The NASA STI Program Office ... in Profile

Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the lead center for NASA's scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA's institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- **TECHNICAL PUBLICATION.** Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA's counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- **TECHNICAL MEMORANDUM.** Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- **CONTRACTOR REPORT.** Scientific and technical findings by NASA-sponsored contractors and grantees.

- **CONFERENCE PUBLICATION.** Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- **SPECIAL PUBLICATION.** Scientific, technical, or historical information from NASA programs, projects, and mission, often concerned with subjects having substantial public interest.

- **TECHNICAL TRANSLATION.** English-language translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services that complement the STI Program Office's diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results... even providing videos.

For more information about the NASA STI Program Office, see the following:

- E-mail your question via the Internet to help@sti.nasa.gov

- Fax your question to the NASA Access Help Desk at (301) 621-0134

- Telephone the NASA Access Help Desk at (301) 621-0390

- Write to:
 NASA Access Help Desk
 NASA Center for AeroSpace Information
 7121 Standard Drive
 Hanover, MD 21076-1320
SeaWiFS Postlaunch Technical Report Series

Stanford B. Hooker, Editor
NASA Goddard Space Flight Center, Greenbelt, Maryland

Elaine R. Firestone, Senior Technical Editor
SAIC General Sciences Corporation, Beltsville, Maryland

Volume 6, SeaWiFS Postlaunch Technical Report Series
Cumulative Index: Volumes 1–5

Elaine R. Firestone
SAIC General Sciences Corporation, Beltsville, Maryland

Stanford B. Hooker
Goddard Space Flight Center, Greenbelt, Maryland

National Aeronautics and Space Administration
Goddard Space Flight Center
Greenbelt, Maryland 20771

November 2000
ABSTRACT

The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) is the follow-on ocean color instrument to the Coastal Zone Color Scanner (CZCS), which ceased operations in 1986, after an eight-year mission. SeaWiFS was launched on 1 August 1997, on the OrbView-2 satellite, built by Orbital Sciences Corporation (OSC). The SeaWiFS Project at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC), undertook the responsibility of documenting all aspects of this mission, which is critical to the ocean color and marine science communities. The start of this documentation was titled the SeaWiFS Technical Report Series, which ended after 43 volumes were published. A follow-on series was started, titled the SeaWiFS Postlaunch Technical Report Series. This particular volume serves as a reference, or guidebook, to the previous five volumes and consists of four sections including: an errata, an index to key words and phrases, a list of acronyms used, and a list of all references cited. The editors will publish a cumulative index of this type after every five volumes.

1. INTRODUCTION

This is the first in a series of indexes, published as a separate volume in the SeaWiFS Postlaunch Technical Report Series, and includes information found in the first five volumes of the series. The SeaWiFS Postlaunch Technical Report Series has been written under the National Aeronautics and Space Administration's (NASA) Technical Memorandum (TM) numbers 1998-206892, 1999-206892, and 2000-206892, with the year part of the TM number changing with each calendar year of its existence. The volume numbers, authors, and titles of the volumes covered in this index are:

This volume serves as a reference, or guidebook, to the preceding volumes of the so-called Postlaunch Series. It consists of three main sections: a cumulative index to key words and phrases, a glossary of acronyms, and a bibliography of all references cited in the series. In addition, an errata section has been added to address issues and needed corrections which have come to the editors' attention since the volumes were first published.

The nomenclature of the index is a familiar one, in the sense that it is a sequence of alphabetical entries, but it uses a unique format because multiple volumes are involved. Unless indicated otherwise, the index entries refer to some aspect of the SeaWiFS instrument or project. An index entry is composed of a keyword or phrase followed by an entry field that directs the reader to the possible locations where a discussion of the keyword can be found. The entry field is normally made up of a volume identifier shown in bold face, followed by a page identifier, which is always enclosed in parentheses:

keyword, volume(pages).

If an entry is the subject of an entire volume, the volume field is shown in slanted type without a page field:

keyword, Vol. #.

An entry can also be the subject of a complete chapter. In this instance, both the volume number and chapter number appear without a page field:

keyword, volume(ch. #).

Figures or tables that provide particularly important summary information are also indicated as separate entries in the page field (even if they fall within an already specified page range). In this case, the figure or table number is given with the page number on which it appears:

keyword, volume(Fig. # p. #).
or
keyword, volume(Table # p. #).

