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ATTITUDE REPRESENTATIONS FOR I_L_LMAN FILTERING

F. Landis Markley*

The four-component quaternion has the to,*est dimensionality possible for a

globally nonsingular attitude representation, it represents the attitude matrix as a

homogeneous quadratic function, and its dynamic propagation equation is

bilinear in the quaternion and the angular velocity. The quaternion is required to

obey a unit norm constraint, though, so Kalman filters often employ a

quaternion for the global attitude estimate and a three-component representation
for small errors about the estimate. We consider these mixed attitude

representations for both a first-order Extended Kalman filter and a second-order

filter, as well for quaternion-norm-preserving attitude propagation.

INTRODUCTION

The Kalman filter [1] is frequently employed in attitude estimation. A common application is to a

spacecraft equipped with gyroscopes, with the filter solving for a quatemion parameterizing the attitude and

a three-vector of gyro drifts [2-5]. Reference [5] discusses this application and provides extensive citations

of the relevant literature. This paper is an extension of [5], so we begin with a brief review of the

quaternion attitude representation

A quaternion is a four-component object with a three-vector part and a scalar part [6, 7]

7 2 -- -,

q= q r q_j

Quatemions representing spacecraft attitude are generally considered to have unit length:

td" =-Iql: "-d = t. /2/

The rotation matrix is a homogeneous quadratic function of the components of such a quaternion;

A(q) = (q._ -[ql')l + 2qq r - 2q,[q×], (3)

where the 3×3 identity matrix is denoted by I and the cross product matrix is

0

[q×]-= q_

- --(]2

-q; (]: :
t0 -(]l ;'

ql 0 i

The quaternion representation is 2-1 because Eq. (3) shows that q and -q represent the same rotation matrix.
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S_ncu Eq. _3_and several ,)thor ,2quatlon:, tn _pacecraft attitude ,2:-,tlmJ.ti_mare n_nltne,Lr, arl E_ended Kalman

F_hcr/EKFi is needed [5-lOI. The linear quaternion measurement update pr_v, tded by a straightforward EK.F

dt_c_ not preserve the nonlinear normalization constraint of Eq. 121, a pr+)blem for which several solutions

ha',e been proposed [5. t t-t3]. The most direct response is brute force normalization of the quaternion

tollowing an update. The norm constraint is only violated to second order in a correctly performed update,

so normalization only changes the update to second order and is therefore outside the purview of the EKF.

Other approaches have employed pseudo-measurements of the quaternion or of its norm [11. 12 ].

These modifications do not address an issue that has both conceptual and computational aspects. Unit

quaternions reside on the three-dimensional sphere $3 embedded in four-dimensional Euclidean space E4. [f

the quaternion errors are small, they tie approximately in the plane tangent to $3 at the true value q of the

quaternion, which means that they are orthogonal q. This implies that q is an eigenvector of the covariance

matrix with zero eigenvalue, so the covariance is not positive definite. This is acceptable in principle; but

numerical errors can lead to loss of positive semidefiniteness and Kalman filter divergence. One approach is

to relax the requirement of quaternion normalization and parameterize the attitude by

A=Iol-; + 2qq r - 2q.,[q×]}. (..+)

which is an orthogonal matrix for any q [12]. This avoids both the normalization and zero covariance

problems; the covariance is nonsingular because the norm of q is not known exactly. There is no firm

conceptual foundation for a non-normalized quatemion or for pseudo-measurements, though, and

performance of these methods has not been encouraging.

In fact there is a deeper conceptual problem with any conventional quaternion Kalman Filter. It _,ould be

natural to define the quaternion estimate Off) would be as an expectation value, defined as the integal

E{q(t) } -- fE+q p(q,t)d(lq['- -l)d_q. (6)

where p(q.t) is the probability distribution function (pdf) on $3. The Dirac delta function enforces the unit

norm constraint, giving 6(]ql z - 1)d_q as the volume element on $3. Equation (6) is an unsatisfactory

definition of _!t). however, since restricting the probability distribution in quaternion space to the surface

of a unit sphere means that its expectation value must be inside the sphere. The integral cannot give a unit

quaternion unless the pdf is concentrated at a point. In fact, since q and -q represent the same attitude, it

would seem reasonable to take p(q,t) = p(-q.t), which gives E{q(r)} = 0 for any pdf. The same issues

make it difficult to assign a meaning to the covariance of the quaternion error as an integral over $3.

The widely adopted alternative, which has come to be known as the muttiplicative quatemion Kalman filter,

was developed in 1969 [2, 3], and has been used in NASA programs since 1978 [4, 5]. This uses the four-

component quaternion representation tbr the attitude, but a three-component representation for the attitude

errors. Several justifications have been provided for this non-standard approach to Kalman filtering. The

approach in Section LX of [5] was to regard the filter as estimating a tour-component quaternion, but to

project the (rank 3) 4x4 quaternion covariance and 4x3 quaternion to gyro bias covariance down to 3x3

matrices using a certain 4x3 matrix. However, this formal procedure does not address the conceptual issues

of defining the quaternion estimate and its covariance as integrals over $3. The second approach, adopted in

Section XI of [5] and in [13], regards the filter as estimating a three-component attitude error. It must be

emphasized that these various approaches to the multiplicative Katman filter lead to identical algorithms.

