-8, Figs. 4-6 pp. 7-8, Table C1 pp. 30-31).
- THOR, 3(6, Fig. 4 p. 7).
- WISPER, 3(9-10, Figs. 7-8, pp. 9-10, 18, Fig. 16 p. 19, Table D1 p. 32).

SeaFALLS station log, 2(Table E2 pp. 69-71).
SeaOPS station log, 2(Table E1 pp. 67-69).
SeaWiFS Bio-Optical Algorithm Round-Robin, see SeaBOARR.
SeaWiFS Transfer Radiometer, see SXR.

solar radiation-based calibration, 5(1-21).
calibration coefficients, 5(13, Tables 5-9 pp. 17-18).
reflectance equations, 5(3-6).
risks and disadvantages, 5(2).
solar irradiances, 5(7-9, Tables 10-16 pp. 17-19).
band-averaged, 5(16, Table 10 p. 17, Table 12 p. 17, Table 14 p. 18).
Fraunhofer lines, 5(19-21, Fig. 9 p. 20, Table 18 p. 21).
MODTRAN, 5(16, Tables 10-11 p. 17, Table 16 p. 19).
SeaWiFS, 5(Table 16 p. 19).
Thuiller, 5(16, Tables 14-17 pp. 18-19, Table 17 p. 19).
Wehrli, 5(13-16, Table 7 p. 14, Table 9 p. 14, Table 16 p. 19).
spectral radiance, 4(19-21, Fig. 3 p. 18, Figs. 4-5 p. 20, Tables 11-13 p. 21).
see also SXR.
spectral response, 5(7, Fig. 3 p. 8, Fig. 8 p. 19, 19-21).
sun photometer, 2(25-27, Figs. 16-17 pp. 28-30, Table F1 p. 73-77).

SRX, Vol. 1; Vol. 4.
description of, 1(1-2, Table 1 p. 2).

SeaSAS, 3(7-8, Figs. 4-6 pp. 7-8, Table C1 pp. 30-31).
SeaOPS station log, 2(Table E1 pp. 67-69).
SeaWiFS Bio-Optical Algorithm Round-Robin, see SeaBOARR.
SeaWiFS Transfer Radiometer, see SXR.

solar radiation-based calibration, 5(1-21).
calibration coefficients, 5(13, Tables 5-9 pp. 13-14, Figs. 6-7 p. 15, Tables 10-15 pp. 17-18).
reflectance equations, 5(3-6).
risks and disadvantages, 5(2).
solar irradiances, 5(7-9, Tables 10-16 pp. 17-19).
band-averaged, 5(16, Table 10 p. 17, Table 12 p. 17, Table 14 p. 18).
Fraunhofer lines, 5(19-21, Fig. 9 p. 20, Table 18 p. 21).
MODTRAN, 5(16, Tables 10-11 p. 17, Table 16 p. 19).
SeaWiFS, 5(Table 16 p. 19).
Thuiller, 5(16, Tables 14-17 pp. 18-19, Table 17 p. 19).
Wehrli, 5(13-16, Table 7 p. 14, Table 9 p. 14, Table 16 p. 19).
spectral radiance, 4(19-21, Fig. 3 p. 18, Figs. 4-5 p. 20, Tables 11-13 p. 21).
see also SXR.
spectral response, 5(7, Fig. 3 p. 8, Fig. 8 p. 19, 19-21).
sun photometer, 2(25-27, Figs. 16-17 pp. 28-30, Table F1 p. 73-77).

SRX, Vol. 1; Vol. 4.
description of, 1(1-2, Table 1 p. 2).
GLOSSARY

6S Not an acronym, but an atmospheric photochemical and radiative transfer model.

- **A** -
 - A/D Analog-to-Digital
 - AAOT *Acqua Alta* Oceanographic Tower
 - AC Alternating Current
 - ADCP Acoustic Doppler Current Profiler
 - AERONET Aerosol Robotic Network
 - AMT Atlantic Meridional Transect
 - AMT-5 The Fifth AMT (cruise)
 - AOT Aerosol Optical Thickness
 - ASCII American Standard Code for Information Interchange
 - ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer
 - ASTM American Society for Testing and Materials
 - ATAS Ambient Temperature Plate Assembly
 - ATSR Along-Track Scanning Radiometer
 - AU Astronomical Unit
 - AVHRR Advanced Very High Resolution Radiometer

