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ABSTRACT

Test and checkout systems are essential components in ensuring safety and reliability of

aircraft and related systems for space missions. A variety of systems, developed over several

years, are in use at the NASA/KSC. Many of these systems are configured as distributed data

processing systems with the functionality spread over several multiprocessor nodes

interconnected through networks. To be cost-effective, a system should take the least amount of

resource and perform a given testing task in the least amount of time. There are two aspects of

performance evaluation: monitoring and benchmarking. While monitoring is valuable to system

administrators in operating and maintaining, benchmarking is important in designing and

upgrading computer-based systems. These two aspects of performance evaluation are the foci of

this project.

This paper first discusses various issues related to software, hardware, and hybrid

performance monitoring as applicable to distributed systems, and specifically to the TCMS (Test

Control and Monitoring System.) Next, a comparison of several probing instructions are made to

show that the hybrid monitoring technique developed by the NIST (National Institutes for

Standards and Technology) is the least intrusive and takes only one-fourth of the time taken by

software monitoring probes. In the rest of the paper, issues related to benchmarking a distributed

system have been discussed and finally a prescription for developing a micro-benchmark for the

TCMS has been provided.
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Anand K. Ojha

1. INTRODUCTION

The Kennedy Space Center has several test and checkout systems to ensure safety and

reliability of spacecraft and equipment for space missions. Some of the commonly used systems

are: CITE (Cargo Interface Test Equipment), PPCU (Partial Payload Checkout Unit), TCMS,

(Test, Control, and Monitor System), and CMU (Control and Monitor Unit.) These test and

checkout systems are essentially distributed data processing systems with the computational

functionality distributed over several processors or clusters of processor interconnected through

custom or commodity network. Several TCMS units are in use, and because of its interesting and

open architecture, the performance of this system is the focus of this project.

System performance is one of the key concerns to designers, administrators, and users of

a computer system. Information about system performance can be obtained by two methods:

system monitoring and system benchmarking. Monitoring tools help in the operation and

maintenance of an existing system and are indispensable tools for computer system

administrators. These monitoring tools provide valuable information such as system utilization

and workload statistics to help efficiently manage and upgrade the system. Benchmarking, on the

other hand, applies a fixed workload to a system to determine latency, throughput, and resource

utilization and is helpful in comparing the performance of two different systems under identical

workload. While there are several de-facto benchmarking test-suites for CPU, no comprehensive

test-suite has achieved this status in the arena of I/O benchmarking. This has been primarily due

to the inherently diverse nature of the I/O systems, and has led to the development of system-

specific and in-house benchmarking test-suites. A similar undertaking seems to be a viable

solution for the TCMS as well. This paper covers the issues in monitoring and benchmarking of

distributed systems, especially as they apply to the TCMS.

The next section provides a brief overview of the TCMS. Performance monitoring

choices and issues are discussed in Section 3, and the quantitative results presented in Section 4

indicate that hybrid monitoring takes only one-fourth of the time compared to software

monitoring. Section 5 provides a synopsis of existing benchmarks, analyzes several

benchmarking options, and outlines the details of a comprehensive micro-benchmarking scheme

for the TCMS to test not only the CPU but also I/O and operating system.

2. BACKGROUND ONTCMS

TCMS has evolved from PPCU to support the activities at SSPF (Space Station Processing

Facility), launch pads, SLF (Shuttle Landing Facility), and the OPF (Orbiter Processing Facility.)

It is based on UNIX/X-Windows, and is built around SGI Origin 200 multi-processor computers

with the functionality spread over the internal processors and Motorola's MVME167 cards

linked though Ethernet. TCMS is essentially a distributed data acquisition, processing, and

control system, and supports a mix of inputs including direct discrete and analog measurements

and various types of serial and telemetry formats. The TCMS was originally built around

Nighthawk computer system, but to benefit from the advances in the technology, the Nighthawks
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have been replaced by the Origin 200 containing R10000 dual processors. A detailed schematic

of the TCMS is shown in Figure 1 (attached as the end of this paper.) Since several TCMS units

are now in use, this is the system chosen for this project.