The main purpose of this paper is to consider in some depth the relationship between the three-component

attitude error vector and the quaternion. To set the stage, we begin with a brief discussion of attitude

representations. We then generalize our results to a second-order fitter. Finally, we propose similarly

moti,,ated techniques to preserve quaternion normalization during attitude propagation.



tlrlrl:l)E t'tR.tMETERIZAFIONS

G,,q,d rev_e,._sor' attitude representations are available [6.7]. We provide a brief discussuon to establish

c_>rv,cnt_ons and notation t'\)r the representations of interest to this paper.

Rotation Vector

Euler's Theorem [14] states that the most general motion of a rigid body with one point fixed is a rotation

by an angle _ about some axis, which we shall specify by a unit vector e. We often combine the Euler axis

and angle into a rotation vector 00 - 0e. ALl rotations can be mapped to points inside and on the surface of a

sphere of radius rr in rotation vector space, where points at opposite ends of a diameter represent the same

180: rotation. [t is sometimes convenient to consider a sphere of radius 2z, which provides a 2-1 mapping

of the rotation group, with each rotation corresponding to a point inside the sphere and a point outside. The

kinematic equation tbr the rotation vector is transcendental, ill behaved for zero rotation angle, and singular

for 360 ° rotations, so this is not a convenient global attitude representation. A globalty nonsingular three-

dimensional parameterization of the rotation group would be desirable, but this is known to be

topologically impossible [15, 16].

Rotation Matrix

The most fundamental representation of the attitude is the rotation matrix

R(e.O) = exp[(- O) x] - (cos o)I + (1 - cos o)ee T - sin 0 [ ex], (7)

_hlch obeys the kinematic relation

R = - [ox]R(t). (8)

where co is the angular velocity vector. The bilinearity of Eq. (8) in R and _ is very convenient, and the

ske_v-symmetry of the cross product matrix preserves the orthogonality of R. Numerical errors can cause the

direction cosine matrix to lose its orthogonality, though, and orthogonality is not easily restored. This,

along with its six redundant parameters, makes the rotation matrix inconvenient for numerical work.

Quaternions

The unit quaternion is a convenient parameterization of the attitude with only one redundant parameter. It is

related to the axis and angle of rotation by

_esin(O/'_)-]
q =Lcos(;/; j . (9)

The half-angle formulas of trigonometry establish the consistency of Eqs. (3) and (7). The four components

of q are the Euler symmetric parameters or the Euler-Rodrigues parameters. They first appeared in paper by

Euler [17] and in unpublished notes by Gauss [ 18], but Rodrigues' classic paper of 1840 first demonstrated

their general usefulness [ 19]. Rodrigues was also the first to emphasize the product rule for successive

rotations, the non-commutativity of rotations, the commutativity of infinitesimal rotations, and the

generation of finite rotations from infinitesimal ones. Hamilton introduced the quaternion as an abstract

mathematical object in 1844 [20], but there is some question as to whether he correctly understood the

relation between quaternions and rotations [21].

We follow Reference [7] in writing the quatemion product as

,f-p_q + q_ p - px q'.
q

,_ P,q., -Pq J (10)



-I'hL.,&fiery, )'rom the h,stortcal multiplicat.)n convention, denoted by p q without an inl]x operator [6.20J.

by the sign of the cross product in the vector part, "['he two products are related by p_ q = qp. The

convention adopted here has the useful property that

R(p)R(q) = R( p'_ q). ( l I )

With the historical convention, the quaternion ordering on the right side of the above equation would be the
reverse of the order on the left side. With either convention, though, the product of two quaternions is

bilinear in the elements of the component quaternions, a property shared with the direction cosine matrix

but no other attitude representation. In fact, Eq. ( 1 1) means that the rotation group and the quaternion group

are "'almost isomorphic." The qualifier "almost" is due to the 2-1 nature of the mapping [22].

We use an overbar to denote the quaternion representation of a three-vector:

(12)

With this convention, the kinematic equation for the quaternion can be written in the alternative forms

= i_,_® q = x_,f2(m ) q = _'=(q)m. (13)

where 4 x 4 matrix _(m) and the 4 x 3 matrix --'(q) are defined by [5]

0 co3 -co. coil

-09 3 0 0) t 0.),
_(m) -

o.), _(2)I 0 09

L-(D[ -COz ---093

(L4)

ard

1q_ -q3 q'-

qq3 q_ -qi].
-'-(q) - ql q4 |

JL-qi -q_" -q3

(15)

The skew-symmetry of x'2(_) preserves the normalization of q, but this normalization may be lost due to

computational errors. If so, it can be restored trivially by q = q/[cA, which is a much simpler operation than

orthogonalizing an approximately orthogonal direction cosine matrix.

