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A Hybrid Numerical Method for

Turbulent Mixing Lavers

Abstract

by

NICHOLAS JACOB GEORGIADIS

A hvbrid method has been developed for simulations of compressible turbulent
mixing lavers. Such mixing layers dominate the flows in exhaust systems of modern
day aircraft and also those of hypersonic vehicles currently under development. The
method developed here is intended for configurations in which a dominant
structural feature provides an unsteady mechanism to drive the turbulent

development in the mixing layer.

The hybrid method uses a Reynolds-averaged Navier-Stokes (RANS) procedure to
calculate wall bounded regions entering a mixing section. and a Large Eddy
Simulation (LES) procedure to calculate the mixing dominated regions. A
numerical technique was developed to enable the use of the hybrid RANS-LES
method on stretched, non-Cartesian grids. Closure for the RANS equations was
obtained using the Cebeci-Smith algebraic turbulence model in conjunction with the

wall-function approach of Ota and Goldberg. The wall-function approach enabled a
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continuous computational grid from the RANS regions to the LES region. The LES

equations were closed using the Smagorinsky subgrid scale model.

The hybrid RANS-LES method is applied to a benchmark compressible mixing laver
experiment. Preliminary two dimensional calculations are used to investigate the
effects of axial grid density and boundary conditions. Vortex shedding from the hase
region of a splitter plate separating the upstream flows was observed to eventually
transition to turbulence. The location of the transition. however, was much further

downstream than indicated by experiments.

Actual LES calculations. performed in three spatial directions. also indicated vortex
shedding. but the transition to turbulence was found to occur much closer to the
beginning of the mixing section, which is in agreement with experimental
observations. These calculations demonstrated that LES simulations must be
performed in three dimensions. Comparisons of time-averaged axial velocities and

turbulence intensities indicated reasonable agreement with experimental data.
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CHAPTER 1

INTRODUCTION

The use of computational fluid dynamics (('FD) to assist in the analysis and design
of aerospace vehicles and their components has substantially imecreased in recent
vears. For analyzing one particular class of flows. that of aircraft engine exhaust
nozzles. Revnolds-averaged Navier-Stokes (RANS) codes have been used extensively
by government organizations (i.e. NASA) and aerospace companies. Exhaust
nozzles being developed for modern day subsonic commercial aircraft typically have
multiple streams with a core flow and one or more bypass streams which mix with
the high energy core flow before exiting the nozzle to lower jet noise while
maintaining high thrust levels. Similarly in NASA’s High-Speed Research program,
the engine exhaust systems for the proposed supersonic transport were designed to
be mixer-ejector nozzles. which entrain secondary air into the exhaust nozzle to mix
with the core engine stream. again with the goal of simultaneously lowering jet noise
and maintaining sufficient thrust [91]. Propulsion systems currently under
development for use on hypersonic and reusable space launch vehicles, such as the
Turbine-Based Combined-Cycle (TBC(') and Rocket-Based Combined-Cycle

(RBCC) concepts also employ mixer-ejector ducts. The TBCC concept [30.104]
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uses a mixer-ejector to integrate a turbine engine with a ramjet into a propulsion
system with a conmunon nozzle, while the RBCC concept [28.101. 103] integrates a

rocket with a ramjet. again with a common nozzle.

The flows in these nozzle systems all have compressible turbulent mixing as the
dominant flow characteristic. RANS codes used by research and development
engineers to analyze these nozzles have emploved turbulence models to replace the
unsteady turbulent motion with an effective eddy viscosity. Unfortunately. no
turbulence model has been developed to date which is able to accurately represent
the turbulent motion for such nozzle flows. References [5] and [32] show that the
“state of the art”™ turbulence models available in production-use RANS codes have
major deficiencies in predicting turbulent mixing in nozzle and jet flows involving

compressibility. high temperatures. and three-dimensionality.

The known limitations of RANS techniques to calculate complex turbulent flows.
coupled with continually increasing computing power. have led to interest in more
sophisticated calculation techniques such as direct numerical simulation (DNS) and
large eddy simulation (LES). DNS is currently limited by computer hardware to
very simple flows at low Reynolds numbers, and LES, which directly solves for the
large turbulent scales and limits empirical modeling to the smallest scales, is
becoming practical for more complex flows at higher Reynolds numbers. Birch [10]
and Bradshaw [14] suggest that LES techniques offer the best prospects for
improving the capability to calculate turbulent flows, particularly for flow regions

not including wall boundary layers.

(38
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As a result. an LES-based technique is an attractive option for calculating the
mixing dominated regions of nozzle flows. However. applying such an LES technique
simultaneously to the wall bounded regions that enter the mixing region (which are
an important part of multi-stream nozzles that should be calculated accurately) will
not be practical in the near future. This is because computational resources far
greater than those available today would be required to capture the wide range of
turbulent time and length scales that are important in such a problem. These
turbulent scales range from very small eddies in the wall boundary lavers to very

large eddies in the developing mixing layer.

While RANS-based methods have major deficiencies in predicting compressible
mixing lavers and inherently are not formulated for calculation of unsteady
turbulent flows. they have heen shown to predict the mean flow behavior of wall
hounded regions quite well. particularly in the absence of adverse pressure
gradients. As a result. it would be desirable to combine a R ANS-based technique for
the wall boundary layers upstream of the mixing region with an LES-based
technique for the downstream unsteady. turbulent mixing region. The development

of such a hybrid RANS/LES approach is the subject of this work.

In the rest of this chapter, a survey of methods currently used for the computational
modeling of nozzle flows dominated by compressible turbulent mixing and new
techniques under development are presented. First. RANS methods are discussed in
section 1.1 with emphasis placed on turbulence modeling, which is most frequently
considered the limiting factor of such C'FD simulations. Next. a discussion of LES

techniques, as applied to nozzle and jet flow fields, is presented in section 1.2.
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Section |.3 discusses hybrid methods. which have recently been proposed for flows
in which wall boundary laver regions may be adequately calculated with a RANS
method. while unsteady regions with large scale recirculations are calenlated with an
LES method. An overview of the hybrid method developed in this work is presented

in section 4. Finally. an outline of this dissertation is provided in section 1.5.

1.1 RANS Methods

The RANS codes used to simulate the nozzle flows discussed at the beginning of
this chapter are largely general-purpose flow solvers, capable of handling a variety of
turbulent flows extending bevond only nozzle and jet problems. State-of-the-art
turbulence models. such as Reynolds-stress closures, have found their way into codes
intended for basic research and simple flow problems, but the general-purpose codes
used for nozzle simulations and other realistic configurations usually emplov
computationally cheaper eddy viscosity models. Eddy viscosity models use the
Boussinesq approximation to calculate the Revnolds stress as the product of an
eddy viscosity and the rate-of-strain tensor. These models vary in complexity from
algebraic (also termed zero-equation) formulations to more complex formulations
which solve additional transport equations (normally one or two partial differential

equations).

Algebraic models typically use a form of Prandtl’s mixing length hypothesis to
calculate the eddy (or turbulent) viscosity, but are usually optimized for a single
flow and are not accurate for a wide range of flows. One of the first widely used

algebraic models was developed by Cebeci and Smith [18,19]. Another widely used
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algebraic model is that due to Baldwin and Lomax [1]. Both the Cebeci-Smith and
Baldwin-Lomax models are formulated only for the calculation of wall boundary
lavers and have been used successfully for calculations of flows without adverse

pressure gradients or separation regions.

One-equation models offer. to some degree. more generality thai algebraic models.
because theyv solve for a quantity such as the turbulent kinetic energy or the
turbulent viscosity. However. they frequently have the limitation of not solving a
transport equation for the turbulent length scale. Two of the more widely used
one-equation models are the Baldwin-Barth [3] and Spalart-Allmaras [98]) models.
While one-equation models have shown promise for turbulent wall bounded flows at
a lower computational cost than algebraic models. they have not been shown to be
accurate for flows with significant turbulent mixing. which is of primary importance

to the nozzle problems discussed here.

Two-equation turbulence models usually solve one equation for the turbulent kinetic
energy and a second equation from which the turbulent length scale can be
obtained. The most popular of these are k-e¢ models, that solve one transport
equation for the turbulent kinetic energy. k, and the second for the rate of turbulent
kinetic energy dissipation, €. Probably the one k-¢ turbulence model that has served
as the basis of most other k-¢ models (and itself is still in wide use) is that due to
Jones and Launder [47]. Also referred to as the “standard” k-¢ model. the
Jones-Launder model has one form that may be directly integrated down to solid
surfaces including the laminar sublayer. through the use of damping terms. and a

second form that requires the use of a wall function to bridge the gap from the fully
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turbulent region of a boundary laver to the laminar sublayver veryv near the wall.
The former is referred to as the “low Revnolds number™ form while the latter is
referred to as the ~high Revnolds number™ or “wall-function™ form. Both have the

same formulation away from walls and in mixing layers.

Although k-¢ models are generally more accurate than the simpler algebraic or
one-equation models. they have several limitations. For wall bounded flows. k-¢
models are particularly deficient in regions of strong adverse pressure gradients and
in separation zones (Rodi and Scheuerer [84]). For high-speed flows involving
mixing of multiple streams. such as those in the nozzle and jet flows described
previously, standard k-¢ models deviate substantially from experimental data for

highly compressible shear layvers and for round jets.

Several new k-¢ models have been developed beyond the standard Jones-Launder
model to address pressure gradient and separated boundary laver problems. but
have not demonstrated wide spread improvement over the Jones-Launder
formulation. To address the compressibility issue, several modifications have been
proposed. Most of these modify the equation for dissipation rate. €. so as to account
for the experimentally observed reduction in turbulent kinetic energy production
with the relative speed of streams (frequently referred to as the convective Mach
number) that form compressible shear layers. The mostly widely used are those of

Sarkar [88.89] and Zeman [115].

Experimental data have also indicated that round (or axisymmetric) jets mix less

rapidly than planar jets. Because the empirical coefficients of most k-¢ models,
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including Jones-Launder. have been calibrated against incompressible planar shear
lavers. corrections have been developed to improve the capability of k-¢ models to
calculate round jets. The most widely used of these is that due to Pope [79]. which
like the compressibility corrections of Sarkar and Zeman. modifies the dissipat ion
rate equation. Essentially, the Pope correction increases the dissipation rate of
turbulent kinetic energy in the presence of vortex stretching. which is characteristic
of round jets. Finally. one recently developed k-¢ model. due to Thies and

Tam [102]. substantially modified the empirical coefficients from those of the
standard k-¢ model. and included the Sarkar compressibility correction and Pope
round jet correction intended for turbulent jets with flow conditions similar to those
found in the exhaust nozzles of high speed aircraft. The Tam-Thies model, with its
substantially modified coefficients. has only been calibrated for mixing layers using
calculations beginning downstream of any nozzle surfaces. As a result. some other
method is required to accurately calculate the wall boundary layer regions upstream

of the mixing laver.

Despite some of the aforementioned limitations of k-¢ models and the necessity of
empirically based corrections to handle specific flow complexities, k-¢ models are
still the most frequently used models for calculating nozzle and jet flow fields. This
is because more complex models. such as Reynolds stress closures, have not
demonstrated significant accuracy improvements that would warrant their much
more computationally expensive use. As a result. several validation studies have
been conducted to determine the accuracy of k-¢ models for specific classes of nozzle

and jet problems. Some recent examples of such validation studies are provided in
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references [5.6.22.31.75.106]. Nearly all of the flows investigated have operating
conditions (velocities and temperatures) similar to those of real configurations. hut
the geometries were simpler to allow comprehensive studies of different models and

corrections 10 be conducted.

Two other popular two-equation models will be briefly discussed here. The k-w
model is another two-equation turbulence model whicli is similar in form to the k-
model. The second transport equation of this model solves for the dissipation rate
per unit turbulent kinetic energy. The most widely used k- in current nse is that
due to Wilcox [113]. The k-w model has demonstrated improved capability to
handle adverse pressure gradient houndary layers relative to the k-¢ model.
However. it has been shown to be worse than k-¢ in predicting free shear layer
mixing. and demonstrates significant sensitivity to freestream turbulence levels.
Wilcox [L11] extended his original model in a new formulation to address these
limitations. The last two-equation model discussed here is the Shear Stress
Transport Model (S5T) of Menter [66.67]. Menter's model employs a k-«
formulation in regions near solid boundaries and a k-¢ formulation away from walls.
This model has become popular in recent vears because it used the k-w and k-e

formulations in the regions where each performs the hest.

The most recent adaptation of a Reynolds-averaged Navier-Stokes approach has
been in the emerging field of computational aeroacoustics to address the problem of
developing quieter aircraft engine exhaust nozzles. One procedure is to use the
solution from a turbulent CFD simulation of a jet flow field (using a k-¢ model) as

input into an acoustic prediction method. The jet noise field is then determined by
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integration of the sound propagation equations. References [50.51] present some
recent acroacoustic calculations of convergent-divergent nozzles having flow
characteristics again representative of realistic high speed nozzles. In computational
aeroacoustics. which has its own set of limitations related to the acoustic modeling
methods. the input is also limited by the quality of the aerodvnamic flow field. As
with the nozzle and jet aerodynamic prediction methods, significant work 1s being

performed to improve the accuracy of acoustic prediction techniques [56].

1.2 LES Methods

Although LES techniques have been used in selective applications, such as
meteorology and atmospheric sciences [83] for several years, only recentlv has LES
been considered as a potential tool for nozzle and jet flow problems. Much of the
foundation of LES was established in the meteorology field by Smagorinsky [94].
Lilly [58]. and Deardorff [25] near the end of the 1960’s. Reference [69] mentions
that after some interest in LES by the United States engineering community in the
early 1970’s, the 1980’s saw only limited development and application. Recently.
however. the realization of the shortcomings of RANS. and improvement in

computer speeds have sparked new interest in LES for engineering applications.

Several recent U.S. aeronautics research and development programs have sponsored
research in developing and applying LES based techniques for analyzing jet flows.
Of particular interest to the these programs is the potential of LES as a
computational aeroacoustic technique for enabling accurate predictions of jet noise.

In reference [65]. Mankbadi et al. discusses that large scale turbulent structures are
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believed to be the dominant noise producing mechanisms in free jet flows. (‘hoi et
al. [20] have use an LES technique to calculate the aerodvnamic field of a Mach 1.4
axisymmetric jet and then employved a Kirchoff method. detailed in references [60]
and [92]. to calculate the noise field. Since LES reserves modeling for the smallest
turbulent length and time scales while directly solving for the large scales. it is
thought to be appropriate for application to certain classes of jet noise problems. In
particular, success is being realized for jet problems in which the flow regions of
interest are far removed from solid boundaries, such as relatively simple single flow
nozzles exiting into ambient air. LES methods are not vet prepared to handle more
complex configurations. like those of the multiple stream nozzles discussed
previously. Such configurations, if they contain turbulent boundary lavers along
solid surfaces, have a large range of turbulent scales that are important to the
overall flow problem. and at this point. the cut-off scale at which direct solution

ends and modeling begins is one of the major unresolved issues of LES.

A brief review of the fundamental steps of LES is as follows, more details of the
process will be given in chapter 2. A filtering process removes the smallest spatial
scales of the Navier-Stokes equations. A set of equations is produced that represents
the spatial and time evolution of the larger turbulent scales, but contains a subgrid
scale tensor to account for the unresolved smallest scales that were removed by the
filtering process. Next, the subgrid scale stress is replaced by a model
(appropriately termed a subgrid scale model), which is analogous to the eddy
viscosity models described in the last section for Reynolds-averaged Navier-Stokes

codes. Using the subgrid scale model to handle the small scale structures ranging
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from the Kolmogorov scale up to the cut-off scale. the large scale equations are then

solved using a time-accurate algorithm.

The features of the subgrid scale model has been one of the most heavily researched
aspects of LES. The most commonly used subgrid scale model is the Smagorinsky
eddy viscosity model [91]. One of the primary reasons for the popularity of the
Smagornisky model is that it provides sufficient diffusion and dissipation to keep an
LES computation stable. Because of the importance of the subgrid scale model in
allowing for the correct transfer of turbulent energy l,)etween the large scales (which
are directly solved) and the modeled subgrid scales. several modifications to the
Smagorinsky model have been proposed. The most popular of these are known as
dvnamic eddy-viscosity models [26.33,77] which replace the model constant of the
Smagorinsky model with a coefficient that is allowed to vary both spatially and
temporally as a calculation progresses. The major advantage of the dynamic
eddy-viscosity models over the Smagorinsky model is the improved capability of the
dynamic eddy-viscosity models to provide the correct turbulent kinetic energy
dissipation. As with the turbulence models for Reynolds-averaged Navier-Stokes
codes, however, no single subgrid-scale model has been found to work well for all
flows. Nelson [70] and Vreman [107.108] have investigated the effects of subgrid-scale

model selection on LES calculations of compressible planar shear layers.

There are other issues related to LES that will require significant work to make LES
an appropriate tool for engineering applications, and in particular for the nozzle and
jet flows that are the subject of this report. Since LES directly solves for the largest

scales of turbulent motion, a highly accurate solver is necessary for the
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time-marching procedure. References [39.55.68] discuss higher order schemes as
applied to LES. Compact finite difference schemes. introduced by Lele in

reference [53]. are particularly promising for LES calculations because they are
available to accurately resolve a greater range of scales than other finite difference
schemes. Several LES algorithms are using (MacC'ormack-type) explicit schemes,
whicl lend themselves well to calculations distributed over parallel processors (see
references [10] and [93]). Boundary conditions provide some of the most challenging
modeling uncertainties for LES. Many LES simulations of simple geometry
benchmark cases. such as fully-developed channel flow, have used periodic houndary
conditions for the computational inflow and exit. For jet flows, however. such a
boundary condition cannot be used. because of the fundamentally different nature

of the inflow and outflow stations.

Nearly all LES simulations of jet and mixing layer flows performed to date have
placed the inflow of the computational domain downstream of any wall bounded
regions and have either ignored the upstream boundary layer effects or used some
approximation to initialize the turbulent mixing laver. Several authors. such as
Ragab [81,82] and Hedges [38] have imposed hyperbolic tangent mean velocity
profiles at the plane which represents the end of the wall boundary layer regions and
the beginning of the mixing region. Ragab then used the results of a linear stability
analysis to generate perturbations about the mean velocity profile located at the
mixing plane. Hedges added small amplitude perturbations to the vertical velocity

component in simulations of heated jet flows.
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The difficulty in using an artificially generated inflow. such as that assuming a
hyperbolic tangent velocity profile, is that the characteristics of the upstream
turbulent boundary lavers. including velocity. temperature, and turbulence profiles.
are not accuratelv represented. This is a significant deficiency since the state of the
incoming boundary layers have been shown to have significant effects on the
development of turbulent mixing layers in the experiments conducted by

Bradshaw [13]. Browand and Latigo [15]. and Hussain and Clark [44].

Recently. Li et al. [57] proposed a method in which parallel calculations of the
upstream boundary layers are used to generate time-varying inflow conditions for a
spatially developing mixing layer. This method offers a promising technique for
reducing the computational cost relative to performing a complete LES calculation
containing both the wall-bounded and mixing regions. but itself is probably too
expensive to use in the near future for high speed. high Reynolds number cases. The
hybrid RANS-LES method developed in this work is proposed as an alternative
computational technique to performing LES calculations everywhere in the
computational domain, that includes the mean flow characteristics of the incoming
boundary layers and is also feasible when considering foreseeable computational

resources.

1.3 Hybrid RANS-LES Methods

The realization that LES calculations of flows in aerospace and industrial
applications at realistic Reynolds numbers will not be possible for some time has led

to interest into the development of hybrid techniques. The objective of a hyvbrid
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method is to retain the essential features of the LES method. but to emplov a
computationally cheaper RANS method in regions where it is appropriate. As a
result. nearly all hybrid methods proposed to date apply a RANS approach to
attached wall boundary laver regions and an LES approach to regions of large scale
separation. The work detailed in this dissertation represents the first hybrid metlhod

development for application to compressible mixing layvers.

