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A Hybrid Numerical Method for

Turbulent Mixing Layers

Abstract

bV

NICttOLAS 3A('()B GE()R(;IADIS

A hybrid method has been developed for simulations of conlpressible turbulenl

mixing lavers. Such mixing layers dominate the flows in exhaust systems of modern

day aircraft and also those of hypersonic vehicles currently under developmenl. The

method developed here is intended for configurations in which a dominant

structural feature provides an unsteady inechanism to drive the turbulent

development in the mixing layer.

The hybrid method uses a Reynolds-averaged Navier-Stokes (tlANS) procedure to

calculate wall bounded regions entering a mixing section, and a Large Eddy

Simulation (LES) procedure to calculate the mixing dominated regions. A

numerical technique was developed t.o enat)le the use of the hybrid RANS-LES

method on stretched, non-( :artesian grids. Closure for the tlANS equations was

obtained using the Cebeci-Smith algebraic turbulence model in conjunction with the

wall-fimclion approach of Ota and Goldberg. The wall-function approach enabled a

NASA/TM----2001-210811 xvii



conlinuouscomputational _rid from the I{:\N,% regions to the LE,'; region. The IA'2%

equal ioIls wet(' ('l()se_.l usiIlg lhe Slllagoriilsl,:v stil)gl'i(l scale model.

The hybrid I{:\N.S-LES method is applied to a l_enclmlark compressible mixing laver

exl_erimen). Preliminary two dimensional calculations arc used lo invest,igate the

effects of axial grid density and boundary conditions. Vortex shedding from the base

region of a splitte1' plate sel)arating the ut)stream flows was ol)served 1o evenluallv

transition lo turbulence. The location of the transilioIi, however, was mucll further

downstream than indicaled by experiments.

Actual LES calculations, performed in throe spatial directions, also indicated vortex

shedding, but the transition to turbulence was found to occur much closer to the

beginning of the mixing section, which is in agreement with experimental

observations. These calculations demonstrated thai LES simulations musl be

performed in three dimensions. Comparisons of time-averaged axial velocities and

turbulence intensities indicated reasonable agreement with experimenlal data.
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CHAPTER 1

INTRODUCTION

Tile use of computational fluid dvna, mics ((It:I)) to assist ill tile analysis and design

of aerospace vehicles and their conlponents has sul)stantial]v increased in recent

years. For analyzing one particular class of flows, that of aircraft engine exhaust

nozzles. Reynolds-averaged Navier-Slokes (RANS) codes have l)een used extensively

by goverim_ent orgall_izat, ions (i.e. NASA) and aerosl)ace companies. Exhaust

nozzles being developed for modern day subsonic conlmercial aircraft typically have

multiple streams with a core flow and one or more bypass st, reams which mix with

the high energy core flow before exiting the nozzle to lower jet noise while

maintaining high thrust levels. Similarly in NASA's High-Speed Research program,

the engine exhaust systems for the proposed supersonic transport, were designed to

be mixer-ejector nozzles, which entrain secondary air into the exhaust nozzle to mix

with the core engine stream, again with the goal of simultaneously lowering jet noise

and maintaining sufficient thrust, {91]. Propulsion svstems currently under

development for use on hypersonic and reusable space launch vehicles, such as the

Turbine-Based Combined-Cycle (TBCC) and Rocket-Based Combined-Cycle

(1RBCC) concepts also employ mixer-ejector ducts. The TBCC concept [30,104]
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uses_ Jnixel'-ejeclorlo inlegrate a tmbh_e engine with a ramjcl into a propulsion

svslelll wi|h a COllllllOll nozzle, while lhe I{B(:(' collcepl [28. 101. 10:}] illlegrale.'.-: a

rockel with a ranl.jcl, again with a comulo1_ nozzle.

The ttows in lhesc nozzle svst.ems all have compressible lurbulent 1nixing as the

dominanl iIow characterislic. RANS codes used by research and developmenl

engineers to analyze lhese nozzles have employed lurbulence models to replace lhe

utlsteadv tutq)ulenl lnolioll with an effective eddy viscosilv. I'Iffortunatelv. no

l.tu't)ulence model has been developed to dale which is able to accuralelv represent

the turl)ulcnt, molion for such nozzle flows. References /5] and [32] show thal the

"'state of lhe art" turbulence models available in production-use llA,XS codes have

major deficiencies in predicting turbulent mixing in nozzle and jet flows involving

compressibility, high temperatures, and three-dinlensionalitv.

The known limitations of RANS techniques to calculate complex turbulent flows.

coupled with continually increasing comput, ing power, have led to interest in more

sophisticated calculation techniques such as direct, numerical simulation (DNS) and

large eddy simulatioll (LES). DNS is currently limited by computer hardware to

very simple flows at low Reynolds numbers, and LES, which directly solves for the

large turbulent scales and limits empirical modeling to the smallest scales, is

becoming practical for more complex flows at higher Reynolds numbers. Birch [10]

and Bradshaw [14] suggest that LES techniques offer the best, prospects for

improving the capability to calculate turbulent flows, particularly for flow regions

not including wall boundary layers.

NASA/TM--2001-210811 2



As a resuh, an LES-basedte('hniqueis an a.ttractiveoption for calculating the

mixing dominated regions of nozzle flows. However, applying such an LES technique

simultaneously to the wall bounded regions lhat. enter the mixing region (which are

an important part of multi-stream nozzles that should be calculated accurately) will

not be practical in the near future. This is because computational resources far

greater than those available today would be required to capture the wide range of

turbulent time and length scales thai are hnportan! in such a problem. These

turbulent scales range from very small eddies in the wall boundary layers to very

large eddies in the developing nlixing laver.

While RANS-ba.sed methods have major deficiencies in predicting compressible

mixing layers and inherently are not formulaled for calculation of unsteady

turbulent flows, they have been shown to predict the inean flow behavior of wall

l)ounded regions quite well. particularly in |he absence of adverse pressure

gradients. As a result, it. would be desirable to combine a RANS-based technique for

the wall boundary layers upstream of the mixing region with an LgS-based

technique for the downstream unsteady, turbulent, mixing region. The development

of such a hybrid RANS/LES approach is the subject of this work.

In the rest. of this chapter, a survey of methods currently used for the computational

modeling of nozzle flows dominated by compressible turbulent mixing and new

techniques under development are presented. First, RANS methods are discussed in

section 1.1 with emphasis placed on turbulence modeling, which is most fi'equently

considered the limiting factor of such CFD simulations. Next, a discussion of LES

techniques, as applied to nozzle and jet flow fields, is presented in section 1.2.

NASA/TM--2001-210811 3



Section 1.3discusseshybrid methods,which haverecently been1)rol)osedfor t]ows

in which wall boundary laver regionsmay be adequatelycalcuJa(edwith a I{:\NS

method,while UllSleadvregionswith largescalerecirculationsarecalculated witlJ an

I,ES method. :\n overviewof the hybrid method developedin (his work is presented

in section 1.4. Finally. an out.lineof this dissertation is provided in section 1.5.

1.1 RANS Methods

The RANS codes used to simulate the nozzle flows discussed at the beginning of

this chapter are largely general-purpose flow solvers, capable of t_andling a variety of

turbulent flows extending beyond only nozzle and jet problems. State-of-the-art

turbulence models, such as 1Reynolds-stress closures, have found their way in(o codes

intended for basic research and simple flow problems, but the general-purpose codes

used for nozzle simulations and other realistic configurations usually employ

computationally cheaper eddy viscosity models. Eddy viscosity models use the

Boussinesq apl)roximation to calculate the Reynolds stress as the product of a.n

eddy viscosity and the rate-of-s(rain tensor. These models vary in complexity' from

algebraic (also (ermed zero-equation) formulations to more complex formulations

which solve additional transport equations (normally one or two partial ditferen(ial

equations).

Algebraic models typically use a tbrln of Prandtl's mixing length hypolhesis to

calculate the eddy (or turbulent) viscosity, but are usually optimized for a single

flow and are not accurate for a wide range of flows. One of the first widely used

algebraic models was developed by (:ebeci and Smith [18, 19]. Another widely used

NASA/TM--2001-210811 4



algebraicmodel is that due to Baldwin and Lomax [4]. Both the ('el)eci-Smilh and

Baldwin-Lomax models are formulated only for the calculation of wall boundary

layers and have been used successflllly for calculations of flows wilhoul adverse

pressure gradients or separation regions.

One-equation models offer, to some degree, more generality than algebraic models.

because they solve for a quantity, such as the turbulent kinetic energy o1' the

turbulent viscosity. However. they frequently have the limitation of not solving a

transport equation for the turbulent length scale. Two of the more widely used

one-equation models are the Baldwin-Barth [3] and SI)alart-Allmaras [98] models.

While one-equation models have shown promise for turbulent wall bounded flows at

a lower computational cost. than algebraic models, they have nol been shown to be

accurate for flows with significant, turbulent mixing, which is of primary importance

to the nozzle problems discussed here.

Two-equation turbulence models usually solve one equation for the turbulent kinetic

energy and a second equation fi'om which the turbulent length scale can be

obtained. The most popular of these are k-e models, that solve one transport

equation for the turbulent kinetic energy, k, and the second for the rate of turbulent

kinetic energy dissipation, e. Probably the one k-e turbulence model that has served

as the basis of most other k-e models (and itself is still in wide use) is that due to

,Jones and Launder [47]. Also referred to as the "standard" k-e model, the

Jones-Launder model has one form that may be directly integrated down to solid

surfaces including the laminar sublayer, through the use of damping terms, and a

second form that requires the use of a wall function to bridge the gap fi'om the fully

NASA/TM--2001-210811 5



turlmlent region of a tmundary laver to the laminar sul_laver very near the wall.

The former is referred to as tile "'low l{evnolds lkun_t)er'" ['orn_ while lhe latter is

re['erred to as the "'high Reynolds mlnll)er" or "'wall-function'" fornl. Bolh have the

same t'ornlulalion away ['ronl walls and in mixing layers.

Although k-{ models are generally illore accural.e than the simpler algebraic or

one-equation models, they have several limitations. For wall bounded flows, k-e

models are particularly deticient in regions of strong adverse pressure gradienls and

in separation zones (Iiodi and Scheuerer [84]). For high-sl)eed flows involving

mixing of nmltiple streams, such as those in the nozzle and .jet flows described

previously, standard k-( models deviate subst.antiallv from experimental data for

highly compressible shear layers and tbr round jets.

Several new k-¢ Inodels have been developed beyond the standard Jones-Launder

model to address pressure gradient and separated boundary laver problems, but

have not demonstrated wide spread improvement over the Jones-Launder

formulatioJi. To address the compressibility issue, several modifications have been

proposed..Most of these modi_' the equation for dissipation rate, e. so as to account

for the experimentally observed reduction in turbulent kinetic energy production

with the relative speed of streams (frequently referred to as the convective Mach

number) that, form compressible shear layers. The moslly widely used are those of

Sarkal' [SS, S._)] and Zelllai1 [11;_1.

Experimental data have also indicated that round (or axisymmetric) jets mix less

rapidly than planar jets. Because the empirical coefficients of most k-c models,

NASA/TM---2001-210811 6



including Jones-Launder.havebeencalitwal,eda,gainslincompressi[>leplanar shear

layers, correctionshavebeendevelopedto impvovethe capability of k-{ models1o

calculate round .jets. The most,widely lrsedof theseis (]lal dlle 1oPope [79], which

like the corn pleSsi})i]Jl 3' COl"rec1 iOllS of Sal'kal' al_d Zema11, modiJies tile clissipal ion

rale equation. Essenlially, the Pope correclion increases lhe dissipation vale' of

turl)ulent kinetic energy in the presence of vortex stretching, which is cha, racloristic

of round jets. Finally, one recently developed k-e model, due to -['hies and

Tam [102], substa,ntiallv modified the el_@vica,l coefficients fl'om those of the

standard k-e model, and included the Savkar compressibility corvection and Pope

round jel correction intended for turbulent jets with flow conditions similar to those

found in the exhaust nozzles of high speed aircraft. The Tam-Thies model, with its

substantially modified coefficients, has only been calibrated for mixing layers using

calculations beginning downstream of any nozzle surfaces. As a result, some other

method is required to accurately calculate the wall boundary laver regions upstveam

of the mixing laver.

Despite some of the aforementioned limitations of k-e models and the necessity of

empirically based corrections to handle specific flow complexities, k-e models are

still the most frequently used models for calculating nozzle and jet flow fields. This

is because more complex models, such as Reynolds stress closures, have not

demonstrated significant accuracy improvements that would warrant their much

more computationally expensive use. As a result, several validation studies have

been conducted to determine the accuracy of k-_ models for specific classes of nozzle

and jet problems. Some recent examples of such validation studies are provided in
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references[5, 6.22, 31,75. 106]. Nearly all of lh(' flows i]Lv(,sligal ed ]rove ol>(,rat in_

conditions (velocities and feral)oral ures) similar (o those of real configurat, iotls, but

lhe geomelries were simpler to allow comprehensive studies of difforenl models and

('orrectiollS Io be Colldllcted.

Two other' l>opular two-equaliolL xnodels will t>e brietlv discussed here. The k-_.'

model is another two-equation turbulence model which is similar in form (o the k-¢

model. The second lransport equation of this model solves for the dissipation rate

per unil turl)ul(,nt kinetic energy. The most widely used k-_.' in curretll use is that

due t.o Wilcox [113]. The k-_, model has demonstrated improved capability to

handle adverse pressure gradient boundary layers relative to the k-< model.

ttowever, it has been shown to be worse than k-_ in predicting free shear laver

mixing, and demonstrates significant sensitivity to freestream turbulence levels.

Wilcox [l l-l] extended his original mode] in a new formula(ion to address tl)ese

limitations. The last two-equalion nlodel discussed here is 1ho Shear Stress

Transport Model (SST)of Menter [66,67]. Menter's model employs a k-_'

formulation in regions near solid boundaries and a k-e tormulation away fl'om walls.

This model has become popular in recent years because it used (.he k-,: and k-_

formnlalions in the regions where each performs the best.

The most recent adaptation of a Reynolds-averaged Navier-Stokes approach has

been in the emerging field of computational aeroacoustics to address the problem of

developing quieter aircraft engine exhaust, nozzles. One procedure is to use the

solution from a turbulent CFD simulation of a jet flow field (using a k-(model) as

input into an acoustic prediction method. The jet noise field is then determined bv
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integration of t.hesoundpropagationequations, llef`erences[50.51] presentsoule

recent aeroacousticcalculationsof convergent-divergentnozzleshaving flow

characteristicsagain representativeof realistic high speednozzles.In computational

aeroa.coustics, which has its own set. of limitations relaled to the acoustic modeling

methods, the input is also limited by the quality of lhe aerodvnamic flow field. :ks

with the nozzle and jet aerodynamic prediction methods, significant work is being

performed to improve the accuracy of acoustic prediclion techniques [56].

1.2 LES Methods

Although LES techniques have been used in selective applications, such as

meteorology and a,lmospheric sciences [83] for several years, only recent, Iv has LES

been considered as a potential lool for nozzle and .jet. flow problems. Much of the

foundation of LES was established in the meteorology field by Smagorinsky [9=11.

Lilly [58], and Deardorff [25] near the end of" the 1960's. Reference [69] mentions

that after some interest in LES by the lTnited States engineering community in the

early 1970's, the 1980's saw only limited development and application, tlecently,

however, the realization of the shortcomings of RANS. and improvement in

computer speeds have sparked new interest in LES for engineering applications.

Several recent I;.S. aeronautics research and development programs have sponsored

research in developing and applying LES based techniques for analyzing jet flows.

Of particular interest, to the these programs is the potential of LES as a

computational aeroacoustic technique for enabling accurate predictions of jet noise.

In reference [65], Mankbadi et al. discusses that large scale turbulent structures are
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believedto be the dominant noise producing mechanisn> ill free jet flows. (!]loi ot

al. [20] llaw _ use an I,ES technique lo calculalo the aerodynalnic tioht of a Math 1.1

axisvmnlelric jet and then employed a Kirchoff mothod, detailed in references [(if)]

and [92], to calculate the noise tiehl. Since LES reserves modeling for the smallest

turbulent length and time scales while directly solving for the large scales, it is

thought to be appropriate for a pplicalion to certain classes of jet noise prol)lems. In

particular, success is being realized for jet problenls in which t.he flow regions of

intel'esl are far removed from solid boundaries, such as relatively simple single flow

nozzles exiling into ambient air. LES methods are not vet prepared to haudle more

complex configuratioils, like those of the nmltiple stream nozzles discussed

previously. Such configurations, if tiler contain turbulent boundary layers along

solid surfaces, have a large range of lurbulent scales thai are importanl to the

overall flow problem, and at this point, the cut-off" scale at. which direct solution

ends and modeling begins is one of the major unresolved issues of LES.

A brief review of the fundamental st.eps of LES is as follows, more details of the

process will be given in chapter 2. A filtering process renloves tile smallest spatial

scales of the Navier-Stokes equations. A set of equations is produced thai represents

the spatial and time evolution of the larger turbulent scales, bul contains a subgrid

scale tensor to account for the unresolved slnallest scales thai were removed by the

filtering process. Next, the subgrid scale stress is replaced by a model

(appropriately termed a subgrid scale model), which is analogous to the eddy

viscosity models described in the last. section for Reynolds-averaged Navier-Stokes

codes, l'sing the subgrid scale model to handle the small scale structures ranging
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from lhe KohnogorovscaleUl_to tile cul-off scale,the largescaleequationsare then

solvedusinga time-accuratealgorilhm.

The featuresof the subgrid scalemodelhasbeenoneof the mosl heavily researched

aspectsof LES. The most commonlyusedsubgridscalemodel is lhe Smagorinsky

eddy viscosity model [.9:1].Oneof the t)rimary reasonsfor the 1)Ol)ularilyof lhe

Smagorniskymodel is that it providessufficienl,diffusion and dissipation to keel) an

LIEScoml)utation stable. Becauseof the importanceof the subgrid scalemodel in

allowing for the correct transfer of turbulent energy1)etweenlhe largescales(which

aredirectly solved)and the modeledsubgrid scales,severalmodifications 1othe

Smagorinskymodel have beenproposed.The most pol)u]ar of lheseareknown as

dynamic eddy-viscositylnodels [:26,:13,77]which replacethe model constant of the

Smagorinsky model with a coefficient that is allowed to vary both sl)atially and

temporally as a calculation progresses. The major advantage of the dynamic

eddy-viscosity models over the Smagorinsky model is the improved capability of the

dynamic eddy-viscosity models to provide the correct turbulent kinetic energy

dissipation. As with the turbulence models for Reynolds-averaged Navier-Stokes

<:odes, however, no single subgrid-scale model has been found to work well for all

flows. Nelson [70] and Vreman [107,108] have investigated the effects of subgrid-scale

model selection on LES calculations of compressible planar shear layers.