Gibbs Vector or Rodrigues Parameters

The three Rodrigues parameters are defined by [6, 7, 19]

q esin(O t9)
' - = etan(o/2),g=

q_ cos(0/2)
161

This has the inverse relation

(17)



where ,,s¢u.,,ean ztali¢ letter to represent the magnitude of a thre¢-v¢ctt)r, except when the latter is the vector

part ol¢a quaternion. These parameters also give the Cayley parametcrtzauon [23], and Gibbs arrayed them

in a "'vector semltangent of version" [24]. It is little wonder that we now call it the Gibbs vector. The

Gibbs vector is a gnomonic projecton, a 2-[ mapping of the $3 quaterm_m space onto three-dimensional

Euclidean g space, with q and -q mapping to the same point, as shown in Fig. [. Since q and -q represent

the same rotation, the Gibbs vector parameterization is a l-[ representation of the rotations. The Gibbs

vector is infinite for [80 ° rotations (the q_ = 0 equator of $3). which is undesirable for a global

representation of rotations.

Modified Rodrigues Parameters

These parameters, defined by [71

esin(O/2)
p- q - = elan(O/4). (18)

1+ q4 1 + cos(O/2)

were introduced by Wiener [25] and rediscovered by Marandi and Modi [26], who established their

interpretation as a stereographic projection. The inverse relation is

q=l_p, Ii2pp: I. (19)

The relation between the quatemion and the modified Rodrigues parameters is like a stereographic projection

of $3 quaternion space, as shown in Fig. 2. One hemisphere of $3 projects to interior of the unit sphere in

three-dimensional p space, and the other hemisphere of $3 projects to the exterior of the unit p-sphere.

All rotations can be represented by modified Rodrigues parameters inside and on the surface of the unit bail.

The two parameters p and -p/p2 represent the same rotation. Thus the origin and the point at infinity

both represent a zero rotation. The properties of the modified Rodrigues parameters are very similar to those

of the rotation vector, but no trigonometric functions are needed to express the rotation matrix in terms of

the former parameters.

g
Jib

q'_

q

Figure I. Gibbs Vector

as a Gnomonic Projection

Figure 2. Modified Rodrigues Parameters

as a Stereographic Projection



EXTENDEDKALMAN FILTER

The multlphcatl,,e EKF represents the attitude quatern,on by

q!t) = &lIa(t))_xDq,,tttl. t20)

where q,4 (n is some normalized reference quaternion and &/(a(r)) is a unit quaternion parameterizing the
rotation from the reference attitude parameterized by q,q. (t) to the true attitude parameterized by q(t). We

choose the reference quaternion so that c_7 is close to the identity quaternion and can be represented by a

three-dimensional parameterization, which we denote by a for attitude. The two attitude representations a(t)

and qr,t (t) in Eq. (20) are clearly redundant. We choose this form so that the three-component a(t) can keep
the statistics straight while assuring exact quaternion normalization, and the tour-component q,,r (r) can

provide a globally nonsingular attitude representation.

One possible parameterization of a is the rotation vector 0 e, which we denote a,, so from Eq. (9),

C(a./a,)sin(% I
a7=L cos(a.12) 2)j.

]
(21a)

We allow aa to range over a ball of radius rr to cover the entire rotation group, but expect it to be close to

the origin if q,,]is close to q. This parameterization has the advantage that the covariance will include the
angular variances in radians", but it is numerically inconvenient. A special form, such as a Taylor series,

must be used near aa = 0. We can retain the interpretation of the covariance matrix in the small angle

approximation by requiring a to have the same first-order limit as a function of the rotation vector. This
leads to the second parameterization of a as twice the vector part of (_q, which is the parameterization used

in Section XI of [5], except for the factor of two:

I _ aq ] (21b)

where a,t ranges over a ball of radius 2. A third parameterization is twice the Gibbs vector; from Eq. (17),

!. _a_], (21c)aq: 4QL2

where a+ ranges over all of E3. A fourth alternative is four times the vector of modified Rodrigues

parameters, so from Eq. (19),

r +a',l
&7 - 16 + a} C16- a;j'

(2Id)

where % ranges over a ball of radius 4. This parameterization has the computational advantage of not

requiring any transcendental functions. These four definitions of a have the same second-order

approximation,

F a/2 1
=Ll-a-/q

(22)

Thus they are equivalent for an EKF, which uses a linear approximation; but they differ in third and higher
orders in a. It is worthwhile to note that Eq. (22) only holds tofirst order if the components of a are taken

to be Euler angle rotations about three orthogonal axes, as in [2, 3]. Thus, an Euler angle parameterization

will lead to the same EK_F, but will give different results for a second order filter.



Equ,mons _"Ol and _21.) map a quaternion pdt from a hemisphere of $3 with q,,_ (t) at its pole onto a pdf of
a, v,er the appropriate subset of E3 as defined above for the particular parameterization chosen. There is no

lus5 ,_t' int_rmat,)n _n mapping only one hemisphere of $3. since the other hemisphere contains the same

_nfi;rmation due to the 2-l nature of the quaternion representation and the assumed symmetry

p( q.ti = p(-q.t) We then compute _(t), the expectation value of a, in the conventional way as the

integral of the product of a and its pdf. This allows us to define the best estimate of the quaternion by

OIt ) =-_( h(t)) ® q,,t (t), (23)

_hich is a unit quatemion, and thus an acceptable estimate of the attitude. [t appears that we are free to

choose the ret'erence quatemion q_,t (t) at our convenience, but this choice is not arbitrary,, since the value

of _tt) depends on the choice of q,_/(t). The examples in Appendix A show that the best estimate is

obtained by choosing the reference quaternion q,,/(t) so that the expectation value _(t) is identically Zero.