2. ERRATA

In Table 11 of Vol. 1, the value for \(p_1 \) for Channel 6 should read \(1.12093 \times 10^{-3} \), not \(1.12093 \times 10^{-4} \).
The authorship in the citation of Volume 4, listed on the last page of that volume should be "Johnson, B.C., E.A. Early, R.E. Eplee, Jr., R.A. Barnes, and R.T. Cafrey".

Note: Since the issuance of previous volumes, a number of the references cited have changed their publication status, e.g., they have gone from "submitted," "accepted," or "in press" to printed matter. In other instances, some part (or parts) of the citation, e.g., the title or year of publication, has changed or was printed incorrectly. Listed below are the references in question as they were cited in one or more of the first five volumes in the series, along with how they now appear in the references section of this volume.

Original Citation

Revised Citation

Original Citation

Revised Citation

Original Citation

Revised Citation

Original Citations

and

Revised Citation

Original Citation

Revised Citation
Cumulative Index

Unless otherwise indicated, the index entries that follow refer to some aspect of the SeaWiFS instrument or project.

- A -
AMT-5, Vol. 2; 3(11).
ammonium uptake, 2(36-37).
biogasses, 2(37-39, Fig. 20 p. 38).
biogenic sulphur, 2(39, Fig. 21 p. 38).
bottle log, 2(Table C2 p. 57-65).
bridge log, scientific, 2(Table B1 pp. 48-56).
CHN sample log, 2(Table M1 p. 94).
crew members, 2(Table A1 p. 47).
cruise participants, 2(108-109).
cruise strategy, 2(2-4, Table 1).
CTD station, 2(Table C1 p. 57).
DOC buffer log, 2(Table O1 pp. 95-107).
FRRF, 2(27, Table H1 pp. 78-85).
Guanidinium buffer log, 2(Table O2 p. 107).
instrumentation, 2(19-25, 27).
in-water optics, 2(19-24, Fig. 14 p. 23).
LoCNESS station log, 2(Table E3 p. 72).
microzooplankton, 2(41-43, Fig. 22 p. 42, Table N1 p. 95).
nitrate uptake, 2(36-37, Table K1 p. 92).
nutrients, 2(35-36, Table J1 p. 92).
OPC sample log, 2(Table L1 pp. 92-93).
physical oceanography, 2(8-13, Figs. 2-9 pp. 9-12).
phytoplankton pigment distributions, 2(31-32, Fig. 18 p. 33).
primary productivity, 2(32, 35).
research reports, 2(8-43).
ROSSA, 2(14, 16-19, Fig. 12 p. 16, Fig. 13 p. 18).
seawater filtration, 2(27, 31, Table H1 p. 78).
SeaFALLS station log, 2(Table E2 pp. 69-71).
SeaOPS station log, 2(Table E1 pp. 67-69).
SeaWiFS, calibration and validation of, 2(43-46, Fig. 23 p. 45-46).
station filtration log, 2(Table 12 pp. 85-91).
sun photometer, 2(25-27, Figs. 16-17 pp. 28-30, Table F1 p. 73-77).
surface optics, 2(24-25, Fig. 15 p. 25).
TOPEX, 2(13-14, Figs. 10-11 p. 15).
UOR optics, 2(27).
XBT casts, 2(Table D1 pp. 65-67).
XOBT cast log, 2(Table G1 p. 77).
zooplankton, 2(39-41, Table M1 p. 94).
Atlantic Meridional Transect, see AMT-5.
Atmospheric transmittance, 5(9, Figs. 4-5 pp. 10-11).
diffuser, 5(9-11, Tables 1-4 pp. 11-12).

- B, C, D -
detector-based radiometry, see SXR.

detector-based radiometry, see SXR.

detector-based radiometry, see SXR.

- E, F, G -
ground measurements, 5(11-12).

- H, I -
integrating sphere sources, Vol. 1; Vol. 4.
see also SXR.
interference filter, see SXR.
instrumentation,
AMT cruise, 2(19-25, 27).
SeaBOARR, 3(2-17, Table 1 p. 3, Fig. 1 p. 4, Table 2 p. 4,
Fig. 2 p. 5, Fig. 3 p. 6, Figs. 4-5 p. 7, Figs. 6-7 pp. 8-9,
Figs. 8-9 pp. 10-11, Figs. 10-12 pp. 12-13, Fig. 13 p. 15,
Figs. 14-15 p. 17).

- J, K, L -
LoCNESS station log, 2(Table E3 p. 72).