3. ISSUES IN PERFOMRANCE MONITORING

There are three approaches for implementing a performance monitor: software, hardware,

and hybrid. These three techniques and their pros and cons are discussed in this section.

3.1. Software Monitoring

Software monitoring is also known as software instrumentation. In the most basic software

monitoring scheme, execution time of a program module is obtained by inserting system-timer

calls at appropriate points in the application program. The following three such system calls of
interest are available in Unix:

• time (NULL) : Wall clock time in seconds since 1/1/1970

• gettimeofday(&tv, NULL) ;

Time_seconds : tv. tv_sec; // Integer number of seconds since 1/1/70

Time. microseconds : tv. tv_usec; // Fraction seconds in microseconds

//since 1/1/70

• Clock(): The system call returns the CPU time in ms or gs depending on the

implementation. One needs to be very careful in using this system call, because it provides

information only about CPU utilization and not the wall clock time. Instructions, such as

sleep(int seconds), that make the processor wait for a specified amount of seconds

are not accounted for by the clock ( ) instruction.

Software monitoring has three obvious limitations. First, the 1-gs resolution of the system

timer is not very good for present-day computers whose clock period is on the order of 1-ns. To

obtain results with satisfactory resolution, the execution time of a program module (or for that

matter of any individual instruction) is determined by executing the module a large number of

times and then obtaining the average execution time; clearly, a time-consuming process.

The second problem is a result of what is known as the "probing effect" in which the inserted

monitoring instructions add to the execution time of the code under measurement. The probing

effect is sometimes tolerable for a standalone uniprocessor system. However, for a multi-user-

multi-tasking system that has a node with multiprocessors (such as the Origin 200 used in

TCMS), the probing effect may significantly degrade the system performance due to loss of

synchronization of the cooperating or multi-threading processes. Probing effects are particularly

detrimental to parallel programming environments.

Thirdly, the software approach provides only a partial monitoring capability, because it

cannot efficiently monitor cache hits, or events caused by external conditions, such as exceptions,

interrupts, etc.

3.2. Hardware Monitoring

Hardware monitoring requires an external dedicated hardware in the form of either a

plug-in card or a dedicated box to monitor the signals on the bus at a processing node [1]. The

dedicated hardware contains its own local memory and functions like a logic analyzer in that it
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records the events of interest based on the signals captured from the address, data, and control

bus of the system being monitored. Every event of interest is encoded as a unique bit pattern

called an event token that uniquely specifies what external event occurred and where it occurred.

An event token is like an ID number of an event. For every event of interest, an event record is

created that contains the event token and its timestamp so that the samples could be correlated in

time. Event records are first stored in the local memory of the monitoring hardware, and later

downloaded on to a host for trace-generation and post-analysis.

On the positive side, hardware monitoring is least intrusive, and in addition to interrupts,

it can also monitor designated events during program-execution. However, hardware monitoring

is impractical for systems employing virtual memory because while the compiler generates

virtual addresses, the monitoring hardware must be designed to be triggered by the physical

addresses and signals. This knowledge of this virtual to physical address translation mechanism

makes the design of hardware monitoring systems impractical for virtual memory.

3.3. Hybrid Monitoring

Hybrid monitoring combines the desirable features of both software and hardware

techniques. The embedded software probes log the events caused by the program itself, while

external events are recorded by the hardware. It is generally agreed that hardware monitoring

provides an efficient solution to monitoring distributed systems.

Since there were numerous ways to design a hardware monitor, each research group

initially came up with its own custom hardware monitor [2]. Later, in an effort to standardize

hybrid monitoring, the National Institutes of Standards and Technology (NIST) developed a

plug-in board known as the Multikron Interface Board (MIB) for PCI, S-Bus, and VME bus [3,

4]. Universities and research organizations can obtain these MIBs on loan from the NIST.