There are other issues related to LES that will require significant work to make LES

an appropriate tool for engineering applications, and in particular for the nozzle and

jet flows that. are the subject of this report. Since LES directly solves for the largest

scales of turbulent motion, a highly' accurate solver is necessary for the

NASA/TM--2001-210811 11



iinle-marching procedure. References [3._J.35.6_] discus_ higher order schemes as

applied 1o I,E5. (!oiupacl t]nil.e difference scheuies, introduced 1)3' l,ele in

roferell('(, [._._]. at'(:' lJarlicularly proliliSiilg for IrES calccllalions lJecatise tlie\ are

available to accttratelv resolve a greater range of scales than olher finite difference

scheilles. _e\'el'al LLS algorilhllls are using (Mac('orulack-type) explicit s('ileilleb,

which lend themselves well to calclllations dislrilmted over parallel processors (see

references [10] and [93]). Boundary couditions provide some of the _osl challenging

modeling mlcerlainiies for LES. NIanv l_ES simulations of simple geometry

t)enchniark cases. Sllch as fully-develot)ed channel flow, have used periodic boundary

condilions for lhe coniputat.ional inflow and exil. For jel flows, ]iowever. such a

t)ouudary condilion ca.illlO{ l)e use(l, because of the fun(lanlentallv different nature

of lhe intlow and outflow stations.

Nearly all LES simulations of jet and mixing layer flows perfornied to date have

placed the inflow of" the computational domain downstream of any wall bounded

regions and have either ignored the upstream boundary layer effects or used some

approximation to initialize the turbulent mixing laver. Several authors, such as

Ragab [81,82] and Hedges [38] have imposed hyperbolic tangent mean velocity

profiles at the plane which represents the end of the wall boundary layer regioris and

the beginning of the mixing region. Ragab then used the results of a linear stability

analysis to generate perturbations about, the mean velocity profile located at the

mixing plane, ttedges added small amplitude perturbations to the vertical velocity

component in simulations of heated jet flows.
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Tile difficulty in using an artificially generatedinflow, suchas (hal assmninga

hyperbolic tangent velocity profile, is thai the characteristicsof the upslrean)

turbulen( boundary layers,including velocity, telnperature,and turbulence I)rofil('s.

arenot accurately represented.This is a,signiticant deficiencysincethe sta(e of the

incoming boundary layershavebeenshownt,ohavesignificant effectson the

develot)mentof turbulent mixing layersin the experimentsconductedby

Bradshaw [13].Browandand Latigo [15], and Itussainand Clark [44].

Recently,Li et a.1.[57] proposeda method in which parallel calculationsof the

upstream boundary layersare usedto generatetime-varying inflow condi(ions for a

spatially developingmixing layer. This method offersa promising techniquefor

reducing the computational cost relative to performing a complete LES calculation

containing both the wall-bounded and mixing regions, but itself is probably too

expensive t.o use in the near future for high speed, high Reynolds number cases. The

hvbrid RANS-LES method developed in this work is proposed as an alternative

computational technique t.o performing LES calculations everywhere in the

computational domain, that includes the mean flow characteristics of the incoming

boundary layers and is also feasible when considering foreseeable computational

resources.

1.3 Hybrid RANS-LES Methods

The realization that LES calculations of flows in aerospace and industrial

applications at. realistic Reynolds numbers will not be possible for some time has led

to interest into the development of hybrid techniques. The objective of a hvbrid
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method is to retain tile essential ['eal ures of the LEg method, but to employ a

coml)utationally cheaper RANg method ill regions w]lel'e it is ap1)ropriate. As a

result, neat'Iv all hybrid methods proposed to date apply a RANg approaclt Io

attached wall boundary laver regiolts and an LEg approach to regions of large scale

Sel)aration. The work detailed ill this dissertation represents the first hybrid m('tl_o(l

development for application to compressible mixing layers.

The mos! widely lml)li('ized hybrid method to date is 111¢"I)etached Eddy Simulation

(DES) molhod of Spalart [96, 97,._)9]. 1, the DES method, the wall bounded regions

are calculated using RANg with the Spalart-Allmaras [981 one equation turbulence

model. ('onstantinescu and Squires [2:/] have applied Spalart's DES method to

turbulent flow over a sphere, which is an appropriale geometry for the method due

t.o the large scale separation in the wake of the sphere.

Speziale [100] suggested an approach that allows for computations varying t?om

RANg in the coarse grid limit, through LEg, and finally to DNS in the very fine grid

limit. A Reynolds Stress model is used to close the turbulent stresses in the RANg

limit, and provides the basis for a subgrid model necessary in LEg simulations.

Batten et al. [7] also propose a hybrid model that employs a Reynolds-Stress model

to close the RANg and LEg equations. Lastly, Arunajatesan et al. [1] have applied

a hybrid RANg-LEg method t.o cavity flowfields. Their a i)proach employed a

two-equation k-kl turbulence model to close the RANg equations and a one-equation

model solving for the filtered subgrid kinetic energy to ('lose the LEg equations.
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1.4 Overview and Objectives of the Current Work

The hybrid ]{ANS-LES me_hod presented in Ibis dissertalion ]s developed for

application to configurations such as the mixing laver shown in figure 1.l. This

relatively simple configuration is representative of the more complex nozzle

geometries discussed at. the beginning of this chapter, in that two wall bounded

regions provide isolated flows to a single region where compressible mixing is the

primary flow characteristic. Development of lhe hybrid method alld assessmellt of

the method for a t)enchmark compressible mixing layer configuration arc tile focus

of the dissertation.

The hybrid method employs a RANS approach 1o provide the mean flow

characteristics of the wall boundary layers entering the mixing region. The

downstream mixing laver is then calculated using LES. The method developed here

is intended for those nozzle and mixing layer problems in which a dominant

geometric feature, such as the base region of a nozzle or splitler plate separating the

upstream flows, will provide an unsteady mechanism to drive the turbulent

development in the mixing layer which will dominate unsteady effects from the

incoming turbulent wall boundary layers. Although the upstream 1RANS approach

does not provide any unsteady turbulent information to the mixing layer, the mean

flow momentum and thermal boundary layer effects can be provided.

1.5 Outline of the Dissertation

The equation sets which musl be solved for the RANS and LES regions are derived

from the general form of the compressible Navier-Stokes equations in chapter 9. The
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Wall Bounded Regions- RANS

/
Free Shear Layer Region - LES

Figure 1.1: Schematic of mixing layer demonstrathig tile hybrid RANS/LES ap-

proach.

turhulence model used to close tile RANS equations and the subgrid scale model

needed to close the LES equations are also presented. Chapter 3 provides details of

the numerical procedure used to perform the hybrid RANS-LES computations.

Validation of the RANS method for a series of fiat plate boundary laver cases is

presented in chapter 4. These cases include an incompressible laminar boundary

layer, an incompressible turbulent boundary layer, and finally' two supersonic

boundary layers which have the same flow conditions as the two streams entering
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the compressil_le,nixing lave,'thai is the focusof this work. The hvl>rid}tANS-LES

method is investigatedfor the coml_ressiblemi×ing laver in chapters.5a,,d 6.

Although true LES simulations require calculalions in l,hree spatial directions,

two-dimensional calculations are examined firsl in chapter ,5 1o investigate effects of

grid resolution aim boundary condit,ions. Three dimensional calculations are

examined next in chaplet 6 with emphasis placed on coml)arison 1o experimental

data, and to i_aramelric studies of subgrid scale model and grid resolution effects.

The importance of using three dimensional ca]cu]ations to cal)ture the initial

development of the turbulent mixing ]aver is also investigated. (_onclusions of the

hybrM tlANS-LES method development and benchmark computations a,s well as

recommendations for furt, her research are present,ed in chapter 7.
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CHAPTER 2

FORMULATION OF THE RANS AND LES EQUATIONS

In this chapter, the equations that are used to solve tile flow ill the HANS and LES

regions are derived. The general form of the Navier-Stokes equations, written ill

tensor notation, is presented first. Next, tlle RANS equations are derived using lhe

mass-weighted form of the Reynolds-averaging process and the LES equations are

derived using a mass-weighted spatial filtering process. Turbulence modeling for the

HANS and LES equations is presented ill the last section of the chapter.

2.1 Navier-Stokes Equations of Motion

The Navier-Stokes equations represent the time-dependent, three-dimensional

motion of a fluid. They consist of expressions for the conservation of mass.

moment urn. and energy.

The expression for conservation of mass, or the continuity equation is written in

tensor form as:

Op 0

0-7+ = o (2.1)
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('onservalionof n_omentmn iswriflcn:

t) d dt' dTi:

• da', ,_).r;
(2.2)

('ollser\'ation of energy is expressed as follows:

Ot':: d d Oq,/

o--7+ _ ("-'(/:' +/')) = 0<--7('''_'j ) - o.,.,-- (2.:{)

tlere, the variable 1-': represents the lotal energy (internal energy plus kinetic

energy) per unit volmne:

1

z
(2.4)

The equalion of state for an ideal gas is used to relate the pressure, temperature,

and density through:

P = ptZT (2.5)

For the viscous stresses rii. it is assumed that the fluid is a Newtonian fluid, and as

a result, the viscous stress is proportional to the rate of strain. This is written:

A O'tl'i
ri) = 2tz,5'Li + _5ij

(2.6)

where the rate of strain tensor ,q,.j is:

l(0ui 0uj_ (2.7)
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l;sing Stokes'sassuml)tionthat t he l llermodvnanlic and nwchanicalpressuresare

(lie samefor a fluid undergoingand expansionor conll)ression:

fl = -_t /

Equation (2.6) can then be rewritten as:

(_._)

"e t) tl ; .

"ri.i = 2tt,q'ij -- ._tt _di.i ('2.9)

To calculate the viscosity, the Sutheriand lno(le] is used which assumes that the

viscosity is only a function of t ernperalure for a gas:

("_/'_ ('2.1o)
It- (.._ + T

For air. the values of' the constants (7'1 and ('2 are (in Sl units):

(71 = 1.458 x 10 -6

C2 = 110.4/(

leg

m.._. K½

The heat flux qj is obtained from Fourier's law:

(2.11)

qJ = O:rj (2.12)

where k is the thermal conductivity. It. is assumed that. the fluid is thermally

perfect, such that the internal energy and enthalpy are only functions of the

t.eml_erature, and it. is also a.ssumed that. the fluid is calorically perfect, such that the
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specificheats('t. and ('p are conslants. As a result, the interna] energy alld

enthalpy can I,e written as:

= ('17'

(2.1:_)
h = ('pY'

.'\sslltllillg 1}lat tlle air is of constant composition and does nol mMcrgo any

chemical reaction, lhe thermal conductivity is only a fimclion of lemperatur(', l:sing

the specification of constant specific heats, the following expression is obtained for

the thermal conductivity as a function of the constanl pressure specific heal,

Prandtl number, and the viscosity defined in equation (2.10):

2.2

I,- _ tz('P (9_.14)
PF

Mass-Weighted RANS Equations

In the classical form of Reynolds averaging, the time dei)endent form of the

Navier-Stokes equations given 1)y (2.1) through (2.3) are averaged over a period of

time that is nmch larger than the period of turbulent fluctuations. Each of the

dependent variables appearing in lhese equations is replaced by' the sum of mean

and fluctuating components. As all example, the velocity would be given by:

u,. = u-i + u,' ('2.15 )

where the t.ime averaged velocity 77i is given by:

1 j.t+r_ii = - uidt (2.t6)
T
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I:or the current work, where flu('tuati(}ns in (lensitv at'( ] iml}(}rtant, a mas._ (or

density) weighting is emt}loyed ill 1he averaging 1}rocess. which wii] i]lak{' the final

torn) of the RANS equatio)ls much more convenien) to work with. The del)en(]en!

variables are again broken into mean and flucIuating COlnpOnelHs:

I!

u_ = hi 4- u i

where the time averaged (using mass weighting) velocity gl, is given bv:

(2.17)

1 ft+,-h; pr pu,dt (2.18

This mass-weighted Reynolds averaging process is frequently referred Io a.s Favre

averaging, and in general, the Favre average of anv variable f is defined by:

.i Pf= -2- (9.19)
P

Before averaging the Navier-Stokes equations (2.1 - 2.3) the flow variables are

separated into mean and ftnct.uating components:
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p=_+p'

P = t' + P'

u; = d; + _1"

= ; + _" (2.20)

h = t_ + h"

T= J_+ T"

I

q, = _,. + q,.

.Note that the density, pressure, and heat flux are not, decomposed using mass

weighted variables. Starting with the continuity expression (2.1). a time averaging is

perfornied to obtain:

+ ._-- (_) = 0 ('2.'21)0-7 u.ri

[,sing the definition of mass weighte(t variables, this can be rewrit, ten as:

o_ 0
0-7 -_- _ (P_i) ---- 0 (9.29)

Working next with the molnentum equation (2.2), a time average of the entire

equation is t)erformed, resulting in:

0 0 OP OY_.i

0-7(_) + 0.--7(_) - &., + 0.--7 (e.')a)

In equation (2.23), the time dependent term is rewritten in terms of mass averaged

variables a,s:
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0 0

.-7(_) -- _ (?_,;,/ ('2.'24

Tile convective t.ern_ is expanded as:

0 0

o.,.--C;(_1 - o.r j.

o

O.r,;

- -- (p(,_,;+,,','1(,;.,+ ,,';))

0 0
" (_) + --(,,_,;,,_,)+ --

(2.25

The first term in the expansion of (2.25) is rewritten as:

0 0

Over the period of the lime avera,giilg, the the mass weighted variables denoted with

a hat are constant. As a result:

i) O

0,rj (_) : O:r----_-(_) : 0 (2.27)

The last term in equation ('2.25) is lhe turbulent or Reynolds stress, and is the term

fl'om the momentum equation that is replaced with a turbulence model:

Oxj t pui 9) =-0xi (2.28)

Replacing the terms in equation (2.23) with those in equations (2.24) through

(2.28), the resulting RANS momentum equation written in terms of mass averaged

variables is:
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:) :)t _ i)_,: Hr Jo (_&) + __ (_/, _j) _ + + '" ('2.'2.(_t
at O.ri O._,, _ O.rj

To obtain lhe time averaged energy equation wrillen in mass averaged variables, lhe

total energy terms in equation (2.:11) are tel)laced with the exl)all<led energy

expressioll shown in (2.4) and then the enl.ire equation is time averaged"

o (,,j ½.,,_,,i 0 (_) 0_o (,,_+_,,,,,.,)+ ("+ +")) 07.,0-7 _ - a,,j (2.30)

\Vorking first with the time dependent term, this term is expanded in terms of nwan

plus tluciuating velocities as:

.--;"(,'_+ _.":"0= aTl_e)o+v°(}.(a_+

The kinetic energy lerm is further expanded as:

."/,, (it,. + */i')) (2.al)

o " " (_)+ (:.,_.i)+ _:..,_:_( l"(a' + <')('_'+ _'_))= _ a7 a7

The the first term on the right side of equation (2.32) is rewritten as:

(2.32)

o (_)= oo-7 a7 (½_a_'_") (2.aa)

Over the period of the t,ime averaging, the mass weighted variables are treated as

constants and as a result, the second term on the right side of equation (2.32) is

zero:
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(_) =0
O!

(2.:_4)

The last term is the lurl)ulent kinetic energy and is written as:

(2.:35)

The resulting time dependent term is:

(:2.:36)

Working next with the convective term. h = c+ PIp is used I,o obtain:

o (,,,j(p;,+lp._.,.I)o (,,_(.,+ _p..,,+ p))_ o.,,_?)x j

Expanding this expression in terms of mean plus fluctuating velocities as:

(2.37)

o (,_I_,_+,,"(J, ;,")

+ _(:};,o (,_ +,,j)(,_; + ,,,,_(_;,,+ ,,f,))

Working first with the enthalpy expression:

(2.38)

0 (p (iy +
OXj

0
o (-i#,)+ (_),,':/(;;+_"))- o_,_

0
(2.:39)
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The second and 1bird tet'ms on lhe right side of equation (2.39) are zero l)v lhe

sallle argunlent as that for (2.31). The ]asl term contains l]w turbulenl Ileal flux

alld iS l'ewr]lleIl as:

'
0.% " O.r.; (2.40)

This turlmlen! heal flux must be lnodeled, and is done so in a manner similar to

that for the f{evnolds stress appearing in the momentum equation (2.:28).

Working nexl with lhe second term on the right side of equation (,.3_):

fe.ql)

The second and fourth terins on the right side of equation (2.41) are zero over the

period of the time average. The third term includes the turbulent kinetic energy as

defined in equation (2.35) and is rewritten:

1 ^ , i/ II = (2.42)
O,r s Ox.i

The fifth term includes the turbulent Reynolds stress as defined in equation (2.28)

and is rewritten:

0 O

Oa, j (p _j "'"i ) - Oa'j
(2.43)

_ Zdl
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The resulting convective term is'

(2.44)

The viscous dissipation term on the righi side of equation (2.30) is examined nexl.

After expansion, this terln I)ecollles:

0 0

o.-7(_) - Oa,j
a

0

0 .r .;

_ _ ((:,,+<')(,,,+ ,,:,))
(2.45)

The heat flux term is lefl a.s it. appears in equation (2.30). Hewriting the energy

equation (2.30) with the t.erms we obtained in equations (2.36). (2.44). and (2.4.5)

results in:

0 _.) 0
0-7

O ?) (2.46)
-- _ -- -- -- qJr 1_2t0t1#, l// t n'_(['li'T'i j q-,liTi_ q-US:Tij ) (Flj 'Jr- -1- ,it,: I i )

&rj

In order to simplify this expression t.o the form that will be used in the

computations, the terms involving the turbulent kinetic energy and those with the

fluctuating velocity u," are assumed to be small compared to the other terms in the

energy equation. The enthalpy in the convective term is first expanded using

_/_ = Fi+ P. Equation (2.4) is then used to rewrite the sum of the internal and

mean flow kinetic energy, appearing in both the time-dependent and convective

terms, as the total energy,"
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[:Tt= _t + rip,i,; ('-)..17)

The resulting tinal form of tile 1RANS energy equation is:

2.3

o e; ^ o (_<, + a;_/:) - --(t?,) + i_.r,--(,_,,E,+ g,jT) = _j

Spatially Filtered LES Equations.

?)