The most widely publicized hybrid method to date is the Detached Eddy Simulation
(DES) method of Spalart [96.97.99]. In the DES method. the wall hounded regions
are calculated using RANS with the Spalart-Allmaras [98] one equation turbulence
model. Constantinescu and Squires [23] have applied Spalart’s DES method to
turbulent flow over a sphere, which is an appropriate geometry for the method due

to the large scale separation in the wake of the sphere.

Speziale [100] suggested an approach that allows for computations varving from
RANS in the coarse grid limit. through LES. and finally to DNS in the very fine grid
limit. A Revnolds Stress model is used to close the turbulent stresses in the RANS
limit. and provides the basis for a subgrid model necessary in LES simulations.
Batten et al. [7] also propose a hybrid model that employs a Revnolds-Stress model
to close the RANS and LES equations. Lastly. Arunajatesan et al. [1] have applied
a hybrid RANS-LES method to cavity flowfields. Their approach emploved a
two-equation k-kl turbulence model to close the RANS equations and a one-equation

model solving for the filtered subgrid kinetic energy to close the LES equations.
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1.4 Overview and Objectives of the Current Work

The hybrid RANS-LES method presented in this dissertation is developed for
application to configurations such as the mixing laver shown in figure 1.1. This
relatively simple configuration is representative of the more complex nozzle
geometries discussed at the beginning of this chapter. in that two wall bounded
regions provide isolated flows to a single region where compressible mixing is the
primary flow characteristic. Development of the hyvbrid method and assessment of
the method for a benchmark compressible mixing layer configuration are the focus

of the dissertation.

The hybrid method employs a RANS approach to provide the mean flow
characteristics of the wall boundary layers entering the mixing region. The
downstream mixing laver is then calculated using LES. The method developed here
is intended for those nozzle and mixing layer problems in which a dominant
geometric feature. such as the base region of a nozzle or splitter plate separating the
upstream flows, will provide an unsteady mechanism to drive the turbulent
development in the mixing layer which will dominate unsteady effects from the
incoming turbulent wall boundary layers. Although the upstream RANS approach
does not provide any unsteady turbulent information to the mixing layer. the mean

flow momentum and thermal boundary laver effects can be provided.

1.5 Outline of the Dissertation

The equation sets which must be solved for the RANS and LES regions are derived

from the general form of the compressible Navier-Stokes equations in chapter 2. The
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Figure [.1: Schematic of mixing laver demonstrating the hvbrid RANS/LES ap-

proach.

turbulence model used to close the RANS equations and the subgrid scale model
needed to close the LES equations are also presented. (‘hapter 3 provides details of
the numerical procedure used to perform the hybrid RANS-LES computations.
Validation of the RANS method for a series of flat plate boundary laver cases is
presented in chapter 4. These cases include an incompressible laminar boundary
layer, an incompressible turbulent boundary laver, and finally two supersonic

boundary layers which have the same flow conditions as the two streams entering
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the compressible mixing laver that is the focus of this work. The hybrid RANS-LES
method is investigated for the compressible mixing layer in chapters 5 and 6.
Although true LES simulations require calculations in three spatial directions.
two-dimensional calculations are examined first in chapter 5 to investigate effects of
grid resolution and boundary conditions. Three dimensional calculations are
examined next in chapter 6 with emphasis placed on comparison to experimental
data. and to parametric studies of subgrid scale model and grid resolution effects.
The importance of using three dimensional calculations to capture the initial
development of the turbulent mixing layer is also investigated. Clonclusions of the
hybrid RANS-LES method development and benchmark computations as well as

recommendations for further research are presented in chapter 7.
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CHAPTER 2

FORMULATION OF THE RANS AND LES EQUATIONS

In this chapter, the equations that are used to solve the flow in the RANS and LES
regions are derived. The general form of the Navier-Stokes equations. written in
tensor notation. is presented first. Next, the RANS equations are derived using the
mass-weighted form of the Reynolds-averaging process and the LES equations are
derived using a mass-weighted spatial filtering process. Turbulence modeling for the

RANS and LES equations is presented in the last section of the chapter.

2.1 Navier-Stokes Equations of Motion

The Navier-Stokes equations represent the time-dependent, three-dimensional
motion of a fluid. They consist of expressions for the conservation of mass.

momentum. and energy.

The expression for conservation of mass, or the continuity equation is written in

tensor form as:
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(‘onservation of momentuwm is written:

J (o) + 7 ( ) or . Jar;, (2.2)
—puiy+ — (puu;) = —- — 2.2
PTG da; pHitt. do, o,
("onservation of energy is expressed as follows:
AFE, d J dq
+ —(u, (£ + P)) = — (u;Ty;) — —= 2.3
ot ()I, ( ! (£ )) ().I'.,' ( / ‘/} ()J‘J‘ ( )
Here. the variable I represents the total energy (internal energy plus kinetic
energy) per unit volwne:
1
Ey = pe + SPUU, (2.4)

The equation of state for an ideal gas is used to relate the pressure. temperature.,

and density through:

P = pRT (:

S
b |
-

For the viscous stresses 7;;. it is assumed that the fluid is a Newtonian fluid. and as

a result. the viscous stress is proportional to the rate of strain. This is written:

- 8’1&,‘ .
Tij = .2/1,51",' + )\— - 5,'J' (2())
()J'J‘
where the rate of strain tensor S;; is:
6u,- auj

S| =
S
=1

Sii==( 2=+ -
! : (81*14-0‘1-,')
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Using Stokes’s assumption that the thermodynamic and mechanical pressures are

the same for a fluid undergoing and expansion or compression:

A= —2p (2.8)
Equation (2.6) can then be rewritten as:
, Ou
s 2 o5 9 Q)
T =218 — S0 (2.9)
dx;

To calculate the viscosity. the Sutherland model is used which assumes that the

viscosity is only a function of temperature for a gas:

T3
H=r g '+T (2.10)
2

For air. the values of the constants ('} and (7 are (in SI units):

(y = 1.458 x 107 ————
m-s- W2 (2.11)

('y = 11041

The heat flux g; is obtained from Fourier’s law:

57
4 = —A‘{}—

().’I,‘j

—
BN
—
o

~—

where k is the thermal conductivity. It is assumed that the fluid is thermally
perfect, such that the internal energy and enthalpy are only functions of the

temperature, and it is also assumed that the fluid is calorically perfect such that the
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specific heats ('y and C'p are constants. As a result. the internal energy and

enthalpy can he written as:

¢ =0T

h=0pT
Assuming that the air is of constant composition and does not undergo any
chemical reaction. the thermal conductivity is only a function of temperature. Using
the specification of constant specific heats, the following expression is obtained for
the thermal conductivity as a function of the constant pressure specific heat.

Prandt]l number. and the viscosity defined in equation (2.10):

_ puCp

S
Pr

2.2 Mass-Weighted RANS Equations

In the classical form of Reynolds averaging. the time dependent form of the
Navier-Stokes equations given by (2.1) through (2.3) are averaged over a period of
time that is much larger than the period of turbulent fluctuations. Each of the
dependent variables appearing in these equations is replaced by the sum of mean

and fluctuating components. As an example, the velocity would be given by:

u, =u; + (2.15)
where the time averaged velocity @, is given by:
1 t4+1
T = —/ widt (2.16)
T Jt
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For the current work. where fluctuations in density are important, a mass (or
densitv) weighting is emploved in the averagiug process. which will make the final
form of the RANS equations much more convenient to work with. The dependent

variables are again broken into mean and fluctuating components:

[
—_
=1

wp = +u? (:

where the time averaged (using mass weighting) velocity @, is given by

. 1 t+71
u; = %7—_ , pu;dt (2.1%)

This mass-weighted Reynolds averaging process is frequently referred 1o as Favre

averaging, and in general, the Favre average of any variable f is defined by:

Y
fl
=
T

(2.19)

|-

Before averaging the Navier-Stokes equations (2.1 - 2.3) the flow variables are

separated into mean and fluctuating components:
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p=p+p
P="r+Pp

~ "
u; = u; + u;

c=d(+¢" (2.20)
h=h+h"
T=T+T1"

g =G +q;
Note that the density, pressure. and heat flux are not decomposed using mass
weighted variables. Starting with the continuity expression (2.1). a time averaging is
performed to obtain:

dp d g

[\i
Ino
—_
~—

Using the definition of mass weighted variables. this can be rewritten as:

dp . 0 _.. 5 s

N
bo
8]
—

Working next with the momentum equation (2.2). a time average of the entire

equation is performed, resulting in:

ﬁ( v)+i( ) = @ o7
Y U P puu;) = Oz

, (2.23)

€Z; ()J’j

In equation (2.23). the time dependent term is rewritten in terms of mass averaged

variables as:
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— | pu;) = Uy Z.2
()[ /111 / { 4

The convective term is expanded as:

17} J

—(pwa) = — {p(u; + u W, +
dr; (P o </ SRR /)) (2.25)
L.L0)
Jd o — Jd o —— J — J —
= — (pi;i,) + — (pa”) + — (puul) + — ou’ v
dr; (piiit)) dr; ( ") da; (pituf) da; (putef)
The first term in the expansion of (2.23) is rewritten as:
J J
— (pf;i;) = — (pu;u 2.26
o (i) = 5= (i) (2.26)

Over the period of the time averaging. the the mass weighted variables denoted with

a hat are constant. As a result:

L,
5 (7T) = g () =0 (2

(3%
[
-1

The last term in equation (2.25) is the turbulent or Reynolds stress. and is the term

from the momentum equation that is replaced with a turbulence model:

5 _ o7 .
5, i) = =g -

)

(87
]
oL
-

Replacing the terms in equation (2.23) with those in equations (2.24) through
(2.28), the resulting RANS momentum equation written in terms of mass averaged

variables 1s:
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o (i) + J (i) oP or, | ot
— (pu; — (i) = —— + —L 4
PT g, or. e, e,

(2.29)
To obtain the time averaged energy cquation written in mass averaged variables, the

total energy terms in equation (2.3) are replaced with the expanded energy

expression shown in (2.4) and then the entire equation is time averaged:

5 9 J g -
o T Toww) + 5 (o S+ 1) = () - O
)

2.30
df ().I’J‘ ().I'_,‘ ( )

Working first with the time dependent term. this term is expanded in terms of mean

plus fluctuating velocities as:

(—) (/)( + %punu) =

ot o7 P+ = (G G+ ) (i 4 (2.31)

The kinetic energy term is further expanded as:

o
)
[

J - - J — 0 — J
g7 (%p(ui +ul) (i + u?’)) =5 (%[)‘Ltiui) t 5 (%puiuj’) + (%pufuj’ (2.

The the first term on the right side of equation (2.32) is rewritten as:

= (Lpiii)) = = (Ypusi;) (2.33)

Over the period of the time averaging, the mass weighted variables are treated as
constants and as a result, the second term on the right side of equation (2.32) is

Zero:
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g —
P (%pﬁ;uf’) =0 (2.31)

The last term is the turbulent kinetic energy and is written as:

J d /_;
7\ ( /)u”u”) =5 (/_)A') (2.35)
The resulting time dependent term is:
d ——t J ,
o (p( + %puiu;) =7 (p( + 2pu ;i +pL) (2.36)
Working next with the convective term. h = ¢ + P/p is used to obtain:
) J
5(1—J (uJ- (pe + %puiui + P)) = ()—z—J (uj (ph + %pu,-lu)) (2.37)
Expanding this expression in terms of mean plus fluctuating velocities as:
— (‘u- (ph + ,lpuz-u,-)) = i (p (@; + u”) (h + h”))
a, N 2 dx; s -
P (2.38)
+ ;)T; (%p (4; + ‘uj’) (w; + ) (u; + ug’))
Working first with the enthalpy expression:
d - m\ (1 ’ d —~ 7 J =
0—1; (p (4, + qu) (h +h ’)) = ;)_E (pujh) + ()_1; (pa,h") -
+ _()_ (pu"h) __()_ (pu”h”) (~-- by
ox; dr;
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The second and third terms on the right side of equation (2.39) are zero by the

same argument as that for (2.31). The last term contains the turbulent heat flux

and 1s rewritten as:

o — dq’
— (puh") = — 2.40
o, (pah) dr; ( )

I'his turbulent heat flux must be modeled, and is done so in a manner similar to

that for the Revnolds stress appearing in the momentum equation (2.28).
Working next with the second term on the right side of equation (2.38):
) , J
L(r - - _ 1~
;)I—J (5/) (a, + 113/) (@, + ) (i + r,f')) ()1 (E/ ;)
J o —— S d
+71— (/)u a;u’ ) + ;}—l—— ( pit; urru//) + T (5/111§!l/z‘111) (2.41)
J A
J — i
+— (pu"a, ) + — oullulul!
().l‘_,‘ (/ 4 ) ()‘l'_]' ( f )

['he second and fourth terms on the right side of equation (2.41) are zero over the
period of the time average. The third term includes the turbulent kinetic energy as

defined in equation (2.35) and is rewritten:

o
M
[S%]
~—

()ilj( pu; u”u”) = )iﬁ ki (-

The fifth term includes the turbulent Reynolds stress as defined in equation (22.28)
and is rewritten:

(i ll u; ) = —= U, T
()lj (P ) ()J‘j C
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The resulting convective term is:

g . (')(17"
Jr. ( (ph + - P“ u; )) = (/)ll‘,/z) ( 1:/
o o K 2 14
“ri‘(lpf‘fl'ﬁ‘)-% 0 /d)IAI'AA'—i(ﬂ-T.'[j) +L(_m) ( )
0_1../ 2 p ettty / N dl, il ) v

The viscous dissipation term on the right side of equation (2.30) is examined next.

After expansion. this term becomes:

J i) I

i, (UiT,) = — a7 ((u + ) (Fi; + u)) "
. P 0 ) (2.45)
= ().I‘_,' U, Ti;) (').rj Uy Ti;

The heat flux term is left as it appears in equation (2.30). Rewriting the energy

equation (2.30) with the terms we obtained in equations (2.36). (2.44). and (2.45)
results in:
a /_. o " ) . .
— (ﬁf + %ﬁuiui + /71.') + — (ﬁu,‘h + %ﬁ uiu; + pu A)
ot ()J',‘ ’ . §
) ' P S (2.46)

In order to simplify this expression to the form that will be used in the
computations. the terms involving the turbulent kinetic energy and those with the
fluctuating velocity u/ are assumed to be small compared to the other terms in the
energy equation. The enthalpy in the convective term is first expanded using

ﬁ/; — pé + P. Equation (2.4) is then used to rewrite the sum of the internal and

mean flow kinetic energy, appearing in both the time-dependent and convective

terms. as the total energy:
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= pé L pa (2.17)

The resulting final form of the RANS energyv equation is:
d o d .o L= Jd o, . Jd ,_ . L
e (£r) + e, (i, E + &, P) = o (a7, + ) — PP (7, +4q)) (2.18)

2.3 Spatially Filtered LES Equations

To derive the LES equations used in this work. the time dependent form of the
Navier-Stokes equations given in equations (2.1) through (2.3) is used as the
starting point. Instead of time averaging these equations. however. an approach
similar to the work of Ragab and Sheen [81.82] and Erlebacher et al [27] is used
that will filter out small scale fluctuations. and only retain scales that are large
enough to be resolved by a particular computational scheme and the computational

mesh. The filtering operation is defined on any variable f by the expression:

j—'(x,{):./l') Gle — €.A) fE0)LE (2.49)

In equation (2.19), (i is the filter function, D is the flow domain, and A is the filter
width. The filter width A is usually taken to be the grid spacing. and is the
approach taken here. Note that the overbar used in equation (2.49) indicates a
filtered variable. This is in contrast to the previous use of an overbar to indicate a

time averaged quantity in the previous section.
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As discussed in [71], the exact form of the filter function is not tvpically known.

However. the filter function must satisfy:

A}Mm—gAw%:l (2.50)

In addition. the form of the function (¢ allows the operations of filtering and

differentiation to commute such that:

af _of ) -

at ot (2:51)
and

_d—i - If_ (2.52)

dr; O, o

In large eddy simulations of compressible flows, 1t is common to use Favre-filtering

which is defined as:

(2.53)

where a quantity f is decomposed into resolved and unresolved (also referred to as

sub-grid scale) components as:

f=r+/f (2.54)

Equations (2.53) and (2.19) are very similar in appearance, but they refer to very

different operations. Both operations employ mass (density) weighting. but equation
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(2.19) defines a time averaged quantity. while equation (2.53) defines a spatially
filtered quantity. As was the case for the RANS equations. the density. pressure.
and heat flux terms are not decomposed using mass-weighting. Again note that the
overline represented a time averaging process in the previous section. but it will
refer to a spatial filtering operation in the current section. In addition, Favre

filtering differs from Favre time averagineg in that:
& lel

f#f (2.53)
and
fr#0 (2.56)

Applying the filtering operation to the continuity expression (2.1) results in:

op 0
()—i + dr,-

This 1s rewritten in terms of Favre-tiltered variables as:

ap I .

— (pu;) =0 2.58
ot T o P (2.58)
Filtering the momentum equation vields:
d d OP o7,
— (pu;) + — (puzu;) = —— + —2 2.59
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Rewriting this in terms of Favre-filtered variables results in:

5 — o, i) aP  I7; (2.60)
—-— (pUy — |puu; ) = — e 2.0
At f U.I"/' Pt ()J’,‘ (,}.I"/'
The convective term is further expanded:
a ) T
E (puu;) = d(_I, (/_)( u; + ut) (ﬂ‘,' + u",-))
) (2.61)

= — [/—) ((lg[l, + uad 4+ i ufu’)}
()‘l“/ E A E J

This is reorganized to separate the resolved convective term from the unresolved

(subgrid-scale) terms as follows:

7 7 ) =
—i— (pu;u;) :a—i;ﬁ({/,fz_/) + J(z_J [/") ([11-[” - [mb)] +

2 ki
2 [p (i, — )] + 5, ()

The right side of equation (2.62) contains the resolved convective term. Leonard
stress. cross stress, and subgrid scale Reynolds stress. respectively. This is often

written in more compact form as:

o — 9 o
(A -94 - — — s .,"‘_ T I= — ~ o~ 2' .:
O.I‘J‘ ([)U]UJ) (').I‘J P (uzu}) + a.l'j [p ( w;; Uil )] ( 63)

The cross stress and subgrid stress are frequently modeled together, while the
magnitude of the Leonard stress is on the order of the truncation error when

emploving most finite difference schemes. and as a result, is implicitly

represented [114]. Other authors such as Choi et. al [20] neglect the cross stress and
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Leonard stress contributions entirely. For the method presented in this work. it is
assumed that the Leonard. cross stress. and subgrid-scale Revnolds stress can he
modeled together as the subgrid-stress term. as is done in reference [17] or:

_egs =TT -~ — (= e -

T, =P (u,uJ — u,—u_,) +p (tzitz/ - u,-u‘,) + puu;

(2.641)
= pluiu, — ;1)

The subgrid scale Revnolds stress is replaced with a model. In contrast to the
Revnolds stress resulting from the time averaging process appearing in equation
(2.28). in which all turbulent motion is replaced by a model. the subgrid model
ciploved here only represents the net effects of turbulence motion that is not

resolved by the computational method. More details of bhoth the RANS and LES

turbulence modeling will be provided in a later section.

The final form of the filtered momentum expression that will be used for the LES

calculations is:

T 9P or, o
gr \Pu g P = =5t Gt o (2.65)

Many different forms of the energy equation are used by researchers investigating
compressible flows with LES. Piomelli provides a comprehensive summary of several
forms of the energy equation in reference [78]. The form used in this work solves for

the total energy. as defined in equation (2.3).