With this choice, which we adopt in this paper, Eq. (23) shows that q,,l(t) is identically equal to _l(t), so
we will denote it as such. This means in turn that 8q(a(t)) is a representation of the attitude error. This

choice has the additional computational advantage that it obviates the need to propagate _i(t).

State Propagation

The filter dynamics are found by differentiating

msemng Eq. (13) and the identity

which gives

t_q(t) = q(t) ® _l-l (t),

d_-'/dt =-q-' ®'7® '7-',

d(&t)/dt = _ ® d_'/-3q® _® q-_.

(24)

(25)

(26)

Now let us consider the Gibbs vector parameterization for specificity. This parameterization has the

advantage that it takes values over all of E3 rather than only over a finite subset. Solving Eqs. (20) and

(21c_ for a. gives

(27)

Equations (2 Ic), (26) and (27) give

( ra'(t)7 Fa'(t)7 _ -'-_(t) i

{ }-__ 4".'_(t)® - ®_7(t)®ft-I(t) a_(t)=f(x(t),t).
4

(28)

No_ we specialize to the case of attitude and gyro drift estimation [5]. In this case, the angular rate vector is

given m terms of the gyro output vector uIt) and gyro drift vector b(t) in spacecraft body coordinates by

m (t) = u(t) - b(t) - rl_ (t), (29)

where Tl_(t) is a zero-mean white noise process. The gyro drift vector obeys

b(t) = _z (t), (30)

where tl: (r) is an independent zero-mean white noise process.



",',,ewant to c_m,,,tru,,:t ,in extended Kalman :;,_c:_,,_ [hc ,:,tx-o,;,mponent _tat¢vector

x,t) --Lb{:).

where we suppress the subscript on a in equations that hold for any three-dimensional parameterization.

This state vector obeys the propagation equation

rfl x(t),t/_
X(t) =, j.

L re(t)j

where the time dependence of the reference quaternion is implicitly included in the time argument of

f(x(t), t). The expectation value of this equation propagates the state estimate in the absence of

measurements. In the usual linear EKF approximation, which is to ignore correlations in computing the

expectation value,

We want to choose O(t) so that &(t) is identically zero, and the expectation value of Eqs. (28) and (29)

with &(t) and &(t) equal to zero gives

{&) ® 0-' (t)}_, = +[u(t) - g(t)t - +&(t).

The normalization of O(t) requires

f3l}

(32)

(33)

(34)

Since &/(O) is the identity quaternion, this gives

tT(r_+) = _S(/(i(tt +)) ® c}(tt -).

This procedure of moving the update information from _ilt,+) to ,_¢t_+). is called a reset.

(38)

so

Appendix B shows that Eq. (36) does not depend on our choice of three-dimensional parameterizations of the

attitude. This quaternion propagation equation is the same as the equation derived by more conventional
methods, but we have derived it from the requirement that _i(t) be identically zero. The usual approach must

either postulate Eq. (36) a priori or derive it from dubious arguments using Eq. (6).

Measurement Model and Covariance Propagation

Processing a set of measurements at a discrete time tk in a standard Kalman filter for the state vector defined

in Eq. (31) produces a post-update estimate x(t k+) in which the three-component attitude estimate a(t_ +)

will not be zero, in general. In order to avoid the need to propagate two different representations of the
attitude, the attitude information is moved from a(t_+) to _(t_+). after which _i(t_+) is set to zero. Since

the value of the true quaternion is not changed by these operations, Eq. (20) requires

&/(&(t, +)) ® c)(t_ -) = &/(0) ® c}(t_+). (37)

{#(t)® _ -*(t) }_= o. (35)



_hereset,qocratlon is assumed not to modify thecovarlance. [his seems Iogical. slncc the total

mt't>rmation content of the estimate is neither increased nor decreased by the reset; it is merely moved form

tree part of the attitude representation to another, The discrete reset operation is a cause for some concern,

though, so we want to find some means to avoid it,

We can eliminate the discrete reset operation by keeping _(t) = O at all times, even during the update. We

accomplish this by considering each attitude measurement update to be spread out over an infimtesimal time

interval, rather than being instantaneous. Thus the kth attitude measurement update is assumed to take place

over the infinitesimal time interval from t_ to t_ + _', Since the measurements are actually discrete and not

truly continuous, we are really only interested in the limit that _ _, O, In the reset terminology, the filter !

am presenting here is a Continuous Reset Extended Katman Filter, It is difficult to resist the temptation to

call it the CoREK Filter, to contrast it with the other (inCoREK) filters.