- M, N, O -
optics,
in-water, 2(19-24, Fig. 14 p. 23).
surface, 2(24-25, Fig. 15 p. 25).

- P -
phytoplankton pigment distributions, 2(31-32, Fig. 18 p. 33).
primary productivity, 2(32, 35).

- Q, R -
radiometer, see SXR.
radiometric calibration, Vol. 4; Vol. 5.
1993 calibration, 4(2-6, Tables 1-3 p. 3, Table 4 p. 4); 5(13,
Table 5 p. 13, Figs. 6-7 p. 15, Table 15 p. 18).
1997 calibration, 5(13, Table 5 p. 13, Figs. 6-7 p. 15, Table 15
p. 18).
measurement procedures, 4(9-14, Table 8 p. 13).
SeaWiFS results, 4(21-38, Tables 14-15 pp. 24-25, Tables 16-
17 pp. 26-27, Figs. 6-8 pp. 29-30, Tables 18-21 pp. 31-33,
Tables 22-23 pp. 35, Figs. 9-11 pp. 36-38).
SXR, 4(6-7, Table 6 p. 7, 10, 12-17, Figs. 1-2 pp. 15-16,
Table 10 p. 17, Fig. 3 p. 18, 18-19).
test equipment, 4(6-9, Table 6 p. 7, Table 7 p. 8).
uncertainty analysis, 4(39-43, Tables 24-29 pp. 40-43,
Figs. 12-13 pp. 45-46).
reflectance equations,
band-averaged center wavelength, 5(5-6).
band-averaged spectral radiance, 5(5).
BRDF, 5(3-4, Fig. 1 p. 4).
SBRC basic equation, 5(6, Fig. 2 p. 7).
solar radiation-based calibration, 5(3-6).
spectral response, 5(4-5).
transfer-to-orbit experiment, 5(22, Tables 19-20 p. 23).

- S -
SeaBOARR, Vol. 4.
DalBOSS, 3(11-13, Figs. 10-11 p. 12, Fig. 13 p. 15, Table G1
pp. 34-35.)
DalSAS, 3(10-11, Fig. 9 p. 11, Table F1 pp. 33-34).
instrumentation, 3(2-17, Table 1 p. 3, Fig. 1 p. 4, Table 2
p. 4, Fig. 2 p. 5, Fig. 3 p. 6, Figs. 4-5 p. 7, Figs. 6-7 pp. 8-
9, Figs. 8-9 pp. 10-11, Figs. 10-12 pp. 12-13, Fig. 13 p. 15,
Figs. 14-15 p. 17).
methods, 3(18-24, Fig. 16 p. 19, Table 3 p. 20, Table 4 p. 22).
preliminary results, 3(24-26, Table 5 p. 24, Fig. 17 p. 25).
science team, 3(27).
SQM-II, 3(13-14, Fig. 13 p. 15, 23-24, Table H1 p. 35-36).

SeaBOARR cont.
- SeaSAS, 3(7–8, Figs. 4–6 pp. 7–8, Table C1 pp. 30–31).
- THOR, 3(6, Fig. 4 pp. 7).
- WISPER, 3(9–10, Figs. 7–8, pp. 9–10, 18, Fig. 16 p. 19, Table D1 p. 32).

SeaFALLS station log, 2(Table E2 pp. 69–71).
SeaOPS station log, 2(Table E1 pp. 67–69).
SeaWiFS Bio-Optical Algorithm Round-Robin, see SeaBOARR.
SeaWiFS Transfer Radiometer, see SXR.
solar radiation-based calibration, 5(1–21).
calibration coefficients, 5(13, Tables 5–9 pp. 17–18).
reflectance equations, 5(3–6).
risks and disadvantages, 5(2).
solar irradiances, 5(7–9, Tables 10–16 pp. 17–19).
band-averaged, 5(16, Table 10 p. 17, Table 12 p. 17, Table 14 p. 18).
Fraunhofer lines, 5(19–21, Fig. 10 p. 20, Table 18 p. 21).
MODTRAN, 5(16, Tables 10–11 pp. 17, Table 16 p. 19).
SeaWiFS, 5(Table 16 p. 19).
Thuiller, 5(16, Tables 14–17 pp. 18–19, Table 17 p. 19).
Wehrli, 5(13–16, Table 7 p. 14, Table 9 p. 14, Table 16 p. 19).
spectral radiance, 4(19–21, Fig. 3 p. 18, Figs. 4–5 p. 20, Tables 11–13 p. 21).
see also SXR.
spectral response, 5(7, Fig. 3 p. 8, Fig. 8 p. 19, 19–21).
sun photometer, 2(25–27, Figs. 16–17 pp. 28–30, Table F1 p. 73–77).