_,t'/
(_, + qf) (2.4s)

To derive the LES equations used ill this work. the time dependenl form of the

Navier-Stokes equations given in equations (2.1) through (2.3)is used as the

starting point. Instead of time averaging these equations, however, an approach

similar t.o the work of Ragab and Sheen [81,82] and Erlebacher et al [27] is used

that will filter out small scale fluctuations, and only retain scales that are large

enough to be resolved by a particular computational scheme and the computational

mesh. The filtering operation is defined on any variable f by the expression:

f(x't) = .fD (; (X -- _,,k),f(_.t)da_ (2.4_))

In equation (2.4{)), G is the tilter flmction, D is the tlow domain, and _ is the filter

width. The filter width ,._kis usually taken to be the grid spacing, and is the

apt)roach taken here. Note that the overbar used in equation (2.49) indicates a

filtered variable. This is in contrast, to the previous use of an overbar to indicate a

time averaged quantity in the previous section.
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,As discussed in [T1], lhe exacl fOF1]] Of the tilter fimction is nol tYl)icall.v known.

ttowever, the filter function must salisfv:

./. c; (z - t_,_x) ,t'*_= 1

In addition, the form of the function (; allows the operations of filtering and

differentiation to commute such that:

(2.50)

a, lld

i-)f i-)f

of o7
- (2.52)

&r.i &ri

In large eddy simulations of compressible flows, it, is common to use Favre-filtering

which is defined as:

] = P-/-- (2.53)
P

where a quantity f is decomposed into resolved and unresolved (also referred to a.s

sub-grid scale) components as:

f = ] + .f' (2.54)

Equations (2.53) and (2.19) are very similar in appearance, but they refer t.o very

different, operations. Both operations employ mass (density) weighting, but equation
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(2.19) defines a time averaged quantity, while equatiolJ (2.53) dclil,es a spatially

filtered quaulitv..,ks was the case for the RANg equations, the density, pressure.

and heat flux l('rms are not. (te(x, nl_(_se(1 using lnass-weighliug. :\gain uote lhat the

overline represented a time averaging process in the ])revious section, but it will

refer to a spatial filtering operation iu the current section. In ad(lilion, Favre

[ilterillg differs fiom Favre tim(, averaging in that:

_tI1(1

f# .I= (2.._._)

:\pplyiug the filtering operation to the continuity expression (2.1) results in:

O_ 0
o_-+ _ (_) = o (:_.5;)

This is rewritten in t.erms of Favre-filtered variables as:

0?_ O

0--7+ _ (P_) = 0

Filtering the momentum equation yields:

(2.58)

0 O OP 0-_

0-5(_) + 0._.---_(_) - ox_ + 0x---}- (2m)
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Rewi'iting this in tern> of'Favre-filteredvariablesresults in:

O 8 OP i)C..j

o7(_') + o%-7(-_i_)) = - o.,._,+ o.,.--7 (Z60

The convective term is further expanded:

__0 (75(1_D) - O (&r.i ...... )O*--7 -_( ;'i + ";) ('g'j + "5)

- ,.,. [-,(;_,_;+,_,,:,+<_,_+<,',)]
(2.61

This is reorganized lo separate the resolved convective term from lhe unresolved

(subgrid-scale) terms as follows:

0

Ox.i

0 0

--(>,i_,) o.,-j=--.(,_,;,,)+ [.(,_.-,_,,_)]+

0.,.j['(_ -;_;)] +o7
(2.62)

The right side of equation (2.62) contains the resolved convective term. Leonard

stress, cross stress, and subgrid scale Reynolds stress, respectively. This is often

written in more compact form as:

O 0 O

0.,,--(>_-) = ,,.,,_ (a&) + -.,-,-7--[_(:_ -;,_J )] (e.6a)

The cross stress and subgrid stress are frequently modeled together, while the

magnitude of the Leonard stress is on the order of the truncation error when

employing most finite difference schemes, and as a result, is implicitly

represented [114]. Other authors such as Choi et. al [20] neglect, the cross stress and
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l,eonardstresscontributions entirely. For the method i)resentedin this work. it is

assumedthat the Leonard,crossstress,and subgri(]-seale[{evno]dsstresscan I)e

modeled together as the subgrid-stress term, as is done in re%rence [17] or:

',j =P :-_):_J +P -_ i +/'"- ',"i'

= p ! i,7_i, _ ,},,;,,)

The subgrid scale 1Reynolds stress is replaced with a model. In contrast to lhe

l{evnolds stress resulting from the time averaging process apl)earing in equation

(2.28), in which all turbnlent motion is replaced by a model, the sul)grid model

employed here only represents the net effects of lurbulence motion that is not

resolved by the computalional method..More details of both the HANS and LES

turbulence lnodeling will t)e provided in a later section.

The final form of the filtered momentum expression thai will be used for the LES

calculations is:

(2.(_1)

0 OP O_j O'_:j_
O (P_i) + (_h_bj) - + + -- 2.65)

Many different, forms of the energy equation are used bv researchers investigating

compressible flows with LES. Piomelli provides a comprehensive summary of several

forms of the energy equation in reference [78]. The form used in this work solves for

the total energy, as defined in equation (2.3).

The Favre-filtered energy expression has the form:
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o-i -
0 0

_ eI h kinetic energy part of the time dependent term is rewritten analogously to the

convective term of the molnentum equat, ion:

¢2.67)

where ]c is the unresolved kinetic energy term.

The expression involving enthalpy in equation (2.66) can also be rewritten as the

sum of resolved and unresolved components:

(2.6s)

The unresolved t,erm on the right side of equatiion (2.68) is the subgrid scale heat

flux. so that equation (2.68) becomes:

¢2.6_)

The kinetic energy part of the convective term in equation (2.66) is expanded as

follows:

½>,_ii: = ½p(_-,ja_a,+ 2a0,a_,,,_+ ,_j,,;.',+ _Sa_;,,

I ~ I I I t

+ 2ujuiui + ufuiui)

(2.70)
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l{ewriting this in terms of resolved and lmr('solved ('oll_l)ollents results ii'i Ill('

re[lowing exl)ression"

½>,_;;; = ½,(;,J_,,g,;)+½7(;,),,--;;,- ;,;a,_,,+ .2;;,7_,,-%',+ ,,i_,Z-,;,+ ,,;;,;i;;:
('.*.71)

Of um'esolved lerms in e(luatioll (2.71), it is common practice to ignore all tern>

except for the lasl lwo lerm, as demonstrated in reference [82]. l:ollowing t{a.gal),

the next-to-last term is rewritten as:

and the last term is rewritten as:

_p. iuiui = ilj _ (2.72)

-- ! - !

D tl j _1iui = _1iT i; 9_ ( "2.73 )

The viscous dissipatioll term on the right side of equatioI1 (2.66) is rewritten as the

sum of resolved and unresolved comt)onents as follows:

0 0 0

Oa'--]5(_) = O.r-_j(bigiS) + _(figii -uirT.i) (2.74)

It, is common practice t,o a,ssume that only the resolved dissipation term on the right

side of equation ('2.74) is important, although Erlebacher [27] and Piomelli [78]

indicate that the unresolved contributions should not be ignored for highly

compressible flows.
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The heal flux term is left unchanged,as wasdone for lhe t/ANS energyequalion ill

tile precedingsection, llewl'iling th(" fillcred energyequation (2.66) with tile lcrms

derived in equations(2.67.2.(i9.2.72.2.73. and 2.74), the following form is obtained:

O (2.75)

The final form of the LES energy equalion is obtained using a 1)rocedure analogous

to that used t.o obtaill the final RANS energy equation (2.48). l: xr, t, the tern>

involving the unresolved turbulent kinetic energy are assumed to be small compared

t.o the other terms in the filtered energy equation, and the enthalpy term is recasl as

_t_ = Zig + P. Then. the resoh'ed total energy is defined to be lhe sum of the

resolved int.ernal energy and the resolved kinetic energy:

F, = F#+ lv;,,g,,

Tile resulting final form of the filtered LES energy equation is:

('2.rG)

2.4 Turbulence Modeling

Both the RANS and LES sets of equations derived in sections '2.'2 and 2,3 require a

turbulence model to close the monmnt, um and energy equations. In the RANS

approach, all unsteady turbulent motion is replaced by a turbulence model. The
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resulting I_I']Sequationsare very similar in appearance1othe ttANS equalions.alld

also requirea model io closethe momenlunl and energyequations. The difference

for lhe LESequations, llowever,is lhat lhe terms replacedby a model are only lhe

lurbulent lerms that are too small to be resolvedusing lhe fillered I_ESequalions.

As a result, the largescaleturl)ulenl motion is directly calculated,and the effectsof

lhe smallestscalelurbuleilce are accountedfor usinga sul)grid turtmlence model.

The lurbulence model employed here to close the tlANS equations is the

(:el)et'i-Snlith algebraic turbulence model [18, 19]. Since lhe HANS equations are

only used in this hybrid method to calculate wall boundary laver regions with no

adverse pressure gradients, the selection of a relatively simple algel)raic model such

as the Cebeci-Smith formulalion is appropriate. The wall function technique of eta

and Goldberg [7:1] is used in conjunction with the (?ebeci-Smith model to enable use

of a computational grid with the first point off solid boundaries placed in lhe

logarithmic laver. This wall fnnction approach is based upon the compressible law

of the wall formulation of \Vhite and Christoph [110,111]. The filtered LES

equations are closed using the Smagorinsky subgrid model [94].

Imt)lementation of the wall flmction technique is critical to the development of this

hybrid approach in order to enable use of a single computational grid extending

continuously from the HANS regions to the LES regions. If a wall function

approach were not used, grids for the HANS regions would have to be packed very

tightly to the wall and use significant grid stretching, while a separate grid which

minimizes grid stretching would need to be constructed for the LES region. 17se of

such non-continuous grids for the HANS and LES regions would require an
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interpola!ion schen_ethat would likely inlroduce undesirableerrors into the

combinedhybrid method.

17seof tile (!ebeci-Slnith lnodel 1o close the RANS equa(ions and the Smagorinsky

subgrid model to close the LES equations is desirable in terms of code

implementation. While the flmclion of the Cebeci-Smilh model to replace all of the

turl)ulen( stresses with a model is quite different from thai of the Smagorinsky

subgrid model, which only replaces the small subgrid turbulenl stresses, both are

eddy viscosity models and are derived at, leasl in part fl'om mixing-length theory.

The similar formulation of these two models enables the RANS equations and LES

equalions t,o be solved with a single solution scheme and compulalional grid, as

men(ioned previously. For a compressible nozzle or mixing laver flow, such a,s that

depicted in figure 1.1, the change from RANS regions to LES region occurs at the

vertical plane passing through the trailing edge of the splitter separating the wall

bounded flows.

In (he following sections, details of the (:ebeci-Smith turbulence model and the

Smagorinsky subgrid model are provided.

2.4.1 RANS Turbulence Model

The unclosed terms from the RANS momentum and energy equations are the

!Reynolds stress shown in equation (2.28) and the turbulent heat. flux. which is given

in equation (2.40). As mentioned previously in section 1.1, the Boussinesq

approximation is used to relate the turbulent Reynolds stress to the mean rate of

strain tensor through a turbulent (or eddy) viscosity. This is directly analogous to
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equation ('2.5))which relat.estile viscousst.ressto lhe llwan rate o['strain through

hemolecular (or laminar) viscositv. Tlle turbulent analogy (o equation (2.9) is:

TF _ -- p_ll/llU
CI ,!

= / t _ 2,S'ii :_ O:rt,. (_i.).

Similarly. the turbulent heat flux is relat, ed t,o the t.ellll)el'alul'e gradient through a

(urbulent conduct ivity,/or:

qf = push"

= -M 01/' ('2.7!)

O.r,i

The turbulen) Pvandtl number, tb '_' is used (,o relate the turbulent viscosity to (he

t tn'lmlent conductivity:

Z

prT _ Y ( t"
M (2.80

The turbulent Prandtl number is taken t.o be a constant here and equal to 0.9.

Using equation (2.80) and assuming a constant t url)ulent Prandtl number enables

the turbulent heat flux to be expressed as a function of the turbulent viscosity that

is used to calculate the Reynolds stress. 'The turbulent heat flux becomes:

,[,_ OPt _ O__
Pr r 0:rj (2.81

-_ | • 1 *The (e)ecl-Smlth model, which was chosen here to close the RANS equations in the

wall boundary layer regions, treats the wall boundary laver as having inner and

outer regions where the turbulent viscosity is defined as:
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T
, it;, ......_, :Y-_!J.,

t ;_ ;7" ('_ _'_
t o.,.,.- ,q>!],,,

]n oquation (2.82).._/,, is defined as the smallesl vahle of _/(the distance av,'av fronl a

wall) at which 7 i_-I; ....... = t .....,,. The expressions for the inner and outer laver

turbulent viscosities are as follows:

hmer Laver:

; .......=

wifl_ the mixing length / ........is given by:

+ .0:r / (2.83)

Outer Laver:

{,,._ =_'!1(1-c -v+/A+) (2.84)

T/_oo,,,.= o_£_FA-I,_ (2.85)

hi equation (2.85), the quantity, _, is the velocity thickness, 'u_ is the houndarv layer

edge velocity, and Fkl_v is the Klebanoff intermittency function. 'The velocity

thickness is defined a.s:

This velocity thickness is identical to the displacement thickness for incompressible

flO'_VS.
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I_ ref¥_rences [.52] and [.5:_]. Klebanoff pres,pnt s an exl)ressio_ t_)r lhe intermit len,_'v of

llu'hulence near the edge of a boundary, which has a fimctional form involving lhe

complimentary error function. This original intermittencv function is usually

approximaled by lhe following formula, as indicated by ('ebeci [lS]:

The closure coefficients appearing in equations (2.84) and (2.8.5) are

(2.87)

= 0.40 o = 0.0168 .4 + = 26

Wall Function Iml)lenientation:

The ('ebeci-Snlith model is usually integrated down to the wall, using a

conq)utationa,1 grid with the first poirlt off of the wall placed well within the laminar

sublayer, corresponding to ._j+ < 5. For the hybrid method developed in this work,

the objective is to place the first point off of the wall in the logarithmic layer to

enable the use of computational grids that are nol packed as tightly to the wall.

Removing the tight spacing requirement will enable a continuous grid into the LES

region. In addition, because the allowable time step of the computations is

proportional to the size of lhe smallest, grid cell, a less tightly packed grid enables a,

larger time step for the solution scheme. The wall function technique of Ota and

Goldberg [73] is one of the more simple and effective methods currently in use, and

it is the technique used in this work.

Wall %nctions have been implemented most fl'equently in conjunction with

two-equation k-e models. The benefits of implementing a wall function for use with
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a k-( model are Ill(' same as that for the ('ebeci-Snlith model used ill this work

including reducing grid requiremez_ts, alt<l increasing lhe permissible liult' slep of

lhe co_l_lt)utatiOllS. In addition, the need for the near-wall damping lenns associate(/

with low-Hevllolds num])er k-c models is removed. These near-wall damping lerms

Kequenlly resuli in numerical stiffness of lhe solution procedure. Nichols [72]

implemented the White-(_hristoph law of the wall with a k-e model for application

to time dependent aerodynamic flows. Mani [6-t I implemented the Ola-Goldberg

formulation in the WIND code for use with lm'lmlence models ranging fl'om

algebraic t.o two-equation formulations.

The use of a wall-function apl)roac}_ is strictly only valid in flow regions al)senl of

adverse pressure gradients and set)arations, due to tile a.ssumption that the law of

the wall holds. However, Avva el al. [2] have shown results for separated flows in

which wall function methods perform no worse than melhods integrating to the

wall. The intention of the wall function implementation in this work is t,o only apply

the method to attached wall boundary layers where the law of the wall is valid. The

wall flmction approach is compared to the standard procedure of integrating to the

wall for two supersonic boundary layers in chapter 4.

Tile Ota-Goldberg wall function employs the White-(?hristoph [110.111]

compressible law of the wall:

where the compressibility parameter _, is given by:

(2.ss)
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PII 2T

_, - (2.s9)
2 ( 'p 7',,,

In equation (2.88) .+ is the value of .+ a,t the first point off of the wall, :l+ is tlu"

value of y+ at tile first point off of the wall, and :ek+ = 0.1'287. Ill equation (2.89),

1

tile paran]eter 1"is the recovery factor, which is typically taken to be Pr5 for

turbulent boundary layers, and "1'_,.is lhe wall temperature. An iteration procedure

is used with equations (2.88) and ('2.89) to solve for :_+, from which the shear

\elocitv u_ can be obtained:

,+ = __"2 (2.90)
'tl r

l:inallv, the shear velocit, v is used to compute the wall shear stress through:

= p,d. (2.u])

The wall shear stress calculated in equation (2.91) is then used in the solution

scheme for the momentum and energy equations in the RANS regions.

2.4.2 LES Subgrid Scale Model

The terms that must be closed for LES equations are the subgrid-scale stress given

by equation (2.28) and the subgrid scale heat flux, shown in equation (2.69). The

earliest subgrid scale model for LES computations was developed by

Smagorinsky [94]. Despite significant efforts to develop more sophisticated subgrid

scale models, the Smagorinsky formulation is still widely used, and is itself the
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foundation upon which someof t.hcmore sot)llislicated modelsarederived. The

form of the model is very similar to t.he(:el)eci-Smit]l model usedfor lh(' R:\NS

eqnations,in thai a gradient-diffusion mixing-length approachis used.

The Smagorinsky ('xpression for the subgrid s('a.l(' stress is:

T,7" = _ (_U(j - ,_,aj )

The parameler ,'r is detined:

(2..q2 )

;r = .-",.i>4 ( 2..q 3 )

The parameter .__Xis the filter width and a.s a result., it. is also used as the length

scale that. is characteristic of the subgrid turbulence. For use with a coml)utational

method, A is usually taken to be the grid spacing. In three dimensions, with a

computational grid having unequal spacing in the three directions, this subgrid

length scale is usually taken to be:

!

L = (LxLy_:)5 (2..O4)

For computational grids with substantially different, spacing in the three directions,

an alternative form (see Ragab [82])is

(_.r) 2 + (Xy): + (-X:) _
(2.95)
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In the three dimensional simulations of a compressible mi×ing layer discussed later

in lhis work, tile" two fi_rms of the subgrid length scale presented in equalions (2.!t-1)

and (2.!15) are invesligaled. The constants ('.s and ('/ have been found to be highly

deI)endellt on the flow under invesligation. Rogallo and ,\loin [s5J suggest a range

for ('_ in the range 0.10 < ('_, < 0.24. Bolh of the linlils on ('_. given by Rogallo

and Moin are investi, g'ated tbr the mixing laver in this work. Tile COllSta,nl ("1 iS

usually equal 1o 0.01, but several authors, including Ragab [82] and ('hoi et al. [20]

Inent ion that the contribution of the term involving ('1 ma.v not be imlmrt.ant and

may |)e neglected. This approach is taken in this work. and as a resull, the original

exl)ression for the Smagorinskv. subgrid scale stress in equation (')_.._9"_)lnav be

rewritten as follows:

s s '" 2 g {>)UJ -
ri_g = 21,'_'*,_,'ii _ rdll_ -'--di i

where the subgrid scale turbulent viscosity is given by:

(2..%)

= P(d:'sAj2v (2.97)

Note the similar form of equation (2.97) to the expression for the (:ebeci-Smith

inner region turbulent viscosity in equation (2.s3). While the mixing length defined

for tile Cebeci-Smith model is used to characterize all of the turbulent motion, the

length scale defined here for the Smagorinsky nlodel only characterizes the

subgrid-scale motion.