Otherwise, these can be bought from the NIST for about $750 at the time of the writing of this

paper in 1999. Salient features of the MIB are described in the following paragraph.

The MIB is a memory-mapped device and can monitor up to eight CPUs sharing a bus. It

has a 56-bit timestamp counter with a resolution of 100ns. In contrast, the best resolution

obtainable from software system calls is only 1 gs. Two types of samples can be collected by the

MIB: trace sample and resource sample. A 20-byte trace sample contains CPU ID, process ID,

user-written identifier, and the timestamp. The 84-byte resource sample, in addition, contains the

contents of thel6 32-bit counters that can be started, incremented, and stopped under hardware or

software control. Hence, these counters can be used to count the occurrence of events such as

cache hits, duration of memory bus cycles, etc. The user simply writes an integer identifier value

through a single assignment (memory write) statement; all other data are non-intrusively

provided or captured by the board itself. The MIB has 16 MB of on-board RAM, and so it can

store 800K trace samples in its local memory before needing a download to a host for post-

analysis. A RESET signal is available on the MIB to accurately synchronize the timestamp

counters of all of counters in a situation where multiple nodes are monitored by as many boards.

Thus, the error in time-synchronization is limited only by wire-distance and is far superior to the

software time-synchronization. The next section compares the results from MIB with those

obtained from software instrumentation.
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4. RESULTS FROM MULTIKRON MONITORING SYSTEM

To determine the intrusiveness of various monitoring techniques, a test platform was set

up using Linux 2.2-15 (Redhat 6.0) on a 200 MHz Intel Pentium-Pro processor (8KB Instruction

cache and 8KB data cache) with 256 KB L2 cache and 96 MB DRAM. GNU's EGCS 1.I

compiler that comes along with Redhat 6.0 Linux, was used. Average execution time from one
million iterations are listed in Table 1 below.

Table 1. Average Execution Time of Monitoring Techniques.

Technique

Software

Instruction

time(NULL)

gettimeofday(&tv, NULL)

clock()

Average
Execution

Time

1.77 gs

2.38 Its

2.41 _ts

Hybrid MIB Assignment Statement 0.36 Its

As noted before, gettimeofday(&tv, NULL) has the best resolution of 1 Its among all

software instructions, whereas as mentioned before, MIB's timestamp counter has an order of

magnitude better resolution. In addition, it can be observed from the above table that in terms of

execution time the hybrid monitoring is more than four times better than the best software

technique.

5. ISSUES IN BENCHMARKING DISTRIBUTED SYSTEMS

A benchmark suite provides a figure of merit for system-performance. This section provides a

synopsis of the issues related to various benchmarks. The performance of a distributed system is

impacted by the following components [5].

• CPU

• Memory

• Operating System

• I/O

• Network and Communication

Based on the level of details the test-results contain, there are two classifications of

benchmarks: macro and micro [6]. A macro-benchmark contains minimum amount of detail in

its result; generally, a number indicating how better or worse a given computer system is

compared to some other system. Whereas the result from a macro-benchmark is a useful measure

in comparing two different computer systems, it does not answer the question as to why a system

performs better or worse than the other one. The usefulness of macro-benchmark is limited only

to a user in making a decision about which system'to use. However, to identify bottlenecks,

integrators and designers of computer systems need detailed information. These details provide a
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better insight intohow thecomponentsfit andinteractwith eachother in determiningthe system
performance.Benchmarksthatgeneratesuchdetailedresultsareknown asmicro-benchmarks.

Another benchmark-classification is based on the system component they test. Earlier

benchmarks were developed to test only the CPU, and so they consisted of computation-intensive

programs to test the computational prowess of a computer system. Some others were then

developed to test the file transfer or I/O capability of a computer system. A few others were

primarily intended for transaction processing for a client-server system. However, no benchmark

currently exists that can test all of the components of a distributed system listed above. The

following sections discuss the issues and tools available to benchmark some of these individual

components of a distributed system.