SXR, Vol. 1; Vol. 4.
description of, 1(1–2, Table 1 p. 2).

SXR cont.
electrical subsytems, 1(11–14, Table 3 p. 12, Fig. 9 p. 12, Tables 4–5 p. 13, Table 6 p. 14, Table 7 p. 15).
instrument design, 1(2–16, Table 2 p. 3, Fig. 1 p. 3, Figs. 3–8 pp. 7–9, Fig. 9 p. 12, Table 3 p. 12, Tables 4–5 p. 13, Table 6 p. 14).
measurements, 1(50–52, Tables 17–18 pp. 52); 4(12–17, Figs. 1–2 pp. 15–16, Table 10 p. 17, Fig. 3 p. 18, 18–19).
measurement channels, 1(4–6, Fig. 2 p. 5).
parts used, 1(Table A1 p. 55).
performance analysis, 1(16–50).
relative flux response, 1(38–43, Table 13 p. 39, Fig. 22 pp. 40–42).
signal voltage, 1(Table 16 p. 46, Fig. 24 pp. 47–49).
spectral radiance, 1(Table 14 p. 44, Table 15 p. 45, Fig. 23 p. 45); 4(Table 6 p. 7, Table 10 p. 17, Fig. 3 p. 18, Fig. 4 p. 20).

– T, U, V, W, X, Y, Z –
transfer radiometer, Vol. 1; Vol. 4.
see also SXR.
transfer-to-orbit experiment, Vol. 5.
concept, 5(21).
in-flight measurements, 5(22–25, Fig. 10 p. 24, Table 21 p. 25, Fig. 11 p. 25).
reflectance equations, 5(22, Tables 19–20 p. 23).
GLOSSARY

6S Not an acronym, but an atmospheric photochemical and radiative transfer model.

- A -

A/D Analog-to-Digital
AAOT Acqua Alta Oceanographic Tower
AC Alternating Current
ADCP Acoustic Doppler Current Profiler
AERONET Aerosol Robotic Network
AMT Atlantic Meridional Transect
AMT-5 The Fifth AMT (cruise)
AOT Aerosol Optical Thickness
ASCII American Standard Code for Information Interchange
ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer
ASTM American Society for Testing and Materials
ATA Ambient Temperature Plate Assembly
ATSR Along-Track Scanning Radiometer
AU Astronomical Unit
AVHRR Advanced Very High Resolution Radiometer

- B -

BAS British Antarctic Survey
BCD Binary Coded Decimal
BNC Bayonet Nut Connector
BPA Back Plate Assembly
BRDF Bidirectional Reflectance Distribution Function
BSST Bulk Sea Surface Temperature

- C -

C-FALLS Software package for logging SeaFALLS data.
C-mount Not an acronym, but a mounting system for camera lenses.
C-OPS Combined Operations
CANIGO Canary Islands, Azores, Gibraltar Observations
CC Cloud Cover
CCAR Colorado Center for Astrodynamics Research
CCD Charge-Coupled Device
CCMS Centre for Coastal and Marine Studies
CCN Cloud Condensation Nuclei
CCPO Center for Coastal Physical Oceanography
CDOM Colored Dissolved Organic Matter
CEC Commission of the European Communities
CERT Calibration Evaluation and Radiometric Testing
CHN Carbon-Hydrogen-Nitrogen
CNR Consiglio Nazionale delle Ricerche (National Research Council)
CoASTS Coastal Atmosphere and Sea Time Series
COTS Commercial Off-The-Shelf
CT Cylindrical Tube or Conductivity and Temperature, depending on usage.
CTD Conductivity, Temperature, and Depth

- D -

DalBOSS Dalhousie Buoyant Optical Surface Sensor
DalSAS Dalhousie SeaWiFS Aircraft Simulator
DARR-94 Data Analysis Round-Robin
DAS Data Acquisition Sequence
DATA Not an acronym, but a designator for the Satlantic, Inc., series of power and telemetry units.
DC Direct Current
DCM Deep Chlorophyll Maximum
DCP Data Collection Platform
DIO Digital Input-Output
DIR Not an acronym, but a designator for the Satlantic, Inc., series of directional units.
DMA Dimethylamine
DMM Digital Multimeter
DMS Dimethylsulfide
DMSP Dimethylsulphonioipionate
DMSPd Dissolved DMSP
DMSPp DMSP within phytoplankton cells
DNA Deoxyribonucleic Acid
DOC Dissolved Organic Carbon
DPA Detector Plate Assembly
DUT Device Under Test
DVM Digital Voltmeter