- **B** -
 - BAS British Antarctic Survey
 - BCD Binary Coded Decimal
 - BNC Bayonet Nut Connector
 - BPA Back Plate Assembly
 - BRDF Bidirectional Reflectance Distribution Function
 - BSST Bulk Sea Surface Temperature

- **C** -
 - C-Falls Software package for logging SeaFALLS data.
 - C-mount Not an acronym, but a mounting system for camera lenses.
 - C-OPS Combined Operations
 - CANIGO Canary Islands, Azores, Gibraltar Observations
 - CC Cloud Cover
 - CCMR Colorado Center for Astrodynamics Research
 - CCD Charge-Coupled Device
 - CCMS Centre for Coastal and Marine Studies
 - CCN Cloud Condensation Nuclei
 - CCPO Center for Coastal Physical Oceanography
 - CDOM Colored Dissolved Organic Matter
 - CEC Commission of the European Communities
 - CERT Calibration Evaluation and Radiometric Testing
 - CHN Carbon-Hydrogen-Nitrogen
 - CNR *Consiglio Nazionale delle Ricerche* (National Research Council)
 - CoASTS Coastal Atmosphere and Sea Time Series
 - COTS Commercial Off-The-Shelf
 - CT Cylindrical Tube or Conductivity and Temperature, depending on usage.
 - CTD Conductivity, Temperature, and Depth

- **D** -
 - DalBOSS Dalhousie Buoyant Optical Surface Sensor
 - DalSAS Dalhousie SeaWiFS Aircraft Simulator
 - DARR-94 Data Analysis Round-Robin
 - DAS Data Acquisition Sequence
 - DATA Not an acronym, but a designator for the Satlantic, Inc., series of power and telemetry units.
 - DC Direct Current
 - DCM Deep Chlorophyll Maximum
 - DCP Data Collection Platform
 - DIO Digital Input-Output
 - DIR Not an acronym, but a designator for the Satlantic, Inc., series of directional units.
 - DMA Dimethylamine
 - DMM Digital Multimeter
 - DMS Dimethylsulfide
 - DMSP Dimethylsulphoniopropionate
 - DMSPd Dissolved DMSP
 - DMSPp DMSP within phytoplankton cells
 - DNA Deoxynucleic Acid
 - DOC Dissolved Organic Carbon
 - DPA Detector Plate Assembly
 - DUT Device Under Test
 - DVM Digital Voltmeter

- **E** -
 - East
 - EDTA Ethylenediaminetetraacetic Acid
 - EEZ Exclusive Economic Zone
 - e-mail Electronic Mail
 - EOS Earth Observing System
 - EP Entrance Pupil
 - ERS-2 The Second Earth Resources Satellite
 - EU European Union
 - EUC Equatorial Under Current

- **F** -
 - FASCAL Facility for Automated Spectroradiometric Calibrations (NIST)
 - FEL Not an acronym, but a lamp designator.
 - FET Field-Effect Transistor
 - FIGD-IC Flow Injection Gas-Diffusion Coupled to Ion Chromatography
 - F-mount Not an acronym, but a mounting system for camera lenses.
 - FRRF Fast Repetition Rate Fluorometer
 - FS Field Stop

- **G** -
 - GF/F Not an acronym, but a specific type of glass fiber filter manufactured by Whatman.
 - GMT Greenwich Mean Time
 - GOES-8 The Eighth Geostationary Operational Environmental Satellite
 - GPIB General Purpose Interface Bus
 - GSE Ground Support Equipment
 - GSFC Goddard Space Flight Center

- **H** -
 - HACR High-Accuracy Cryogenic Radiometer
 - HP Hewlett-Packard
 - HPLC High Performance Liquid Chromatography
 - HTCO High Temperature Catalytic Oxidation

- I -

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>IAD</td>
<td>Ion-Assisted Beam Deposition</td>
</tr>
<tr>
<td>IC</td>
<td>Integrated Circuit</td>
</tr>
<tr>
<td>ID</td>
<td>Inside Diameter</td>
</tr>
<tr>
<td>IDL</td>
<td>Interactive Data Language</td>
</tr>
<tr>
<td>IESEE</td>
<td>Institute of Electrical and Electronic Engineers</td>
</tr>
<tr>
<td>IF</td>
<td>Interference Filter</td>
</tr>
<tr>
<td>ILX</td>
<td>Not an acronym.</td>
</tr>
<tr>
<td>IOP</td>
<td>Inherent Optical Property</td>
</tr>
<tr>
<td>IOS</td>
<td>(SOC) Institute of Oceanographic Sciences</td>
</tr>
<tr>
<td>ISDGM</td>
<td>Istituto per lo Studio della Dinamica delle Grandi Masse (Italy)</td>
</tr>
<tr>
<td>ISIC</td>
<td>Integrating Sphere Irradiance Collector</td>
</tr>
</tbody>
</table>