The Favre-filtered energy expression has the form:
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— (pc + %/)u,-u,-) + I (/)u‘,h + %/)u.,'u,'u,-)
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a ().I‘J’ it ()I, 1,

The kinetic energy part of the time dependent term is rewritten analogously to the

convective term of the momentum equation:

v = 1puia; + 19 (wiu; — @)
(2.67)
= %ﬁ&i[li + k

where & 1s the unresolved kinetic energy term.
The expression involving enthalpy in equation (2.66) can also be rewritten as the

sum of resolved and unresolved components:

puh = pih + 7 (wh — a;h) (2.68)

The unresolved term on the right side of equation (2.68) is the subgrid scale heat

flux. so that equation (2.68) becomes:

puh = pih + ¢* (2.69)

The kinetic energy part of the convective term in equation (2.66) is expanded as

follows:

——r——

—— e

——

ol VAT LR T ST, s
FPU U —2p(ujulm + 200l 4t + wgugg

———— -

St T
+ .Zuj-ugui + ujvuiuz-)
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Rewriting this in terms of resolved and nunresolved components results in the

following expression:

—_ T , S

e = spla; u,u,)-{—zp(ujulu, — g+ 2ug il 4+ RTINS R

| —
2
N N AR
Fu g + 2wl
Of unresolved terms in equation {2.71). it is common practice to ignore all terms

except for the last two term. as demonstrated in reference [82]. Following Ragab.

the next-to-last term is rewritten as:

e - .

ol = sk (2.72)
and the last term is rewritten as:
puau; = T (2.73)

The viscous dissipation term on the right side of equation (2.66) is rewritten as the

sum of resolved and unresolved components as follows:

O = D tim) + - G, - ) (274

— (@7 ) = — (7)) + — (4,7, — 07, 2.7

'J'J‘ 11 0.1‘j thy a.T;, iy ety 4)
[t is common practice to assume that only the resolved dissipation term on the right
7

side of equation (2.74) is important. although Erlebacher [27] and Piomelli [78]

indicate that the unresolved contributions should not be ignored for highly

compressible flows.
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The heat flux term is left unchanged. as was done for the RANS energy equation m
the preceding section. Rewriting the filtered energy equation (2.66) with the terms
derived in equations (2.67. 2.69. 2.72. 2.73. and 2.74), the following form is obtained:

d d

o (¢ + Lpai + k) + P (i b + Lpijai; + k)
i J P (2.55)

B P S A (- BT

o (0,7 + it ) o ((/J + 4 )

The final form of the LES energy equation is obtained using a procedure analogous
to that used to obtain the final RANS energy equation (2.48). First. the terms
involving the unresolved turbulent kinetic energy are assumed to be small compared
to the other terms in the filtered energy equation, and the enthalpy term is recast as
ph = pé + P. Then. the resolved total energy is defined to be the sum of the

resolved internal energy and the resolved kinetic energy:

E, =pé + 1puit, (2.76)

The resulting final form of the filtered LES energy equation is:

2
-1
~1
—

— (@ +q¢) (2

(E) + =— (@B + 4, P) = 7— (&7 + &rf") = O
=

ot
2.4 Turbulence Modeling

Both the RANS and LES sets of equations derived in sections 2.2 and 2.3 require a
turbulence model to close the momentum and energy equations. In the RANS

approach, all unsteady turbulent motion is replaced by a turbulence model. The
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resulting LES equations are very similar in appearance to the RANS equations. and
also require a model to close the momentum and energy equations. The difference
for the LES equations. however, is that the terms replaced by a model are only the
turbulent terms that are too small to be resolved using the filtered LES equations.
As a result. the large scale turbulent motion is directly calculated. and the effects of

the smallest scale turbulence are accounted for using a subgrid turbulence model.

The turbulence model emploved here to close the RANS equations is the
Cebeci-Smith algebraic turbulence model [18.19]. Since the RANS equations are
only used in this hybrid method to calculate wall boundary layer regions with no
adverse pressure gradients. the selection of a relatively simple algebraic model such
as the Cebeci-Smith formulation is appropriate. The wall function technique of Ota
and Goldberg [73] is used in conjunction with the Cebeci-Smith model to enable use
of a computational grid with the first point off solid boundaries placed in the
logarithmic layer. This wall function approach is based upon the compressible law
of the wall formulation of White and Christoph [110.111]. The filtered LES

equations are closed using the Smagorinsky subgrid model [94].

Implementation of the wall function technique is critical to the development of this
hybrid approach in order to enable use of a single computational grid extending
continuously from the RANS regions to the LES regions. If a wall function
approach were not used, grids for the RANS regions would have to be packed very
tightly to the wall and use significant grid stretching, while a separate grid which
minimizes grid stretching would need to be constructed for the LES region. Use of

such non-continuous grids for the RANS and LES regions would require an
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interpolation scheme that would likely introduce undesirable errors into the

combined hybrid method.

Use of the Cebeci-Smith model to close the RANS equations and the Smagorinsky
subgrid model to close the LES equations is desirable in terms of code
implementation. While the function of the (‘ebeci-Smith model to replace all of the
turbulent stresses with a model is quite different from that of the Smagorinsky
subgrid model. which only replaces the small subgrid turbulent stresses. both are
eddy viscosity models and are derived at least in part from mixing-length theory.
The similar formulation of these two models enables the RANS equations and LES
equations to be solved with a single solution scheme and computational grid. as
mentioned previously. For a compressible nozzle or mixing layer flow. such as that
depicted in figure 1.1. the change from RANS regions to LES region occurs at the
vertical plane passing through the trailing edge of the splitter separating the wall

hounded flows.

In the following sections. details of the Cebeci-Smith turbulence model and the

Smagorinsky subgrid model are provided.
2.4.1 RANS Turbulence Model

The unclosed terms from the RANS momentum and energy equations are the
Revnolds stress shown in equation (2.28) and the turbulent heat flux. which is given
in equation (2.40). As mentioned previously in section 1.1, the Boussinesq
approximation is used to relate the turbulent Reynolds stress to the mean rate of

strain tensor through a turbulent (or eddy) viscosity. This is directly analogous to
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equation (2.9) which relates the viscous stress to the mean rate of strain through

the molecular (or laminar) viscosity. The turbulent analogy to equation (2.9) is:

T o_ 7,0
T, == puldl

oy~ R
_zduk (._..IL)

I BN ¢
= { .25 ;7 ; —9;; )
/ ( Y3 e Y
Similarly. the turbulent heat flux is related to the temperature gradient through a

turbulent conductivity, A7:

q, = pu’th”
g aT (2.79)
(.)J'J‘
The turbulent Prandtl number. Pr? is used to relate the turbulent viscosity to the

turbulent conductivity:

Tt
FR ('p
Pr’ = %
The turbulent Prandtl number is taken to be a constant here and equal to 0.9.
Using equation (2.80) and assuming a constant turbulent Prandt] number enables

the turbulent heat flux to be expressed as a function of the turbulent viscosity that

is used to calculate the Revnolds stress. The turbulent heat flux becomes:

ol = _CP/’T gz
i PrT dx,

(2.81)

The Cebeci-Smith model, which was chosen here to close the RANS equations in the
wall boundary layer regions. treats the wall boundary layer as having inner and

outer regions where the turbulent viscosity is defined as:

NASA/TM—2001-210811 40



T {/1:|r11‘r‘ y S ym (_

Iu .
7 >
luouur' !/ ym

S
[N

In equation (2.82). y,, is defined as the smallest value of y (the distance away from a
wall) at which g7 = pZ . The expressions for the inner and outer layer

turbulent viscosities are as follows:

Inner Laver:

a2 a2
95
Hipner = P (dl> + <(—(> (2.83)
) dy o
with the mixing length (.., is given by:
Outer Laver:
1l = apéiucFie (2.89)

In equation (2.85), the quantity 4, is the velocity thickness, w, is the boundary layer
edge velocity, and Fi is the Klebanoff intermittency function. The velocity

thickness 1s defined as:

§ U
5, :/ (1 _ —) dy (2.86)
0 U,

This velocity thickness is identical to the displacement thickness for incompressible

flows.
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In references [52] and [53]. Klebauoff presents an expression for the intermittency of
turbulence near the edge of a boundary. which has a functional form involving the
complinmentary error function. This original intermittency function is usually

approximated by the following formula. as indicated by C'ebeci [18]:

g™
P_/
~1
~—

Fyn = [1 +5.5 (ﬁ)ﬂ]_l ’

The closure coefficients appearing in equations (2.84) and (2.85) are
# = 0.40 a = 0.0168 AT =26

Wall Function Iimplementation:

The Cebeci-Smith model is usually integrated down to the wall, using a
computational grid with the first point off of the wall placed well within the laminar
sublayer. corresponding to y* < 5. For the hybrid method developed in this work.
the objective is to place the first point off of the wall in the logarithmic layer to
enable the use of computational grids that are not packed as tightly to the wall.
Removing the tight spacing requirement will enable a continuous grid into the LES
region. In addition, because the allowable time step of the computations is
proportional to the size of the smallest grid cell, a less tightlv packed grid enables a
larger time step for the solution scheme. The wall function technique of Ota and
Goldberg [73] is one of the more simple and effective methods currently in use, and

it is the technique used in this work.

Wall functions have been implemented most frequently in conjunction with

two-equation k-¢ models. The benefits of implementing a wall function for use with
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a k-c model are the same as that for the Cebeci-Smith model used in this work
including reducing grid requirements. and increasing the permissible time step of
the computations. In addition. the need for the near-wall damping terms associated
with low-Revnolds number k-¢ models is removed. These near-wall damping terms
frequently result in numerical stiffness of the solution procedure. Nichols [72]
implemented the White-Christoph law of the wall with a k-¢ model for application
to time dependent aerodyvnamic flows. Maui [64] implemented the Ota-Goldberg
formulation in the WIND code for use with turbulence models ranging from

algebraic to two-equation formulations.

The use of a wall-function approach is strictly only valid in flow regions absent of
adverse pressure gradients and separations. due to the assumption that the law of
the wall holds. However, Avva et al. [2] have shown results for separated flows in
which wall function methods perform no worse than methods integrating to the
wall. The intention of the wall function implementation in this work is to only apply
the method to attached wall boundary lavers where the law of the wall is valid. The
wall function approach is compared to the standard procedure of integrating to the

wall for two supersonic boundary lavers in chapter 4.

The Ota-Goldberg wall function employs the White-Christoph [110.111]

compressible law of the wall:

[ O]
o s
[9.4]

where the compressibility parameter 4 is given by:
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- T

Y= m (2.89)
In equation (2.88) uj is the value of u* at the first point off of the wall, yf is the
value of y* at the first point off of the wall, and yi = 0.1287. In equation (2.89),
the parameter 1 is the recovery factor, which is typically taken to be Pv'% for
turbulent boundary layers, and 7', is the wall temperature. An iteration procedure

is used with equations (2.88) and (2.89) to solve for uJ. from which the shear

velocity u, can be obtained:

= :—ji (2.90)

Finally. the shear velocity is used to compute the wall shear stress through:

Ty = pu? (2.91)

The wall shear stress calculated in equation (2.91) is then used in the solution

scheme for the momentum and energy equations in the RANS regions.

2.4.2 LES Subgrid Scale Model

The terms that must be closed for LES equations are the subgrid-scale stress given
by equation (2.28) and the subgrid scale heat flux, shown in equation (2.69). The
earliest subgrid scale model for LES computations was developed by

Smagorinsky [94]. Despite significant efforts to develop more sophisticated subgrid

scale models. the Smagorinsky formulation is still widelv used, and is itself the
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foundation upon which some of the more sophisticated models are derived. The
form of the model is verv similar to the Cebeci-Smith model used for the R ANS

equations. in that a gradient-diffusion mixing-length approach is used.

The Smagorinsky expression for the subgrid scale stress is:

sgs _ — T
.7 =p(uu, — Wit )

= 2(('5.3)2-[)_\/; (';,/ — %AQ;“}\.(;,'_,') — %(w}Az/—)TT&j

The parameter 7 is defined:

—

Dij

The parameter A is the filter width and as a result. it is also used as the length
scale that is characteristic of the subgrid turbulence. For use with a computational
method. A is usually taken to be the grid spacing. In three dimensions, with a
computational grid having unequal spacing in the three directions. this subgrid

length scale is usually taken to be:

Wil

A= (ArAyAz)s (2.94)

For computational grids with substantially different spacing in the three directions,

an alternative form (see Ragab [82]) is
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In the three dimensional simulations of a compressible mixing laver discussed later
in this work, the two forms of the subgrid length scale presented in equations (2.91)
and (2.95) are investigated. The coustants ('y and 'y have been found to he highlv
dependent on the flow under investigation. Rogallo and Moin [85] suggest a range
for ('s in the range 0.10 < ("5 < 0.24. Both of the limits on (g given by Rogallo
and Moin are investigated for the mixing laver in this work. The constant (7 is
usually equal to 0.01. but several authors, including Ragab [82] and (hoj et al. [20]
mention that the contribution of the term involving ('; may not be important and

may be neglected. This approach is taken in this work. and as a result, the original

expression for the Smagorinsky subgrid scale stress in equation (2.92) mayv be
rewritten as follows:
N ‘ au;
s9s vy ege (. 2, sgs J(S" i Q(
T =200 S — e - ; (2.96)
3] . 3 ()Ii J
where the subgrid scale turbulent viscosity is given bv:
oo = 2 -
1 = p(CsA) (2.97)

Note the similar form of equation (2.97) to the expression for the (lebeci-Smith
inner region turbulent viscosity in equation (2.83). While the mixing length defined
for the C'ebeci-Smith model is used to characterize all of the turbulent motion. the
length scale defined here for the Smagorinsky model only characterizes the

subgrid-scale motion.

Finally, the subgrid scale heat flux is modeled analogously to that done for the

turbulent heat flux of the RANS equations:
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i = (- i)
P (2.98)

where ko is related to g* through the turbulent Prandtl number. As in the RANS
regions. the turbulent Prandtl number is assumed to be constant in the LES regions

and equal to 0.9. The subgrid scale heat {lux becomes

('pys‘“ ifi
PI’T 0.1‘_,‘

(2.99)
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CHAPTER 3

SOLUTION PROCEDURE

The procedure used to solve the equations developed in chapter 2 is formulated in
this chapter. The RANS and LES equation sets are recast in vector form. which
corresponds directly to the form of the equations that are solved by the
computational method. The numerical scheme used to solve these equation sets 1s
first illustrated using a one-dimensional model problem. The extension of the
solution scheme to the RANS and LES equations in three dimensions on stretched.
non-rectangular computational grids is presented next. The use of a generalized

coordinate transformation. time-step selection, and artificial dissipation is discussed.
3.1 Governing Equations

Before discussing the numerical method used in this hybrid method, the RANS and
and LES equations are expressed in vector notation, which combines the continuity.
three momentum equations (corresponding to each of the cartesian coordinates),
and the energy equation into a compact form that is actually used by the solution
scheme. For reference. the RANS and LES equations derived using tensor notation

in chapter 2 are repeated here. The equations written here differ from those in
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chapter 2 only in that all terms now appear on the left side of the equations. which

will make the conversion to the vector notation more straightforward.

In the RANS regions. the continuity, momentum. and energy equations are:

P L iy = 31
or o ) = 8-
d o . 9P or, O
— () + o (Pl + o — =L — = 3.2
ot (pus) + e (puiiej) + da; dr; O (3.2)
Jd - d o .= Jd . _ . Jd ,_ . ..
o (E:) + ﬁ (0B + @, P) - (7;—] (&7 + ug‘r,-f) + ;}1—/ (7, +4)=0 (3.3)

Likewise in the LES region, the continuity, momentum. and energy equations are:

dp d .
0—¢ o (pu;) =0 (3.4)
Q. d _. .. 9P oF; on” .
a_f(/)lll)+57j([)lllllj)+a"—ri_().—l‘jda'j_O (3.5)
a r- 0 ~ T ~ Ty 0 ~ ~ sgs a — sgs i Q
3 (E) + d*]l (@; B+ ;P) — F)—I—J (a7 + wr} ) + ()_rj (qj- +4q, V=0 (3.6)

Both the RANS equations (3.1 - 3.3) and the LES equations (3.4 - 3.6) can be

expressed in (‘artesian coordinates (x.v.z) using the compact vector form:
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For the RANS equations. the vectors Q. E. F. and G are:

r_
/)
Bl
Q= pv
pu
L E} .
i .
put + P—7, -7
E= pit —7,, — 11
plulr —7,. — 7.
alB+ P - a(Fa L) =0 (R + Th) =i (Tee +70) + G+ 4]
i .
put — T, Tfy
F= pil+ P -7, — 7]
pow —7,. — T;;
K [E+P) —a(7 +75) — ¢ (o + 7)) — @ (7o +70) + 4 + g,
_ pu
puw —7,, — T
G = prw —7T,. — TyT:
pit+ P -7, -7l
| [B+ P = i(Ta 7L = 0 (T 7)) (T
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[n section 2.4.1. the form of the modeled turbulent stress in equation (2.78) was
shown to be the product of a turbulent viscosity and the mean rate of strain tern.
This was directly analogous to the form of the viscous stress tensor shown in
equation (2.9) which was defined as the product of a laminar viscosity and the same
mean rate of strain term. This similarity allows the viscous and turbulent stresses in
the flux vectors E, F. and G to be written together as the product of an effective
viscosity, ¢t + 7 and the mean rate of strain term. These combined stresses are as

follows:

. N TRt
T+ 7] :ﬂx-i“TuT, :(/l+;17)<;—;+%>

, i O
T4t =747 =(u+u") (l + ﬁ)
dr Jz

ac N f)zf')
dJd=  dy
The same reasoning used to combine the viscous and turbulent stresses may be

employed to combine the laminar and turbulent heat flux terms using an effective

thermal conductivity & 4+ k7. The combined heat flux terms in the vectors E. F, and

G are
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g, +q =—(h+ k) o=

du P Pr7

_ : aT Cpp Cpp”
e )

q, + q, ( + ) ay - Pr + Prr

G.+q¢ =—(k+k") 5=
7.+ 4. (k4 k0) 52 Pr Pt

For the LES equations. the vectors Q. E. F. and G are:

puw —T,, — 7.

UﬂE+?ﬂ—ﬁﬁ”+rf)—ﬁﬁw+rf)—&ﬁ“+

pr
—/j&{V —Tay — T'E:
F= prt+ P -7, -1
pine — T, — 1Y

0[Pl (T ) - (T ) (T
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oT
iz
(3.14)
1

Tsi;s) +(‘L _+_q;t},x

x
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’- pu

pua — T, — T
= BN — T gy
G pow =T, — T

put + P —7 -1

@ [L+ Pl — (T +77) =& (7 + TI) = (T A+ TI) 4 G+ g

(3.17)
As was done for the RANS equations. the viscous and subgrid scale stresses
appearing in the flux vectors E. F. and G are written together for the LES equations

as the product of an effective viscosity yo + g and the resolved rate of strain term:

(3.18)

T +70 =7, + 79 = (u+ 1) ( @ + P
e o du
o (218
Jv odw
PR d*,)

~|
+
\l
e~
I
=
)
+
\‘
w
i

— _sgs __ = sgs sgs
Ty3 + 'y: - T:.‘l + T:y - (Iu + ll‘ ) (
The laminar and turbulent heat fluxes are also expressed in a combined format

using an effective thermal conductivity & + A9

T ) | Cpp ('Pll”‘gg) o7
= -k g = - (G )
o T C'pu ('wa) aT .
a9 = — (L + fsey 2 — — 3.19
R (k+ ) dy ( Pr + Press } Oy ( )
o : . ()T ('p/l prsgs Jd [
Tk ==k == (PE e ) 5
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3.2 Numerical Method

The solution algorithm used in this work is the predictor-corrector scheme due to
Gottlieb and Turkel [37]. This method was developed in the same philosophy as the
original MacCormack scheme [61]. While the accuracy of the MacC'ormack scheme
'« second order in time and second order in space, the Gottlich-Turkel scheme is
cecond order accurate in time and effectively fourth order accurate in space. and as

a result. is often referred to as the “MacClormack 2-1" scheme.

The Gottlieb-Turkel scheme has been applied to several time dependent flow
problems because of its robustness, accuracy. and relative ease of implementation in
methods for solving the Navier-Stokes equations. Snyder and Scott [95]
demonstrated that the Gottlieb-Turkel was more accurate than other similar
schemes for benchmark acoustic problems. Bayliss. et al. [8.9] successfully applied
the scheme to boundary laver calculations. Ragab and Sheen [81.82] used the
Gottlieb-Turkel scheme to perform LES calculations of compressible mixing layers n

which the computational domain contained only the mixing region.