Finally, the subgrid scale heat. flux is modeled analogously to that done for the

turbulent heat flux of the RANS equations:
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()d'.l

(2..c)_)

where/,:'"* is relaied to//_'_'" through the turbulen't Prand(1 nunll)er. As in the I/AN%

r_,gions, th(' turbulenl PrandI1 nmnl)er is assumed to I)e constant in lhe LES regions

and equal (o 0..t). The sul)grid scale heat ttux becomes

q]gs _---

C),_l _ OT

Pr'7 Ox,;
(2.t)c))
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CHAPTER 3

SOLUTION PROCEDURE

The procedure used t.o solve the equations developed in chapter 2 is formulated in

this chapter. Tile HANS and LES equation sets are recast in vecl:or form. which

corresponds directly to tile form of the equations that are solved by the

computational method. Tile numerical scheme used to solve these equation sets is

first illustrated using a one-dimeilsional model prol)lem. The extension of the

solution scheme to the 1HANS and LES equations in three dhnensions on stretched.

non-rectangular computational grids is presented next. The use of a generalized

coordinate transformation, time-step selection, and artificial dissipation is discussed.

3.1 Governing Equations

Before discussing the numerical method used in this hybrid method, the HANS and

and LES equalions are expressed in vector notation, which combines the continuity,

three momentum equations (corresponding to each of the cartesian coordinates),

and the energy equation into a compact form that is actually used by the solution

scheme. For reference, the HANS and LES equations derived using tensor notation

in chapter 2 are repeated here. The equations written here differ from those in
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('hapter ".2) only in that all terrn._ now appear ()11 tho lerl ._i(lo of tho equations, whi(']l

will nla]<o th(' conversion to lho ve('lor notalion mot(' straightforward.

In ih(' I{..\ N,'; regions, the toni i_luity, InOlnenlunl. and ('norgv e(tllal iOllS ar(u

OF O
+ .=-(F,i,) = 0

0---[ ().r ,
(3.1)

I

8 0 OP d-_i, O"r:7:
-- -- '" - 0 (:{.2)
Ot (Fdi) + O.r.j (Fb,_.i) + Ox; O<j O<j

8 0 t) 0
(3.3)

Likewise in the LES region, the continuity, monlentum, and energy equations are:

0F o
0-7+ _ (7;,_,:)= o (3.4)

(3.6)

Both the RANS equations (3.1 - 3.:11) and the LES equations (3.4 - 3.6) can be

expressed in ('artesian coordinates (x,y,z) using the compact vector form:
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OQ 0E OF ?)G

+ o=-o

For the RANS equations. _he vector._ Q, E. F, and G ar<

(3.7)

Q

F

flu

__^

Dr'

-Fd'

L

' s(3.,¸)

E

--^

pu

F_ 2 + ? - %., - ;-_
i:r

p;_;, - %° - r_
x 9

(3.{.))

F (3.10)

G

9z

Fd, 2 + -f _ y:: - r_
zz

tZ,let + ?] -i_ (%= + r_)- 't,(%_ + r;) -ti,(%. + r_) + O: + qJ

(3.];)
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In section 2.4.1. the form of the mo(lehxt turl)ulent stress in e(tualion (2.7S) was

shown to be tile [)roduct of a turbulent viscosity and Ill(" recall rate of strain lerln.

This was direcllv analogous to lhe fbrm of tile viscous stress lensor shown ill

equation (2.9) which was defined as tile producl of a laminar viscosity and the same

mean rale of strain lerm. This similarity allows l lie viscous and turbulent slresses in

the flux vectors E, F, and G to be written together as the t)roduct of an effective

viscosily, p + t, r and the mean rate of strain term. These combined stresses are as

[bllows:

0a 0;,%_ + C = _(, +,_) e0, 0v

,,,, = _ (t_ + I_ ) \'Off O.r

e..+r _ 2 (.>0,i. OO.... =5(t_+P_) -O: 0.r

?)d'()z)

#d,

o:)

0v/

_ (0;,

_.:+L_=_:.+C.=(,+, _) aT.,.+g/

, _: +<=%+<=(,+ _)(o,_,_ -., &+_ a,,,)

The same reasoning used to combine the viscous and turbulent stresses inav be

(3.12)

employed to combine the laminar and turbulent heat flux terms using an effective

thermal conductivity k + k r'. The combined heat flux terms in the vectors E. F, and

t51 are
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_" + '/_'_= - (_'÷/':_) t)u - , p,---7+

q: + q[ = - (1;+ k _') t)z - pj---7+

For tlhe LES equations, the vectors Q, E. F. and G are:

('rf, _ ) 0]'
P,'_ 8.r

(),/I _ t)J _

I)r _ 8!t

( "rp _ O'i'

P;'_- 8z

(3.1 :})

P

Du,

Q = FF, (3.14)

D _L'

t,

F
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G

p_'__i, - %: - L_'"

(3.17)

As was done for the RANS equations, the viscous and sul)grid scale stresses

atq)earing in the ttu× vectors E, F, and G are wrilten together for the LES equal ions

as the product of an effective viscosity tl + tt '_" and the resolved rate of strain term:

Tx_ -4- T _gs 2. =:_(//+tl _)

_,_ = :_(l/+ It _')

2
%: + rL"" = ._ (F' + ,"_)

"fjy + T _g" = Y 4- T _g_=
J.'y Y J: _Ia

J : ~ z I

gz z_

The laminar and turl:)ulent heat, fluxes are

O'O 0{' 0_, )2 0,r Off i)z

- 09 Ox

(90d' Oh Ob )

( I _ + / __"_ ) -:j_.r + .:

also expressed in a, combined format,

using an efI'eciive t,herlnal conductivity L: + k_:

(3.IS)

0i' ((>t,
FL+q_i _=-(k+l_: "_')Ox - \ Pr

\-fi7

O?' (
_,+q_'=-(k+h ,_) Oz - k Pr

+ Pr _" J Ox

+ P'r _" Oz

(:3.19)
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3.2 Numerical Method

The solution algorithm used ill this work is the predictor-correclor schenle due lo

Gotllieb and Turkel [37]. This method was developed in tile Sallle philosophy as lilt'

original Mac('ornlack scheme [61]. While the accuracy of the Mac('ormack scheme

is second order ill time and second order in space, lhe (;otllieb-Turkel scheme is

second order accurat.e in time and effeclivelv fourlh order accurate in space, and as

a result, is often referred _o as the _'MacCormack 2-4'" scheme.

The Gottlieb-Turkel scheme has 1)een al}plie(1 to several time del}endent flow

problems because of its robustness, accuracy, and relative ease of implementation in

methods for solving the Navier-Stokes equations. Snvder and Scotl [95]

demonstrated that the Gottlieb-Turkel was more accurate than other similar

schemes for benchmark acoustic problems. Bayliss, et al. [8,9] successfully applied

the scheme to boundary layer calculations. Raga.b and Sheen [81,82] used the

Gottlieb-Turkel scheme {o perform LES calculations of compressible mixing layers in

which the computational domain contained onh' the mixing region.

The Gottlieb-Turkel scheme is illustrated using the following one-dimensional

equation, which is a simplified model equation of the vector equation (3.7):

The predictor step is:

Oq Of
0-7+ = o (a. o)
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The correcter slep is:

,Xl

q,- = cti (i_X.r (-7f, +_.1i+1 -,1'i+2) (:5.21

1 [r _St (7.1'," s'" -1"" )] (3.22(/_,+ 1 " -- -- -- _ ./_-I • _+2= :] q"+ q_ 6_M.

The prediclor-corrector scheme advances a sohlt.ion ill time frolll the tiine level (,_)

to (t_ + 1). The time step, _t, is related to the grid _)acing, _a'. and the

propagation speed..4, through the ('FL (('ourant-Friedrichs-I,ewy) numl)er:

.._d'

..Xl = (' F L-- (3.23
A

The Gottliel/lurkel scheme is cited by several authors, such as Hudson and

Long [.13], as providing second order accuracy in time and fourth order accuracy in

space. Bayliss et al. [9] indicated that the scheme has fourth order accuracy only if

_Xl is of the order (A,r) 2, and Nelson [71] showed that the spatial accuracy of the

scheme is only third order ['or ('FL numbers approaching 1. A detailed analysis of

the truncation error for the Gottlieb-Turkel scheme is provided in appendix A. This

analysis shows that the leading truncation error terms resulting from discretization

of the model equatioll 3.:20 is obtained from the following equal.ion:

Oq O,f ,Xt 20:_q _a ":3Oa.f _Xx4 Oaf

0--7 + O:r - 6 Ot a ('T'L 1S O:r4 + 30 Ox 5 + "'" (3.24)

The left side of this equation is the form of the model problem in equatioil (3.20)

while the right, side is the truncation error. The first term on the right, side of
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e(tuation (A.13) indicates that the schemeprovidessecondorder accuracyin lime.

The secondtruncation error lerm indicates that the schemeis only third order

accurateill spacefox'('I:L numbers a pl)roaching 1, as previousl 5" showll by

Nelson [71]. However. for lnOS! problems in which the (;ottlieb-Turkel scheme is

used, the maximum ('FL number is usually sel to a va.lue of 0.5 or less. In addition.

for eOmlmtational grids that employ non-uniform stretched grids, the limiting t.ime

step is inversely proi)ortional to the smallest grid st)acing and the resulting effeclive

('t:L number wil] be much smaller in regions where the grid spacing is larger. This

is demonstrated by considering equation (3.23) for the case of variable grid spacing.

X:r, but for a constan! time st.ep _t. For such regions of the computational domain.

lhe second truncation error term on the right side of equation (3.24) will be

insignificant, and then the next. truncation error term indicates that the scheme

provides fourth order spatial accuracy. In conclusion, the Gottlieb-Turkel scheme is

strictly second order accurate in time and third order accurate in space, but in the

case of' computational grids with significant stretching, the spatial accuracy is

effectively fourth order for most of the compulational domain.

a.a F',xtension of the Gottlieb-Turkel Scheme to

Generalized Coordinates

The Gottlieb-Turkel predictor-corrector scheme is extended t.o three dimensions and

generalized curvilinear coordinates in this section. The use of generalized

coordinates, necessary for the solution of the 1RANS and LES equations on

computational grids with non-uniform stretched spacing and non-rectangular grid

cells, is presented in section a.a.1. The time step calculation procedure is discussed
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itt se('lh)n3,3.2and ih(' useof Jmm('ri('a]dissipationfor stal)i]iiv, parlicularlv ill Ill('

R:\NS regions,is (liscuss(_(Iilk Se('tioll3.3.:L

3.3.1 Generalized Coordinates

Th(' three dimensional vector forms of lhe I(ANS and I_ES equations, both given l)v

equatioll (3.7), are all extension of lhe olle (limensioJlal prol)lenl given in equation

(3.20). The (;oillieb-Turkel sclleIIle can ])e writ tell for thr('e dimensional prol)len>

as follows:

Q ,q-,t- ] (, , .,= :(_(_P.P_.Q'_ (3.25)

where [_.. P_, and P= are the one-dimensional predictor operators and C,.. ('y, and

('= are lhe one-dimensional corrector operators that correspond to the flux vectors

E. F, and G respectively.

The numerical scheine is further extended to generalized coordinates through the

transformation of the RANS and LES equations fl'om cartesian physical space

(x,y.z) to computational space ((,q,q). Hixon el a l. [41] found that the chain rule

fornlulation was more accurate than other formulations using generalized curvilinear

coordinates. The (hain rule formulation is used in this work. in which the flux

vector derivatives are expressed as:

0E 0E 0E 0E

OF OF OF OF

0G 0G 0G 0G

(3.26)
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The terms ( /1,,_,. (_. i1._, q',_._:, _1.,and C:are lhe metrics of the transformation

from physical space1ocomputat]Olmlspace.Tl_ederivation of thesellletric tel'IllS

are detailed in appendix B. They arecOnllmledusing a fourth order finite difference

melhod to be consislenl wilh l.lle Gottliel)-Turkel sche_ne.

The stress and heal flllX terlllS appearing wilhill the flux veclor expressions for the

HANS and LES equations were shown to involve the derivalives of the velocity

comlmnents and temi)era.ture with respect to the carlesian coordinates .r. 9. and :

in equations (3.12, 8.13) and (3.IS, 3.19). These velocity and temperature

derivatives are also computed using the chain rule form. For example, the HANS

derivative of the mean velocity _) with respect to ,_"is:

O_l c eJa Ob O&

07-- + +

Similarly, the LES derivative of the resolved velocity 6 with respect to :r is:

(3.27)

0b 0b Oa t) a

t) a:

To compute the derivatives of the velocity and temperature terms with respect to

the computational coordinates _, J?, q, Bayliss et. al. [9] have shown that a specific

procedure is required retain the overall accuracy of the Gottlieb Turkel scheme. For

the predictor step, which uses forward differencing for the flux terms as shown in

equation (3.21), the velocity and temperature derivatives taken in the same

computational direction as the flux vector derivative are obtained with a two point

backward difference operation, while the derivatives taken in the other two
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direclions are obtained with a central differenceoperation. Vor example, the ,

,'*E ,'_F and ,:_Gvelocity derivatives taken t.o c¢)ml)ule the flux vector terms .:<, :,_ . _in

equation (3.26)are:

Oi)
-- = h,-- h,-i
0<

^

&l 2 ("i+l - a,__)

0a 1

O( - 2 (&-+l - ha.__)

(3.2.q)

A similar procedure is used for the correcter step, for which the flux ternls are

I)ackward differenced, as shown in equation (3.22). The velocity and temperalure

derivatives taken in the same computational direction as the flux are calculal.ed

using a two-point forward differenced difference exl)ression, while the derivatives in

the other two directions are calculated with a central difference operation.

3.3.2 Time Step Calculation

A procedure for calculating a time step that will allow fox" stable calculations with

predictor-correcter schemes was proposed by Mac(!ormack in reference [62]. The

procedure involves searching the entire computational domain for the minimum

va.hw of:

_Xt= \ .X,r + + _ + a (Ax)_ + (.X_j)---Z + (_X:)--_ (3,30)

The minimum time step obtained from equation (3.30) was modified through the

use of the ('FL number, which was always less than one for the Gottlieb-Turkel

scheme, so that the actual time step used in the computations is given by:
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Al,..t = ('FLAt (3.31)

[:or the hybrid calculations of tile compressible mixing layer, the calculaled thlle

step is allowed to vary during the initial transient part of the calculation, when the

mixing laver is al[owed to develop. For the rest. of the calculation, however, the time

step is fixed to a constant value corresl)onding to the lnininmm vahle ol)served

during the initial transient development. A eollstant time step is necessary for the

LES region to calculale turbulenl statistics from flowfield data stored at constant

intervals in time.

3.3.3 Numerical Dissipation

Nulnerical dissipation is usually required in Euler and RANS computations Io

relnove numerical oscillations that are undesh'able in terms of solution accuracy and

code stability. These oscillations are typically at large wave iiunlbers caused by

nonlinearities in the solution process. ,Jameson el al. [46] and Pulliam [80] have

developed munerical dissipation schemes that have been used extensively for Euler

and Navier-Stokes calculations of aerodvnalnic flows. These schemes operate })3'

adding dissipative terms to the equations of motion, and require careful use to kee I)

tim levels of numerical dissipation as small as possible while retaining stability of

the solution.

For LES computations, the filtering process is used to develop a set. of equations

that only resolve the large scale unsteadiness associated with smaller wave nurnbers.

The larger wave number unsteadiness, including both the subgrid scale turbulence
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and the Unl)llysicalnunierica,loscillalions, are handledthrough the useof _ su])_vid

scalemodel. The eddy viscosity formulaiion of the Sxliagorinsky nlodel used ill ibis

work effe('livelv ad(ls a viscous stress lo ihe illomei3tUlli anti energy e(luai ions which

serves 1o both replace the unresolve(l subgrid scale stresses anti to dan-q) unphysica[

oscillations away fronl the flOW regions Of' interest.

Sonic authors such as Kennedy and ('arl)enter [48,4.0] and tlixon [40] tiave

develop(,d explicii filters for damping unphysical large wave number oscillations hi

lime dependent flow calculations. These filters are no( directly associated wilh the

filtering process, descrit)ed previously, used to derive the LES equations. ])iit instead

are aiiother class of nulllerica] dissipation schelnes, tlixon [40] has shown thai. tile

ext)licii filters of I(ennedy and Carpenter may be used hi conjunc(ioii wiih explicit

solvers such as the Oottlieb-Turkel scheme to damp unresolved oscillaiions, and as a

result, this method is employed here.

The Kennedy and (!arpenter fillers ha.re the form:

Q=(1 +a.D)Q (a.ae)

where D is a symmetric matrix filter flinction of order 2n(n = 1,2,3 .... ) and the

coetticien( o,, is given by:

-(1)',
a,,- (2) -_'_ (:l.a:_)

I(ennedv an(I ('arpenter developed the filter <),_D to b(, of a form that retains larger

wave nuniber components with increasing n. and to always be dissipative in effect.
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Th(' matrix fmlction D and lhe (oeffic'ionl _,, are d('rive(i for tillers of {)vders :2

through 20. corresponding to 71 = 1.10 hi ref{,rence [.49]. In lhis work, an eighth

order filler (1_ = ,1) is used, which has lhe ['orm in one dimension:

(-qi-4 + 8qi-?, - 28qi-2 -_-_(_(]i-i - 70(/i -{-7)6qt+1 - 28(1i-b2 -_-8q_4-?, -- (/i-4-4)

o,, D = 256

(3.34 )

Skewed stencils of similar form to equation (3.34) are use([ for points a,l and near

boundaries. The filter function is al)plied everywhere in the I{ANS region, but is

only applied in the I,ES region when _/ t,l'ansielll, in pressure indicates thai the

solution scheme will numerically I)ecome unstable. As a, result, the procedure used

in the LES region is to modify the coefficient o, t,o be a function of the local

pressure, such that when the pressure a,t a point in the flow drops lower than 10

percent of a reference pressure characteristic of the flow, o,, is modified t,o be

-(1)" .IOE._/ 4
a,,- _i: _ ( :, ) {3.a5)
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CHAPTER 4

RANS CALCULATIONS OF WALL BOUNDARY LAYERS

In this chapter, a series of flat plate boundary layers are calculated to investigate

lhe RANS solver of the hybrid inethod. Since no free shear layer nlixing regions

occur in these cases, the LES part of tile method is not used in these calculations.

All of these boundary la.ver calculations were obtained for a flowfie]d situation

depicted by figure 4.1 where a uniform inflow meets a smooth fiat plate and a

boundary laver develops over the plate surface.