- E -

E East
EDTA Ethylenediaminetetraacetic Acid
EEZ Exclusive Economic Zone
e-mail Electronic Mail
EOS Earth Observing System
EP Entrance Pupil
ERS-2 The Second Earth Resources Satellite
EU European Union
EUC Equatorial Under Current

- F -

FASCAL Facility for Automated Spectroradiometric Calibrations (NIST)
FEL Not an acronym, but a lamp designator.
FET Field-Effect Transistor
FIGD-IC Flow Injection Gas-Diffusion Coupled to Ion Chromatography
F-mount Not an acronym, but a mounting system for camera lenses.
FRRF Fast Repetition Rate Fluorometer
FS Field Stop

- G -

GF/F Not an acronym, but a specific type of glass fiber filter manufactured by Whatman.
GMT Greenwich Mean Time
GOES-8 The Eighth Geostationary Operational Environmental Satellite
GPIB General Purpose Interface Bus
GSE Ground Support Equipment
GSFC Goddard Space Flight Center

- H -

HACR High-Accuracy Cryogenic Radiometer
HP Hewlett-Packard
HPLC High Performance Liquid Chromatography
HTCO High Temperature Catalytic Oxidation

<table>
<thead>
<tr>
<th>-I-</th>
<th>-O-</th>
</tr>
</thead>
<tbody>
<tr>
<td>IAD</td>
<td>OCI</td>
</tr>
<tr>
<td>IC</td>
<td>Ocean Color Irradiance</td>
</tr>
<tr>
<td>ID</td>
<td>OCR</td>
</tr>
<tr>
<td>IDL</td>
<td>Ocean Color Radiance</td>
</tr>
<tr>
<td>IEEE</td>
<td>OCTS</td>
</tr>
<tr>
<td>IF</td>
<td>Ocean Color Temperature Scanner</td>
</tr>
<tr>
<td>ILX</td>
<td>OD</td>
</tr>
<tr>
<td>IOP</td>
<td>Outside Diameter</td>
</tr>
<tr>
<td>IOS</td>
<td>OPC</td>
</tr>
<tr>
<td>ISDGM</td>
<td>Optical Plankton Counter</td>
</tr>
<tr>
<td>ISIC</td>
<td>OrbView-2</td>
</tr>
<tr>
<td>JCR (RRS)</td>
<td>Not an acronym, but the current name for the</td>
</tr>
<tr>
<td>JRC Joint Research Centre</td>
<td>SeaStar satellite.</td>
</tr>
<tr>
<td>-K, L-</td>
<td></td>
</tr>
<tr>
<td>LANDSAT</td>
<td>OSC</td>
</tr>
<tr>
<td>LLR</td>
<td>Orbital Sciences Corporation</td>
</tr>
<tr>
<td>LoCNESS</td>
<td></td>
</tr>
<tr>
<td>LS</td>
<td></td>
</tr>
<tr>
<td>LSB</td>
<td></td>
</tr>
<tr>
<td>LXR</td>
<td></td>
</tr>
<tr>
<td>LANDSAT</td>
<td></td>
</tr>
<tr>
<td>Transfer Radiometer</td>
<td></td>
</tr>
<tr>
<td>-M-</td>
<td>-P-</td>
</tr>
<tr>
<td>MA</td>
<td>P-I</td>
</tr>