The Gottlieb-Turkel scheme is illustrated using the following one-dimensional

equation, which is a simplified model equation of the vector equation (3.7):

dqg Of
-t P 3.2
ot T ar Y (3.20)

The predictor step is:

NASA/TM—2001-210811 55



At
Y= y — ——— (=7 f; 8}' — ';A 3.21
% =4~ (=7fi +8fip1 = fir2) ( )
The corrector step is:
1 1 N ¥ . _
(1;+1 = ; ql’+qi —E(‘./l _‘\.IIAI _./1+2) (;3—))

The predictor-corrector scheme advances a solution in time from the time level (1)
to (n + 1). The time step. At, is related to the grid spacing, Awr. and the

propagation speed. A. through the C'FL {('ourant-Friedrichs-Lewy) number:

A
At = ('F‘L—4—1 (3.23)

The Gottlieb-Turkel scheme is cited by several authors. such as Hudson and

Long [13]. as providing second order accuracy in time and fourth order accuracy in
space. Bayliss et al. [9] indicated that the scheme has fourth order accuracy only if
At is of the order (Ax)? and Nelson [71] showed that the spatial accuracy of the
scheme is only third order for ('FL numbers approaching 1. A detailed analysis of
the truncation error for the Gottlieb-Turkel scheme is provided in appendix A. This
analysis shows that the leading truncation error terms resulting from discretization

of the model equation 3.20 is obtained from the following equation:

dg Of At2Pq AP A O°f
ot =g —CFL — — 4+ ... 3.2
ator T oo TR e T30 g T (3.24)

The left side of this equation is the form of the model problem in equation (3.20)

while the right side is the truncation error. The first term on the right side of

NASA/TM—2001-210811 56



equation (A.13) indicates that the scheme provides second order accuracy in time.
The second truncation error term indicates that the scheme is only third order
accurate in space for ('F'L numbers approaching 1. as previously shown by

Nelson [71]. However. for most problems in which the Gottlieb-Turkel scheme is
nsed. the maximum C'F L number is usually set to a value of 0.5 or less. In addition.
for computational grids that employ non-uniform stretched grids, the limiting time
step is inversely proportional to the smallest grid spacing and the resulting effective
('F L number will be much smaller in regions where the grid spacing is larger. This
is demonstrated by considering equation (3.23) for the case of variable grid spacing.
Az, but for a constant time step At. For such regions of the computational domain.
the second truncation error term on the right side of equation (3.24) will be
insignificant, and then the next truncation error term indicates that the scheme
provides fourth order spatial accuracy. In conclusion, the Gottlieb-Turkel scheme 1s
strictly second order accurate in time and third order accurate in space. but in the
case of computational grids with significant stretching. the spatial accuracy is

effectively fourth order for most of the computational domain.

3.3 Extension of the Gottlieb-Turkel Scheme to
Generalized Coordinates

The Gottlieh-Turkel predictor-corrector scheme is extended to three dimensions and
generalized curvilinear coordinates in this section. The use of generalized
coordinates. necessary for the solution of the RANS and LES equations on
computational grids with non-uniform stretched spacing and non-rectangular grid

cells, is presented in section 3.3.1. The time step calculation procedure is discussed
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in section 3.3.2 and the use of numerical dissipation for stability. particularly in the

RANS regions. is discussed in section 3.3.3.
3.3.1 Generalized Coordinates

The three dimensional vector forms of the RANS and LES equations. both given by
equation (3.7). are an extension of the one dimensional problem given in equation
(3.20). The Gottlieh-Turkel scheme can be written for three dimensional problems

as follows:

Q' =C.C,C,P.P,P,Q" (3.25)

where P.. P, and P. are the one-dimensional predictor operators and (',.. (,. and
(", are the one-dimensional corrector operators that correspond to the flux vectors

E. F. and G respectively.

The numerical scheme is further extended to generalized coordinates through the
transformation of the RANS and LES equations from cartesian physical space
(r.y.z) to computational space (£.1.¢). Hixon et al. [41] found that the chain rule
formulation was more accurate than other formulations using generalized curvilinear
coordinates. The chain rule formulation is used in this work. in which the flux

vector derivatives are expressed as:

JE JE JE JE
Dr g Ty Teug
JOF JF 8F . OF
A TR
oG ()G oG oG

5: ST ey T

(3.26)
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The terms £, 1), G &y e C,e &0 e and (. are the metrics of the transformation
from physical space to computational space. The derivation of these metric terms
are detailed in appendix B. They are computed using a fourth order finite difference

method to be consistent with the Gottlieh-Turkel scheme.

The stress and heat flux terms appearing within the flux vector expressions for the
RANS and LES equations were shown to involve the derivatives of the velocity
components and temperature with respect to the cartesian coordinates x. y. and z
in equations (3.12. 3.13) and (3.18. 3.19). These velocity and temperature
derivatives are also computed using the chain rule form. For example. the RANS

derivative of the mean velocity @ with respect to x is:

R T L o
{

- = cf_ Ny s '}"2
de T OE K y ¢ ¢ ( )
Similarly, the LES derivative of the resolved velocity & with respect to x is:

du du ou  _ du (3.25)

o EJE + ’hﬁ—n + Q:BE
To compute the derivatives of the velocity and temperature terms with respect to
the computational coordinates £, 1. (. Bayliss et al. [9] have shown that a specific
procedure is required retain the overall accuracy of the Gottlieb Turkel scheme. For
the predictor step. which uses forward differencing for the flux terms as shown in
equation (3.21), the velocity and temperature derivatives taken in the same
computational direction as the flux vector derivative are obtained with a two point

backward difference operation, while the derivatives taken in the other two
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directions are obtained with a central difference operation. For example. the «

velocity derivatives taken to compute the flux vector terms ),—lf ’,—f . and %%in
equation (3.20) are:
dn A )
— =, — U,
73 I
au 1 . 2 o
oy 3 (e — U;—1) (3.29)
Ju [ .
o0 =5 (@t — th—y)
ac 2

A similar procedure is used for the corrector step, for which the flux terms are
backward differenced. as shown in equation (3.22). The velocity and temperature
derivatives taken in the same computational direction as the flux are calculated
using a two-point forward differenced difference expression, while the derivatives in

the other two directions are calculated with a central difference operation.

3.3.2 Time Step Calculation

A procedure for calculating a time step that will allow for stable calculations with
predictor-corrector schemes was proposed by MacCormack in reference [62]. The
procedure involves searching the entire computational domain for the minimum

value of:

Ao (Ll bed Tl Loyt ! h (3.30)
TA\Ar T Ay TA: T T Ay T (a0

The minimum time step obtained from equation (3.30) was modified through the
use of the ("F' L number, which was always less than one for the Gottlieb-Turkel

scheme, so that the actual time step used in the computations is given by:

NASA/TM—2001-210811 60



Ny = CFLAY (3.31)

For the hvbrid calculations of the compressible mixing layer, the calculated time
step is allowed to vary during the initial transient part of the calculation. when the
mixing laver is allowed to develop. For the rest of the calculation. however, the time
step is fixed to a constant value corresponding to the minimum value observed
during the initial transient development. A constant time step is necessary for the
LES region to calculate turbulent statistics from flowfield data stored at constant

intervals in time.
3.3.3 Numerical Dissipation

Numerical dissipation is usually required in Euler and RANS computations to
remove numerical oscillations that are undesirable in terms of solution accuracy and
code stability. These oscillations are typically at large wave numbers caused by
nonlinearities in the solution process. Jameson et al. [46] and Pulliam [S0] have
developed numerical dissipation schemes that have been used extensively for Euler
and Navier-Stokes calculations of aerodynamic flows. These schemes operate by
adding dissipative terms to the equations of motion, and require careful use to keep
the levels of numerical dissipation as small as possible while retaining stability of

the solution.

For LES computations, the filtering process is used to develop a set of equations
that only resolve the large scale unsteadiness associated with smaller wave numbers.

The larger wave number unsteadiness, including both the subgrid scale turbulence
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and the unphysical numerical oscillations. are handled through the use of a subgrid
scale model. The eddy viscosity formulation of the Smagorinsky model used in this
work eflectively adds a viscous stress to the momentum and energy equations which
serves to both replace the unresolved subgrid scale stresses and to damp unphvsical

oscillations away from the flow regions of interest.

Some authors such as Kennedy and Carpenter [48.49] and Hixon [40] have
developed explicit filters for damping unphysical large wave number oscillations in
time dependent flow calculations. These filters are not directly associated with the
filtering process. described previously. used to derive the LES equations. but instead
are another class of numerical dissipation schemes. Hixon [40] has shown that the
explicit filters of Kennedy and Carpenter may be used in conjunction with explicit
solvers such as the Gottlieb-Turkel scheme to damp unresolved oscillations. and as a

result. this method is emploved here.

The Kennedy and Carpenter filters have the form:

o

Q=(14a,D)Q (3.32)

where D is a symmetric matrix filter function of order 2n(n = 1.2.3....) and the

coefficient «, is given hy:

Oy = ::Slli (3'33)

(2)—2n
Kennedy and C'arpenter developed the filter a,D to be of a form that retains larger

wave number components with increasing n. and to always be dissipative in effect.
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The matrix function D and the coetficient a,, are derived for filters of orders 2
through 20. corresponding to n = 1.10 in reference [49]. Tn this work. an eighth

order filter (n = 4) is used. which has the form in one dimension:

(—Gica + S8qizs — 23qi—y + 56¢,—y — T0q; + 56¢i41 — 28¢i42 + 8¢it3 — (ivs)
256

a,D =
(3.34)

Skewed stencils of similar form to equation (3.34) are used for points at and near
boundaries. The filter function is applied evervwhere in the RANS region. but 1s
only applied in the LES region when a transient in pressure indicates that the
olution scheme will numerically become unstable. As a result. the procedure used
in the LES region is to modify the coefficient o, to be a function of the local
pressure, such that when the pressure at a point in the flow drops lower than 10

percent of a reference pressure characteristic of the flow, a,. is modified to be

—(1)" 7.00P. N\* > an
o (2)—2“( P ) (3:39)
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CHAPTER 4

RANS CALCULATIONS OF WALL BOUNDARY LAYERS

In this chapter. a series of flat plate boundary layers are calculated to investigate
the RANS solver of the hybrid method. Since no free shear layer mixing regions
occur in these cases, the LES part of the method is not used in these calculations.
All of these boundary layer calculations were obtained for a flowfield situation
depicted by figure 4.1 where a uniform inflow meets a smooth flat plate and a

boundary laver develops over the plate surface.

The first case considered here is an incompressible laminar boundary layer that is
calculated using the RANS solver without any turbulence model. The second case 1s
an incompressible turbulent boundary layer that is calculated with the
Cebeci-Smith turbulence model integrated to the wall, without the use the wall
function approach. This will be referred to hereafter as the “wall-integration”
approach. The third and fourth cases investigate two supersonic boundary layers
that have the same flow conditions as the two isolated flows that form the mixing
laver which will be investigated in the next two chapters using the combined
RANS-LES procedure. These last two boundary layer calculations are run with

both the wall-integration and wall-function approaches. With the formulation of the
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Uniform

\

Flat Plate

Figure 4.1: Schematic of flat plate boundary laver

RANS solution procedure to march in time using the Gottlieb-Turkel scheme. the
Howtields for all of these cases are initially set to the freestream conditions
evervwhere in the computational domain, and the calculations progress until a
steady state solution is obtained. The residual error and flowfield quantities such as

the skin friction coefficient were used to monitor convergence to steady state.
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Figure 4.2: Computational grid for the incompressible laminar flat plate case

4.1 Incompressible Laminar Boundary Layer

The flow used for the laminar boundary laver case was constructed sucl that the
Reynolds number was 10000 at the end of the plate. using the freestream density.
velocity. and viscosity. The vertical dimension of the flow domain was one half that
of the axial dimension. Because the flow solver was developed using the
compressible form of the Navier-Stokes equations, the freestream flow was set to
correspond to Mach 0.2. Use of a smaller freestream Mach number would

substantially slow down the convergence characteristics of the numerical scheme.

Figure 4.2 shows the computational grid used for the calculations with 51 axial
points by 51 vertical points. Calculations were initially obtained using this two
dimensional grid and a two-dimensional version of the flow solver. Additional
calculations were obtained with the three dimensional solver to further validate the

implementation of the computational method. For the three-dimensional

NASA/TM—2001-210811 67



calculations, 11 points were used in the spanwise direction to accommodate the
three-dimensional flow solver. but no flow development occurs in this direction. The
grid was packed to the leading edge in the axial direction such that the grid spacing
from the first to second point corresponds to a Revnolds number of 10. again using
freestream flow properties. In the vertical direction. the grid was packed to the plate
surface such that the grid spacing from the first to second point corresponds to a
Revnolds mumber of 2. A hyperbolic tangent stretching function was used to stretch
the grid both in the axial and vertical directions. For the three-dimensional

calculations. the grid points were equally spaced in the spanwise direction.

The boundary condition for the flat plate is set to be a no-slip. adiabatic surface
such that all of the velocity components are set to zero. and the vertical
temperature gradient is zero. At the inflow, the total pressure and total
temperature are specified to correspond to Mach 0.2 flow at sea level atmospheric
conditions. The static pressure is set at the outflow to also correspond to Mach 0.2
flow at sea level atmospheric conditions. The boundary along the plane at the
highest vertical point is modeled as a slip-wall surface. which is also known as a
svmmetry surface. A boundary condition in which all flow quantities were
extrapolated from the interior was also investigated for the top boundary. and
produced identical results for that obtained with the slip surface. For the three
dimensional calculations, the boundaries along the two extreme spanwise planes
were also set as slip surfaces. Because the solutions obtained with the two and three

dimensional calculations were found to be nearly identical, only one set of computed

results are discussed in the the rest of this section.
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The exact solution for the incompressible flat plate boundary layer with constant
fluid properties and no pressure gradient was obtained by Blasius [L1]. and as a
result. is known as the Blasius solution. The Blasius solution enables velocity
profiles at different axial positions,  to be reduced to a single similarity profile.

through the use of a similarity variable. 1. defined as:

[ple :
n=y r_¥ Re, (4.1)
pr oo

The exact solution of Blasius enables the skin friction coefficient. boundary laver
thickness. displacement thickness. and momentum thickness to be expressed as a
function of axial position.

Skin friction coefficient:

(= 0.664 (4.2)
1= The 2

Boundary laver thickness:

) 5

Z = 1.3

r vV Re, (4.3)
Displacement thickness:

& 1.7208

== (4.4)

Momentum thickness:
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Figure 4.3: Skin friction for incompressible laminar boundary laver

0 0.664

r VRe,

The calculated skin friction along the flat plate is compared to the expression from

(4.5)

the Blasius solution given in equation (4.2) in figure 4.3. The overall agreement
between the calculation and the expression from the Blasius solution is good. At the
end of the plate. near Re, = 10000, the calculation indicates that the skin friction
levels off. This is a numerical effect of the outflow boundary condition which
extrapolates the velocity components at the outflow plane from the interior, and
indicates that the outflow plane should be downstream of the flow region of interest

when such an outflow boundary condition is used.
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Comparisons of the calculated velocity profiles are made to the exact solution of
Blasius in figure 4.4 at two axial positions corresponding to Re, = 2000 and

Re . = 5000. Again. the agreement hetween the exact solution and the calculated
results is close. Comparisons of the calculated boundary layer. displacement. and
momentum thicknesses to those obtained from the Blasius solution are shown n
figures 4.5, 4.6, and 4.7 respectively.

The boundary laver thickness along the flat plate obtained from the calculations was
determined to be the distance from the wall where the local axial velocity bhecame
99 percent of the freestreain velocity. The displacement and momentum thicknesses

were obtained by numerical integration using equations (4.6) and (4.7) respectively:

0" = /x (1 — —l—l—> dy (4.6)
Jy=0 I ~

U i
f = / P ( — ——) d 47
Jy=0 U ! (“"X Y ( { )

These forms of the displacement and momentum thicknesses are valid for both
laminar and turbulent incompressible flows. For compressible flows, the variation in
density appears in the two expressions, which will be shown later in the discussion

on the compressible boundary layer calculations.

The agreement between the exact Blasius solution and the computed solutions
obtained with the Gottlieb-Turkel scheme is very close for the boundary layer
thickness and the integral thicknesses. At the end of the plate. X/L =1, all of the

three thicknesses flatten in slope. As was the case for the skin friction comparison in
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Figure 4.4: Velocity profiles for incompressible laminar boundary layer
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Figure 4.5: Boundary layer thickness for incompressible laminar boundary layer
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Figure 4.6: Displacement thickness for incompressible laminar boundary laver
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Figure 4.7: Momentum thickness for incompressible laminar boundary layer

figure 1.3, this is due to the outflow houndary condition which extrapolates the

velocity components from one point interior to the computational grid.
4.2 Incompressible Turbulent Boundary Layer

The second boundary laver case examined was an incompressible turbulent flow over
a flat plate at Mach 0.2. A computational grid having 71 axial points by 71 vertical
points was examined with the two-dimensional flow solver. The computational
domain extended to a position corresponding to a Reynolds number of 2,000.,000.
The vertical dimension was equal to 40 percent of the axial dimension. The
computational grid. shown in figure 4.8, was packed to the flat plate surface such

that the average y* of the first point off the wall was set to 2.5. This average y*
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that was emploved to construct the computational grid was determined by the

following procedure:

The definition of the wall normal coordinate y7 is:
u
y+ _ Yur (4.8)
K w//)uﬁ

(1.9)

The expression for (y*) in equation 4.8 can be rewritten in terms of the local skin

friction coefficient and flow properties at the wall and in the freestream:

(V - m;‘l Yr)g ur o0

yt =L Ll P fx (4.10)
2
2 Uac Poc P

For this incompressible flat plate boundary layer case, the flow properties are
constant through the flow such that p,, = po and g, = pis. Using a skin friction
coefficient that is characteristic of the flow. in this case ("; = 0.003, and the
freestream conditions, equation (4.10) can be used to calculate a characteristic or
“average” yT for the grid spacing at the wall. In the axial direction. the
computational grid was packed to the leading edge such that the initial spacing was
Azt = 75 using the same method used to calculate the average y*. A hyperbolic
tangent stretching function was used to stretch the grid both in the axial and

vertical directions, as was done for the laminar flat plate case.
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Figure 4.8: Clomputational grid for the incompressible turbulent flat plate case

This incompressible turbulent boundary laver flow was calculated using the same
RANS approach as that for the laminar boundary layer. with identical boundary
conditions, except that the Cebeci-Smith turbulence model was also emploved. The
wall function approach was not used here. With the grid packed tightly to the plate
surface and the first point off the wall placed well within the laminar sublaver. the

(Cebeci-Smith turbulence model was integrated to the wall.

Unlike the laminar boundary layer, an exact solution is not available for this
turbulent flow. As a result. the computed results are compared to a benchmark
experimental data set of Wieghardt and Tillman [112] for the wall skin friction
coefficient and velocity profiles. C'orrelations for the boundary laver, displacement
and momentum thicknesses obtained by Schlichting [90] are used for comparison to

the computed results.
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Figure 4.9: Skin friction for the incompressible turbulent boundary laver

A comparison of the calculated skin friction with the data of Wieghardt and
Tillman is provided in figure 4.9. The calculated velocity profile at a location along
the plate corresponding to a Reynolds number hased on axial position of 1.050.000
is compared to experimental measurements in figure 4.10. Figure 4.11 provides a
comparison of the same results for the velocity profile using wall coordinates.
Overall. the agreement between the calculated boundary laver results and the

experimental data of Wieghardt and Tillman is very close.

A comparison of the calculated boundary layer. displacement, and momentum
thicknesses to correlations provided by Schlichting [90] are shown in figures 4.12.