The first case considered here is an incompressible laminar boundar3 _ layer that is

calculated using the t{ANS solver without an 3' turbulence model. The second case is

an incoInpressible turbulent boundary layer that is calculated with the

Cebeci-Smith turbulence model integrated to the wall, without the use the wall

function approach. This will be referred to hereafter as the "wall-integration"

approach. The third and fourth cases investigate two supersonic boundary layers

that have the same flow conditions as the two isolated flows that form the mixing

layer which will be investigated in the next two chapters using the combined

RANS-LES procedure. These last two boundary layer calculations are run with

both the wall-integration and wall-function approaches. With the formulation of the
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Uniform

Inflow

Developing Boundary Layer

\

Flat Plate

Figure 4.l: Schenlatic of fiat plate boundary laver

RANS solution procedure to march ill time using the Got.tlieb-Turkel scheme, the

flowfields tbr all of these cases are initially set to tile freestream conditions

everywhere in tile computational domain, and the calculations progress until a

steady state solution is obtained. The residual error and flowfield quantities such as

the skin friction coefficient were used to monitor convergence to steady state.
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• m m

Figure 4.'2: (lomputational grid for the hwoml_ressible laminar flal plale case

4.1 Incompressible Laminar Boundary Layer

The flow used for the laminar boundary laver case was constructed such that lhe

Reynolds number was 10000 at the end of the plate, using the freestream density,

velocity, and viscosity. The vertical dimension of the flow domain was one half thai

of the axial dimension. Because the flow solver was developed using the

compressible form of the Navier-Stokes equations, the fi'eestream flow was set to

correspond to Mach 0.2. Use of a smaller freestream Mach number would

substantially slow down the convergence characteristics of the numerical scheme,

Figure 4.2 shows the computational grid used for the calculations with 51 axial

points by 51 vertical points. Calculations were initia, lly,_ obtained using this two

dimensional grid and a two-dimensional version of the flow solver. Addilional

calculations were obtained with the three dimensional solver t,o further validate the

implementation of the computational method. For the three-dimensional
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calculations, 11 points were used in lhe spanwise direction to acconlmodale the

three-dimensional flow solver, but no ltow developmenl occurs in this direction. The

grid was packed to the leading edge in llle axial direction such thai lhe grid spacing

t'rot_l the firs/ to second poinl corresponds to a Reynolds ntmll)er of 10. again using

fl'eestream flow properties. In the vertical direction, the grid was packed Io lhe plate

surface such that the grid spacing from the first to second point corresponds to a

t{evnolds tmml)er of 2. A hyperbolic tangent stretching flmction was used to stretch

the grid both in the axial and vertical directions. For the three-dimensional

calculations, the grid points were equally spaced in the sl)a, nwise direction.

The boundary condition for the fiat plate is set to be a no-slip, adiabatic surface

such thai all of the velocity components are set. to zero. and the verlical

temperature gradient is zero. At the inflow, the total pressure and total

telnperature are specified to correspond to Mach 0.2 flow at. sea level atmospheric

conditions. The static pressure is set al the outflow to also correspond to Mach 0.2

flow at sea level atmospheric conditions. The boundary along the plane at the

highest vertical point is modeled as a slip-wall surface, which is also known as a

symmetry surface. A boundary condition in which all flow quantities were

extrapolated from the interior was also investigated for the top boundary, and

produced identical results for that oblained with the slip surface. For the three

dimensional calculations, the boundaries along the two extreme spanwise planes

were also set as slip surfaces. Because the solutions obtained with the two and three

dimensional calculations were found to be nearly identical, only one set of computed

results are discussed in the the rest of this section.
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The exact solution for the incompressibletlaI plate boundary laver with constant

fluid propertiesand no pressuregradient wasobtained by Blasius [111.and asa

resuh, is known asthe Blasiussolution. The Blasiussolution enablesvelociiv

profilesat differenl axial positions, ,r 1obe reducedto a singlesimilarity profile.

through the useof a similarity variable, l/. definedas:

_/= 9 7 - x
(4.1)

The exact solution of Blasius enables the skin fl'iction coetIicient, boundary laver

thickness, displacement thickness, and momentum thickness to be expressed as a

function of axial position.

Skin Diction coefticient:

(4.2)

Boundary laver thickness:

5
(4.a)

Displacement thickness:

a- 1.7208
(4.4)

Momentum thickness:
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Figure .:1.3: Skin friction for incompressible laminar boundary layer
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The calculated skin friction along the fiat. plate is compared to the expression fl'om

the Blasius solution given in equal, ion (4.2) in figure 4.:/. The overall agreement

between the calculation and the expression from the Blasius solution is good. At the

end of the plate, near Re,. = 10000, the calculation indicates that the skin fl'iction

levels off. This is a numerical effect, of the outflow boundary condition which

extrapolates the velocity components at the outflow plane from the interior, and

indicates thai the outflow plane should be downstream of the flow region of interest

when such all outflow boundary condition is used.
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Comparisonsof lhe calculated velocilv p,'ofilesare l_ladeIo l tie exacl solulioJl of

Blasius in figure 4.4 al two axial positions corresponding1ot_'_ ,, = 2000 and

1_'¢;, = 5001), AgaiH. the agreement between the exacl solution arid lhe calculaled

results is close. Coml)arisons of lhe calculated boundary layer, displacenwnl, and

momentum lhicknesses to those obtained fl'om the Blasius solution are shown iH

tigures 4.5, 4.6, and 4.7 respectively.

The boundary layer thickness along the flat plate obtained from the calcula!ions was

delermined io l>e lhe distance Dora the wall where lhe local axial velocity became

99 percent of the freestream velocity. The displacemenl and momenlum lhicknesses

were obtained by numerical integration using equations (4.6) and (4.7)respectively:

a" = 1 dv (4.6)
. =0 { '

/7 "(")0 = 1 gy (4.7)
• =0 (7. [:._

These forms of the displacement and momentum thicknesses are valid for both

laminar and turbulent incompressible flows. For compressible flows, the variation in

density appears in the two expressions, which will be shown later in the discussion

on the compressible boundary laver calculations.

The agreement between the exac! Blasius solution and the computed solutions

obtained with the Gottlieb-Turkel scheme is very close for the boundary layer

thickness and the integral thicknesses. At the end of the plate. X/L = 1, all of the

three thicknesses flatten in slope. As was the case for _he skin friction comparison in
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Figure 4.4: Velocity profiles for incompressible laminar t)oundary layer
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figure .1.3, this is due to the outflow boundary condition which extrapolates the

velocity components from one point interior to the computational grid.

4.2 Incompressible Turbulent Boundary Layer

The second boundary laver case examined was an incompressible turhulent flow over

a flat plate at Mach 0.2. A computational grid having 71 axial poinls by 71 vertical

points was examined with lhe two-dimensional flow solver. The computational

domain extended to a position corresponding to a Reynolds number of 2,000,000.

The vertical dimension was equal to 40 percent of the axial dimension. The

computational gri& shown in figure 4.8, was packed to the flat plate surface such

that the average 9 + of the first point off the wall was set to 2.5. This average y +
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lhat waselnployed to consl,rucl the COmlmlationalgrid wasdetermined by lhe

following procedure:

The definition of the wall normal coordinate F+ is:

y+ - (4.8)

Expanding the expression for the shear velocity:

, 1_ 2

i1. _ l_t" ___ /(f2 p>-II'x'

' V 7 (4.:,)V P.'

The expression for (9+) in equation 4.8 can be rewritten in terms of the local skin

fi'iction coefficient and flow properties at the wall and in the fl'eestream:

9 + = _ p,._,( ",x.Y

For this incompressible flat plate boundary layer case, the flow properties are

constant through the flow such that p_,, = p_, and if2, = ff_. Using a skin friction

coefficient that is characteristic of the flow, in this case Cf _ 0.00:}, and the

freestream conditions, equation (4.10) can be used to calculate a characteristic or

"average" y+ for the grid spacing at the wall. In the axial direction, the

computational grid was packed to the leading edge such that the initial spacing was

Ax + = 75 using the same method used to calculate the average 9 +. A hyperbolic

tangent stretching function was used to stretch the grid both in the axial and

vertical directions, as was done for the laminar flat plate case.
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Figure 4.8: ('()mputational grid for the incon:pressible turbulent fiat plate case

This incoml)ressible turbulent t)oundary laver flow was calculated using the same

RANS approach as that for the laminar t)oundarv layer, with identical t)oundarv

conditions, except that 111e(!ebeci-Smith turbulence model was also employed. The

wall function a.t)l>roach was not used here. With the grid packed tightly t.o the plate

surface and the first point off the wall placed well within the laminar sublayer, the

('ebeci-Smith turbulence model was integrated to the wall.

Unlike the laminar boundary layer, an exact solution is not. available for this

turbulent flow. ,'ks a result, the computed results are compared to a benchmark

experimental data set of Wieghardt and Tillman [112] for the wall skin fricl.ion

coefficient and velocity profiles. ('orrelations for the boundary layer, displacement

and n:oment.um thicknesses obtained by Schlichting [90] are used for comparison to

the computed results.
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Figure 4.9: Skin friction for the incompressible turbulent boundary laver

A compariso]_ of the calculated skin fl'iction with the data of Wieghardl and

Tillman is provided in figure 4.9. The calculated velocity profile at a location along

the plate corresponding to a Reynolds number based on axial position of 1,050,000

is compared to experimental measurements in figure 4.10. Figure 4.11 provides a

comparisoll of the same results for the velocity profile using wall coordinates.

Overall, the agreement between the calculated boundary laver results and the

experimental data of Wieghardt and Tilhnan is very close.

A comparison of the calculated boundary layer, displacement, and momentum

thicknesses to correlations provided by Schlichting [90] are shown in figures 4.1 o

4.1:t, and 4.14 respectively. The correlations for these thicknesses are as follows:
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1,0,50,000 using wall coordinates
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Figure 4.13: Displacement thickness for the incompressible turbulent boundary layer
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Boundary laver thickness:

(_ 1

- = 0.:17H¢_, 5 (-l. 11 )
3 •

Displacement thickness:

(4.12)
$

Momentum thickness:

7_
0 = 72 (4.13)
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Tile correlations provided in equations (4.11- .:1.13)arederivedassumingthe

velocity protile for an incoml)ressibleturl)ulelll ttow overa smooth surfacecanbe

representedby a _-th power law profile. That is:

1

(_. - (4.14/

The agreemem belween the correlations and (he computed solu(ions obtained with

the Gottlieb-Turkel scheme and (!ebeci-Smith turbulence model is good. Again near

the end of the plate, the outflow })ollndarv condition extrapolates the components of

the velocities such thai the three thicknesses flatten between the next to last grid

point in the axial direction and the outflow boundary. This behavior does not

adversely affect the rest of the boundary layer development upstream of the outflow

boundary as indicated by figures ._.12 - 4.14.

4.3 Compressible Turbulent Boundary Layers

In this section, two compressible supersonic boundary layers are investigated to

further validate the tlANS approach. The two boundary layers selected were the

two flows entering the mixing laver to be examined with the hybrid RANS/LES

method. The particular mixing layer is one of the experinlents of Goebel and

Dut, ton [:34:16] referred to as Case ;2 in these references. Their experimental

configuration is depicted by the schematic shown in figure 1.1. Upstream of the

mixing layer, the flow on the top half of the splitter plate is for a Math 1.91 stream

and a total temperature of 578 K. On the bottom half of the splitter plate, a

boundary layer grows for a Mach 1.36 stream at a total temperature of 295 K. The

Goebel-I)utton experiments provide details of the boundary laver entering the
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mixing region including measurementsof the boundary layer, displacement,and

nlomentuln thicknesses.More de(ailsof (he experimental configuration, flow

(o)tditions, and data collection, particularh, regarding the mixing section, will I)('

provided in chapler ,5.

For each of the supersonic boundary layers, both the wall-integration and

wall-fimclion approaches are invesligaled. As mentiolled i)l chal)ter 2, tile

motivation for employing (,he wall function approach in conjunction with the

(!ebeci-Smith turbulence model was (o enable a continuous computational grid fi'om

lhe wall bounded RANS regions into the mixing laver (hat is then calculated using

the LES part of the hybrid approach. (:omparison of the wall-ftmction approach to

the more standard wall-integration approach and the compressible boundary laver

correlations determines the capability of the wall-function implementation to

accurat.ely provide the mean flow characteristics of tile incoming boundary layer.

Ill the previous section, calculated results were colnpared to benchmark

experimental data for the incompressible turbulent boundary layer. Although the

measurements of the boundary laver, displa.cement thickness, and momentum

thicknesses at the trailing edge of the wall bounded regions in the Goebel-Dutton

experiments make them on(" of the better documented mixing layer data sets, other

details of the boundary law.'r developments are not provided.

As a result, well established correlations for the skin friction coefficient, velocity

profiles, boundary layer thickness, and integral thicknesses are used to investigate

the details of the boundary layer development for the two particular supersonic
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flows here. The calculatedskin frictiou coefficient is ('ompared to a combined

correlation, that is referwd to here as the' Mager-Schlicbting correlation. In

reference [90]. Schlichting provided the following expression for the skin fl'iction

coefficient for an incompressible fiat plate with turbulent flow from the leading edge:

1

('/ = .05!)217e ,,7_, (4.15)

In reference [63], Mager provides a correction to equation (4,15) for the skin friction

coefficient in compressible turbulent flow:

(4.1f;)

To evaluate the other boundary laver characteristics such as velocity profiles.

boundary laver thickness, and the integral thicknesses, the method developed by'

Tucker [105] is used here. Tucker provides a power-law relationship for the velocity

profile in turbulent compressible flow that is similar to the incompressible form

given in equation 4.14. l_Tnlike the incompressible form which assumes a constant

exponent of 7. the compressible form uses a variable exponent:

where the exponent N is given by:

1

_ :'TOO

l

N= (4.1s)
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The Rm'nohlsnumber t/_ ..... is based on lhe lenglh of lhc 1)oun(larv lax'ev

develol)lnent. The subscript am refers to the procedure of evaluating all tluid

properties at the arithmelic mean of the wall lemperature and the freeslream

temperature. Tucker shows that a solution of the I(arnlan momentunl equation

results in:

I

The parameter I< is given by:

(4.1!))

1

p.a. t

where tto, po. and ao are t,he dynamic viscosity, density, and speed of sound,

respectively, all evaluated at the freestreanl total temperature.

Finally, the Mach number parameter, m 2. is given by:

(4.20)

m 2 = _ ('4.21)

Tucker provides filrther integral relationships between the momentum thickness. 0,

given by equation 4.19 and the boundary laver thickness, & the displacement

thickness. _*. While the ratios 0/_ and _'/(_ are assumed to be nearly constant for

incompressible flows, as indicated by equations 4.12 and 4.13, Tucker shows them 1o

be a function of the freestream Mach number and the velocity profile parameter, N.

Reference [105] provides extensive tables from which 3, d*, and 0 may be obtained.

NASA/TM--2001-210811 84



Following the validatiol, of the' RANS apt)roachfor the Mach 1.91and Mach 1.:36

cases,lhe objectiveswill I)(' lo provideboundary layersto the mixing section in the

hybrid RANS/I.ES calculationsthat match the meanflow properties measuredin

the Dutton-(;oebel experinlent. As a result, physicaldimensionswill be usedto

describethe computational grids and the calculatedthicknesses,_,c5", and 0 in lhe

following two sections.

4.3.1 Mach 1.91 Flat Plate Flow

The computational grid for the wall-integration case is shown in figure 4.15 and lhe

grid for the wall function case is shown in figure 4.16. B01h gri(ls exten(led 300 n_m

in the axial direction and 150 _nm in the vertical direction. In addition, t)oth grids

used 141 t)oints in the axial direction and 141 poinls in the vertical direction. The

wall-integration grid was packed to the wall such that the first grid spacing was

0.006 ram, corresl)onding to an average y+ of 2.5, using e(tuation (4.8). The wall

function grid had the first point placed at. 0.0,5 rnrn, correst)onding to an average y+

of approximately 20. This wall spacing was chosen for use with the wall-function

grid so that the initial grid spacing at the wall was exactly 1/10th of the splitter

plate thickness in the experiment. This grid spacing could then be continued into

the mixing region, with 10 points spaced equally in the vertical direction at the base

of the splitter. In the axial direction, both the wall-integration and wall-function

grids were packed to leading and trailing edges with spacings at the two ends set to

0.10 ram, correst)onding to 1/Sth of the splitter base thickness.

The wall boundary condition for the calculations was set to be an adiabatic no-slip

surface and the extreme vertical boundary was set as a slip surface, as was done for
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Figure 4.15: ('Omlmtational grid for the Mach 1.91 turbulent flat plate case using the

wail-integration method

Figure 4.16: Computat, ional grid for the turbulent, Mach 1.91 fiat, plat, e case using the

Ota-(loldberg wall flmction
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tile incompressil_le turbulent boundary laver. For this supersonic tmmldarv laver,

however, the inflow condition was fixed and the outflow con(lilioil extl'al>olat<'d

(lua.nt ities.

Tile skin friction coetficient along the flat plate obtained fl'om the two computed

solutions is compared t,o the Mager-Schlichting correlalion in tigure 4.17. The

wall-integration skin friction resulls were obtained by directly evaluating the shear

stress at the wall, since the grid was packed to the wall surface with the first point

off the wall placed in the laminar sublaver. For the wall-funclion case. however, the

shear velocity that is solved with an iterative procedure within the Ota-(;oldberg

wall-function was used to calculate the skin friction coetficient along the flat plate.

The agreement of the two solutions with the Mager-Schlichting correlation is good,

with the wall-integration approach providing closet" agreement.