For non-instantaneous measurements, Eq. (33) is replaced by [8-10]

where z(t) is an m-dimensional vector of attitude measurements and h(i(t),t) is an m-dimensional vector of

measure/nent models with the time dependence of the reference quaternion _)(t) implicitly included in its

time argument. The covariance can be partitioned into 3 x 3 submatrices as

_P_(_) P_(t) _
P(t) = E{(x -.'i)(x _{)r } =Lpfin Pb(t)J ' (40)

and the m x 6 measurement sensitivity matrix is

since the attitude measurements are assumed not to depend explicitly on the gyro drifts. This gives

PmH'{t>n-'(r)[z_r) - h{i(t),t)] = L4,(t){ah/aa), R_itt){z(t) _ h(.i(t),t)lj = L_i(t).o ]. (4"2_)

The propagation of the Gibbs-vector-based representation including measurements is

a,<,,:
L- L 2 j L 2 j (43)

!. " - ,"4

Equation (43) with f_(t) and ;i¢(t) equal to zero gives

{_(t) ® 0 -_(t)}v = 4-[eiIt) + a(.{(t), t)]. (44)

so, with Eq. (35).

O(t) = +[_l(t)_-_(.{(t),t)l®q(t) = _(£1i(t)+OZ(i(t),t))_](t) = _Z(2l(t))[(xi(t ) + (Z(X(t),t)]. (45)



.\., k,,cl_re, these results hold Iur a general three-d.ncns,onal attitude repre._entati,m obeying Eq. (22).

Equation (45) and the drift bias equatzon

b = gg_(t).t) = P r(c3h/aa) r R-_(t)[z(t) - h{ _(t),t)l,

are the esttmate propagation equations including measurements, since we have chosen the reference

quaternion so that _i(t) is identically zero.

Substituting Eq. (45) tnto Eq. (28) gives, after some algebra.

where

f(x(t).t) = -_(t) × a,(t) + Aoo(t) - cz[.x(t).t) - +[Ao)(t) -'- otf.x(t).t)] × af(t)

+ / { [AO)(t) - II(.x(t),t)]. a, (t) }a, (t).

ACO(t) -- O_(t) - to(t) = -b(t) + I_(t) - rlt(t ) .

It follows that the covariance matrix obeys

P(t) = F(t)P(t) + P(t)Fr (t) + G(t)Q(t)Gr (t) - P(t)Hr (t)R -I (t)H(t)P(t),

where

and

(46)

_47)

(48)

(49)

i -/3×3 l

E{ar/aa} E{aflab}] = I-{oS(t)×] (50_
F(t)= 03x3 03x3 J L 03×3 03×3'

I 03x31 (5].)

:IE{af/an,} E{af/an,}i:-/,x,
G(t) L 03×3 13×3 " ] 03x3 [3×3.'

I Qt(t) 0"3 1 (52)
Q(t) = L °3>,_ Q-' (t).J'

(53)

where R k is the equivalent discrete measurement noise matrix as on p. 122 of [8]. The appearance of e in

the measurement noise matrix is the reason we get a finite measurement update to the state and covariance

in the E ---) 0 limit. We can ignore all the non-measurement terms in the equations for the state estimates

Covariance Update

In considering the kth measurement update, we will treat the m x 3 measurement noise matrix R(t) and

n, × m measurement sensitivity matrix H(t) as constants during the infinitesimal interval:

Oh

c3a

and

R(t) = E Rt ,

Recalling that the attitude measurements are discrete and not truly continuous, we see that the covariance

propagation during the intervals between the attitude measurement updates, when the last term in Eq. (49)

is absent, is identical to [2-5], except for factors of .4- in some of the formulations.

E{rl,(t)rl_(t')} =d_s_(t-t')Q,(t) for i,j= 1,2.

(55)

(54)



and the covar_ance during the update, since thc_c ,,,ill .=,_',ec_wr¢cttons ,)t that go to zero m this limit. The

c_wanance propagation equation during the update _s

7Hr_ER_J-EH_ 0:,.; _

P(t, =-P,t) I 0,,.3 o;._jP(t

The solution of this is simply

p_t(t)=p_l(ti)+ i H_ _ H, " i
,. 0:,,_ 0:,,:, ] E

Using the matrix inversion lemma [9] gives

(56)

(57)

- Hr -,-i

L0 ,.JL

which reduces to the usual form at t_+ -=t_ + E, the end of the finite-time update,

- )H_ + .
P(t_ +) = P(tk) P(t_)L03×., J

This update is also identical to the standard update [2-5], except for occasional factors of 4.

Measurement Update

The quatemion estimation equation during the update, again ignoring terms that go to zero in the e ---* 0
limit, is

_/(t) = _4-E(_ft)) ot(Zt(t), t) = + _E(_(t)) P. (t)Hr(e R_ )-' [z(t) - h(_(t), t)]

=* (it(t))P.(t_)-P,(t,)H r H_P_tt_H,r, -- ]-"
' t--'_, __ H,P_(t_) H[(e R_)-_[z(t)-h([l(t).t)]

(6O)

= 4.'a'(Zt(t))P,(t,)H r I- H,P_(t,)H r +t--_j H*P_(t*)Hr (eRt)-_[z(t)-h(Zl(t)'t)]

=;. )HI [(, - t,)H, + ]-' - h(q(,).,)].