4.13, and 4.14 respectively. The correlations for these thicknesses are as follows:
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Figure 4.11: Velocity profile for the incompressible turbulent boundary layer at Re, =
1.050.000 using wall coordinates
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Figure 4.13: Displacement thickness for the incompressible turbulent boundary layer
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The correlations provided in equations (4.11 - 1.13) are derived assuming the
velocity profile for an incompressible turbulent flow over a smooth surface can be

represented by a i-th power law profile. That is:

<= (%) (4.14)

The agreement between the correlations and the computed solutions obtained with
the Cottliehb-Turkel scheme and Cebeci-Smith turbulence model is good. Again near
the end of the plate. the outflow boundary condition extrapolates the components of
the velocities such that the three thicknesses flatten between the next to last grid
point in the axial direction and the outflow houndary. This behavior does not
adversely affect the rest of the boundary laver development upstream of the outflow

houndary as indicated by figures 4.12 - 4.14.

4.3 Compressible Turbulent Boundary Layers

In this section, two compressible supersonic boundary layers are investigated to
further validate the RANS approach. The two boundary layers selected were the
two flows entering the mixing layer to be examined with the hybrid RANS/LES
method. The particular mixing laver is one of the experiments of Goebel and
Dutton [34-36] referred to as C'ase 2 in these references. Their experimental
configuration is depicted by the schematic shown in figure 1.1. Upstream of the
mixing layer, the flow on the top half of the splitter plate is for a Mach 1.91 stream
and a total temperature of 578 K. On the bottom half of the splitter plate. a
boundary layer grows for a Mach 1.36 stream at a total temperature of 295 K. The

Goebel-Dutton experiments provide details of the boundary layer entering the
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mixing region including measurements of the houndary laver. displacement. and
momentum thicknesses. More details of the experimental configuration. flow
conditions. and data collection. particularly regarding the mixing section. will be

provided in chapter 5.

For each of the supersonic boundary lavers, both the wall-integration and
wall-function approaches are investigated. As mentioned in chapter 2. the
motivation for emploving the wall function approach in conjunction with the
(‘ebeci-Smith turbulence model was to enable a continuous computational grid from
the wall bounded RANS regions into the mixing layer that is then calculated using
the LES part of the hybrid approach. Comparison of the wall-function approach to
the more standard wall-integration approach and the compressible houndary layer
correlations determines the capability of the wall-function implementation to

accurately provide the mean flow characteristics of the incoming boundary layer.

In the previous section. calculated results were compared to benchmark
experimental data for the incompressible turbulent boundary layer. Although the
measurenients of the boundary laver. displacement thickness. and momentum
thicknesses at the trailing edge of the wall bounded regions in the Goebel-Dutton
experiments make them one of the better documented mixing layer data sets, other

details of the boundary layer developments are not provided.

As a result, well established correlations for the skin friction coefficient, velocity
profiles. boundary layer thickness. and integral thicknesses are used to investigate

the details of the boundary layer development for the two particular supersonic
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flows here. The calculated skin friction coefficient is compared to a combined
correlation. that is referred to here as the Mager-Schlichting correlation. In
reference [90]. Schlichting provided the following expression for the skin friction

coefficient for an incompressible flat plate with turbulent flow from the leading edge:

_L
('y = .0592Re, " (4.19)

In reference [63]. Mager provides a correction to equation (4.15) for the skin friction

coeflicient in compressible turbulent flow:

456

('f T
< = | = 16
“ ( Tt ) (4 ))

To evaluate the other boundary laver characteristics such as velocity profiles.
boundary layer thickness. and the integral thicknesses. the method developed by
Tucker [105] is used here. Tucker provides a power-law relationship for the velocity
profile in turbulent compressible flow that is similar to the incompressible form
given in equation 4.14. Unlike the incompressible form which assumes a constant

exponent of 7. the compressible form uses a variable exponent:

where the exponent N is given by:

-“l—
—_—
=
[S—
on
~—

N = (Regm)?
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The Revnolds number Re,,, is based on the length of the houndary laver
development. The subscript am refers to the procedure of evaluating all fluid
properties at the arithmetic mean of the wall temperature and the freestream
temperature. Tucker shows that a solution of the Karman momentum equation

results in:

o 2
=—-KN|—m—— o7 (4.19)

The parameter K is given hy:

1

k:oﬂwl(““) (4.20)

Pl

where .. p,. and «a, are the dynamic viscosity. density, and speed of sound,
respectively. all evaluated at the freestream total temperature.

Finally, the Mach number parameter, m?. is given by:

s _ M

~

J

(4.21)

m

Tucker provides further integral relationships between the momentum thickness. 8.
given by equation 4.19 and the boundary layer thickness, §, the displacement
thickness. 6*. While the ratios #/4 and §7/§ are assumed to be nearly constant for
incompressible flows. as indicated by equations 4.12 and 4.13, Tucker shows them to
be a function of the freestream Mach number and the velocity profile parameter, N.

Reference [105] provides extensive tables from which &, 6, and # may be obtained.
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Following the validation of the RANS approach for the Mach 1.91 and Mach 1.36
cases. the objectives will be to provide boundary lavers to the mixing section in the
hvbrid RANS/LES calculations that match the mean flow properties measured in
the Dutton-Goebel experiment. As a result. physical dimensions will be used to
describe the computational grids and the calculated thicknesses 5. 6. and € in the

following two sections.
4.3.1 Mach 1.91 Flat Plate Flow

The computational grid for the wall-integration case is shown in figure 4.15 and the
erid for the wall function case is shown in figure 4.16. Both grids extended 300 nim
in the axial direction and 150 mm in the vertical direction. In addition. both grids
used 141 points in the axial direction and 141 points in the vertical direction. The
wall-integration grid was packed to the wall such that the first grid spacing was
0.006 mm. corresponding to an average y* of 2.5, using equation (4.8). The wall
function grid had the first point placed at 0.05 mm. corresponding to an average y*
of approximately 20. This wall spacing was chosen for use with the wall-function
grid so that the initial grid spacing at the wall was exactly 1/10th of the splitter
plate thickness in the experiment. This grid spacing could then be continued into
the mixing region, with 10 points spaced equally in the vertical direction at the base
of the splitter. In the axial direction, both the wall-integration and wall-function
grids were packed to leading and trailing edges with spacings at the two ends set to

0.10 mm, corresponding to 1/5th of the splitter base thickness.

The wall boundary condition for the calculations was set to be an adiabatic no-slip

surface and the extreme vertical boundary was set as a slip surface, as was done for
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Figure 4.15: Computational grid for the Mach 1.91 turbulent flat plate case using the
wall-integration method

1i]

Figure 4.16: Computational grid for the turbulent Mach 1.91 flat plate case using the
Ota-Goldberg wall function
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the incompressible turbulent boundary laver. For this supersonic boundary layer.
however. the inflow condition was fixed and the outflow condition extrapolated

quantities.

The skin friction coefficient along the flat plate obtained from the two computed
solutions is compared to the Mager-Schlichting correlation in figure 4.17. The
wall-integration skin friction results were obtained by direct]y evaluating the shear
stress at the wall, since the grid was packed to the wall surface with the first point
off the wall placed in the laminar sublayer. or the wall-function case. however. the
shear velocity that is solved with an iterative procedure within the Ota-Goldberg
wall-function was used to calculate the skin friction coefficient along the flat plate.
The agreement of the two solutions with the Mager-Schlichting correlation is good.

with the wall-integration approach providing closer agreement.

The calculated velocity profiles at a location along the plate corresponding to a
Reynolds number based on axial position of 4.000.000 is compared to results of the
Tucker method in figure 4.18. The profile obtained with the Tucker correlation was
obtained by using equation (4.17) with the exponent N given in equation (4.18)
evaluated to be 6.275 at this axial position. In figure 4.19 the velocity profile at the
same location expressed in wall coordinates, u* and yT is compared to the
White-Christoph compressible law of the wall given in equation (2.88). Figures 4.18
and 4.19 indicate that both the wall-integration and wall-function calculations
provide good agreement with analytical expressions developed to evaluate

compressible turbulent boundary layer characteristics.
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Figure 1.17: Skin friction for the Mach 1.91 turbulent boundary laver
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Figure 4.13: Velocity profile for the Mach 1.91 turbulent boundary laver at Re, =
4.000, 000
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Figure 4.19: Velocity profile for the Mach 1.91 turbulent boundary laver at Re, =
4.000.000 using wall coordinates

The calculated boundary layer. displacement, and momentum thicknesses are
compared to results obtained using the Tucker method in figures 4.20, 4.21. and
1.22 respectively.  The boundary layer thickness along the turbulent compressible
flat plate was determined in the same manner used for the incompressible turbulent
case, by finding the distance from the wall where the local axial velocity became 99
percent of the freestream velocity. The displacement and momentum thicknesses for
the compressible case differ from the incompressible case in that the density is
involved in the integral expressions. These two integral quantities are defined for the

compressible case in equations (4.22) and (4.23):
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Figure -1.20: Boundary laver thickness for the Mach [.91 turbulent boundary laver
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Figure 4.21: Displacement thickness for the Mach 1.91 turbulent boundary layer
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Figure 4.22: Momentum thickness for the Mach 1.91 turbulent boundary laver
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The three measures of the boundary laver growth shown in figures 4.20 - 4.22 again
indicate close agreement with results obtained using the Tucker analysis. The
greatest discrepancy in these results is for the wall-function solution near the
leading edge of the plate. This is a result of the wall-function grid having
significantly fewer points than the wall-integration grid near the wall to resolve the
thin boundary layer at the leading edge. Further downstream, however, the

wall-function approach provides similar agreement to the Tucker correlation.
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4.3.2 Mach 1.36 Flat Plate Flow

The computational grids used for the wall-integration and wall function cases are
shown in figures 4.23 and 4.24 respectively. The construction of these grids was
similar to that performed for the Mach 1.91 calculations. with the exception of the
axial dimension being shorter for these Mach 1.36 calculations. This was done
because the Mach 1.36 houndary layver thickness in the Dutton-Goebel experiment
measured at the beginning of the mixing section was smaller than the Mach 1.91
boundary laver. as will be discussed in the next chapter. The grids extended 200
i in the axial direction and 150 non in the vertical direction. Both grids used 141
points in the axial direction by 141 points in the vertical direction. The grid for the
wall-integration case was packed to the wall such that the first grid spacing was
0.006 mm. corresponding to an average y* of approximately 3.0. again using
equation (-1.8). The wall function grid had the first point placed at 0.05 .
corresponding to an average y* of approximately 25. Both grids were packed in the
axial direction to leading and trailing edges with spacings at the two ends set to
0.10 mim. corresponding to 1/5th of the splitter base thickness.  The boundary
conditions used for these Mach 1.36 cases were the same as those used for the Mach

1.91 case. with the only difference being that a Mach 1.36 flow was fixed at the

inflow here.

The skin friction coefficient obtained from the two computed solutions is compared
to the Mager-Schlichting correlation in figure 4.25. The agreement of the two
solutions with the correlation is nearly as close as that for the Mach 1.91 case, with

the directly calculated shear stress from the wall-integration approach providing
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Figure 4.23: Computational grid for the turbulent Mach 1.36 flat plate case using the

wall-integration method
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Figure 4.24: Computational grid for the turbulent Mach 1.36 flat plate case using the
Ota-Goldberg wall function
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Figure 4.25: Skin friction for the Mach 1.36 turbulent boundary laver

closer agreement to the correlation than the wall-function approach. The
calculated velocity profiles at a location along the plate corresponding to a Reynolds
number based on axial position of 4,000,000 is compared to results of the Tucker
method in figure 4.26. For the Mach 1.36 boundary laver at this location, the
Tucker analysis indicates that the velocity profile exponent is 6.370. In figure 4.27
the velocity profile expressed in wall coordinates, u* and y* is compared to the
White-Christoph compressible law of the wall profile. In figures 4.26 and 4.27, both
the wall-integration and wall-function calculations indicate acceptable agreement

with the analytical expressions.

Finally, the calculated boundary layer. displacement, and momentum thicknesses

are compared to the Tucker method in figures 4.28, 4.29. and 4.30 respectively. The
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Figure 4.27: Velocity profile for the Mach 1.36 turbulent boundary laver at Re, =
4,000,000 using wall coordinates
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Figure 1.23: Boundary layver thickness for the Mach 1.36 turbulent boundary laver

agreement of the solutions with the Tucker correlation is good. although the
agreement is not as close as for the Mach 1.91 case. The wall-function solution
again indicates the largest discrepancy near the leading edge of the plate where the
number of grid points available to resolve the thin boundary layer is low. The
discrepancy is minimized further downstream. where the boundary layer becomes

thicker.
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Figure 4.29: Displacement thickness for the Mach 1.36 turbulent boundary layer
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Figure 4.30: Momentum thickness for the Mach 1.36 turbulent boundary layer
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CHAPTER 5

TWO DIMENSIONAL MIXING LAYER CALCULATIONS

Two dimensional calculations with the hvbrid RANS-LES method were performed
for a benchimark compressible mixing layer experiment and the results are described
in this chapter. While true LES simulations require computations in three spatial
directions. it is useful to compare two dimensional calculations to investigate effects
of the RANS-LES interface region. axial grid resolution. and boundary conditions.
The results of three dimensional calculations are presented in chapter 6 for the same

experimental configuration.

In this chapter. details of the experimental configuration and operating conditions
are provided in section 5.1. Construction of the computational model is provided in
5.9. Two-dimensional calculations investigating axial grid density effects are
presented in section 5.3. Finally, calculations which investigate the splitter plate

thickness and mixing section wall placement are presented in section 5.4.
5.1 Experimental Configuration

The flow that is the focus of the hybrid method calculations is a two-stream,

turbulent planar mixing layer that was examined in the experiments of Goebel and
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Dutton [31 36]. A simplified schematic of their experimental configuration provided
i figure 5.1 shows that two isolated air streams. in which boundary lavers develop
over a splitter plate surface. are brought together into a constant area mixing
section. In all of their experiments. the higher speed primary stream occurred over
the top surface of the splitter plate. The top stream enters the mixing section
axially. while the bottom stream enters the mixing section at an angle of 2.5
degrees. The splitter plate thickness has a base height of 0.5 mm at the trailing
edge. Upstream of the straight sections for the two isolated flows shown in figure
5.1, contoured nozzle blocks were used to provide the supersonic flows with nearly

untform exit flow conditions.

The mixing section height was 48 mm, and the overall length of the mixing section
available for flowfield measurements was 500 mn. The width of the mixing section
was 96 mun. and as a result, the mean flow development could be considered
two-dimensional. This was also verified in the experiment. The divergence angle of
the lower and upper walls of the mixing section were adjusted in each experiment
with two incoming supersonic flows. to account for boundary laver growth along

these two surfaces and to effectively remove any streamwise pressure gradient.

Single component LDV measurements of turbulence intensities in the upstream
flows taken 2 mm upstream of the splitter plate trailing edge indicated that
incoming boundary layers were turbulent for all cases. These LDV measurements
were also used to calculate the boundary layer, displacement. and momentum
thicknesses of the two streams as they enter the mixing section. This makes the

Goebel-Dutton experiments one of the more thoroughly documented benchmark
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Figure 5.1: Schematic of Goebel-Dutton mixing layer experiment

data sets available for compressible mixing layers. In the mixing region, a
two-component LDV system was used to measure the axial and transverse
velocities. In addition, a Schlieren system with a 20 ns pulse duration was used to

obtain nearly instantaneous snapshots of the mixing layer.

Goebel and Dutton examined seven cases using this experimental configuration.
This work investigates their case 2 experiment. The operating conditions of the two
streams in case 2 are provided in table 5.1. The two supersonic flows were matched

in static pressure at the beginning of the mixing section (end of the splitter plate).
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top flow  bottom flow

MachNo. 1.91 1.36
{(m/s) 700 399
TR) 578 295
T'(K) 334 215
a(m/s) 366 293
P(kPa) 19 49
plhg/m?) 0.51 0.79
d(mm) 2.9 2.5
d {(mm) 0.90 0.41
O(rmm) 0.29 0.21

Table 5.1: Flow conditions for case 2 of the Goebel-Dutton experiments

5.2 Two Dimensional Computational Modeling

The development of the computational model began by using the results of the
Mach 1.91 and Mach 1.36 boundary layer simulations discussed in chapter 4.
Specifically. the wall-function solutions were examined. hecause the computational
grids utilized in conjunction with the wall-function approach were constructed to
enable a continuous grid into the mixing region for use with the hybrid RANS-LES
solver. The objective was to construct two RANS regions that would provide
boundary layer quantities 4, 6. and # that nearlv matched those measured in the
experiment. and shown in table 5.1. Because it would be virtually impossible to
match all of three quantities exactly. the momentum thickness # was chosen as the
key boundary layer parameter to match the computations with the experiment. The
momentum thickness represents the mean momentum deficit entering the mixing

section and is fundamental to the downstream mixing layer behavior.
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Goebel-Dutton Experiment  Wall-Function Calculations

61 a1( ) 2.9 3.2
87 g (mm) 0.90 0.82
91 gr(mam) 0.29 0.29
(51 se( 1) 2.5 2.3
> el 0.-44 0.41
91 ael ) 0.21 0.21

Table 5.2: Comparison of boundary layer quantities at splitter plate trailing edge

While the comparison of calculated quantities to the Tucker theory in section 4.3
was performed to verify the RANS method against well established correlations. the
objective here was to determine the axial length of plate needed for the Mach 1.91
and Mach 1.36 boundary lavers to reach the same state as those measured in the
Goebel-Dutton experiment. Examining the Mach 1.9] boundary laver first. table
5.1 indicates that the momentum thickness for this stream was measured as 0.29
mm at the trailing edge of the splitter plate. For tlnle wall function calculations
discussed in section 4.3. the momentum thickness reached 0.29 mm at a Revnolds
number of 3.540.000 (see figure 4.22). corresponding to an axial position of 198 mm
from the leading edge of the plate. The other boundary layer quantities obtained
from the calculations are also in close agreement with the Goebel-Dutton

measurements. as shown in table 5.2.

The next step was to construct a new computational grid. The axial domain was
shortened to 198 mm while retaining the same number (141) of axial grid points.

The grid stretching was modified to accommodate the shorter domain while
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maintaining the initial and terminal grid spacings. The vertical domain was reduced
to 23.75 mm to exactly match the height of the Mach 1.91 stream in the experiment.
The vertical domain of the original grid reached 23.75 m at the 94th grid point in
the vertical direction. so the first 94 points from the original grid were used in the
modified grid. (‘alculations obtained with this 141 x 94 point. 198 mm by 23.75 mm
grid provided boundary layer quantities identical to that of the original 141 x 141

grid. further validating the grid independent characteristics of the RANS method.

A similar procedure was used for the Mach 1.36 boundarv layer. Table 5.1 indicates
that the momentum thickness for this stream was 0.21 non at the splitter trailing
edge. Examination of the wall-function solution obtained for the Mach 1.36
boundary laver in section 4.3 revealed that the momentum thickness became 0.21
mm at an axial positiou of approximately 120 mm. corresponding to a plate
Revnolds number of 2.690.000. As was the case for the Mach 1.9] boundary laver.
all three measures of the boundary layer development were in close agreement with

the experimental measurements for the Mach 1.36 case. as shown in table 5.2.

A modified grid was constructed using 141 axial and 94 vertical points for this Mach
1.36 case. corresponding to a physical domain of 120 mm by 23.75 mm.
(‘alculations with this modified grid provided a solution identical to that obtained

with the original 141 x 141 grid.

The last step before constructing the entire RANS-LES computational grid was to
use grid points from the modified wall-function grids just discussed. extending from

81-141 in the axial domain and fix the solutions at the 81st axial station as the
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inflow. in order to reduce the grid requirements of the final hybrid RANS-LLES grid.
Boundary layer calculations subsequently obtained with these two shortened axial
grids using 61 axial points and 94 vertical points again returned the same boundary
laver quantities and velocity profiles as the other solutions. These were the RANS

grids that were used to join with the LES mixing region computational domain.