<tr>
<td>METEOSAT</td>
<td>Photosynthesis-Irradiance</td>
</tr>
<tr>
<td>MFR-6</td>
<td>PAR</td>
</tr>
<tr>
<td>miniNESS</td>
<td>Photosynthetically Available Radiation</td>
</tr>
<tr>
<td>MISR</td>
<td>PC</td>
</tr>
<tr>
<td>MMA</td>
<td>Personal Computer</td>
</tr>
<tr>
<td>MOBY</td>
<td>PCR</td>
</tr>
<tr>
<td>MODIS</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>MODTRAN</td>
<td>PID</td>
</tr>
<tr>
<td></td>
<td>Proportional, Integral, Differential</td>
</tr>
<tr>
<td>MSB</td>
<td>PM</td>
</tr>
<tr>
<td>MVDS</td>
<td>Particulate Matter</td>
</tr>
<tr>
<td></td>
<td>PML</td>
</tr>
<tr>
<td></td>
<td>Plymouth Marine Laboratory</td>
</tr>
<tr>
<td></td>
<td>POS</td>
</tr>
<tr>
<td></td>
<td>Particulate Organic Carbon</td>
</tr>
<tr>
<td>PRIME</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plankton Reactivity in the Marine Environment</td>
</tr>
<tr>
<td>RRS</td>
<td></td>
</tr>
<tr>
<td>RSG</td>
<td></td>
</tr>
<tr>
<td>RSMAS</td>
<td></td>
</tr>
<tr>
<td>RSR</td>
<td></td>
</tr>
<tr>
<td>RVS (BAS)</td>
<td></td>
</tr>
<tr>
<td>-Q, R-</td>
<td></td>
</tr>
<tr>
<td>RAM</td>
<td>Random Access Memory</td>
</tr>
<tr>
<td>RE</td>
<td></td>
</tr>
<tr>
<td>RL</td>
<td></td>
</tr>
<tr>
<td>RMSD</td>
<td></td>
</tr>
<tr>
<td>ROSSA</td>
<td></td>
</tr>
<tr>
<td>RRS</td>
<td></td>
</tr>
<tr>
<td>RSG</td>
<td></td>
</tr>
<tr>
<td>RMSAS</td>
<td></td>
</tr>
<tr>
<td>RSR</td>
<td></td>
</tr>
<tr>
<td>RVS (BAS)</td>
<td></td>
</tr>
<tr>
<td>-S-</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td></td>
</tr>
<tr>
<td>S/N</td>
<td></td>
</tr>
<tr>
<td>SACZ</td>
<td></td>
</tr>
<tr>
<td>SAI</td>
<td></td>
</tr>
<tr>
<td>SBE</td>
<td></td>
</tr>
<tr>
<td>SBRC</td>
<td></td>
</tr>
<tr>
<td>SBRs</td>
<td></td>
</tr>
<tr>
<td>SBUV</td>
<td></td>
</tr>
<tr>
<td>SDY</td>
<td></td>
</tr>
<tr>
<td>SeaACE</td>
<td></td>
</tr>
<tr>
<td>SeaBASS</td>
<td>SeaWiFS Atlantic Characterization Experiment</td>
</tr>
<tr>
<td>SeaBOARR</td>
<td></td>
</tr>
<tr>
<td>SeaBOARR-98</td>
<td></td>
</tr>
<tr>
<td>SeaBOSS</td>
<td></td>
</tr>
<tr>
<td>SeaFALLS</td>
<td></td>
</tr>
<tr>
<td>SeaOPS</td>
<td></td>
</tr>
<tr>
<td>SeaSAS</td>
<td></td>
</tr>
</tbody>
</table>