Several equations have been used to obtain this result, Eqs. (42), (45), and (58) in particular. Taking the

measurement to be constant, z(t) = zk, and assuming that the only time dependence of h(_(t),t) = h,(_(t))

is through the quaternion, the measurement residual time dependence can be computed by

d._d_[z_ h, (4(:))j = aht(q) _¢t). (61)
dt Oq _°,i,:,

We evaluate this partial derivative for the Gibbs vector parameterization of a. Equation (5) can be written

2[q(t)® q-'(t)]v _ 2w-r(gt(t))q

a,(t) = [q(t),_2t_t(t) L _tr(t) q (62)



Then. usmg the chain rule for dit'ferenttation and the identity'

=_(4)4 =0,

we find that

(63

c)hk(q) 0h_ aa,
= =2H,-Tq

It is shown in Appendix B that this result is independent of our choice of three-dimensional

parameterization. Inserting Eqs. (60) and (64) into Eq. (61) gives

d -E
z[zt - hi(c_(t))] = -HkP,(t t )U r [(t - t i )HiP_(ti )HI -i-£ R i ] [zt - h_ (ct(,))]. (65.)

where we have used the identity

Er(q)E,(q) = 1>,3. (66)

The solution of Eq. (64) is

[z k - h_ (c_(t))] = e Rk [(t - tk)H_P_(t_)H r + e Rk]-t[zk - h_ (c_(t_))]. (67)

The validity of this solution can be verified by differentiating and using the identity

• 7" -!

UkP, iti)H l [(t-t_)Hip_(t_)H r +eRk] gRt=eRi[(t-t,)H,P_(tk)H [ +eR_]-'HiP_(I,)Hrk. (68)

This identity is clearly true if t = t_. If t _ tk , its truth is demonstrated by

(e-t_)H_P_(t_)Hr[(r-e_)H_PJt_)H[ +eRk]-_e&

{ ]-'t { t= 1-eR,[(t-t,)H_P.(t,)ur+eR, 6Rt=ER i l-[(t-t_)HkP,(tk)Hr+eR_]-teR_ (69)

=ER,[(t-t_)H,P_(t_)H: +eR,]-'(t-t,)H_P_(t,)H?.

Inserting Eq. (6";) into Eq. (60) gives

_(t) = 4-_--(_(t))P_ (t,) _.(t) = _ f2(P_ (t_) X.(t))_(t). (70)

where

Z(')-- Hr [(t-tl)HiP_(tl)H[ + eR,]-'eRi[(t-tk)HiP_(tl)Hr + eRt]-ttzt- hi(q(ti))]
(7t)

The solution of this equation in the e --+ 0 limit is [6]

#(t_ +) = exp(_ ff2(_, ))._(t, ). (72)

where

ta_-t ]-1,_ = e_(t_)J'.)_(t)dt=P_(t_)Hr[H,P_(t,)H r +R_ [z_-h_(_(t,))].

Similar computations starting with Eq. (46) give the time dependence of the bias as

b(t) = P.r (ti)Xft).

(73)

(74)



which has the solution

:- t r

This drift bias update is the standard EKF result [2-51; but the quaternion update differs in preserving the
quaternion norm exactly. The update vector _, would be fi(t k+) in a conventional EKF with a discrete reset

as in Eq. (38). In the treatment presented here, _, appears as a rotation vector independent of which three-

dimensional parameterization we choose to represent the attitude error. The conventional procedure is more

efficient than the norm-preserving update derived here, however, especially as implemented in [4]; and these

methods are equivalent to second order in the measurement residuals.

SECOND ORDER FILTER

According to Maybeck [ 10], afirst-orderfilter with bias correction terms obtains the essential benefit of a

second order filter without the computational penalty of additional second moment calculations. This filter

adds second-order corrections to the state propagation and measurement residual equations, but uses the EKF

expressions for the covariance and gains. In the continuous measurement case, Eq. (39) is replaced by

.Qt) = f(i(t), + [)p(t) * p(t)Hr(t)R_Z(t)[z(t)_ h(i(t),t)- bm(t)], (76)

where

and

4trl 8'-ft(x't) p(t)!l
b_(t)-. [ _Z Jl,:_,)

(77)

where co. has components

For the Gibbs vector parameterization, Eqs. (28). (40) and (77) give

bp(t) = _ P_(_(t) - 2[ _/(t) ® _-' (t)] v } + m_ (t).

=-'_,_=,j%k[P_(r)l_ for i = t. 2.3.(.o., (t)

with ev* being the totally antisymmetric Levi-Civita density:

E_.'3 = E23t = _'312 = l,

_'32| = E2I_ = E132 ---- -["

e,j, = 0 if any two indices are equaL.