As will be discussed in section 5.3. three different axial grid spacings were examined
in the initial two dimensional hybrid calculations. In all cases, however. the vertical
spacing from the two RANS regions was continued throughout the entire LES
region. With the tightest vertical spacing of the wall-function boundary layer
solutions set to 0.05 mm. 10 grid spacings were used vertically across the splitter
base. As a result. all of the hybrid grids nsed 197 vertical points in the mixing

region.

For all of the hybrid calculations discussed in this chapter and in chapter 6. fixed
inflow boundary conditions were used at the RANS inflows. The fixed inflow for the
Mach 1.91 upper stream was placed at an axial position 67 mm upstream of the
splitter plate trailing edge and the Mach 1.36 lower stream inflow was placed 42 mm
upstream of splitter tip. Although information regarding the temperature and heat
transfer characteristics of the splitter plate walls were not available from the
experiment, these surfaces were set as adiabatic no-slip boundaries. At the outflow
of the mixing section, corresponding to an axial distance of 300 mm from the
trailing edge of the splitter plate, an extrapolation boundary condition was used.
which is appropriate for the mixing supersonic flow exiting the axial domain. The

top and bottom walls of the mixing section were approximated as slip walls, and no
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attemipts were made to simulate boundary layers developing on these two surfaces.
The Goebel-Dutton experimental configuration was specifically designed with
adjustable divergence angles for these walls to account for boundary laver growth.
and to thereby provide experimental data that mayv be directly compared to

calculations which do not include the mixing section boundary layers.

The combined RANS-LES calculations were obtained by marching in time with the
Gottlieb-Turkel scheme for the entire computational domain. Although the RANS
regions did not change after reaching convergence. calculations were still performed
in the RANS regions. in case any large perturbations from the LES region travelled
upstream. Because of the zero-pressure gradient nature of these boundarv lavers.
however. no large upstream fluctuations were noted in any of the hybrid
calculations. No subgrid scale model was used in any of the two dimensional
calculations discussed in this chapter. As a result. the use of a turbulence model
terminated at the end of the RANS regions. For the three dimensional calculations
of the same configuration discussed in chapter 6. the Smagorinsky subgrid scale

model was emploved.

For the two-dimensional cases discussed in this chapter and the three-dimensional
cases discussed in chapter 6, a series of flowfield contours is shown in the mixing
section to illustrate the mixing layver development and to help compare qualitative
features of the different modeling approaches. Instantaneous density and entropy
contours are presented to show images of the mixing laver at a snapshot in time.
For each of these quantities. an image is shown for the first one-third of the mixing

duct to provide details of the initial mixing layer development. An image of the
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entire computational domain is also shown. extending from the inflow of the two

isolated RANS streams to the exit of the mixing section in the LES region.

Densitv contours are useful for visualizing the flow characteristics in the mixing
region. In addition, they provide a computational analogy to the Schlieren
photographs that are used to illustrate mixing laver development in experiments.
While the strongest gradients of the density will be observed to be in the developing
shear layer. gradients are also observed in the regions above and below the mixing
layer. These are the result of Mach waves generated by the unsteady mixing layer
and their interaction with the two walls of the confined mixing section. Such waves
were also evident in the Schlieren photographs of the Goebel-Dutton experiments.
A Schlieren image taken of the first 250 mm of the mixing section in the

Goebel-Dutton case 2 experiments is shown in figure 5.2.

In order to isolate the development of the mixing layer. instantaneous entropy
contours are also used in the following discussions. Because the Mach waves
occurring between the developing mixing layer and the two mixing section walls are
of relatively weak strength, the entropy gradients in these regions are quite small.
As a results, entropy contours enable emphasis to be placed on the mixing layer
development more clearly than is possible with the density contours. The entropy
function of the PLOT3D program [109] is used here, which calculates the entropy mn

an ideal gas with constant specific heats as:

faa §
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Where P,y and p,. s are reference quantities used to nondimensionalize the entire

flow domain.

Time-averaged axial velocity and turbulent intensity profiles obtained from the
calculations are compared with experimental measurements. The procedure used to

obtain these time averaged quantities is discussed in appendix (.
5.3 Axial Grid Density Effects

Three computational grids are considered initially to examine the effects of axial
grid resolution. Because the grid resolution in the vertical direction exceeded that of
the axial spacing for even the finest grid examined here. no variation in the vertical
spacing was considered and all of the grids had 197 vertical points in the mixing
section. The three grids examined have 200, 400, and 800 axial points respectively
and all are similar to the domain shown in figure 5.3, which corresponds to the
coarsest grid used (200 axial points). The grid detail extending from the end of the
RANS regions into the initial portion of the LES region is shown in figure 5.3(a).
The entire computational domain is shown in figure 5.3(b). For clarity. only every
third grid point is shown in both the axial and vertical directions in figure 3.3(b).
Showing every grid point for even the coarsest 200 point grid would obscure the

depiction of the grid topology.

Figure 5.4 shows the detail near the trailing edge of the splitter for all three grids.
In every case, 10 equal grid spacings are used vertically across the 0.5 mm splitter
plate trailing edge. This grid spacing (Ay = 0.05 mm) matches the initial vertical

spacing of the wall boundary layers in the RANS regions. Axially, all three grids are
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mixing region size 200 axial pts. 400 axial pts. 800 axial pts.

stretching factor =yt 1.0215 1.0083 1.0029
Aoy (man) .10 10 10
ANrpgse(rrom) 6.52 2.60 1.06
S{las 65.2 26.0 10.6

Table 5.3: Comparison of axial grid spacings

packed to the splitter trailing edge such that the initial Ar spacing is twice that of
the finest Ay spacing. The only difference between the three grids is the axial

stretching factor. which is fastest for the 200 point grid and slowest for the 300
point grid. In all cases a geometric stretching factor was used. Table 5.3 provides a

comparison of the axial spacings for the three grids.

The first two dimensional simulation investigating grid density effects was for the

coarsest grid using 200 axial points. Figures 5.5 and 5.6 provide instantaneous

contours of the density and entropy for this case. In each of these contours. a vortex

shedding pattern originates from the trailing edge of the splitter plate due to the

separation of the two flows leaving the wall bounded RANS regions and entering the

LES mixing section. The vortex shedding quickly dissipates and the flow appears to

be laminar until an axial position corresponding to nearly one fourth of the overall

duct length. At this position, an instability forms and the flow initiates transition to

an unsteady turbulent pattern. The Reynolds number at the instability location is

900,000 using an average value of the viscosity and density from the two streams,
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the difference in velocity of the two streams. and the axial position of approximately

SOmm.

The turbulent-like behavior quickly dissipates again. however. and the flow returns
to a laminar state. For this case. the comparatively coarse grid enables the
truncation error of the Gottlieb-Turkel scheme. shown previously in equation (3.21).
to damp any oscillations without the use of any turbulence model or artificial
dissipation in the mixing region. Because the turbulent behavior for this case was
very limited, no turbulent averaging was done for this case. One final observation
from this case was the Mach waves originating from the trailing edge of the splitter.
These waves, in turn. reflect off of the mixing section walls and hack onto the
splitter. A qualitatively similar pattern was observed in the Goebel-Dutton

Schlieren photographs as shown in figure 5.2,

The second two dimensional simulation was for the computational grid using 400
axial points. The characteristics of this flow were substantially different from those
of the 200 grid point case. Instantaneous density and entropy contours are provided
in figures 5.7 and 5.8. A stronger vortex shedding is evident for this case. although
the vortex strength gradually dissipates back to a laminar state approximately 40
mm downstream of the splitter trailing edge. An instability again forms at an axial
position of 80 mm which in turn slightly dissipates before resuming growth at a
position 180 1mm downstream of the splitter plate trailing edge. A turbulent pattern

then grows from this location to the exit at « =300 mm.
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The 400 point axial grid examined consisted of smaller axial grid steps than the 200
axial point grid and had a significantly reduced stretching factor relative to the
coarse grid. As a result. the truncation error term in the Gottlieb-Turkel scheme
that effectively smooths discontinnities is substantially reduced for the 100 axial

point grid. and the capability to resolve unsteady flow behavior is improved.

The third computational grid investigated in this section was for the 800 axial point
grid. A substantially different flow behavior is also observed for this case compared
to the solutions obtained with 200 and 400 axial points. The density and entropy
contours in figures 5.9 and 5.10 again indicate a vortex shedding pattern that
originates from the trailing edge of the splitter plate. but unlike the other two cases,
the solution does not return to a laminar state before transitioning over to a
turbulent-like pattern. The very tight axial spacing for this case is sufficient to
minimize the truncation error damping effects on the unsteady flow development.
Interestingly, the transition from the organized vortex structure to a more random
turbulent structure occurs at nearly the same location as the transition for the other
two computational grids. although the flow behavior both upstream and

downstream of this point is substantially different.

A somewhat organized coherent structure may be observed from the contours of
density and entropy for the 800 axial point case shown in figures 5.9 and 5.10. and
near the end of the mixing section for the 400 axial point case shown in figures 5.7
and 5.8. These structures are similar in form to those of the well known Brown and
Roshko [16.86] mixing layer studies. The Brown and Roshko investigations of

incompressible turbulent mixing layers indicated that the turbulent mixing laver
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development was characterized by large coherent structures. As the Revnolds
number in their experiments was increased. a fine scale turbulence contained within
the larger scale structures was evident. However, the mean flow properties were
found to be the same regardless of the Reyvnolds number. indicating that the mean

flow characteristics are dominated by the large scale structure.

The convective Mach number parameter was developed by Bogdanoff [12] and
Papamoscshou and Roshko [76] for use in characterizing the compressibility
characteristics of high speed turbulent mixing layers. For a planar mixing laver with

equal specific heal ratios, the convective Mach number is defined:
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For the Goebel-Dutton case 2 experiment investigated here, the convective Mach
number was 0.455. Clemens and Mungal [21] conducted experiments of planar
turbulent mixing layers with convective Mach number from 0.28 to 0.79. They
found that as the convective Mach number is increased, the characteristics of the
mixing laver changed from an organized two-dimensional Brown-Roshko structure

to a three-dimensional structure with less evidence of large scale organization.

Direct simulations of compressible shear layers conducted by Sandham and
Revnolds [87] also indicted that three-dimensional instability modes become
dominant at convective Mach numbers greater than 0.6. Their simulations also
indicated reduced mixing laver growth rate with increasing convective Mach

number.
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The mean axial velocity profiles obtained from the two-dimensional solutions using
400 and 200 axial grid points are compared to the measurements of Goebel and
Dutton in figure 5.11. Because the calculations discussed in this chapter are only
two-dimensional. and do not use a true LES approach in the mixing region. only
qualitative comparisons with the data will be emphasized here. The comparisons
are made at four axial stations in the mixing layer. & = 50. 100, 150. and 200 nim.
with o = 0 representing the beginning of the mixing section. As mentioned
previously, @ = 0 is also the axial position at which the switch from the RANS
regions to the the LES region occurs. Comparisons of the two turbulence intensities

tpy,s and Ups are shown in figures 5.12 and 5.13 respectively.

The mean axial velocities are plotied versus vertical position normalized by the
mixing section height. 48 mm. in order to give an indication of the shear layer
spreading through the mixing section. In addition, the vertical positions were
adjusted so that y/H = 0 represented the location where the local axial velocity was
the mean of the two freestream velocities. The adjustment was also made in the
experimental data as reported by Goebel and Dutton [36]. The turbulence
intensities are plotted versus vertical position normalized by the local shear laver
width. defined by Goebel and Dutton as the distance between vertical positions
where U7 = U; — 0.1AU and U7 = Uy + 0.1AU. The two velocities I/ and U, are the

upper and lower stream velocities. respectively.

The computed axial velocity contours indicate a much larger wake region than
found in the experiments, and a greater discrepancy is observed for the 400 axial

point case. At the 2 = 200 mm axial station, both solutions have returned to agree
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moderately well with the data. The comparisons of streamwise and transverse
turbulence intensities in figures 5.12 and 5.13 indicate substantial differences
between the solutions and data. Both solutions. and especially the 400 axial point
solution. show low levels of wu,,,s and v,,,, at the » = 30 mm station. For the 400
point case. this correspouds to the nearly laminar like state indicated by the
contours shown in figures 5.7 and 5.8. Further downstream the intensities of the two
solutions grow substantiallv and by the » = 200 1 station. the transverse
turbulence intensities from the solutions is substantially larger than those from the
experiment. The profiles of w,.,,s obtained from the calculations demonstrates a
double peak. particularly at @ = 100 mm. This appears to be an indication that the
velocity fluctuations are influenced more by the organized vortical structure early in

the mixing section than by the formation of turbulence.

Despite the significant differences among the solutions obtained with the three
computational grids discussed here. the vortex shedding from the trailing edge of
the splitter and the appearance of waves originating {rom the splitter plate and
reflecting off the mixing section walls were common to the three solutions. In the
next section. the influence of the splitter base region and the mixing section walls
are investigated. A final note from this section is that while grid refinement in
RANS calculations is performed to achieve grid independence. and major changes in
flow solutions when using two different grid resolutions usually indicates a modeling
problem. this is not the case in LES computations. Grid refinement in LES enables
more and more of the unsteady turbulent spectrum to be resolved, until the limit of

DNS is reached. The purpose of a subgrid scale model in LES computations is to
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Figure 5.2: Schlieren photograph of the Goebel-Dutton mixing laver (from Ref. 31.

used with permission)

effectively represent the turbulent motion that is too small to be resolved by tle

computational grid.
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(a) Beginning of mixing section

(b) Entire computational domain (every third grid point in each direction shown)

Figure 5.3: Computational grid for the 200 axial grid point case
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(b) 400 axial points in mixing section

(c) 800 axial points in mixing section

Figure 5.4: Comparison of computational grids near the splitter plate trailing edge
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(b) Entire mixing section

Figure 5.5: Instantaneous density contours for the 200 axial grid point case
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(a) Beginning of mixing section

{h) Entire mixing section

Figure 5.6: Instantancons entropy contours for the 200 axial grid point case
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(b) Entire mixing section

Figure 5.7: Instantaneous density contours for the 400 axial grid point case
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(a) Beginning of mixing section

(b) Entire mixing section

Figure 5.8: Instantaneous entropy contours for the 400 axial grid point case
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(b) Entire mixing section

Figure 5.9: Instantaneous density contours for the baseline 800 axial grid point case
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(a) Beginning of mixing section

(b) Entire mixing section

Figure 5.10: Instantaneous entropy contours for the baseline 800 axial grid point case

NASA/TM—2001-210811 123



0.4 T 1
1 o Goebel-Dutton Data \
0.3 [ Baseline, 400 axial pts.
B EEEEE Baseline, 800 axial pts. ]
0.2 _
0.1 Ff ‘
y/H o et
L e ° O ]
-0.1 1
-0.2
-0.3
o
]
-0.4 N
-1 -0.5 0 0.5 1 1.5
(U-U,)/AU
(a) .Y =50 mm
0.4 [ I 1 I I
© Goebel-Dutton Data
03t Baseline, 400 axial pts.
el g EEEEE Baseline, 800 axial pts.
0.2
01k ]
o0
[
y /H 0 - /
<\§;“5 °
<)
Q L
-0.2 2
0.3 {
0.4 ‘i -

-04 -02 0 0.2 0.4 0.6 0.8 1 1.2

(U-U,)/aU
(b) X = 100 mm
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5.4 Boundary Condition Effects

In this section. results obtained for the baseline case with 800 axial points are
compared to two additional solutions obtained with 800 axial points. The first of
these considers a modified splitter geometry in which the splitter trailing edge is
reduced to a sharp tip. and as a result, the flow separation and vortex shedding is
removed. The second additional case is obtained for a modified mixing section in
which the mixing section walls are moved very far vertically from the mixing laver.
This is done so that any waves originating from the t“l‘ai]ing edge of the sphtter
plate or the mixing laver do not have the opportunity to reflect off the mixing

section walls and back to the mixing layer.

The overall grid structure for the case with a sharp trailing edge is identical to that
of the bhaseline 800 axial grid point case, except for the treatment of the splitter
plate trailing edge. A comparison of the grid detail around this region for the
baseline geometry and the current case with a sharp trailing edge for the splitter is
shown in figure 5.14. In the baseline geometry, 10 grid spacings are used in the axial
direction at the base of the splitter. equally spaced at 0.05 mm. to resolve the flow
region just downstream of the 0.5 mm thick splitter trailing edge. The modified
geometry shown in figure 5.14(b), removes all but one grid spacing, such that the
confined flows from the RANS regions will meet directly at the beginning of the
LES region. The grid stretching in the vertical dimension was performed in the
same manuner as that used for the baseline 800 point grid, and reduced the vertical
domain from 197 points to 188. The placement of the axial grid points was identical

to that of the baseline grid.
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In the Goebel-Dutton experiment and in all of the computations discussed in the
previous section. the height of the mixing section was 48 mm. The density contours
shown in the previous section for the cases with 400 and 300 axial grid points. as
well as Schlieren photographs taken in the experiment. revealed a series of Mach
waves that reflected off of the top and bottom walls of the mixing section and back
onto the mixing laver. The strongest of these waves originated from the trailing

edge of the splitter plate.

To determine if these wave reflections influenced the instability formation in the
shear laver where the simulations appeared to become turbulent. at » = 80mm for
both the 400 and 800 grid point cases. a modified grid was generated which moved
each wall far from the mixing layer such the effective mixing section height became
900 mm. This extreme spacing resulted in all waves generated from the splitter
trailing edge or mixing laver to pass out of the outflow boundary at « = 300mm
without the opportunity to reflect back onto the mixing layer. This computational
grid. which had 800 axial points positioned the same as for the baseline 800 point
case. is shown in figure 5.15. For clarity, only every fourth point is shown in each
direction. In addition. the 197 points forming the vertical domain in the baseline
grid were also used in this modified grid. The extra points needed to extend the
vertical dimension to a total of 900 mm were added on to each side of the mixing
section, such that the total number of points in the vertical dimension for this

modified grid was increased to 347.

Figures 5.16 and 5.17 provide instantaneous density and entropy contours for the

case with a sharp trailing edge. As expected, the vortex shedding evident in the
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baseline case was removed in the current case with the sharp tip. The lack of a
separation region results in an initially laminar mixing laver through the begimniug
of the mixing section. Interestingly. the laminar flow begins to transition to a more
turbulent structure at nearly the same position observed for the baseline case, at
approximately @ = 30 mumn. The structures remain relatively small until
approximately « = 150 nun where large scale turbulence forms. These structures
are more similar to the Brown-Roshko organized structures than were those of the
baseline case with 800 axial points. Because the flows leaving the wall bounded
regions experience a less rapid geometry change at the beginning of the mixing
section for the sharp tip case, the strength of the initial waves off the splitter tip are

rediuced relative to the baseline case.

For the second modified case with mixing section walls moved away from any region
of influence on the mixing layver. the same set of instantaneous contours are provided
in figures 5.18 and 5.19. Two thin lines are drawn on each of the contour plots to
indicate where the mixing section walls were placed in the baseline case. however.
the density contours for entire mixing section shown in figure 5.16(b) indicate that
the flow domain extended beyond these thin lines. With the very large vertical
domain indicated by the computational grid shown in figure 5.15, only a portion of
the vertical domain is displaved in the contour plots. Several waves bevond those
originating from the splitter tip are found to originate from the unsteady vortex

shedding, but they do not reflect back to the mixing laver.

As for the baseline 800 point case and the case with the sharp trailing edge. the

transition location occurs at approximately x = 80 mm for this case, even without
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the influence of Mach wave reflection onto the shear laver. The downstream
turbulent eddy structure is qualitatively similar to that for the baseline case,
although the height of some of the structures is greater than that for the baseline
case. This is likely the result of the lack of mixing section walls to confine the
mixing laver for the modified case. One noticeable difference between the contours
shown in figures 5.18 and 5.19 for the modified mixing section and those of the
baseline case in figures 5.9 and 5.10 is that the mixing laver grows at a slightly
upward angle without the presence of the mixing section walls. For the comparison
of mean axial velocities and turbulence intensities discussed next, an adjustment for
the true mixing laver centerline will be emploved. as was done in the previous

section for the axial grid studies.