The calculated velocity profiles at a location along the plate corresponding to a

Reynolds number based on axial position of 4.000,000 is compared to results of the

Tucker method in figure 4.18. The profile obtained with the Tucker correlation was

obtained by using equa.tion (4.17) with the exponent N given in equation (4.18)

evaluated to be 6.275 at. this axial position. In figure 4.19 the velocity profile at. the

same location expressed in wall coordinates, u + and ,q+ is compared to the

White-Christoph compressible law of the wall given in equation (2.88). Figures 4.18

and 4.19 indicate that both the wall-integration and wall-function calculations

provide good a.greement with a.nalvtical expressions developed to evaluate

compressible t.urbulent boundary layer characteristics.
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Figure 4.17: Skin friction fox' the Mach 1.91 turbulent boundary laver
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The calculated boundary layer, displacement, and nlomentum thicknesses are

colnl_ared to results obtained using the Tucker method in figures 4.20, 4.21, and

4.22 respectively. Tile boundary layer thickness along the turbulent compressible

fiat plate was determined in the same manner used for the incompressible turl)ulent

case, by finding the distance from the wall where the local axial velocity became 99

percent of the freestream velocity. The displacement and momentunl thicknesses for

the compressible case differ from the incompressible case in that the density is

involved in the integral expressions. These two integral quantities are defined for the

compressible case in equations (4.22) and (4.:23):
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Figure 4.22: Momentum thickness for the Mach 1.91 turbulent boundary laver

. , =o p._. ( i_
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0=£ P" (1- ")=op_lr _ d9 (4.23)

The three measures of the boundary laver growth shown in figures 4.20 - 4.22 again

indicate close agreement with results obtained using the Tucker analysis. The

greatest discrepancy in these results is for the wa.ll-flmction solution near the

leading edge of the plate. This is a result of the wall-function grid having

significantly fewer points than the wall-integration grid near the wall to resolve the

thin boundary layer at. the leading edge. Further downstream, however, the

wall-function approach provides similar agreement to the Tucker correlation.
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4.3.2 Mach 1.36 Flat Plate Flow

The cottqmtat ional grids used for the wall-integratiou and wall funcl iou cases are

showu in figures 4.23 and d.24 resl)ectively. The construction of these grids was

similar to tllal l>erfornle(t for the Ma(']l 1.91 calculaliolls, with tilt, excel_tion of tile

axial dimension being shorter for these Math 1.36 calctt]ations. This wa.,, doue

})ecattse the Nlactl 1.36 l)oundarv laver thickness in the l)itttot>(',oel)el experin]eut

measure(l at the begint+ing of tit( + llliXillg SCCtiOl/ was stnaller that+ the _lach 1.91

boutldarv laver, as will be discussed in the next chapter. The grids extended 200

mm iu the axial direction and 150 Pl+m in the vertical direction. Both grids used 141

points in the axial direction by 141 points in the vertical directiotl. The grid ('or tile

wa[]-integratiotl case was packed to the wall such that the first grid Slm Cing was

0.006 ram, cot'responding to an average .q+ of approximately 3.0, again using

equat ion (t.S). +FILewall function grid had the firsl point placed at 0.0.5 +P+1,,

corresponding to an average y+ of approximately 25. Both grids were packed in the

axial direction to leading and trailing edges with spacings at the two ends set lo

0.10 ram, corresponding to 1/Sth of the splitter base thickness. TILe boundary

conditions used for these Mach 1.36 cases were the same as those used for tile Math

1.91 case, with the only difference being that a Mach 1.36 flow was fixed at the

inflow here.

The skin friction coefficient obtained from tile two computed solutions is compared

to the Mager-Schlichting correlation in figure 4.:2.5. Tile agreement of the two

solutions with tile correlation is nearly as close as that for the Mach 1.91 case, with

the directly calculated shear stress from tile wall-integration approach providing
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closer agreement to the correlation than the wall-function approach. The

calculated velocity profiles at a location along the plate corresponding to a Reynolds

number based on axial position of 4,000,000 is compared to results of the Tucker

method in figure 4.26. For the Mach 1.:}6 boundary layer at this location, the

Tucker analysis indicates that the velocity profile exponent is 6.:}70. In figure 4.27

the velocity profile expressed in wall coordinates, u + and y+ is compared to the

White-Christoph compressible law of the wall profile. In figures 4.26 and 4.27, both

the wall-integration and wall-function calculations indicate acceptable a.greement

with the analytical expressions.

Finally, the calculated boundary layer, displacement, and momentum thicknesses

are compared to the Tucker method in figures 4.28, 4.29, and 4.30 respectively. The
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agreement of the solutions with the Tucker correlation is good. although the

agreement is not as close as for the Mach 1.91 case. The wall-function solution

again indicates the largest discrepancy near the leading edge of the plate where the

number of grid points available to resolve the thin boundary layer is tow. The

discrepancy is minimized fiarther downstream, where the boundary layer becomes

thicker.
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Figure 4.30: Momentum thickness for the Mach 1.36 turbulent boundary layer
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CHAPTER 5

TWO DIMENSIONAL MIXING LAYER CALCULATIONS

Two dimensional calculations with the hybrid tlANS-LES melhod were performed

for a l.)enchnaark compressible mixing layer experimenl and the results are described

in this chapter. While true LES simulations require computations in three spatial

directions, it. is useful to compare two dimensional calculations to investigate effects

of the RANS-LES interface region, axial grid resolution, and boundary conditions.

The results of three dimensional calculations are presented in chapter 6 for tile same

experimental configuration.

In this chapter, details of tile experinlental configuration and operating conditions

are provided in section 5.1. Construction of the computational model is provided in

5.2. Two-dimensional calculations investigating axial grid density effects are

presented in section 5.::I. Finally, calculations which investigate the splitter plate

thickness and mixing section wall placement are presented in section 5.4.

5.1 Experimental Configuration

The flow that. is the focus of the hybrid inethod calculations is a two-stream,

turbulent, planar mixing layer that was examined in the experiments of Goebel and
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I)utton [3t 36J. A simplifie(tschcnlaticoftheirexperimentalconfiguralion provhle(l

in figure .5.1 shows that two isolale(I air streams, in which boun(larv layers (levelo 1)

over a sl)lilt('v plate surface, are brought iogether into a constanl area ]nixing

section. In all of their experiments, the higher speed primary slream occurre(l over

lhe lop surface of the splitter plate. The top slream enters lh¢_ mixing s(wlion

axially, while the I)ott.onl st.ream ellters the mixing section at an angle of 2.5

degrees. The splitter plate thickness has a base height of 0.5 roT, al lhe trailing

e(tgc, l rpstream of the straight sections for the two i.,solale(I flows shown ixl figure

5.1, contoured nozzle blocks were used 1,O provide the supersonic flows with neat'Iv

uniform exit flow conditions.

The mixing section height was .18/_m, and the overall length of the mixing section

available for flowfield measurements was 500 ,_m. The width of the mixing section

was 96 ram. and as a result, the mean flow development could be considered

two-dimensional. This was also verified in the experiment. The divergence angle of

the lower and upper wails of the mixing section were adjusted in each experiment

with two incoming supersonic flows, to account for boundary laver growth along

these two surfaces and to effectively remove any sl reamwise pressure gradient.

Single component LDV measurements of turbulence intensities in the upstream

flows taken 2 mm upstream of the splitter plate trailing edge indicated that

incoming boundary layers were t.urbulent for all cases. These LDV measurements

were also used to calculate the boundary layer, displacement, and nloment.um

thicknesses of the two streams as thev enter the mixing section. This makes the

Coebel-Dutton experiments one of the more thoroughly documented benchmark
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Figure 5.1: Schematic of Goebel-Dutton mixing layer experiment

data sets available for compressible mixing layers. In the mixing region, a

two-component LDV system was used t.o measure the axial and transverse

velocities. In addition, a Schlieren system with a 20 ns pulse duration was used t.o

obtain nearly, instantaneous snapshots of the mixing layer.

Goebel and Dutton examined seven cases using this experimental configuration.

This work investigates their case '2 experiment. The operating conditions of the two

streams in case 2 are provided in table 5.1. The two supersonic flows were matched

in static pressure a.t the beginning of the mixing section (end of the splitter plate).
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lop flow J)oitonl flow

:llachXo. 1.91 1.36

1 ( m/._ ) 700 :}9.q

G(A) 5rs
T(A') 334 215

a(._/,_) :t6(i 29:_

P(/,. t-',-_) 49 4._)

p( t¢g/m :3) 0.51 0.79

_(m._) 2.9 2.5

_>7"(mm) 0.90 0.4,1

O ( l_l_ _ ) 0.29 0.21

Table 5.1: Flow conditions for case :2 of the Goebel-Dution experiments

5.2 Two Dimensional Computational Modeling

The development of the computational niodel began by using the results of lhe

Mach 1.91 and Mach 1.3(; 1)oundary layer shnulatiions discussed in chapler 4.

Specifically, the wall-function solutions were examined, because the computational

grids utilized in conjunction with the wall-function approach were constructed to

enable a continuous grid into the mixing region for use with the hybrid RANS-LES

solver. The objective was to construct two RANS regions that would provide

boundary laver quantities 6, a', and 0 that nearly matched those measured in the

experiment, and shown in table ,3.1. Because it would be virlually impossible t,o

match all of three quantities exactly', the momentum thickness _ was chosen as the

key boundary laver parameter to match the computations with the experiment. The

momentum thickness represents the mean momentum deficit entering the mixing

section and is fundamental to the downstream mixing layer behavior.
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(;oel_el-I)utton Experilnent Wall-Function Calculations

Ta.ble5.2: ('Oral)arisenof 1)oundarvlayer quantities at.splitter plate trailing edge

While the comparisonof calculated quantities to the Tucker theory in section .4.3

was performed to verify the RANS method against well established correlations, the

objective here was to determine the axial length of plate needed for the Math 1.91

and Mach 1.36 boundary layers to reach t.he same state as those measured in the

Goebel-l)utton experimen(. Examining the Mach 1.91 boundary laver first, table

5. l indicates thai the momentum thickness for this stream was measured a.s 0.29

m_)_ at the trailing edge of the splitter plate. For the wall function calculations

discussed in section 4.3, the momentum lhickness reached 0.29 7_,_ a.( a. Reynolds

number of 3,540.000 (see figure 4.22), corresponding t.o an axial position of 198 _)_77z

from the leading edge of the p]ate. The other boundary layer quantities obtained

from the calculations are also in close agreement with the (;oebel-Dutton

measurements, as shown in table 5.2.

The next step was to construct a new computational grid. The axial domain was

shortened to 198 71,7_t while retaining the same number (141) of axial grid points.

The grid stretching was modified to accommodate the shorter domain while
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nlainlailling the initial and lerminal grid spacings.The verlical _hmlail_was reduced

1o23.75 mm Io exactly malch the height of the Math l.gl stream in 1he experimelBl.

The verlical domain of the original grid reached 23.75 mn_ at the 94lh grid l_Oinl ill

the vertical direction, so lhe first 94 points fi'onl tlle original grid were used in lhe

modified grid. ('alculations obtained with lhis 1-11 x 9,1 poinl. 1.q8 n_,_ by 23.7_ ,_m

grid provided boundary laver quantities identical lo that of the original 141 x l_ll

grid. further validating the grid independent characteristics of the RANS melhod.

:\ similar procedure was used for the Math 1.36 boundary layer. Table 5.1 indicates

that lhe momenlum thickness for lhis stream was 0.21 ._._ a,t the splitter trailing

edge. Examination of the wall-funclion solution obt, ained for the Mach 1.3(;

l)oundar\ laver in set'lion 4,3 revealed lhal the lllOlllOnl UI11thickness becanle (1.21

i1_/_, at an axial posilion of approximately 120 m._. corresponding to a plate

llevnohls number of 2.690.000. As was lhe case for the Mach 1.91 botmdarv laver.

all three measures of the boundary laver developmen! were in close agreement with

lhe experimental measurements tbr l,he Mach 1.36 case. as shown in table 5.2.

A modified grid was constructed using 141 axial and 94 vertical points for this Mach

1.36 case. corresponding to a physical domain of 120 m._ by 23.75 ._._.

('alculations with this modified grid provided a solution identical to that obtained

with the original 141 x 141 grid.

T 1The last step before constructing the entire RANS-LES computational grid was to

use grid points from the modified wall-function grids just discussed, extending from

81-141 in the axial domain and fix the solutions at the Slst axial station as the
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inflow, in order lo reducethe grid requirementsof the final hybrid I{ANS-LES grid.

Boundary laver calculationssubsequentlyobtained with these two shortenedaxial

grids using 61axial points and 94 vertical 1)oint,s again rettlrlled the sa,meboundary

laver quantilies and velocity profiles as lhe other solutions. Thesewerethe IiANS

grids that wereused to join with the LES mixing region computational domain.

As will be discussed in section 5.3, three differenl axial grid spacings were examined

in the initial two dimensional hybrid calculations. In all cases, however, the vertical

spacing from the two RANS regions was continued throughout the entire LES

region. \\Tith the tightest vertical spacing of the wall-fnnction boundary laver

solutions set to 0.0,5 'mT_z, 10 grid spacings were used vertically across the splitter

base. As a, result,, all of the hybrid grids used 197 vertical points in the mixing

region.

For all of the hybrid calculations discussed in this chapter and in chapter 6. fixed

inflow boundary conditions were used at, the RANS inflows. The fixed inflow for the

Mach 1.91 upper stream was placed at, an axial position 67 mm upstream of tile

splitter plate trailing edge and the Math 1.36 lower streanl inflow was placed 42 ,_m

upstream of splitter tip. Although inforination regarding the temperature and heat

transfer characteristics of the splitter plate walls were not available from the

experiment, these surfaces were set as adiabatic no-slip boundaries, At the outflow

of the mixing section, corresponding to a,n axial distance of 300 mm from the

trailing edge of the splitter plate, an extrapolation boundary condition was used,

which is appropriate for the mixing supersonic flow exiting the axial domain. The

top and bottom walls of the mixing section were approximated as slip walls, and no
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ali erupts weremadeIo simulate boumlarv layersdevelopingon (heset,wosurfaces.

Tile Goel)et-Dulton experin_entalconfiguration wasspecitical]ydesignedwith

adjuslal)le divergellce angles for these walls to accoulll for bomLdarv layer grow! h.

and to thereby provide experimenial data that may be direc(lv compared to

calculations which do not include the mixing section boundary layers.

The combined RAN,S-I,ES calculations were obtained t)y marching ill time with the

(;ott]ieb-Turkel scheme for the entire computational domain. Although the RANS

regions did not change after reaching convergence, calculations were still performed

in the RANS regions, in case any large perturbations ['rom the LES region travelled

upstrealn. Because of the zero-pressure gradient nature of these boundary layers,

however, no large upstream fluctuations were noted in any of the hybrid

calculalions. No subgrid scale model was used ill any of the two dimensional

calculations discussed ill this chapter. :\s a result, the use of a turbulence model

termillated at the end of the RANS regions. For the three dimensional calculations

of the same configuration discussed ill chapter 6, the Snlagorinsky subgrid scale

model was e)nployet[.

For the two-dimensional cases discussed in this chapter and the three-dimensional

cases discussed ill chapter 6, a series of flowfield contours is shown in the mixing

section l,o illustrate the mixing layer development and to help compare qualitative

features of lhe differen( modeling approaches. Instantaneous density and entropy

contours are presented to show images of the mixing laver at a snapshot in time.

For each of these quantities, a,n image is shown for the first one-third of the mixing

duct to provide details of the initial mixing layer development. An image of the
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entire computational domain is also shown, extending from Ill(' inflow of tile two

isolaled HANS streams to the exil of the mixi1_g section in the LES region.

Density contours are useful for visualizing the ttow characteristics in the mixing

regiol_. In addition, they provide a computational analogy to the SchliereJl

photographs that are used to illustraIe mixing laver development in experimenls.

While the strongest gradients of the density will be observed to be in _lle developing

shear layer, gradients are also observed in the regions above and below the mixing

layer. These are the resul! of Math waves generated by the unsteady mixing laver

and their interaction with the lwo walls of the confined mixing section. Such waves

were also evident in the Schlieren photographs of the Goebel-Dutton experiments.

A Schlieren image taken of the first 250 mT_ of the mixing section in the

Goebel-Dutton case 2 experiments is shown in figure 5.2.

In order to isolate the development of the mixing laver, instantaneous ent.ropy

contours are also used in the following discussions. Because the Math waves

occurring between the developing mixing laver and the two mixing section walls are

of relatively weak strength, the entropy gra.dients in these regions are quile small.

As a results, entropy contours enable emphasis to be placed on the mixing layer

development more clearly than is possible with the density contours. The entropy

function of the PLOT3D program [109] is used here, which calculates the entropy in

an ideal gas with constant specific heats as:

' + Celn (5.1)
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\Vhore P,.,/ and p,.(f are reference quanlilies used to nondimensionalize the enlire

flow domain.

Time-averaged axial velocity and turbulent intensity profiles oblained from the

calculations are compared with experimental mea.surenwnts. The procedure used to

obtain these time averaged quantities is discussed in appendix ('.

5.3 Axial Grid Density Effects

Three computational grids are considered initially t.o examine tile effects of axial

grid resolution. Because the grid resolution in the vertical direclion exceeded tha! of

the axial sl)acing tbr even the finesl grid examined here, no variation in the vertical

spacing was considered and all of lhe grids had 197 vertical points in the mixing

section. The three grids examined have 200,400, and 800 axial points respectively

and all are similar t.o the domain shown in figure 5.:1. which corresponds to the

coarsest grid used (200 axial points). The grid detail extending from the end of the

RANS regions into tile initial portion of the LES region is shown in figure 5.3(a).

The entire computational domain is shown in figure 5.3(b). For clarity, only every

third grid point is shown in both the axial and vertical directions in figure 5.3(t)).

Showing every grid point for even the coarsest 200 point grid would obscure the

depiction of the grid topology.

Figure 5.4 shows the detail near the trailing edge of the splitter for all three grids.

In every case, 10 equal grid spacings are used vertically across the 0.5 mrl_ splitter

plate trailing edge. This grid spacing (Ay = 0.05 ram) matches the initial vertical

spacing of the wall boundary layers in the RANS regions. Axially, all three grids are
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mixing regionsize 200 axial I)ts. 400 axialpts. 800 axial l)lS.

stretching faclor _ 1.0215 1.008:1 1.002!}

_k,rl(mm) .10 .10 .10

--X.rt_,._t(II_ t_/) 6.:52 2.(i0 1.06

(:;5.2 26.0 10.6
.Sa'l

Table 5.:/: (Iomparison of axial grid sl)acings

packed to the splitter trailing edge such that the initial ,5,r spacing is twice that of

the finest _9 spacing. The only difference between the three grids is the axial

stretching factor, which is fastest for the 200 point grid and slowes_ for the 800

point grid. In all cases a geometric stretching factor was used. Table 5.3 provides a

comparison of the axial spacings for the three grids.

The first two dimensional simulation investigating grid density effects was for the

coarsest grid using 200 axial points. Figures 5.5 and 5.6 provide instantaneous

contours of the density and ent, ropy for this case. In each of these contours, a vorlex

shedding pattern originates fl'om the trailing edge of the splitter plate due to the

separation of the two flows leaving the wall bounded RANS regions and entering the

LES mixing section. The vortex shedding quickly dissipates and the flow appears to

be laminar until an axial position corresponding to nearly one fourth of the overall

duct. length. At this position, an instability forms and the flow initiates transition to

an unsteady turbulent pattern. The Reynolds number at the instability location is

900,000 using an average value of the viscosity and density from the two streams,
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lhe difference ill velocity of tile lwo slreams, and the axial position of approxinlalelv

80ram.

Tile luI'l)ulent-like behavior quickly dissipates again, however, and the flow returns

lo a laminar slate. For this case. the conlparatively coarse grid enables lhe

trtlllCal iOll error of the Gottlieb-Turkel schenle, shown previously in equation (3.24

to damp any oscillat, ions without the lisp of a,ltV l,urbulellce model or arl ificial

dissipation in tile mixing region. Because the 1.urbulellt behavior for this case was

very limited, no turbulent averaging was done for this case. One final observation

from this case was the Math waves originating fl'otn the trailing edge of the splitter.