(81)

(82a)

(82b)

(82c)

' !a"h*(x't) p(t)}l ' _c3'hk(a't)}l- =,tr_ _ P_(t) . (78)
b_(t) *.tr l _ ,,,:, " ( aa- -,,-_,,

The second form of Eq. (78) results from the lack of explicit gyro bias dependence of the measurement. In

parallel with Eq. (42), we write the measurement part of Eq. (76) as

Pa (t)(_h/Oa)r R-_ (t)[ z(t) - h(.x(t),t) -bm (t)] 3
P(t)Hr _t)R-: (t)[ z(t) -h(.x(t),t) - b_ (t)] =i pf (t)(_h/Oa)r e__(t)[z(tl _ h(._(t),t)_ _(t)] ____

(79)

IeC (,_(t),t) t
---LlY(i(t).t) J



lncludingthese,_econdordertermslnt{_Eq f4.];g,ves

, !
-4,!½gitl,_ r:i_tt)] fie(t) ¢x_Olt),x_d-t(t'): li it)L J-I 2 "_ j,

- +C{_!t) - 2[_)_r1,9 ?t-_tt)k t ,-co It) -cL't.,i(t).r)

(83)

The condition that fi¢lt) and _!t) are equal to zero is

[ _](t),x_ Cl-_Itl]v = _ {dl(t ! + [1 + _- P, (t)]< [co. (t) + (I'(.x(t).t)]}. (84)

It is shown in Appendix B that the factor of [I + _- P,(t)] < depends on the specific choice of the three- !

dimensional parameterization of the rotation. Since Pj(t) is second order in the estimation errors and this

factor multiplies terms of first order in errors, it is consistent with a second-order filter to ignore it, giving

_(t) = _[_(t) + _ (t) + _'(i(t),t))] ® _(t) = _Z(_(t))[&(t) + 0_ (t) + Ot'(i(t),t)]. (85)

The time dependence of the gyro drift bias is given by

b = fY(_(t),t). (86)

For time propagation between measurements, the c_ and [3 terms are zero, so the only change from the EKF

is the addition of the term involving e0_ (t) in the quatemion propagation. This is a second-order correction

to the angular rate vector arising from the skew part of the covariance between the attitude errors and gyro
drift bias errors. The measurement update equations in the E + 0 limit are given by

,_(t_+) = exp(_ X'2(#')) _(r_), (87)

where

,'=P_(Q)H r[H_P_(t_)H r +R* ]-t{z_-h_(#(t_)) gm(t_)], (88)

and

(89)

Except for the maintenance of quatemion normalization by Eq. (87), these results are equivalent to those

obtained by Vathsal [27]. It should be pointed out that Vathsal also considered second order effects on the

covariance and gain matrices. The derivation of Eqs. (87)-(89) assumes that b= (t) is constant over the

infinitesimal duration e of the update; this approximation needs to be verified for a specific measurement

model.

QUATERNION INTEGRATION

Exact propagation of the quaternion using Eq. (13) would preserve the quaternion norm exactly, due to the

antisymmetry of the matrix _(m). The simplicity of this propagation, especially its linearity in q, is often

given as one of the advantages of the quatemion representation of the attitude. However, the quaternion

norm is not preserved exactly in many numerical integration procedures, for example in commonly

employed Runge-Kutta integrators. We propose a new solution to this problem and contrast it with several

alternative strategies for enforcing quatemion normalization. The criterion for comparing these methods
should be the attitude error rather than the quaternion normalization error, since the latter contains no

attitude information.



New Method

Th_s method is based on the ideas about attitude representations presented in this paper. It uses a three-

component representation of the attitude variation over an integration step, and the quaternion representation

for the accumulated attitude. This gives up the advantage of the bilinear quaternion differential equation to

preserve the quaternion norm. One alternative is to integrate the Gibbs vector kinematic equation [7]

g = _[_ -co x g + (co. g)g]. (90)

from r. to t_._. with the initial value g_ = 0. At the end of the integration step, the quaternion is updated by

q_.L = q(g_,t)® q_ (911

where q(g_._) is given by Eq. (17). The square root in this equation can be avoided by using the Modified

Rodriges Parameters, whose kinematic equation is [7]

[3= -la-[(1 - pZ)o_ - 2m x p + 2(oJ. p)p]. (92.)

This is integrated from t,_ tO t,_ t, with the initial value p_ = 0, and then the quaternion is updated by

q,.t = q(P,+l ) ® q, (93)

where q(p_.,) is given by Eq, (19).

Direct Integration

The conventional approach is straightforward integration of Eq. (13). Since quaternion normalization is not

automatically preserved, we normalize the quaternion by setting q = q/Ic_. We can normalize the quaternion

either once after the completion of the entire range of integration or after each integration step.

Closed-Form Solution

This method is based explicitly on the linearity of Eq. (13). It gives the solution as a matrix exponential [6]

q.._ = exp(_ _(_)) q_ = I cos(o_/2) + o_ _ ffa(_ ) sin(O_/2), (94)

where

*t = I,i'"Ol(t' dt (95)

This solution is only approximate unless the direction of _ is constant, which is why Eq. (72) only holds

in the in the e ---) 0 limit. Equation (95) gives the lowest order of a Magnus expansion [28], which is

related to the Baker-Campbell-Hausdorff formula. The next higher approximation is

O, = [.""o(t) dt * (h'-/12)ol(t,) x ¢_(t.._ ), (96)

where h=t _-t is the integration step size.