In figure 5.20. mean axial velocity profiles obtained from the two-dimensional
solutions investigating the different boundary treatments obtained with 800 axial
grid points are compared to the Goebel-Dutton measurements. In addition.
comparisons of the turbulence intensities u,,, and v, are made in figures 5.21 and
5.22 respectively. As in the previous section, the primary objective here is to
compare the different modeling approaches. Because these calculations were two
dimensional only. and did not employ a subgrid scale model in the LES region,

strict comparisons with the data are not emphasized.

The mean axial velocity profiles at 2 = 50 mm indicate that the solution obtained
with a sharp trailing edge had the smallest wake, which was expected because this
case did not have the large separation and vortex shedding of the other two cases.

Further down in the mixing section, all of the solutions are in reasonable agreement
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with the data. The baseline case and the solution obtained with mixing section
walls removed are in particularly close agreement with each other by the end of the

mixing duct.

All of the streamwise turbulence intensities are lower in peak magnitude than
indicated by the Goebel-Dutton data at » = 50 min. Further downstream in the
duct, the magnitudes increase to be more in line with the data. and the two
solutions obtained with the standard height for the splitter base exhibit a double
peak. As discussed in the section 5.3, this is believed to due to the influence of the
upstream organized vortical behavior of the initial mixing laver. In figure 5.22. the
solution obtained with a sharp trailing edge demonstrates significantly lower peak
magnitudes in ¢, at » = 30 mm and « = 100 mm. Further downstream in duct.
all of the solutions indicate similar profiles of v,,,;. and all have significantly larger
peaks than the experimental data. Liou et al. [59] and Inoue [45] also reported large
overpredictions in the streamwise and transverse turbulence intensities for two
dimensional mixing laver computations and attributed the discrepancies to the lack

of a third computational direction.

The results of this section indicate that the geometry of the splitter plate trailing
edge has a significant effect on the initial shear layer formation. The unsteady
vortex shedding is fundamental to the formulation of the hybrid RANS-LES method
because although the mean flow properties of the incoming boundary layers are
provided by the RANS regions, no turbulent oscillations are imposed that may
initiate the instability of the mixing layver. Investigations of the splitter base region

conducted by Clemens and Mungal [21] for an experimental configuration very
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similar to that considered here also indicated an initial vortex structure that
transitions into turbulence. This transition. however, occurred significantly closer to
the splitter plate trailing edge in the experiments than indicated by these two
dimensional calculations. The three dimensional calculations discussed in the next

chapter investigate this transition position further.

(‘omparing the solution obtained with the standard placement of the mixing section
walls to the solution obtained with the walls moved vertically to prevent any Mach
wave reflection back onto the shear layer. some mino’r differences were noted.
However, there was little effect on the transition location from the organized vortex
structure to turbulence. Because the Mach wave behavior observed in the baseline
calculations was very similar to that indicated by the Schlieren photographs taken

from the experiment, the standard placement of the mixing section walls will be

investigated for the three dimensional calculations discussed in chapter 6.
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{a} baseline gnd

(b) modified grid with sharp trailing edge for the splitter

Figure 5.11: Comparison of computational grids using 800 axial points. near the
splitter plate trailing edge
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Figure 5.15: Computational grid for the 800 axial grid point case with the mixing
section walls removed (every fourth point shown in each direction)
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(b) Entire mixing section

Figure 5.16: Instantaneous density contours for the 800 axial grid point case with ¢
sharp trailing edge for the splitter
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(a) Beginning of mixing section

{b) Entire mixing section

Figure 5.17: Instantaneous entropy contours for the 800 axial grid point case with a

sharp trailing edge for the splitter
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(b) Entire mixing section length only, entire vertical domain is not shown

Figure 5.18: Instantaneous density contours for the 800 axial grid point case with
mixing section walls removed
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(a) Beginning of mixing section

(b) Entire mixing section length only, entire vertical domain is not shown

Figure 5.19: Instantaneous entropy contours for the 800 axial grid point case with
mixing section walls removed
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Figure 5.20: Time-averaged axial velocity profiles for 2D hybrid calculations investi-

gating boundary condition effects
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Figure 5.20: Concluded.
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Figure 5.21: Profiles of w,,,s for 2D hybrid calculations investigating boundary con-
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CHAPTER 6

THREE DIMENSIONAL MIXING LAYER
CALCULATIONS

[nn the previous chapter. the two-dimensional calculations were used to construct the
initial computational model of the mixing layer and to examine preliminary effects
of grid resolution and boundary condition treatment. To correctly investigate the
capability of the hybrid method. however, LES calculations obtained in three spatial
directions with the use of a subgrid scale model are required. These calculations are
the focus of this chapter. The procedure used to extend the two-dimensional
computational model described previously in section 5.2 to three dimensions is
presented first in section 6.1. The results of three dimensional calculations obtained

with the hybrid RANS-LES method are presented in section 6.2.

6.1 Three Dimensional Computational Modeling

The grid topologies and boundary conditions used for the three dimensional
simulations were very similar to those used for the two-dimensional simulations
discussed in chapter 5. The three computational grids with 200. 400, and 300 axial
point grids described in chapter 5 were used to construct the three dimensional

grids used here. To add the third computational direction in each case, the two
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dimensional planar grid was copied to provide 11 points in the third (or =) direction.
As a result. a side view of the three dimensional grids is represented by figure 5.3,
The grid spacing in the z direction was uniform and set equal to the axial spacing at
the splitter trailing edge. or Az = Ar; = 0.10 mun. Because of the very small
number of grid points used in the = direction and the small physical space that is
represented, only very small wave components in this direction could be simulated.

and a periodic flow is assumed in this direction.

The periodic boundary condition used in the = direction allows waves passing
through one side of the = domain to enter the other side. Because the
Gottlieb-Turkel predictor corrector scheme uses a five point centered stencil in each
direction, points along each boundary and one point interior to each boundary must
be obtained when periodic boundary conditions are used. The solution vectors Q
shown for the RANS and LES equation sets in equations 3.8 and 3.14 respectively
are updated along the boundary corresponding to k = | in computational

coordinates (1., k) as:

Ql’.j.l = Qi,j.kmar—.’}

(6.1)
Qi.j,‘l = Qi.j,kmar—‘Z
Similarly, along the other extreme boundary. corresponding to k = kmax. the
solution vectors Q are updated using:
Qi.j.kma;z’—l = Qi,j.B
(6.2)

Qi,j,kmar = Qi,jA
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All of the other boundary conditions and the solution procedure are identical to
that used for the two dimensional mixing laver calculations discussed in chapter 5.
with the one exception being that the Smagorinsky subgrid scale model was used in
these three dimensional simulations. As discussed in section 5.2. no subgrid model

was used in the two dimensional mixing layer calculations.

The switch from the RANS regions to the LES region at the mixing plane
(corresponding to a vertical plane drawn through the trailing edge of the splitter
plate) is accomplished by changing the eddy viscosity used in the flow solver from
the Cebeci-Smith turbulence model to the Smagorinsky subgrid scale model. As a
result. the effect of the eddy viscosity changes from that of replacing all of the
turbulent stresses in the RANS regions to that of only replacing the subgrid stresses

in the LES regions.

6.2 Three Dimensional Simulations

The first three dimensional simulation was obtained using the computational grid
with 200 axial points. The Smagorinsky subgrid scale model used the coefficient
(', = 0.1 and the standard expression for the subgrid length scale indicated

previously in chapter 2 is repeated here:

wWl—

A= (AzAyAz) (6.3)

Figures 6.1 and 6.2 show instantaneous density and entropy contours at the middle
plane in the = direction for these initial three dimensional simulations. With the

very small domain in the = direction. the contours on all of the two-dimensional
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r — y planes are verv similar in appearance. The behavior of the flow just
downstream of the splitter trailing edge is very similar to that obtained for the two
dimensional calculations shown in figures 5.5 and 5.6. The lack of adequate axial
grid resolution results in a rapid dissipation of the initial vortex pattern. and is even
more rapid in the three dimensional case due to the dissipative nature of the
Smagorinsky subgrid scale model. Turther out in the mixing section. the three
dimensional calculations show no evidence of a secondary unsteadiness that was
evident in the two-dimensional calculations, which is also due to the dissipation of
the subgrid scale model. The shear laver appears to be effectively laminar
downstream of the initial vortex region. Because no turbulent behavior was

observed in the mixing section. no turbulent averaging was performed for this case.

The three-dimensional grid using 400 axial points was utilized next. with
substantially different flow development observed than that for the 200 axial point
grid. As a result. three computations were performed in which the Smagorinsky
constant and the subgrid model length scale were varied. The first two cases used
the standard length scale expression given in equation (6.3) and investigated the
two quoted extreme values for the Smagorinsky constant, ('; = 0.10 and 'y = 0.24.
The third case set (75 to 0.24 but used the modified length scale expression

previously shown in chapter 2. and repeated here:

(6.4)

For a computational grid with Az = Ay = Az, equations (6.3) and (6.4) will return

the same value for the Smagorinsky model length scale. The motivation for using
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the modified expression was for the case of significant grid stretching, as occurs in

both the axial and vertical directions away from the splitter plate trailing edge.

lustantaneous contours of density and entropy at the middle plane in the ¢ direction
are provided in figures 6.3 and 6.4 for the first case with the standard length scale
expression and (', = 0.10. These contours indicate a fundamentally different flow
structure than that observed for the two dimensional cases. In particular. the vortex
shedding is observed to disintegrate into a random turbulent pattern much closer to
the trailing edge. While the Schlieren photographs ta’ken in the Goebel-Dutton
experiments did not probe the flow details near the splitter plate trailing edge. such
details were examined by Clemens and Mungal [21] for a very similar experiment
configuration and flow operating conditions. The Schlieren image shown in figure
6.5 indicates an initial flow structure similar to that observed in the calculation with
an initial vortex shedding from the trailing edge of a splitter plate followed by a
transition into turbulence. The turbulent structure in the experiment is also
observed to be of primarily small scales, while the LES calculations, by definition.
only capture the large scale structures. While the length of the organized vortex
structure in the calculations does not exactly match that of the (lemens-Mungal
experiment. qualitatively the three dimensional calculations are in much closer
agreement than the previous two dimensional results. In addition. the splitter plate
thickness was 0.8 mm in the experiment of Clemens and Mungal. while that
modeled in the calculations was 0.5 mm. which may be responsible for the precise

differences between the experiment and calculations.
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The spreading of the turbulent shear Taver is observed to be greater in this three
dimensional case than in any of the two dimensional cases. This may be observed in
the instantaneous contours. A direct comparison of the density contours for the two
and three dimensional cases obtained with 400 axial points is provided in figure 6.6
near the splitter tip. This comparison clearly shows the very different flow structure
revealed by the three dimensional computations. Although the extent of the =
domain is very small compared to the height of the mixing section. and cannot
capture large structures in this direction. an unsteady mechanism in which
disturbances may develop in all three directions and result in the rapid transition to
turbulence is enabled by these three dimensional calculations. The two dimensional
calculations. by their very nature, do not allow for such three dimensional
disturbances to develop. These results verify that LES calculations must be run in

three dimensions in order to properly describe the initial turbulent flow structure.

Time series snapshots of density contours and entropy contours immediately
downstream of the splitter plate trailing edge are provided for this initial three
dimensional case with 400 axial points in appendix D. The breakdown of the
organized vortical structure originating from the splitter plate wake into a turbulent
structure is demonstrated in these time series. A mentioned previously, the
transitional behavior near the trailing edge of the splitter was not evident with the
two dimensional calculations. The frequency of the vortex shedding was the same
for the two and three dimensional cases. An analysis of this shedding frequency. also

provided in appendix D. shows that a Strouhal number calculated using the splitter
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base height and difference in velocities of the two streams is 0.225. whicliis very

close to the Strouhal nuniber range characteristic of flow past cylinders, 0.20 - 0.21.

Examining the other two solutions for the three dimensional approach with 400
axial grid points next, the instantaneons density and entropy contours for the case
using the standard length scale and ('; = 0.24 are provided in figures 6.7 and 6.8.
The same contours for the case using the modified length scale expression and

(', = 0.24 are shown in figures 6.9 and 6.10. Although the instantaneous contours
for these two cases and the initial 400 point case differ in exact structure in the
snapshots shown. overall the turbulent structures are qualitatively the same for the
three cases. In addition. the number of organized vortices before breakdown to
turbulence may be observed to differ for these three cases at the particular instants
in time shown. but in examining each of the solutions over development in time.

each of the solutions oscillated in having hetween 5 and 10 organized vortices.

The mean axial velocity profiles obtained from the three dimensional hybrid
RANS-LES calculations using 400 axial grid points in which the subgrid model
parameters were varied are compared to the Goebel-Dutton data in figure 6.11. A
comparison of the two turbulence intensities is made in figures 6.12 and 6.13
respectively. Examining the mean axial velocities first, all of the three dimensional
solutions exhibit a larger wake at * = 50 mm than that of the experiment. but
compared to the two dimensional solutions, the three dimensional wakes are
significantly smaller. This improvement is the result of the more turbulent behavior
for the three dimensional cases in the beginning of the mixing section. Further

downstream. the three dimensional solutions indicate reasonable agreement with the
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data. although all of the solutions appear to mix more rapidly than indicated by the

experimental data.

The profiles of w,,, in figure 6.12 generally indicate overpredictions {from the
caleulations. which corresponds to the wider axial velocity profiles in figure 6.11. At
r = 30 mm. a double peak in the calculated intensities is somewhat evident.
although the effect is much less pronounced for these three dimensional calculations
than for the two dimensional calculations in chapter 5. Further downstream. the
three dimensional solution obtained with the H]Odiﬁé(l length scale demonstrates
generally lower levels of u,,; than the other solutions. The modified length scale
expression results in larger values of the subgrid model eddy viscosity. which in turn
damps more of the small scale unsteadiness. Although increasing the Smagorinsky
constant ('y also tends to result in more damping. the effect of changing €', from
0.10 to 0.24 does not seem to have as large an effect as the subgrid scale length

expression.

The computed profiles of 1,5, shown in figure 6.13 are also overpredicted relative to
the data. with the lowest levels of v,,,, predicted with the modified length scale and
(s = 0.24. As mentioned previously, Liou et al. [39] and Inoue [45] also reported
large overpredictions in the turbulence intensities for planar mixing layers. With the
confinement of the current three dimensional calculations to a very small domain in
the = direction, the inability to calculate large scale fluctuations in this direction
may be responsible for the overpredictions of #,.,; and t,,,. In addition, the

Schlieren photographs taken in the Goebel-Dutton experiment indicated a very fine
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turbulent structure contained within the larger scale development. while the LES

calculations inherently can resolve only the larger turbulent scales.

A final three dimensional case was run using 800 axial points in the mixing section.
The modified length scale expression and 'y = 0.24 was used for the subgrid model.
The finer grid nsed here reduced the permissible time step by nearly a factor of two
relative to the 400 axial point cases. This reduced time step and doubling the
number of grid points in the mixing section would require a factor of four increase in
the computer ('PU time requirements to run this case to completion, relative to the
cases with 400 axial points. Considering that each of the 400 axial point cases
required 500 CPU hours on a Cray ("90 computer, 2000 Cray (*90 hours would be
required to complete the case with 800 axial grid points. As a result. this last three
dimensional case was run long enough to allow the flow to fully develop in the
mixing section, but not long enough to enable time averaging of the turbulent

statistics.

In contrast to the grid refinement studies performed for the two dimensional cases,
the large scale turbulent development did not change significantly when increasing
the number of axial points in the three dimensional computations from 400 to 800.
The instantaneous density and entropy contours in figures 6.14 and 6.15 indicate a
large scale turbulent structure which closely resembles those of the 400 axial grid
point case. In particular, the breakdown of the organized vortex structure to
turbulence is verv similar to those previously shown for the 400 axial grid point
case. Within the large scale structures, more fine scale turbulence is evident in the

800 axial point case. This behavior corresponds directly with the philosophy of LES
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in that as the computational grid is refined. smaller structures are able to be
resolved and the role of the subgrid scale model is reduced. In the idealized limit of

an infinitely fine grid. a direct numerical simulation 1s obtained.
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(b) Entire mixing section

Figure 6.1: Instantaneous density contours for the 200 axial grid point case (3D)
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(a) Beginning of mixing section

(b) Entire mixing section

Figure 6.2: [ustantaneous entropy contours for the 200 axial grid point case (3D)
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{b) Entire mixing section

Figure 6.3: Instantaneous density contours for the 400 axial point case using the
standard turbulent length scale and 'y = 0.10
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{a) Beginning of mixing section

{b) Entire mixing section

Figure 6.1: Instantaneous entropy contours for the 400 axial point case using the
standard turbulent length scale and (', = 0.10
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Figure 6.5: Schlieren photograph of the Clemens-Mungal experiment near the trail-
ing edge of the splitter plate, showing vortex shedding followed by a transition to
turbulence (from Ref. 21. used with permission)
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{b) 3D case with the standard turbulent length scale and (', = 0.10

Figure 6.6: Comparison of density contours near splitter trailing edge
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{b) Entire mixing section

Figure 6.7: Instantancous density contours for the 400 axial point case using the
standard turbulent length scale and 'y = 0.24
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{a) Beginning of mixing section

(b) Entire mixing section

Figure 6.3: Instantaneous entropy contours for the 400 axial point case using the
standard turbulent length scale and 'y = 0.24
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(a) Beginning of mixing section

{b)} Entire mixing section

Figure 6.9: Instantaneous density contours for the 400 axial point case using the
modified turbulent length scale and €', = 0.24
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(a) Beginning of mixing section

(b) Entire mixing section

Figure 6.10: Instantaneous entropy contours for the 400 axial point case using the
modified turbulent length scale and 'y = 0.24
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Figure 6.11: Time-averaged axial velocity profiles for 3D hybrid calculations
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Figure 6.11: Concluded.
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Figure 6.12: Profiles of u,.,, for 3D hybrid calculations
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Figure 6.13: Profiles of v,,,; for 3D hybrid calculations
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(a) Beginning of mixing section

{b) Entire mixing section

Figure 6.14: Instantaneous density contours for the 800 axial point case using the
modified turbulent length scale and €'y = 0.24
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(a) Beginning of mixing section

(b) Entire mixing section

Figure 6.15: Instantaneous entropy contours for the 800 axial point case using the
modified turbulent length scale and (", = 0.24
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

The work described in this dissertation represents the initial efforts to develop and
evaluate a hvbrid RANS-LES method for compressible mixing layver simulations.
Such mixing lavers dominate the flows in exhaust systems of commercial and
military aircraft in current use and also those of hypersonic vehicles under
development for future space transportation use. The hybrid method uses a RANS
approach to provide the mean flow characteristics of the wall boundary layers
entering the mixing layer and an LES approach for the mixing region. Although the
RANS approach does not provide any unsteady turbulent information to the LES
region. the mean flow boundary laver characteristics are provided. The hybrid
method was developed for the analysis of nozzle and mixing layer configurations in
which a dominant structural feature, such as the base region of a nozzle or splitter
plate separating the upstream flows. will provide the dominant unsteady mechanism

to drive the development of turbulence in the mixing layer.

The hybrid method development was initiated by deriving a set of
Revnolds-averaged Navier-Stokes (RANS) equations using density weighting in the

averaging process, and a set of spatially-filtered large eddy simulation (LES)
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equations which also used density (Favre) weighting. The resulting similar form of
the RANS and LES equation sets enabled both to be solved with a single solution
scheme. In this dissertation. the Gottlieb-Turkel predictor-corrector scheme was
emploved. A transformation of the equations to generalized coordinates enabled
flow calculations on stretched. non-Cartesian grids. The RANS equations were
closed using the Cebeci-Smith algebraic turbulence model. with the option to

emplov the wall-function technique of Ota and Goldberg. The LES equations were

closed using the Smagorinsky subgrid scale model.