- J -

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>JCR</td>
<td>(RRS) James Clark Ross</td>
</tr>
<tr>
<td>JRC</td>
<td>Joint Research Centre</td>
</tr>
</tbody>
</table>

- K, L -

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>LANDSAT</td>
<td>Land Satellite</td>
</tr>
<tr>
<td>LLR</td>
<td>Low Level Radiance</td>
</tr>
<tr>
<td>LoCNESS</td>
<td>Low-Cost NASA Environmental Sampling System</td>
</tr>
<tr>
<td>LS</td>
<td>Light Stability</td>
</tr>
<tr>
<td>LSB</td>
<td>Least Significant Bit</td>
</tr>
<tr>
<td>LXR</td>
<td>LANDSAT Transfer Radiometer</td>
</tr>
</tbody>
</table>

- M -

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA</td>
<td>Methylamine</td>
</tr>
<tr>
<td>METEOSAT</td>
<td>Meteorological Satellite</td>
</tr>
<tr>
<td>MFR-6</td>
<td>Multi-Filter Rotating Shadow-Band Radiometer</td>
</tr>
<tr>
<td>miniNESS</td>
<td>miniature NASA Environmental Sampling System</td>
</tr>
<tr>
<td>MISR</td>
<td>Multigle Imaging Spectroradiometer</td>
</tr>
<tr>
<td>MMA</td>
<td>Mirror Mount Assembly or Monomethylamine, depending on usage.</td>
</tr>
<tr>
<td>MOBY</td>
<td>Marine Optical Buoy</td>
</tr>
<tr>
<td>MODIS</td>
<td>Moderate Resolution Imaging Spectroradiometer</td>
</tr>
<tr>
<td>MODTRAN</td>
<td>Not an acronym, but an atmospheric photochemical and radiative transfer model.</td>
</tr>
<tr>
<td>MSB</td>
<td>Most Significant Bit</td>
</tr>
<tr>
<td>MVDS</td>
<td>Multichannel Visible Detector System</td>
</tr>
</tbody>
</table>

- N -

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>North</td>
</tr>
<tr>
<td>NASA</td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td>NEC</td>
<td>Not an acronym, but the present name for the Nippon Electric Company (Japan)</td>
</tr>
<tr>
<td>NECC</td>
<td>North Equatorial Counter Current</td>
</tr>
<tr>
<td>NEUC</td>
<td>North Equatorial Undercurrent</td>
</tr>
<tr>
<td>NIR</td>
<td>Near-Infrared</td>
</tr>
<tr>
<td>NIST</td>
<td>National Institute of Standards and Technology</td>
</tr>
<tr>
<td>NOAA</td>
<td>National Oceanic and Atmospheric Administration</td>
</tr>
<tr>
<td>NRSR</td>
<td>Normalized Remote Sensing Reflectance</td>
</tr>
</tbody>
</table>

- O -

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCI</td>
<td>Ocean Color Irradiance</td>
</tr>
<tr>
<td>OCR</td>
<td>Ocean Color Radiance</td>
</tr>
<tr>
<td>OCTS</td>
<td>Ocean Color Temperature Scanner</td>
</tr>
<tr>
<td>OD</td>
<td>Outside Diameter</td>
</tr>
<tr>
<td>OPC</td>
<td>Optical Plankton Counter</td>
</tr>
<tr>
<td>OrbView-2</td>
<td>Not an acronym, but the current name for the SeaStar satellite.</td>
</tr>
<tr>
<td>OSC</td>
<td>Orbital Sciences Corporation</td>
</tr>
</tbody>
</table>