Constraint-Preserving Integrator

A recently proposed a second-order method assuring exact quaternion norm preservation is [29, 30]

[ 1"[ _ )1:_'"q.., = 1+ (h/4)"co_... I + (h/4) _.-.'k. (97)

Higher order methods have been proposed [30J. but these require higher derivatives of the angular rates.

which are not generally available without additional computations.



SUMMARY

Themajorresultof thispaperistoclarifytherelationshipbetweenthefour-componentquaternion
rcpresentattonofattitudeandthethree-componentrepresentationofattitude errors in the widely used

extended Kalman filter that has become known as the multiplicative Kalman filter. We view this filter as

based on an apparently redundant representation of the attitude in terms of a reference quaternion and a three-

vector specifying the deviation of the attitude from the reference. This apparent redundancy is removed by

constraining the reference quaternion so that the expectation value of the three-vector of attitude deviations

is identically zero. It is therefore not necessary to compute this identically zero expectation value. The basic

structure of the multiplicative Kalman filter follows from constraining the reference quaternion in this

fashion: the reference quaternion becomes the attitude estimate, the three-vector becomes the attitude error
vector, and the covariance of the three-vector becomes the attitude covanance. All these results are well

known in practice, but the justification for using this mixed attitude representation has been unclear.

An explicitly norm-preserving measurement update of the quaternion has been developed in this paper. It is

less efficient computationally than the conventional update, however, and it is mathematically equivalent

through second order terms in the measurement residuals. We have also investigated a second-order filter in

the new framework, but have merely reproduced results obtained previously.

The idea of representing the attitude in terms of a reference quaternion and a three-vector specifying the

deviation of the attitude from the reference can also be used to develop norm-preserving quaternion

integrators. Some algorithms in this area are proposed.

APPENDIX A

We'll consider two toy problems to illustrate the assertions about pdfs below Eq. (23). In each case, we'll

start with a pdf on $3 that obeys p(q,t) = p(-q,t)and has two well-defined maxima. We would like our

estimate _ to have one of these values. We denote the reference quaternion by _', since we won't assume

that _ = 0 in this Appendix.

Case 1

°]
Consider a pdf concentrated at the poles _[_IA of $3:

Ptq) = d':"(q). (A1)

Mapping this to p(a_) using Fq. (21c) gives

=_5(3)I q,,t_ a_ ÷ 2q,, f - a_ x q,e ]. (A2)
p(a_) L J

If q,,_ _ 0. it's clear that _i must be such that the argument of the delta function in Eq. (A2) is zero. This

gives
2 q,,j.

;i = - _ (A3)
q,,f_

Then Eq. (23) gives

the desired result. If q,4a = 0, then _if = 0 by symmetry, and 0 = q,4



Case 2

-0_

Constder a pdf with a very broad distnbutmn centered at the poles _ 1! of $3:
J

4qT_f,
P(q)= n'"

Mapping this to p(a_) using Eq. (2lc) gives

4

p(a,)- re-'

t,-kS_

(2q,,y, - a_ • q,,/)"

4+}% I, (A6)

The expectation value of a_, using the appropriate volume element, is

2d3a, =8 f a, (2q,,t, -a, .q,,/):

,, =I.,p(.,)(,+ .,1:): (4+1.,1,), dSa, = - 4 q,,/,q,,,. (AT)

after a tedious but straightforward integration. Then Eq. (23) gives

9 "

'. : ]L{'+21,...r),.<.]'
The special case of q,,l_ = 21 gives the desired result ofEq. (A4), but this is not true in general. It is worth

noting, though, that Eq. (A8) gives _ > 0.95 (where the pdf is _eater than 95% of its maximum value)

for [q,e_[ > 0.562.

APPENDIX B

Instead of using the Gibbs vector, we will employ the vector part of the quaternion as in Eq. (2 lb). With

this parametenzation, Eq. (43) is replaced by

a,(,)=.*g(,)®/._j-i._l®4(,,®_-'(,) +=I._(,,.,). m2,
I,"

Solving for iq(t) and _q(t) equal to zero gives Eq. (44), Omitting the measurement term gives Eq. (34).

Substituting Eq. (45) into the right side of Eq. (B2) gives, after some algebra,

f(x(t).t) =-(_(t)xa,_(t)+_af-4-a_(t)[Aoa(t)-_(x(t),t)]-_[Aoa(t)÷ot(,x(t).t)]xaqtt). (133)

It follows that Eqs. (49)-(52) for the EKE are unchanged. Differentiating Eq. (B2) gives, with Eq. (77),

bp(t) = - _-trP,(t){rb(t) - 2[_(t) ® ,_-t(t)Jv } + _(t), (]34)

in place of Eq. (80), which changes Eq. (84) to

[¢}(t) ® _ -' (t)] v = _ {&(t) + [1 - -} trP,(t)]-_{ol< (t) + a'(i(t), t)]}. (BS)

Equations (84) and (BS) agree if and only if we ignore products of P,(t) and terms of first order in the errors.



Th,s parameterization of a gt',es

a._(t> = 2[q(t)®_t'_(t)],. = 2Er((iIt))q. (B6)

so evaluating the measurement partial derivative using the chain rule leads directly to Eq (64).
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