These waves, ill ttlrn, reflect of[' of the lnixing section walls and back onto tile

splitter. A qualitatively silnilar patl ern was observed in the Goebel-Dutton

Schlieren photographs as shown in figure 5.2.

The second lwo dimensional simulation was for the computatioila] grid using 400

axial points. The characteristics of this flow were substantially dif[erent fronl those

of the 200 grid point case. Instantaneous density and entropy contours are provided

in figures 5.7 and 5.8. A stronger vortex shedding is evident for this case, although

the vortex slrength gradually dissipates back t.o a laminar state approximately 40

_l_m downstream of the splitter trailing edge. An instability again forins a! an axial

position of 80 _m which in turn slightly dissipates before resuming growth at a

position 180 mm dowllstream of the splitter plate trailing edge. A turbulent pattern

then grows from this location to the exit at a' =300 ran,.
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The 400 point axial grid examinedconsisledof smalleraxial grid sleps than the 200

axial I)oinl grid and had a significamly reduced stretching factor relative to the

coarse grid. As a result, the truncation error term in the (k)tlliel,-Turkel scheme

ttm_ effectiveh" smooths discol_thmi_ie._ is substantia.lh' reduced for the 401) a.'da)

poim grid, and the capability to resolve unsteady flow behavior is improved.

The third computational grid hlvestigat.ed in this section was for the 800 axial point

grid. A substantially different flow behavior is also observed for this case compared

t.o the solutions obtained with 200 and 400 axial points. Tile density and entropy

contours in figures 5.9 and 5.10 again indicate a vortex shedding pattern that

originates fl'om the tra.iling edge of the splitter plate, but unlike the olher two cases,

the solution does not return t.o a laminar state before transitioning over to a

turbulent-like patt, ern. The very tight axial spacing for this case is sufficient to

minimize the trunca.tfon error damping effects on the unsteady flow development.

[ntereslingly, the transition fl'om the organized vortex structure to a more random

turbulent structure occurs at nearly the same location as the transition for the other

two computational grids, although the flow behavior both upstream and

downstream of this point is substantially different.

A somewhat organized coherent structure nlav be observed from the contours of

density and entropy for the 800 axial point case shown in figures ;5.9 and 5.10, and

near the end of the mixing section for the 400 axial point case shown in figures 5.7

and 5.8. These structures are similar in form to those of the well known Brown and

Roshko Ii6,861 mixing layer studies. The Brown and Roshko investigations of

incompressible turbulent mixing layers indicated that the turbulent mixing layer
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develotmwntwascharacterized by larg(' coherent st, ruclures. As the [levnolds

nlnllber in their ¢'xl)eriments was in<'rt'ased, a fine scale lurbulencc contained xvilllin

lhe larger scale structures was evidenl. However, the nl_'an flow l)roperties were

found to be the same regardless of the Reynolds number, indicating t,ha_ lhe mean

tlow characterist its are dominated t)v lhe large scale struclure.

The conveclive Mach nul-nl)er i)aranleter was developed by Bogda, noff [12] and

Pat)amoscshou and Roshko [76] for use in characterizing the compressibility

characteristics of high speed turbulent mixing layers. For a planar mixing laver with

equal specific heat ratios, the convective Mach number is defined:

l:_ - l-2
31. - (5.2)

al + "2

For lhe Goebel-I)utton case :2 experiment investigated here, the convective Mach

number was 0.4.55. Clemens and Mungal [21] conducted experiments of planar

turbulent mixing layers with convective Mach number from 0.28 to 0.79. They

found that as the convective Mach ntHnber is increased, the characteristics of' the

mixing laver changed from an organized two-dimensional Brown-Roshko structure

to a three-dimensional structure with less evidence of large scale organization.

Direct simulations of compressible shear layers conducted by Sandham and

Reynolds [87] also indicted that three-dimensional instability modes become

dominant at convective Mach numbers greater than 0.6. Their simulations also

indicated reduced mixing layer growth rate with increasing convective Mach

ntln-lber.
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The mean axial velocity profiles obtained from lhc two-dimensional solulions using

400 and 800 axial grid points are c()mpared 1o the measuremenls of Goel)el and

Dutton in figure 5.11. Because the calculations discussed in this chapter aw only

two-dimensional, and do not use a true LES approach in the mixing region, only

qualitative comparisons with the data will t)e emphasized here. The comparisons

are made at four axial stations in the mixing layer, .r = 50. 100,150, and 200 ram,

with ;r = 0 representing the beginning of the mixing section. As inelltioned

previousl)', x= 0 is also the axial position a.t which the swilch from the RANS

regions to the the LES region occurs. Comparisons of the two turbulence intensilies

'u,.,,_,_and _¥,_._ are shown in figures 5.12 and 5.13 respectively.

The mean axial velocities are plotted versus vertical position normalized by the

mixing section height, 48 ,_m, in order Io give an indication of the shear layer

spreading through the mixing section. In addition, the vertical positions were

adjusted so that y/H = 0 represented the location where the local axial velocity was

the mean of the two freestream velocities. The adjustment was also made in the

experimental data as reported by Goebel and Dutton [36]. The turbulence

intensities are plotted versus vertical position normalized by the local shear layer

widih, defined by Goebel and Dutton as the distance between vertical positions

where (7 = ('_l - 0.1AU and _7;= U2 + 0.1A(;. The two velocities U1 and (._ are the

upper and lower stream velocities, respectively.

The computed axial velocity contours indicate a much larger wake region than

found in the experiments, and a greater discrepancy is observed for the 400 axial

point case. At the x = 200 rnm axial station, both solutions have returned to agree
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moderatel\' well with the data. The comparisons of streamwise and transverse

turbulence intensities in figures 5.12 and 5.13 indicate substantial differences

l_etween tlle solutions and data. Both soluiions, and especially the-_0(i axial point

solution, show low levels of u,.,,_, and _'r,_,_ at the .r= 50 mm station. For the 400

point case. this corresponds to the nearly lamillar like state indicated 1)v the

contours shown in figures 5.7 and 5.+. Further downstream the intensities of the two

solutions grow substantially and by the a+= 200 mm station, the transverse

ttlrtmletwe intensities Dom the solutions is substantially larger than those from the

experiment. The profiles of u,.,,,+ obtained from the calculations demonstrates a

double peak. particularly at x = 100 ram. This appears to be an indication that the

velocity ttuctuatiotls are hafluenced ulore by the organized vortical structure earl'>' in

the mixing section than by the tbrmation of ttlrl)ulence.

I)espite the significanl differences among the solutions obtained with the three

computational grids discussed here. the vortex shedding from the trailing edge of

the splitter and the appearance of waves originating from the splitter plate and

reflecting off the mixing section walls were common to the three solutions. In the

next section, the influence of the splitter base region and the mixing section walls

are investigated. A final note from this section is that while grid refinement in

t_ANS calculations is performed to achieve grid independence, and major changes in

flow solutions when using two different grid resolutions usually indicates a modeling

problem, this is not the case in LES computations. Crid refinement in LES enables

more and more of the unsteady turbulent spectrum to be resolved, until the limit of

DNS is reached. The purpose of a subgrid scale model in LES computations is to
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Figure 5.2: Schlierenphotogral)h of the Goebel-Dutton mixing layer (fi'om ttef. 3,1.
usedwith permission)

effectively representthe turbulent motion that is too small to be resolvedby lhe

computational grid.
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(a) B_ginning of mixing section

(b) Entire COmlmtational domain (every third grid point in each direction shown)

Figure 5.3: Computational grid for tile 200 axial grid point case
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(a)200axialpointsin mixingsection

(b) ,t00axialpoint,s inmixingsection

(c)800axialpointsinmixingsection

Figure 5.4: Comparisonof computationalgrids near the splitter plate trailing edge
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-- -. .

(a) Beginning of mixing section

(b) Entire mixing section

Figure 5.5: Instantaneous density contours for the 200 axial grid point case
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(a)I:_leginningof mixingsection

1
1,

| i
(b) Fmth'e mixing section

Figure 5.0: lnsl;anlaneous enlropy conlom's for lho 200 axial grid l:mint case
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(a) Beghining of"mixing sect,ion

L _ ii

l

Figure 5.7: Insta.ntaneous densit, v contours for t,he 400 axial grid point case
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(a) Beginning of mixing section

(b) Entire mixing section

Figure 5.8: Instantaneous entropy contours for the 400 axial grid point case

NASA/TM--2001-210811 121



(b)Entiremixingsection

Figure 5.9: Inst,ant,aneousdensity contoursfor the baseline800axial grid point, case
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(a)Beginningof mixingsection

(b)Entiremixingsection

Figure 5.10: Instantaneousentropy contoursfor the baseline800axial grid point case
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5.4 Boundary Condition Effects

Ill lhis seclion, results obtained tbr the t_aseline case wit h 800 axial points are

compared lo lwo additional solutions obtained with 800 axial poinls. The firsl of

these considers a modified splitter geometry in which the splitter trailing edge is

reduced to a sharp tip, and as a result, the flow separation and vorlex shedding is

renloved. The second additional case is obtained for a modified mixing secLion in

which the mixing section walls are moved very far vertically from the nlixing layer.

This is done so thai any waves originating fl'om lhe t.;'ai]ing edge of the splitler

plate or lhe mixing laver do not have tile opportunity lo reflect of[' the mixing

section walls and back to the mixing layer.

The overall grid structure for the case with a sharp trailing edge is identical to that

of the baseline 800 axial grid point case, except for the t.rea.tnmnt of the splitter

plate trailing edge. A comparison of the grid detail around this region for the

baseline geometry and the current case with a sharp trailing edge for the splitter is

shown in figure :3.14. In the baseline geometry, 10 grid spacings are used in the axial

direction at tile base of the splitter, equally spaced at 0.05 ram. to resolve the ltow

region just downstream of the 0..5 _n77_ thick splitter trailing edge. The modified

geometry shown in figure 5.14(b), removes all but one grid spacing, such that the

confined flows from the RANS regions will meet directly at the beginning of the

LES region. The grid stretching in the vertical dimension was performed in the

same manner as that used for the baseline 800 point grid, and reduced the vertical

domain from 197 points to 188. The placement of the axial grid points was identical

to that of the baseline grid.
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In the (_oebel-I)utton experimentand in all of tile computations discussedin the

previoussection,the height of the mixing sectionwas48 _om. The density contours

shownin the previoussectionfor tile caseswith 400and SO()axial grid points, as

well as Schlierenphotographstaken in the experiment, revealeda seriesof Mach

wavesthai reflectedoff of the top and bottom wallsof the mixing sectionand back

onto the mixing layer. The strongeslof thesewavesoriginated from the trailing

edgeof the splitter plate.

To determine if thesewavereflections influencedthe instability formation in the

shearlaver wherethe simulations appearedto becometurbulenl, at..r = 80m7_for

both the 400 and 800grid point cases,a modified grid wasgeneratedwhich moved

eachwall far from the mixing laver such the effecliv¢'mixing section height became

900ram. This extremespacingresulted in all wavesgeneratedfrom the splitter

trailing edgeor mixing layer to passout of the outflow boundary at. x = 3001_m

without the opportunity to reflect back onto the mixing laver. This computational

grid. which had 800 axial points positioned the same as for the baseline S00 poin!

case, is shown in figure 5.15. For clarity, only every fourth point is shown in each

direction. In addition, the 197 points forming the vertical domain in the baseline

grid were also used in this modified grid. The extra points needed to extend tile

vertical dimension to a total of 900 mm were added on to each side of the mixing

section, such that the total number of points in the vertical dimension for this

modified grid was increased to 347.

Figures 5.16 and 5.17 provide instantaneous density and entropy contours for the

case with a sharp trailing edge. As expected, the vortex shedding evident in the
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baselinecasewasremovedin the current case with the sharp tip. The lack of a

separation region results in an initially laminar nlixin_ laver through the beginning

of the mixillg section. Interestingly, the laminar flow begins to lransition to a more

turbulellt structure at nearly lhe same position observed for tile baseline case, al

approximately ,c = 80 ram. The structures remain relatively small until

approxinlately ,_' = 150 m,_ where large scale turbulence forms. These structures

are more similar to the Brown-Roshko organized st,ruclures than were lhose of the

baseline cast' with 800 axial points. Because the flows leaving the wall bounded

regions experience a less rapid geolnetry change al the beginning of the mixing

section fbr lhe sharp tip case, the strength of tile initial waves off the splitter tip are

reduced relative to the baseline case.

For the second modified case with mixing section walls moved away from any region

of influence on t he mixing layer, the same set of instantaneous contours are provided

in figures 5.18 and 5. I9. Two thin lines are drawn on each of the contour plots to

indicate where the inixing section walls were placed in the baseline case. however,

the density contours for entire mixing section shown in figure 5.16(b) indicate that

the flow domain extended beyond these thin lines. With the very large vertical

domain indicated by tile computational grid shown in figure 5.15, only a portion of

the vertical domain is displayed in tile contour plots. Several waves beyond those

originating from the splitter tip are found to originate from the unsteady vortex

shedding, but they do not reflect back to the mixing laver.

As for the baseline 800 point case and the case with the sharp trailing edge, the

transition location occurs at approximately a: = 80 mm for this case, even without
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the influelweof Mach wavereflectiononlo lhe shearlaver. The downstreanl

turl)ulent eddy slructure is qualitatively similar to lhat for the baselinecase,

although tlle height of someof the structures is greater lhan thai for the baseline

case.This is likeh' the result of the lackof mixing section walls to confine the

mixing laver for lhe modified case. One noticeable difference belween the conlours

shown in figures 5.18 and 5.19 for the modified mixing section and those of lhe

baseline case in figures 5.9 and 5.10 is that the mixing layer grows at a slightly

upward angle without lhe presence of lhe mixing section walls. For lhe comparison

of mean axial velocities and turl_ulence inlensities discussed nexl, all adjustment for

lhe true mixing laver centerline will be employed, as was done in the previous

section for lhe axial grid studies.

in figure 5.20. mean axial velocity profiles obtained from the two-dimensional

solutions investigating tile different boundary treatments obtained with S00 axial

grid points are compared to the Goebel-Dutton measurements. In addition.

comparisons of the turbulence intensities u,.,_ and t,,.,_ are made in figures 5.21 and

5.22 respectively. As in lhe previous section, the primary objective here is to

compare the different modeling approaches. Because these calculations were two

dimensional only, and did not employ a subgrid scale model in the LES region,

strict comparisons with the data are not emphasized.

The mean axial velocity profiles at a' = 50 mm indicate that the solution obtained

with a sharp trailing edge had the smallest wake, which was expected because this

case did not. have the large separation and vortex shedding of the other two cases.

Further down in the mixing section, all of the solutions are in reasonable agreement
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with tile data. The baselinecaseand tllesolution obtained wilh mixing section

walls wmovc(1 arc in particularly close agreenlen! with each olher by lhc end el lhe

mixing duct.

All of the streamwise turbulence intensities are lower in peak magnitude lhan

indicated by the (loebel-I)utlon ([ala at .r= 50 t_ttt. Fm'lher (lownstreanl iIl the

duct, the magnitudes increase to be more in lin(' with 1he data, all(l the lwo

solutions obt.ained with the standard height for the splitter base exhibit a double

peak. :\s discussed in the section 5.3, this is believed Io (hie to the influence of lhe

upstream organized vortical behavior of lhe initial nlixing laver. In figure ,5.22. the

solution obtained with a sharp trailing edge demonstrates significantly lower peak

magnitudes in c,.,,, at ,r= 50 m_-_ and .r= 100 t,_,l_, l:urther downstream in duct.

all of the solutions indicate similar profiles of _,,.,,,_, and all have significantly larger

peaks than the experimental data. Lieu et al. [59] and Inoue [4,5] also reported large

overpredictions in the streamwise and transverse turbulence intensities R)r two

dimensional mixing laver computations and attributed the discrel)ancies to the lack

of a third computational direction.

The results of this section indicale that the geometry of the splitler ])late lrailing

edge has a significant effect, on the initial shear layer formation. The unsteady

vortex shedding is fundamental t.o the formulation of the hybrid RANS-LES method

because although tile mean flow properties of the incoming boundary layers are

provided by the RANS regions, no turbulent oscillations are imposed that may

initiate the instability of the mixing layer. Invest.igations of the splitter base region

conducted by Clemens and Mungal [21] for an experimental configuration very
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.similar to thal considered here also indicated all inilia] vorlex structure lhat

transitions into turbulence. This lransition, how_'ver, occurred signiticant lv closer to

the splilter plate trailing edge in t.he exl)eriments than indicated by these two

dimensional calculations. The three dimensional calculations discussed in the next

chapter inves_igat.e this transition position further.

('omparing tile solution obtained with the standard placement of the mixing seclion

walls to tile solution obtained with the walls moved vertically to l)revent any Mach

wave reflection back onto the shear layer, some minor differences were noted.

However, there was little effect on the transition location from the organized vortex

structure to turbulence. Because the Math wave behavior observed in the baseline

calculations was very similar t.o thai indicated by the Schlieren I)hotographs taken

from the experiment, the standard placement of the mixing section walls will be

investigated for the three dimensional calculations discussed in chapter 6.
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(a) baseline grid

(b) modified grid with sharp trailing edge for the splitter

Figure 5.14: Comparison of computational grids using 800 axial points, near the

splitter plate trailing edge
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Figure 5.15: Computational grid for the 800 axial grid point case with the mixing

section walls removed (every fourth point, shown in each direction)
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sharp trailing edge for the splitter
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(a) Beghming of mixing secIion

(b) Entire mixing section

Figure 5.17: l.nstantarleous m:tropy contours for the 800 axial grid 1)oinl: case wil:h a

sharp t rai]ing edge for t he split:ter
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+ ?

(a) Beginnin_ ofmixing section

(b) Entire mixing section length only, ent,ire vertical domain is not shown

- , "_ }Pigure 5.18: lnslanlaneous densii;v contours for the bO( axial grid 1)oinl case wil;h

mixing section walls removed
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(a.) 13eginnillg of mixing sect.ion

(b) Entire mixing section length only, entire vertical domain is not showl_

Figure 5.19: Instantaneous entropy contours Ik)r the 800 axial grid point case with

mixing section walls removed
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CHAPTER 6

THREE DIMENSIONAL MIXING LAYER

CALCULATIONS

In the l)revious chapter, the two-dimensional calculations were used to construct the

initial computational model of the mixing layer and to examine preliminary effects

of grid resolution and boundary condition treatment. To correctly investigate the

capability of the hybrid method, however, LES calculations obtained in three spatial

directions with the use of a subgrid scale model are required. These calculations are

the focus of this chapter. The procedure used to extend the two-dimensional

computational model described previously in section 5.2 to three dimensions is

presented first in section 6.1. The results of three dimensional calculations obtained

with the hybrid RANS-LES method are presented in section 6.2.