-N-	-Q, R-
NASA	
NEC	
NECC	
NEUC	
NIR	
NIST	
NOAA	
NRSR	

-I-	-O-
IAD	OCI
IC	Ocean Color Irradiance
ID	OCR
IDL	Ocean Color Radiance
IEEE	OCTS
IF	Ocean Color Temperature Scanner
ILX	OD
IOP	Outside Diameter
IOS	OPC
ISDGM	Optical Plankton Counter
ISIC	OrbView-2
JCR (RRS)	Not an acronym, but the current name for the
JRC Joint Research Centre	SeaStar satellite.
-K, L-	
LANDSAT	OSC
LLR	Orbital Sciences Corporation
LoCNESS	
LS	
LSB	
LXR	
LANDSAT	
Transfer Radiometer	
-M-	-P-
MA	P-I
METEOSAT	Photosynthesis-Irradiance
MFR-6	PAR
miniNESS	Photosynthetically Available Radiation
MISR	PC
MMA	Personal Computer
MOBY	PCR
MODIS	Polymerase Chain Reaction
MODTRAN	PID
	Proportional, Integral, Differential
MSB	PM
MVDS	Particulate Matter
	PML
	Plymouth Marine Laboratory
	POS
	Particulate Organic Carbon
PRIME	
	Plankton Reactivity in the Marine Environment
RRS	
RSG	
RSMAS	
RSR	
RVS (BAS)	
-Q, R-	
RAM	Random Access Memory
RE	
RL	
RMSD	
ROSSA	
RRS	
RSG	
RMSAS	
RSR	
RVS (BAS)	
-S-	
S	
S/N	
SACZ	
SAI	
SBE	
SBRC	
SBRs	
SBUV	
SDY	
SeaACE	
SeaBASS	SeaWiFS Atlantic Characterization Experiment
SeaBOARR	
SeaBOARR-98	
SeaBOSS	
SeaFALLS	
SeaOPS	
SeaSAS	
SeaStar Not an acronym, but the former name of the satellite on which SeaWiFS was launched, now known as OrbView-2.
SeaSURF SeaWiFS Square Underwater Reference Frame
SeaWiFS Sea-viewing Wide Field-of-view Sensor
SEC South Equatorial Current
SEM Scanning Electronic Microscopy
SEUC South Equatorial Undercurrent
SIMBIOS Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies
SIRREX SeaWiFS Intercalibration Round-Robin Experiment
SIRREX-1 The First SIRREX (July 1992)
SIRREX-2 The Second SIRREX (June 1993)
SIRREX-3 The Third SIRREX (September 1994)
SIRREX-4 The Fourth SIRREX (May 1995)
SIRREX-5 The Fifth SIRREX (July 1996)
SIS Spherical Integrating Source
SMSR SeaWiFS Multichannel Surface Reference
SOC Southampton Oceanography Centre
SOMARE Sampling, Observations and Modelling of Atlantic Regional Ecosystems
SOOP SeaWiFS Ocean Optics Protocols
SOSSTTR Ship of Opportunity Sea Surface Temperature Radiometer
SPMR SeaWiFS Profiling Multichannel Radiometer
SQM SeaWiFS Quality Monitor
SQM-II The Second Generation SQM
SS Sea State
SSE Size-of-Source Effect
SSH Sea Surface Height
SSMI Special Sensor for Microwave/Imaging
SSST Sea Surface Skin Temperature
SRX SeaWiFS Transfer Radiometer

TEC Thermoelectric Cooler
THOR Three-Headed Optical Recorder

TMA Trimethylamine
TOC Total Organic Carbon
TOPEX Topography Experiment
TSG Thermosalinograph
TSM Total Suspended Matter
TTL Transistor-Transistor Logic

UIC Underway Instrumentation and Control
UK United Kingdom
UNC Unified Course
UOR Undulating Oceanographic Recorder
UPS Uninterruptable Power Supply

VAFB Vandenberg Air Force Base
VisSCF Visible Spectral Comparator Facility (NIST)
VXR Visible Transfer Radiometer

WETlabs Western Environmental Technology Laboratories (Inc.)
WiSPER Wire-Stabilized Profiling Environmental Radiometer
WM Spherical Mirror Wedge Section
WMO World Meteorological Organization
WOCE World Ocean Circulation Experiment
WS Wind Speed

XBT Expendable Bathythermograph
XOTD Expendable Optical, Temperature, and Depth

YB71 Not an acronym, but a type of paint for solar diffusers.
REFERENCES

E.R. Firestone and S.B. Hooker

—, D. E —

- G -

- H -

- I -

- J -

E.R. Firestone and S.B. Hooker

— N —

Neckel, H., and D. Labs, 1984: The solar radiation between 3,300 and 12,500Å. Solar Physics, 90, 205–258.

— O —

— P —

— Q —

— R —

— S —

THE SEAWIFS POSTLAUNCH
TECHNICAL REPORT SERIES

Vol. 1

Vol. 2

Vol. 3

Vol. 4

Vol. 5

Vol. 6
The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) is the follow-on ocean color instrument to the Coastal Zone Color Scanner (CZCS), which ceased operations in 1986, after an eight-year mission. SeaWiFS was launched on 1 August 1997, on the OrbView-2 satellite, built by Orbital Sciences Corporation (OSC). The SeaWiFS Project at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) undertook the responsibility of documenting all aspects of this mission, which is critical to the ocean color and marine science communities. The start of this documentation was titled the SeaWiFS Technical Report Series, which ended after 43 volumes were published. A follow-on series was started, titled the SeaWiFS Postlaunch Technical Report Series. This particular volume serves as a reference, or guidebook, to the previous five volumes and consists of four sections including: an errata, an index to key words and phrases, a list of acronyms used, and a list of all references cited. The editors will publish a cumulative index of this type after every five volumes.