5.1. CPU Benchmarking

CPUs have been the focus of most computer system performance evaluation, and a major

concern of such studies has been the interaction between the processor and the memory, which in

turn depends on the following factors [5]:
• Instruction Set

• Hardware architecture: caching, pipelining, superscaling

• Clock rate

• Compiler

• Memory Management

• Operating System

A CPU benchmark, as the name suggests, primarily measures the computational prowess

of a CPU and its interaction with the memory system. Therefore, CPU benchmark programs tend

to be computation-intensive. A number of CPU benchmarks are available but the de-facto
standard for CPU benchmarks is SPEC95 which consists of two suites: Cint95 and Cfp95.

CInt95 is a collection of eight C programs, while Cfp95 is a collection of 10 Fortran-77 programs

[7]. The output of SPEC95 benchmark suites is a number that provides a comparison of the

performance of the system under test with the performance of a Digital Equipment Corporation's

VAX-11/780 mini-computer of the late 70's.

5.2. File System and I/O Benchmarking

In Unix system, all I/O devices are treated as files. The performance of a computer system

that includes I/Os is greatly influenced by the architecture used to interface the three components:

CPU, memory, and I/O. In addition, the impact of operating system is very pronounced.

Therefore, systems containing I/O devices possess a much higher level of complexity in

benchmarking. The confusion in this area is further compounded by the fact that depending on

the system and application, there are several performance-measures for systems consisting of I/O

devices, and improving one measure might degrade the other. Thus, in contrast to processor

performance benchmarking, the performance criterion for systems consisting of I/Os is not as

unambiguous. The state of I/O benchmarking is still quite primitive compared to the processor

benchmarking and above all is application dependent [5]. This is because of the widely varying

schemes as a result of tradeoffs. Some of the notable file system benchmarks that appear to be

promising for Unix systems are discussed below for the sake of completeness. Readers may
consult the indicated references for further details.
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The Andrew benchmark for Unix system is one of the oldest Unix file system benchmarks

consisting of a suite of 70 files that take up 200 KB and run in five phases - MakeDir, Copy,

ScanDir, ReadAll, and Make [8].

5.3. Operating System Benehmarking

System performance is impacted by the algorithm the OS uses to create, schedule, and

switch processes, especially in multi-user or multi-tasking environment. Memory management

techniques, if implemented under the operating system, also impact the performance of the

system.

The resources for operating system benchmarking are almost non-existent. Nevertheless,

the benchmark, LMBench [9], needs mentioning here. LMBench, is a synthetic micro-

benchmark to test the operating system as well as the I/O capabilities of a computer system.

LMBench relies on determining the execution time of the system and function calls needed to

mimic the working of the operating system. For example, consider the problem of determining

the system latency in creating a new process and running a new program. Unix performs this

task by executing fork() and execve0 system calls. Incidentally, this is how the Unix command-

interpreter, shell, works in the inner loop. Thus, the latency in creating a new process and

running a new program can be obtained by determining the execution time of fork0+execve0

system calls. Clearly, a better operating system should have smaller execution time..

5.4. Prescription for a Comprehensive Micro-Benchmark Suite for TCMS

A test and checkout system is a complex distributed data processing system, and in addition

to the components discussed above, consists of heterogeneous analog and discrete signals,

multiplexers/demultiplexers, and networked systems with multiprocessors.

It should nevertheless be observed from the discussion in the preceding sections that due to

the specific application and often competing requirements, a macro-benchmark is impractical in

evaluating distributed systems. Instead, a better insight into all these issues can be obtained by

quantifying the parameter that show how the components belonging to the system fit and interact

with each other in determining the system performance. In other words, a micro-benchmark test

suite that can test the components that impact the performance of a distributed system seems to

be the best alternative. The idea here is to have a benchmark that can help the design and

upgrade of the system. For example, consider the upgrade of the R10000 processors in Origin

200 by a later version. The benchmark should not only provide the gains for computation

intensive tasks, it should also shed light on the new performance results for operating system and

I/O operations as well. As a second example, consider replacing the optical drives of the Origin

200 system by faster drives. One would expect the file-transfers to be faster, but a CPU-bound

system might not show a commensurate improvement in the file transfer rate because of the

processor's inability to cope up with the more frequent interaction with the faster drives. These

examples highlight the significance of a micro-benchmark in system design and upgrade. A

comprehensive micro-benchmark being proposed here should have the following capabilities.