The (‘ebeci-Smith turbulence model. despite its relatively simple forn. was
demonstrated to provide accurate calculations of boundary laver flows that are free
of adverse pressure gradients or separation regions. Further. the use of the
(‘ebeci-Smith model in conjunction with the Ota-Goldberg wall function enabled
calculations of supersonic wall boundary layers to nearly the same accuracy as that
of the standard approach of integrating the Cebeci-Smith model through the viscous
sublayer. while enabling a significantly larger vertical grid spacing near the wall. As
a result, the wall function approach enabled a continuous computational grid to be
used from the RANS to the LES regions. and the method thereby avoided the use of
discontinuous grid zones that would have otherwise required an interpolation
scheme between the two regions. In addition, the origins of the Cebeci-Smith RANS
turbulence model and the Smagorinsky LES subgrid scale model are both in mixing
length theory. and this similar form of the two models assisted in code

implementation. As a result. the use of a more sophisticated turbulence model to
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close the RANS equations was found to be unnecessary, provided the RANS regions

are restricted to attached. zero pressure gradient wall boundary layer regions.

While true LES calculations require computations in three spatial directions. two
dimensional simulations of a benchmark mixing laver experiment were considered
first to address the effects of axial grid resolution and boundary conditions. The
parametric study of axial grid resolution indicated more realistic turbulent
development with increasing axial grid density. For the coarsest grid examined.
there was almost no evidence of turbulent flow (1("\"(’1(;})I1191]t. For all of the cases
examined. a vortex shedding was found to originate from the base region of a
splitter plate separating the upstream wall bounded regions. For the finest two
dimensional grid examined. the unsteady vortex pattern eventually transitioned to a
turbulent structure. The location of this transition, however. was much further

downstream than observed in the experiments.

Additional two dimensional calculations were obtained to investigate the boundary
treatment of the splitter plate trailing edge and of the mixing section walls.
Calculations obtained for a case in which the finite thickness splitter base was
changed to a sharp tip indicated that the vortex shedding was removed. but the
development of turbulence downstream occurred at nearly the same position as for
the case with vortex shedding induced by the splitter base geometry. Computations
were also obtained for a modified geometry in which the mixing section walls were
effectively removed, to determine if Mach waves reflecting off these walls in the

baseline calculations affected the turbulent mixing layer development. These
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calculations indicated that removing the mixing section walls did not change the

fundamental structure of the flow relative to the haseline case.

Three dimensional calculations were obtained next for grids constructed by copyving
the two dimensional planar grids to locations in the third computational direction.
normal to both the streamwise and transverse directions. Only a small domain was
modeled in this third direction, and periodic boundary conditions were emploved
along the extreme boundaries. For the coarse three dimensional grid. again no
turbulent flow development was observed. For the intermediate grid. the vortex
shedding found previously in the two dimensional simulations was also observed in
the three dimensional calculations. However. the organized vortical structure
rapidly disintegrated into a significantly more realistic turbulent flow structure.
This rapid transition to turbulent flow was nearly identical to that found in
experimental investigations of a similar mixing layer configuration. Although the
extent of the third dimension in these calculations was very small. an unsteady
mechanism by which disturbances could develop in all three directions and result in
a rapid transition to turbulent flow was enabled by the three dimensional
calculations. In contrast. a two dimensional approach. by definition, does not allow
for such three dimensional disturbances to develop. The results of these calculations

verified that LES simulations must be performed in three dimensions.

Parametric studies of the subgrid model length scale and the Smagorinsky model
coefficient were examined with this intermediate grid, but no significant differences
were noted. Clomparisons of time-averaged axial velocities and turbulence intensities

from the calculations to experimental data indicated reasonable agreement, with the
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solutions indicating somewhat higher levels of turbulent mixing. A major source of
discrepancy between the caleulations and experiment is believed to be the lack of
adequate grid resolution to resolve the small turbulent scales contained within the
larger turbulent structures. Another source of discrepancy was the very small

domain used in the third computational direction.

Despite these limitations. the three dimensional calculations demonstrated the
success of the hvbrid method to capture the dominant characteristics of the mixing
laver. and in particular. the rapid transition of the organized vortex structure to a
turbulent mixing layer structure. It is expected that improvements in the fidelity of
the solution scheme. and more importantly. improvements in computing power, will

enable better predictions of the turbulent statistics, as will be discussed briefly.

A final three dimensional calculation was investigated using a computational grid
constructed from the most densely packed two dimensional grid. Because a
prohibitively long run time would be required to complete this solution for turbulent
statistics purposes. the calculations were run only long enough to allow the flow to
fully develop in the mixing section. The large scale turbulent structures evident for
this case were very similar to those for the intermediate three dimensional cases.
More resolution of the finer turbulent scales contained with the larger structures
was observed for the fine grid case, which is in line with the philosophy of LES to

resolve finer scales as the grid density is increased.

The effects of improved subgrid scale models on the quality of LES simulations is an

issue of considerable debate. Research into advanced subgrid scale models has
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vielded improvements in the accuracy of LES simulations obtained for low Reyvnolds
number wall boundary layer flows. However. authors such as Spalart [96] and
Fureby and Grinstein [29] offer the opinion that subgrid scale refinement will offer
ouly small improvements for large eddy simulations of flows away from boundaries
and without chemical reactions. Both authors further suggest that it may even be
feasible to perform an LES simulation without an explicit subgrid scale model.
provided the numerical scheme is sufficient to prevent unresolved wavenumbers from
contaminating the solution aud that the simulation resolves turbulent scales in the

inertial subrange.

Improvements to the numerical method may enable more accurate resolution of the
smaller turbulent scales. which appeared to be the greatest limitation of the current
method in simulations of the compressible mixing layer experiment. The class of
numerical methods known as compact schemes. such as those presented by Lele [55].
have been shown to provide higher spatial accuracy and improved capability to
resolve higher wave numbers for a given grid size than is possible using

MacCormack-type predictor-corrector schemes such as the Gottlieb-Turkel method.

The continuing advances in computing speed and computer memory will also enable
calculations of higher fidelity. and eventually to the limit of direct numerical
simulations (DNS) where all turbulent scales of importance are resolved. Estimates
of Spalart [96]. however. suggest that improvements of several orders of magnitude
in computer speed and memory will be required to perform full LES or DNS

calculations of realistic engineering configurations. His estimates project full LES
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simulations requiring 10117 grid points to be possible in the vear 2045. and DNS

simulations requiring 101 grid points to he possible in the year 2080.

In the interim. RANS and hybrid RANS-LES methods will cach be the most
appropriate computational tool for certain classes of turbulent flows. For wall
bounded turbulent flows without massive separation regions. RANS methods will
likelv be the most appropriate choice for some time. Hybrid methods. such as that
developed in this work, will very possibly become the appropriate tool for flows with
significant mixing regions or large scale separation zones. As a result. research to
further develop both RANS and hybrid RANS-LES methods will be important to

improve the capability to simulate complex turbulent flows.
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APPENDIX A

ACCURACY ANALYSIS OF THE GOTTLIEB-TURKEL
SCHEME

In this appendix. the temporal and spatial accuracy of the Gottlieh-Turkel scheme
are investigated.

The Gottlieb-Turkel scheme is illustrated using a one dimensional problem that is a
model for the Navier-Stokes equations written in vector form. This model problem

1s given as:

o 0f _

A ALl
at  Ox (A1)
The predictor step is:
At _
(I?ZQ?—E(—‘fi-FSfi-l—fz'-z) (A.2)
The corrector step is:
]' n ] At (= = o [ * ¢
P = 5 |4 T4 — A (7f7 =8fh + fiva) (A.3)
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The time step of the Gottlieb-Turkel predictor-corrector scheme, AL is related to the
erid spacing. Ar. and the propagation speed. A. through the ('I'L

(Courant-Friedrichs-Lewy) number:

AI‘—(FL—— (A

Nelson [T1] investigated the spatial and temporal accuracy of several
predictor-corrector schemes, including the Gottlieb-Turkel scheme. investigated here
using a linearization of the model problem shown in equation A.1. This procedure
will also be used here. The linearization of equation (A.1) begins by assuming a

constant propagation speed. A:

[ =A4q (A.5)

The equation for the predictor step (A.2) can be substituted into the equation for

the corrector (A.3). which results in

At

19Ar (Tf7 =8f + 1)) (A.6)

n n At n S f )
q! o =q' — R (=7fi +8fis1 — fiy2) —

The terms in this equation having a superscript (*). which represent the fluxes f
after the predictor update. can be rewritten using f* = A¢*. Equation (A.6) then

becomes

N At A At -
at =q - 2Ar (=7fi +8fis1 — fir2) — —E—A_( 47 — 8q7_y + q7_3) (A7)
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The ¢* terms are replaced using the predictor expression (A.2). This enables the
complete predictor-corrector update to be expressed as function of the original

values of ¢ and f:

n+1 7 A, ot _j_
12

. Al
ATV (=7 fi +8fip1 — fiv2) — ~ (Tqi — Sqic1 + qi2) +

A Ay X . , . . . . .
= (E) [T(=7f + 8fip1 — fige) =S(=Tficy +8fi = fix1) + (=7 fica+3fics = fi)]

(A.8)
Using [ = Aq and combining terms results in:
At . ,
({l”-H =gq; — l)A (—fis2 +8fp1 = 8ficn + fiz2)
(A.9)

A 7 Al | »
7 <Ar> (=T figa +64fipy — VA4S, +64fi0y — Tfi2)

Next. the g7 term is moved to the left side of the equation. and the g and f terms

are expressed in terms of Taylor series expansions about the points ¢" and f;,

respectively:
dg  AtPd ¢ AP Pq 1 ( of Ar’r‘ ()Bf '
b g4, = 1 _— {19Ar2L — 48
NG gt gt T (123, ~ W g g - 0,
A A L0 f Nis . o
= A6\ —— — A —
7 (_\I) (3@4« grt R g )
Reorganizing equation (A.10) and dividing all of the terms by At results in:
Jq Lo af At@ A_tz@ N At f  ANAL2OS N AAL 9 f
ot dr 2 ot 6 ot3 30 dx® 13 Oat 2 Ja?
(A.11)

Finally, the first and fifth terms on the right side of equation (A.11) are removed by

taking the second derivative of f = Ag. and then recognizing that
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Mg AN

2t 2 dat

The resulting expression is:

Q(_I _(ﬁ B AZPg  ANMAN2OY A )OS

a e 6 o R 9t T30 90 T

(A.13)

The left side of equation (A.13) is the original model problem given in equation
(A.1). As a result. the right side of equation (A.13) is the truncation error resulting
from the discretization of the model equation using the Gottlieh-Turkel scheme.
The first term on the right side of equation (A.13) indicates that temporal accuracy
of the scheme is second order. The second truncation error term involves both Af
and Ar?, and we can use relation between the time step, grid size and C'FL number

shown in equation (A.4) to rewrite this equation (A.13) as:

g Of _ APPq L ACOY Ao

== , AL
ot Tar T 6 o IS 901 7 30 o0 (A14)

The Gottlieb-Turkel explicit scheme is only stable for ("F'L values smaller than one.
For ("F L values on the order of one, the spatial accuracy of the scheme is third
order. In practice, the maximum C'F' L number is usually set to a value of 0.5 or
less. For stretched grids, the limiting time step is proportional to the smallest grid
spacing and then the effective local ("F'L number is much smaller in regions of the
computational domain where the grid spacing is larger. This can be observed by
considering equation (A.4) for the case of variable grid spacing. Az, but a constant

time step Af. As a result. the truncation error term in equation (A.14) becomes
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insignificant away from the region of tightest grid spacing. For such regions. the
next truncation error term indicates fourth order spatial accuracy. In conclusion.
the Gottlieb-Turkel scheme is strictly second order accurate in time and third order
accurate in space. but in the case of highly stretched grids. the spatial accuracy is

effectively fourth order.
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APPENDIX B

TRANSFORMATION METRICS

The metric terms that are required to transform the RANS and LES equations from
physical space to computational space are derived in this appendix. The procedure

used in this work is the same as that presented in reference [12].

The equations derived in chapter 2 are transformed from physical space (r.y,z) to

computational space (£.7.() using the relations:

£=E&(r.y.2)
n=mnlr,y.z) (B.1)
¢ =¢lr.y,2)

The chain rule of partial differentiation allows the cartesian derivatives to be

expressed as:

J ¢ 0 N 0 Lo J
- LT 1, — -
dx o h o . ¢
15, 9, 0 J
— r . - g e B-:Z
dlj Sydé- + 7Iy0n Qudc ( )
0 _ 0, 0, 0
9: o T Tay A
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In equation (B.2). the terms &. 1, ¢\ E,.1,. C,- €. 1. and (. are the metrics of the
transformation. To compute these metric terms. the first step is to compute the
derivatives oo, e Yeo Yoe Yoo Ten 2. and oo The stepsizes of these derivatives are
equal in computational space and can be obtained using finite difference
expressions. To be consistent with the Gottheb-Turkel scheme. which effectively has
fourth order spatial accuracy and uses a five point stencil, these spatial derivatives
are also calculated with a five point. fourth order accurate finite difference method.

Derivatives in x:

L Y . 1". LI
r,_; — D =1 + da J+1 — 42

e =-
) 12
Lpoy — BT pe1 + STppy — pas )
" = k=2 = DTk~ + Okt k+2 (B.3)
12
; _.I'{_g — 8.1'[—] + 8-1’[+1 — L2
T 12
Derivatives in yv:
Y2 = SY—1 + 8y — Y42
Ye = ls)
k-2 — BYk—1 + SYkt1 — Yht2 oy
Yy, = o (B.4)
o Yi—2 = Syi-1 + 8y — Yis2
y( - l.)

Derivatives in z:
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e 12

pey — Szpoy F SThgr — Tk .
LTk 1 +1 + (B.5)
i 12

oz = 8z + 85— Sige
e 12

For grid points that are located at a boundary. a one sided fourth order differenced
expression is used. and at grid points one point off of a boundary, a skewed fourth
order difference expression is used. Both expressions are obtained in the same
manner as the central differenced expressions in equations (B.3 - B.5) through use of
the appropriate Taylor’s series expansions. As an example. the x, term at a

boundary corresponding to (j = 1) is:

981 ARy — 36040 4 167,43 — 32
o= dar; + A8r 4 )11.)]+z + 16243 itd (B.6)

<

Similarly, the @, term at (j = 2) 1s

3y — 100, + 180,40 — 6245 + 1
v = Lyt I_,—+— l.l)J+z .I‘J+.3-{'- rj43 (BT)

Once all of these spatial derivatives are obtained. the Jacobian of the

transformation. .J, is calculated:

1
T (Y2 — Yez,) — T (Yese — Yeze) T (Yesn — Yn=e)

—
=
o

J =
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Using this expression for the Jacobian. the metric terms are:

NASA/TM—2001-210811

KC: :'/(yn:i

A
Il
<
*
RS
£y

n. =J{ry,

194

- y(:n)

- .I',,;()

=)

— Ye=c)

— L)

— Teyc)

- yn:f)

—&resy,)

— Ty )

(B.9)



APPENDIX C

TURBULENT TIME AVERAGING PROCEDURE

The procedure used to obtain the time-averaged axial velocities and the two
turbulent intensities for the LES regions is detailed in this appendix.

As each of the two dimensional calculations discussed in chapter 5 and the three
dimensional calculations discussed in chapter 6 progressed in time. quantities were
accumulated from the instantaneous velocity fields at each time step. These
quantities were then used to calculate the mean axial velocity @ and the two

turbulence intensities w,,,s and t,ms. The mean velocity field is calculated using:

| T
U:?[) udt (C.1)

While the two turbulence intensities w,ms and v,,,, are obtained from:

bo =

) _ i_ r AY ‘ 19
Upms = [T/o (u') dt] (C.2)

and

1

1 (T, .2
. — V2 (It O
Urms [T[) (l)d] (C.3)
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The two quantities «” and v are not known until @ is determined. which in turn
requires completion of the time averaging period T. As a result. an alternative to
equations {((.2) and ((".3) is used to find the turbulence intensities w,,,, and .

Using u = u 4+ « and ¢ =T+ v'. equations {(.2) and (.3} can be rewritten as:
g [

[N

1 4T, .
Upps = [T‘; / usdl — ﬁz] (C'.4)
I Jo

and

v —

-[i/T‘Z[{ _2] (C'5)
Crms = |75 | vidt — 1 5

For all of the two and three dimensional mixing laver simulations, a constant time

step was used so that equations ((.1). ((".4). and ((".5) can be obtained through a
straightforward summation procedure. This procedure consists of storing

. g '2 2 L . . -
summations of u. v, u*. and v* at each grid point from each time step. Equations

(C.1). (C.1). and (C.5) then can be replaced with equations (('.6), ((".%), and (('.9).

1 N
U= Fﬂ;u ((‘6)

where NV is the total number of time steps, corresponding to the total time interval

T, which are related through the time step size Af:

T = NA{ (C.7)
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1
P, )
Crims — [T Z f'z “FJ} ((‘())

=1
In all of the mixing laver simulations. the initial iterations used to start the flow
development were run using a C'F'L number of 0.3 with the Gottlieb-Turkel scheme.
As the unsteady flow developed. however. the minimum time step fluctuated in the
flow. so that the actual time step given by equation 3.31 also fluctuated. even with
the use of a constant ('F'L number. The smallest actual time step observed during
these iterations needed to allow the flow to fully develop was monitored, and then
this fixed time step was imposed for the iterations in which the turbulent statistics

were accumulated.

Fach of the two-dimensional calculations were run for approximately three average
flow-through periods. once the initial flowfield in the entire domain was established.
This number of flow-through periods was sufficient to allow the mean velocity and
turbulence statistics to reach converged levels. Due to the larger turbulent
unsteadiness that was found in the three dimensional calculations. these calculations
were run for approximately four average flow-through periods. once the flowfield in

the entire computational domain was fully developed.
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APPENDIX D

TIME SERIES OF INITIAL MIXING LAYER
DEVELOPMENT

In this appendix. a time series of density and entropy contours are provided to
illustrate the initial mixing layver development for a three dimensional hybrid
method calculation of the Goebel-Dutton experiment. The computation discussed
here used the standard length scale expression and 'y = 0.1 with the Smagorinsky
subgrid scale model. As discussed in chapter 5. the density contours provide a close
analogy to the Schlieren photographic technique used in experiments to illustrate
mixing laver development. In addition. entropy contours enable emphasis to be
placed on the shear layer alone. and do not show the Mach wave contours between
the shear layer and the mixing section walls that are evident in the density contours.
These entropy contours are generated using the entropy function of the PLOT3D

program. In reference [109] the entropy function is defined as:

S =5 =Culn ( > + Cpln (prﬁf) (D.1)

ref P
Figures D.1 and D.2 show sixteen snapshots of the density and entropy contours,

respectively. Each successive snapshot represents a march forward in time of
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3.70107% seconds, which corresponds to 250 time steps obtained with the
Gottlieb-Turkel predictor-corrector scheme. This time interval was chosen such that
in every other snapshot. a new vortex is shed from the trailing edge of the splitter.
The initial organized vortex pattern. which verv similar to the Karman vortex street
characteristic of the separated flow past a cvlinder. extends approximately the
length of six vortices before the mixing laver disintegrates into a more turbulent

pattern.

With the shedding of new vortices occurring approximately every 500 time steps
with the numerical scheme. or 7.40r107% seconds, a Strouhal number may he
calculated for further analogy with the separated flow past a cvlinder. where in this

case of the separated flow past the splitter plate:
fH

St= 1 D.2
AU D2

Using the splitter plate base height of 0.5 mm and the difference in velocities of the
two incoming streams equal to 300 rn/s. the calculated Strouhal number is 0.225.
which is very close to the Strouhal numbers found for flow past cylinders [54.74] of

0.20 - 0.21.
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Figure D.1: Time series of density contours for the 3D hybrid calculation using the
standard length scale expression and 'y = 0.10
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Figure D.1: Continued
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Figure D.1: Continued
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Figure D.1: Concluded
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Figure D.2: Time series of entropy contours for the 3D hybrid calculation using the
standard length scale expression and (', = 0.10
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Figure D.2: Continued
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() ¢ =10

()t =12

Figure D.2: Continued
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(m)t =13

(n) t =14

(p)t=16

Figure D.2: Concluded
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