- P -

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-I</td>
<td>Photosynthesis-Irradiance</td>
</tr>
<tr>
<td>PAR</td>
<td>Photosynthetically Available Radiation</td>
</tr>
<tr>
<td>PC</td>
<td>Personal Computer</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>PID</td>
<td>Proportional, Integral, Differential</td>
</tr>
<tr>
<td>PM</td>
<td>Particulate Matter</td>
</tr>
<tr>
<td>PML</td>
<td>Plymouth Marine Laboratory</td>
</tr>
<tr>
<td>POC</td>
<td>Particulate Organic Carbon</td>
</tr>
<tr>
<td>PRIME</td>
<td>Plankton Reactivity in the Marine Environment</td>
</tr>
<tr>
<td>PRT</td>
<td>Platinum Resistance Temperature (sensor)</td>
</tr>
<tr>
<td>PST</td>
<td>Pacific Standard Time</td>
</tr>
<tr>
<td>PSU</td>
<td>Practical Salinity Units</td>
</tr>
<tr>
<td>PTFE</td>
<td>Polyfluorotetraethylene</td>
</tr>
<tr>
<td>PVC</td>
<td>Polyvinylchloride</td>
</tr>
<tr>
<td>RAM</td>
<td>Random Access Memory</td>
</tr>
<tr>
<td>RE</td>
<td>Ramsden Eyepiece</td>
</tr>
<tr>
<td>RL</td>
<td>Relay Lens</td>
</tr>
<tr>
<td>RMSD</td>
<td>Root Mean Square Difference</td>
</tr>
<tr>
<td>ROSSA</td>
<td>Radiometric Observations of the Sea Surface and Atmosphere</td>
</tr>
<tr>
<td>RRS</td>
<td>Royal Research Ship</td>
</tr>
<tr>
<td>RSG</td>
<td>(PML) Remote Sensing Group</td>
</tr>
<tr>
<td>RSMAS</td>
<td>Rosenstiel School for Marine and Atmospheric Science</td>
</tr>
<tr>
<td>RSR</td>
<td>Relative Spectral Response</td>
</tr>
<tr>
<td>RTV</td>
<td>Room Temperature Vulcanizing</td>
</tr>
<tr>
<td>RVS</td>
<td>(BAS) Research Vessel Services</td>
</tr>
</tbody>
</table>

- Q, R -

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>South</td>
</tr>
<tr>
<td>S/N</td>
<td>Serial Number</td>
</tr>
<tr>
<td>SACZ</td>
<td>Sub-Antarctic Convergence Zone</td>
</tr>
<tr>
<td>SAII</td>
<td>Space Applications Institute</td>
</tr>
<tr>
<td>SBE</td>
<td>Sea-Bird Electronics</td>
</tr>
<tr>
<td>SBRC</td>
<td>Santa Barbara Research Center (Raytheon)</td>
</tr>
<tr>
<td>SBRS</td>
<td>Santa Barbara Remote Sensing</td>
</tr>
<tr>
<td>SBUV</td>
<td>Solar Backscatter Ultraviolet Radiometer</td>
</tr>
<tr>
<td>SDY</td>
<td>Sequential Day of the Year</td>
</tr>
<tr>
<td>SeaACE</td>
<td>SeaWiFS Atlantic Characterization Experiment</td>
</tr>
<tr>
<td>SeaBASS</td>
<td>SeaWiFS Bio-Optical Archive and Storage System</td>
</tr>
<tr>
<td>SeaBOARR</td>
<td>SeaWiFS Bio-Optical Algorithm Round-Robin</td>
</tr>
<tr>
<td>SeaBOARR-98</td>
<td>The First SeaBOARR (held in 1998)</td>
</tr>
<tr>
<td>SeaBOSS</td>
<td>SeaWiFS Buoyant Optical Surface Sensor</td>
</tr>
<tr>
<td>SeaFALLS</td>
<td>SeaWiFS Free-Falling Advanced Light Level Sensors</td>
</tr>
<tr>
<td>SeaOPS</td>
<td>SeaWiFS Optical Profiling System</td>
</tr>
<tr>
<td>SeaSAS</td>
<td>SeaWiFS Surface Acquisition System</td>
</tr>
</tbody>
</table>
SeaStar Not an acronym, but the former name of the satellite on which SeaWiFS was launched, now known as OrbView-2.
SeaSURF SeaWiFS Square Underwater Reference Frame
SeaWiFS Sea-viewing Wide Field-of-view Sensor
SEC South Equatorial Current
SEM Scanning Electronic Microscopy
SEUC South Equatorial Undercurrent
SIMBIOS Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies
SIRREX SeaWiFS Intercalibration Round-Robin Experiment
SIRREX-1 The First SIRREX (July 1992)
SIRREX-2 The Second SIRREX (June 1993)
SIRREX-3 The Third SIRREX (September 1994)
SIRREX-4 The Fourth SIRREX (May 1995)
SIRREX-5 The Fifth SIRREX (July 1996)
SIS Spherical Integrating Source
SMSR SeaWiFS Multichannel Surface Reference
SOC Southampton Oceanography Centre
SOMARE Sampling, Observations and Modelling of Atlantic Regional Ecosystems
SOOP SeaWiFS Ocean Optics Protocols
SOSSTR Ship of Opportunity Sea Surface Temperature Radiometer
SPMR SeaWiFS Profiling Multichannel Radiometer
SQM SeaWiFS Quality Monitor
SQM-II The Second Generation SQM
SS Sea State
SSE Size-of-Source Effect
SSH Sea Surface Height
SSM/I Special Sensor for Microwave/Imaging
SSST Sea Surface Skin Temperature
SXR SeaWiFS Transfer Radiometer