5.4.1 Co..mputational Capability: This should consist of a set of computation-intensive

programs to determine the computational capability of the host. In a multiprocessor system, the

benchmark should provide informatiofi on _ut_zation of individuaI processors. A set of

computation-intensive programs, such as LINPACK, should suffice [6].
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5.4.2

DRAM.
Memory Performance: The following tests should reveal performance of cache and

Reading a block of data from resident memory (Test for different block sizes)

Writing a block of data to resident memory(Test for different block sizes)

Reading a block of resident memory and writing to a different block(Test for different block

sizes)

5.4.3 File System and I/O Capability: Since I/O devices are treated like files in Unix, the

following tests can benchmark both file systems and I/O devices.

• Time taken in creating/deleting files

• Time taken in writing to a file using putcO

• Time taken in reading from a file using get()

• Time taken in sequentially writing a block of data to a file or I/O device (Test for different

file sizes): write(int handle, void *buf, unsigned len)

• Time taken in sequentially reading a block of data from a file or I/O device (Test for different

file sizes): read(int handle, void *buf, unsigned len)

• Time taken in reading/writing random files: In this case, the buffer pointer is randomized by

rand() in the function long lseek(int handle, long offset, intfromwhere). It should be noted

that this randomized I/O function can be used to determine the time it takes for a disk drive to

position its head at a random location.

5.4.40perati_stem: The following tests should reveal how efficiently the OS can create,

schedule, and switch processes. Networking as well as the operation of many other tasks can be

synthesized and the system benchmarked.

• Time to create a process

• The latencyin context switching

• Data transfer rate through a Unix pipe

• Opening and closing TCP/IP connection
5.4.5 Network and Communication: It should be observed from the schematic of the TCMS

that the user interacts with the AP or ARS through a number of X-Terminals connected to a

common Ethernet. Since the user interaction is random, it is not realistic to obtain a

deterministic benchmark value or a figure of merit. A possible approach would be the

installation of a network monitor capable of providing important network statistics such as

number of packets transferred, number of collisions, throughput, etc. Inexpensive COTS

(commercial-off-the-shelf) network monitors are available. Conclusion about how the network is

performing can then be drawn from these statistics. For example, if the number of collisions is

high, the network is saturated either because of increased user requests or due to the bandwidth

limitation of the network. The same strategy may be applied to the other Ethernet link that

interconnects the FEPs (Front End Processor) of the TCMS to the AP and ARS in the upper half

of the figure.

Unfortunately, the X-terminals are not intellligent terminals; they have display

capabilities but they do not have any kernel. If they had a kernel, a benchmark program running

on either the AP or the ARS could have been designed to emulate the user interaction by

implementing a client-server model to account for the communication between AP/ARS and the

user terminals. This aspect, however, needs more investigation.
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The micro-benchmark suggested here would not only be useful for the test and checkout

systems, but would also have the capability to test the CPU, operating system, and I/O capability

of any generic computer system.

6. CONCLUSION

This paper discussed monitoring and benchmarking issues for performance evaluation of

distributed systems with special emphasis on the test and checkout systems. Details of a

prototype Linux-based hybrid monitoring system, that employs NIST's PCI-MultiKron card,

have been provided. Results obtained from the monitoring system indicate that compared to

software monitoring, the hybrid monitoring reduces probing effect by at least a factor of four.

Finally, issues related to benchmarking a distributed system have been discussed and the details

on how to develop a micro-benchmark for the TCMS have been provided.
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