TMA Trimethylamine
TOC Total Organic Carbon
TOPEX Topography Experiment
TSG Thermosalinograph
TSM Total Suspended Matter
TTL Transistor–Transistor Logic

UIC Underway Instrumentation and Control
UK United Kingdom
UNC Unified Course
UOR Undulating Oceanographic Recorder
UPS Uninterruptable Power Supply

VAFB Vandenberg Air Force Base
VisSCF Visible Spectral Comparator Facility (NIST)
VXR Visible Transfer Radiometer

WETlabs Western Environmental Technology Laboratories (Inc.)
WiSPER Wire-Stabilized Profiling Environmental Radiometer
WM Spherical Mirror Wedge Section
WMO World Meteorological Organization
WOCE World Ocean Circulation Experiment
WS Wind Speed

XBT Expendable Bathythermograph
XOTD Expendable Optical, Temperature, and Depth

YB71 Not an acronym, but a type of paint for solar diffusers.
REFERENCES

E.R. Firestone and S.B. Hooker

—, E —

E.R. Firestone and S.B. Hooker

THE SEAWIFS POSTLAUNCH
TECHNICAL REPORT SERIES

Vol. 1

Vol. 2

Vol. 3

Vol. 4

Vol. 5

Vol. 6
REPORT DOCUMENTATION PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

<table>
<thead>
<tr>
<th>1. AGENCY USE ONLY (Leave blank)</th>
<th>2. REPORT DATE</th>
<th>3. REPORT TYPE AND DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>November 2000</td>
<td>Technical Memorandum</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SeaWiFS Postlaunch Technical Report Series</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elaine R. Firestone and Stanford B. Hooker</td>
</tr>
<tr>
<td>Series Editors: Stanford B. Hooker and Elaine R. Firestone</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory for Hydrospheric Processes</td>
</tr>
<tr>
<td>Goddard Space Flight Center</td>
</tr>
<tr>
<td>Greenbelt, Maryland 20771</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td>Washington, D.C. 20546-0001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.R. Firestone: SAIC General Sciences Corporation, Beltsville, Maryland</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12a. DISTRIBUTION/AVAILABILITY STATEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unclassified—Unlimited</td>
</tr>
<tr>
<td>Subject Category 48</td>
</tr>
<tr>
<td>Report is available from the Center for AeroSpace Information (CASI),</td>
</tr>
<tr>
<td>7121 Standard Drive, Hanover, MD 21076–1320; (301)621-0390</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. ABSTRACT (Maximum 200 words)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) is the follow-on ocean color instrument to the Coastal Zone Color Scanner (CZCS), which ceased operations in 1986, after an eight-year mission. SeaWiFS was launched on 1 August 1997, on the OrbView-2 satellite, built by Orbital Sciences Corporation (OSC). The SeaWiFS Project at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) undertook the responsibility of documenting all aspects of this mission, which is critical to the ocean color and marine science communities. The start of this documentation was titled the SeaWiFS Technical Report Series, which ended after 43 volumes were published. A follow-on series was started, titled the SeaWiFS Postlaunch Technical Report Series. This particular volume serves as a reference, or guidebook, to the previous five volumes and consists of four sections including: an errata, an index to key words and phrases, a list of acronyms used, and a list of all references cited. The editors will publish a cumulative index of this type after every five volumes.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. SUBJECT TERMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SeaWiFS, Oceanography, Cumulative, Index, Glossary, References, Postlaunch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. NUMBER OF PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. PRICE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Form 298 (Rev. 2-89)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. SECURITY CLASSIFICATION OF REPORT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unclassified</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. SECURITY CLASSIFICATION OF THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unclassified</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>19. SECURITY CLASSIFICATION OF ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unclassified</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>20. LIMITATION OF ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unlimited</td>
</tr>
</tbody>
</table>

NSN 7540-01-280-3500