6.1 Three Dimensional Computational Modeling

The grid topologies and boundary conditions used for the three dimensional

simulations were very similar to t.hose used for the two-dimensional simulations

discussed in chapter 5. The three computational grids with 200,400, and 800 axial

point, grids described in chapter 5 were used to construct the three dimensional

grids used here. To add the third computational direction in each case, the two
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dimensionalplanar grid wascopied1oprovide 11points in the l ldrd (or :) direclion.

:\s a result, a side view of lhe three dimensional grids is re])resenle([ [),," figure 5.3.

"I'he grid spacing in the z dh'ecliou was uniform and se! equal 1o lhe axial spa.chlg al

the splilter trailing edge, or _2 = _a'l = 0.10 _7_/_. Because of the very small

number of grid points used in lhe z direction and the small physical space thai is

represented, only very small wave components in this direction could t)e simulaled.

and a periodic flow is assumed in this direction.

The periodic l)oundarv condition used in the : direction allows waves passing

through one side of the : domain to enter the other side. Because the

Gottlieb-Wurkel predictor corrector scheme uses a five point centered stencil in each

direclion, points along each boundary and one point interior to each boundary must

be obtained when periodic t)oundarv conditions are used. The solution vectors Q

shown for the RANS and LES equation sets in equations 3.8 and 3.14 respectively

are updated along the boundary corresponding to/," = 1 in comt>utational

coordinates (i, j, t:) as:

Qi,j,1 -- Qi,j,kmax-3

Qi,j, =

Similarly, along the other extreme boundary, corresponding to L" = t,',_zax, the

solulion vectors Q are updated using:

(6.1)

(6.2)
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All of the ol h('r boundary condilions and l.he solution procedure are idenlical to

that used for Ill(' two dimensional mixing layer calculations discussed in chapter 5.

with the one exceptiol_ being tha.l the Smagorinsky subgrid scale model was used in

tiles( _ lhree dimensional sinmlations. As discussed in seclion 5.2. no subgrid model

was used in the two dimensional mixing laver calculations.

The switch fl'om the HANS regions to the LES region al the mixing plane

(corIespondhlg to a vertical plane drawn through the trailing edge of the splitler

plate) is accomplished by changing the eddy viscosity used in the flow solver from

the Cel)eci-bmith turbulence model t.o the Smagorinsky subgrid scale model. As a

result, the effect of the eddy viscosity changes from that of replacing all of the

turlmlent stresses in the 1RANS regions to l.hat of only replacing lhe subgrid stresses

in the LES regions.

6.2 Three Dimensional Sinlulations

The first, three dimensional simulation was obtained using the computational grid

with 200 axial points. The Smagorinsky subgrid scale model used the coefficient

(',_ = 0.1 and the standard expression for the subgrid length scale indicated

previously in chapter 2 is repeated here:

1

A = (Aa, AyAz)5 (6.3)

Figures 6.1 and 6.2 show instantaneous density and entropy contours a,t the middle

plane in the z direction for these initial three dimensional simulations. With the

very small domain in the z direction, the contours on all of the two-dimensional

NASA/TM--2001-210811 151



,r-!l planesarevery silnitar in appearance.The behavior of the flow jusl

downst ream of the splitler trailing edge is very similar to thai obtained for lhe lwo

dimensional calculations showil in figures 5.5 and 5.6. Flte lack of adequa(o axial

grid resolution results in a rapid dissipation of the inilial vortex pattern, and is even

mow rapid in the three dimensional case due to the dissipative nature of the

Smagorinsky sul)grid scale nlode]. Further oul ill the 1nixing section, the tlll'e¢ _

dimensional calculations show no e\'idence of a secondary unsteadiness thai was

evidenl in lhe two-dimensional calculations, which is also due 1o the dissipation of

the subgrid scale model. The shear laver appears to be effectively laminar

downstream of lhe initial vortex region. Because no turbulent behavior was

observed in the mixing section, no t urbulenl averaging was 1)ert'ornwd fox" this case.

The three-dimensional grid using 40(I axial points was ut.ilized next, with

substantially different flow development observed than that for the 200 axial point

grid. As a result, three computations were performed in which the Smagorinsky

constant and the subgrid model length scale were varied. The first two cases used

the standard length scale expression given in equation (6.3) and investigated the

two quoted extreme values for the Smagorinsky constant, C._ = 0.10 and (-'s = 0.2-1.

The third case set (', to 0.24 but. used the modified length scale expression

previously shown in chapter 2. and repeated here:

(-X c)2+ ('XV)23+ (&z)2]

For a computational grid with Ax = A 9 = Az, equations (6.3) and (6.4) will return

the same value for the Smagorinsky model length scale. The motivation for using
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tile moditied expression was for the case of signiticant grid stretching, as occurs in

both tile axial and vertical directions away from the splitter plate trailing edge.

Instantaneous contours of density and entropy at lhe middle plane in lhe : direction

are lnovided in figures 6.3 and 6.4 for the tirst case with the standard lenglh scale

expression and ('_ = 0.10. These contours indicate a fundamentally differenl flow

structure than that observed for the lwo dimensional cases. In parlicular, the vortex

shedding is observed to disintegrale into a random turbulenl pattern much closer Io

the lt'ailing edge. While lhe Schlieren photographs laken in the (',oel)el-l)ulton

experiments did not 1)robe the ttow delails near the splitter plate trailing edge. such

details were examined by Clemens and Mungal [21] for a very similar experiment

configuration and flow operating conditionsl The Schlieren image shown in figure

6.5 indicates an initial flow slructure similar to that observed in the calculation with

an initial vortex shedding from lhe trailing edge of a splitter plate followed by a

transition into turbulence. The turbulent structure in the experiment is also

observed to be of primarily small scales, while the LES calculations, by definition,

only capture the large scale structures. While the length of the organized vortex

structure in the calculations does not exactly match that of the Clemens-Mungal

experiment, qualitatively the three dimensional calculations are in much closer

agreement than the previous two dimensional results. In addition, the splitter plate

thickness was 0.8 mn_ in the experiment of Clemens and Mungal, while that

modeled in the calculations was 0.5 7nm, which may be responsible for the precise

differences between the experiment and calculations.
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The spreadingof' the lurlmlent shearlaver is observedto 1)egrealer in this three

dimensional case thall in any of the two dimensional cases. This may be observed in

1he instantalu,ous contours. A direcl Colnparison of lhe densilv comours t'ov the two

and three dimensional cases obtained with 400 axial points is provided in tigure (i.6

near the splitler tip. This comparison clearly shows the very different flow slruclure

revealed l)v the three dimensional computations. Although the exlent of the z

domain is very small compared to lhe height of the mixing section, and cannot

capture large structures in this direction, an unsteady mechanism in which

disturbances may develop in all throe directions and result in lhe rapid transition to

turlmlence is enabled by these three dimensional calculations. The two dimensional

calculations, by their very nature, do not allow for such three dimensional

disturbances to develop. These results verify that LES calculations musl be run in

three dimensions in order Io properly describe the initial lurbulent flow structure.

Time series snapshots of density contours and entropy contours immediately

downstream of the splitter plate trailing edge are provided for this initial three

dimensional case with 400 axial points in appendix D. The breakdown of the

organized vortical structure originating fi'om the splitter plate wake into a turbulent

structure is demonstrated in these lime series. A mentioned previously, the

transitional behavior near the trailing edge of the splitter was not. evident with the

two dimensional calculations. The frequency of the vortex shedding was the same

for the two and three dimensional cases. An analysis of this shedding frequency, also

provided in appendix D. shows that a Strouhal number calculated using the splitter

NASA/TM--2001-210811 154



baseheight and differencein velociliesof lhe two streamsis 0.225.which is very

close1othe Strouhal numl_errangecharacterislic of flow past cylinders, 0.20 - 0.21.

Examining the other two solut.ioI_s for the lhree dimensional approach with 400

axial grid points next, the iilstanl.aneous densilv and entropy contours for lhe case

using the standard length scale and ('s = 0.24 are provided in figures 6.7 and 6.8.

The same contours for the case using the modified length scale expression and

([_ = 0.24 are shown in figures 6.9 and 6.10. Although the instantaneous contours

for these two cases and the initial 400 poin! case differ in exact structure in the

snapshots shown, overall the turbulent structures are qualitatively the same for the

three cases. In addition, the number of organized vortices before breakdown to

turbulence may be observed to differ for these three cases a.t the particular instants

in time shown, but in examining each of the solutions over development in time.

each of the solutions oscillated in having between 5 and 10 organized vortices.

The mean axial velocity profiles obtained fi'om the three dimensional hybrid

RANS-LES calculations using 400 axial grid points in which the subgrid model

parameters were varied are compared to the Goebel-Dutton data in figure 6.11. A

comparison of the two turbulence intensities is made in figures 6.12 and 6.1:3

respectively. Examining the mean axial velocities first, all of the three dimensional

solutions exhibit a larger wake a.t z = 50 mrn than that of the experiment, bul

compared to the two dimensional solutions, the three dimensional wakes are

significantly smaller. This improvement is the result of the more turbulent behavior

for the three dimensional cases in the beginning of the mixing section. Further

downstream, the three dimensional solutions indicate reasonable agreement with tile
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data. although all of the solutiol> appear to mix moro rapidly than indicated by tho

oxlmrimental data.

The profiles of u,.,,,,_ ill figure 6.12 generally indicate overpredictions from the

calculations, which corresponds to tile wider axial velocity profiles in figure 6.11. At

.r = 50 ram. a double peak in the calculated intensities is somewhat evident.

although the efl'ect is much less pronounced for these three dimensional calculaliolls

than for the tWO dinlensional calculations in chapter 5. Further dowllsl.reanl, lhe

lhree dimensional solution obtained with the modified length scale delnonstrales

generally lower levels of u_,,, than the other solutions. The modified length scale

expression results in larger values of the subgrid model eddy viscosity, which in turn

damps more of the small scale unsteadiness. Although increasing the Smagorinsky

constant ('_ also tends t.o result in more damping, the effect of changing ('., from

0.10 to 0.2-1 does not seem to have as large an effect as the subgrid scale lenglh

expression.

Tile computed profles of v,._,, shown ill figure 6.13 are also overpredict.ed relative to

the data, with the lowest levels of _,_,,_, predicted with the modified length scale and

(', = 0.24. As mentioned previously, Liou et al. [59] and Inoue [45] also reported

large overpredictions in the' turbulence intensities for planar mixing layers. With the

confinement of the current three dimensional calculations to a very small domain in

the : direction, the inability to calculate large scale fluctuations in this direction

may be responsible for the overpredictions of u_m, and v_,,,,. In addition, the

Schlieren photographs taken in the Goebel-Dutton experiment indicated a very fine
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t.urbulent structure contained within lhe larger scale developmenl, while tile I,ES

calculations inherently can resolve on]v the larger lurbulen! scales.

A final three dimensional case was run using 800 axial points ill the mixing section.

The moditied lenglh scale expression and (', = 0.24 was used for the subgrid model.

The liner grid used here reduced the permissible lime step by nearly a faclor of two

relative to the 400 axial l)oinl cases. This reduced time step and doubling lhe

number of grid points in the mixing section would require a factor of four increase in

the computer CP[ T time requirements 1o run this case to cotnplet.ion, relat.ive to lhe

cases with 400 axial points. (lonsidering that each of the 400 axial point cases

required 500 (!PI" hours oi1 a ('ray ('90 computer, 2000 (:rav ('!10 hours would be

required to complete the case with 800 axial grid points. As a result, this last three

dimensional case was run long enough to allow the flow to fully develop in the

mixing section, but no| long enough to enable time averaging of the lurbulent

statistics.

In contrast t.o the grid refinement studies performed for the two dimensional cases,

the large scale turhulent development did not change significantly when increasing

the number of axial points in the three dimensional computations from 400 to 800.

The instantaneous density and entropy contours in figures 6.14 and 6.15 indicate a

large scale turbulent structure which closely resembles those of the 400 axial grid

point case. In particular, the breakdown of the organized vortex structure t.o

turbulence is very similar to those previously shown for the 400 axial grid point

case. Within the large scale structures, more fine scale turbulence is evident in the

800 axial point case. This behavior corresponds directly with the philosophy' of LES
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itl lhat as the ('Oml)utational grid is refilled, stllaller stru(t,ures are al)]e to be

resolved aud llte role of the subgrid scale model is reduced, hi the idealized limit of

_Tl iMiMtelv fiHe grid. el direct uumerical sillmlatiou is ol)le_ille(l.
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........._ZZUL2L2 .............................................

(a) Beginning of iriixing section

(b) Entire mixing sect, ion

Figure 6.1" Instantaneous densit5' contours for the 200 axial grid point case (3D)
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(a) Beginning of mixing seclion

In i i I I _ _i llllr -'i-i _'_

[
(b) Entire mixing section

Figure 6.2: Instantaneous entropy contours for the 200 axial grid point case (:3[))
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(a) Beginning of ntixing sect,ion

,,re_,r_.: _ .... -:__._._-.:_: ' _ _.._55_

(b) Entire mixing section

F'igure 6.3: htstant, aneous densit:y contours for the ,t00 axial point:, case using the

standard turbulent length scale and C, = 0.10
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(a) Heginning of mixing section

.... " ...... Cz:t=, :_: ........ - .... ) ::/;.T'

(b) Entire mixing section

Figure 6..,1: Instantaneous entropy contours for the 400 axial point case using the

standard turbulent: length scale and (', = 0.10
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Figure 6.5: Schlieren photograph of the Clelnens-Mungal experiment near the trail-

ing edge of the splitter plate, showing vortex shedding followed by a transition to

turbulence (from Ref. 21, used with permission)
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(a) 2D case with no subgrid model

:-Y_#_ .... " -:' " .? < " ._ ,' " :.............. _ ";.._" t

(b) 3D case with the standard turbulent length scale and ('., -= 0.10

Figure 6.6: Comparison of density contours near splitter trailing edge
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' ¢'I'_,_• _i/i__¸, i

(a) Beginning of mixing section

(b) I!;ntire mixing section

l lgur 6.7: Inst:antancous density contours h>r the 400 axial point, case using the

standard t.urbulent: length scale and C, = 0.24
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(a) Beginning of mixing section

]

(-(iy _L.-" ,-..................-_. _ I}_._,,-,-: ]

(b) Entire mixing section

Figure 6.8: Instantaneous entropy contours tbr the 400 axial point case using the

standard turbulent length scale and C, = 0.24
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(a) Beginning of mixing section

(b) Ent, ire mixing sect, ion

Figure 6.9: Insta, nta, neous density contours for t,he 400 axial point case using the

modified turbulent lengt, h scale and (_, = 0.24
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(a) Beginning of mixing section

(b) Entire lnixing section

Figure 6.10: Instantaneous entropy contours for the 400 axial point case using the

modified turbulent length scale and (:_ = 0.24
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(a) Beginning of mixing section

.............. _ ...... ,, .... _,_ _, _ ;_-:,_ , !:: ,:b _:,;,_.i_,,_ ,,' !_ :

(b) Entire mixing section

Figure 6.14: Instantaneous density contours for the 800 axial point case using the

modified turbulent length scale and (', = 0.24
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(a) Begiiming of mixing sect, ion

(b) Entire mixing section

l"igure 6.15: Instantaneous entropy contours for the 800 axial point case using the

modified turbulent length scale and ("._ = 0.24
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

The work described in this dissertation represents the initial efforts to develop and

evaluate a hybrid RANS-LES method for compressible mixing laver simulations.

Such mixing layers dominate the flows in exhaust systems of commercial and

military aircraft in current use and also those of hypersonic vehicles under

development for fl, ture space transportation use. The hybrid method uses a RANS

approach to provide the mean flow characteristics of the wall boundary lavers

entering the mixing layer and an LES approach for the mixing region. Although the

RANS approach does not provide any unsteady turbulent information to the LES

region, the mean flow boundary laver characteristics are provided. The hybrid

melhod was developed for the analvsis of nozzle and mixing layer configurations in

which a dolninant structural feature, such as the base region of a nozzle or splitter

plate separating the upstream flows, will provide the dominant unsteady mechanism

to drive the development of turbulence in the mixing layer.

The hybrid method development was initiated bv deriving a set. of

Reynolds-averaged Navier-Stokes (RANS) equations using density weighting in the

averaging process, and a set of spatially-filtered large eddy simulation (LES)
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equationswhich also useddensilv (l:avro) weighting. The resulting similar tornl o1

1heRAN.'; and LES equalioll setsonabled both io be solved wilh a single solulion

scheme. 111 lhis disserlalion, lho Gol tliet)-Turkel predh'lor-corrector scheme was

emph)yed. :\ transforma!ion of the equalions 1o generalized coordinates enabh'd

flow cah'ulalhms on strclched, non-( :artesian grids. The RANS equalions were

closed ushig the Cebeci-Smith algebraic turbulence model, wilh the Ol)lion to

employ lhe wall-flmction technique of Ota and Goldberg. The LES equal ions were

closed using the Smagorinsky sul_grid scale model.

The ('ebeci-Smith turbulence model, despite ils relatively simple form, was

demonslrated to provide accurate cah'ulations of bOUlMarv laver flows lhal are free

of adverse pressure gradients or separatioll regions. Further, the use of lhe

('ebeci-Smith model in conjunctioll wilh the Ota-Goldberg wall function enabled

calculations of supersonic wall boundary layers to nearly the same accuracy as that

of the standard approach of integrating the Cebeci-Smith model through the viscous

sublayer, while enabling a significanlly larger vertical grid spacing near the wall. As

a result, the wall function approach enabled a continuous computational grid to be

used from the RANS to the LES regions, and the method thereby avoided the use of

discontinuous grid zones that would have otherwise required an interpolation

scheme between the two regions. In addition, the origins of the (:ebeci-Slnith RANS

turbulence model and the Smagorinsky LES subgrid scale model are both in mixing

length theory, and this shnilar form of the two models assisted in code

hnplementation. As a. result, the use of a more sophisticated turbulence model to
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closethe R:\NS equationswasfound to be mmeccssary, provided the [{ANS regions

are resl ricled to altached, zero pressure gradienl wall boundary laver regions.

\Vhile true LES calculations require computatioils in three spalia] direclions, two

dimellsional simulations of a benchmark mixing laver experiment were considered

first to address the effects of axial grid resolution and 1)oundarv conditions. The

parametric study of axial grid resolution indicated more realistic turbulent

development with increasing axial grid density. For the coarsest grid examined,

there was almos! no evidence of turbulent flow development. For all of the cases

examined, a vortex shedding was found to originate from the base region of a

splitter plate separating the Ul)stream wall bounded regions. For the fines! two

dimensional grid examined, the unsteady vortex pattern evenlually transitioned to a

turbulent structure. The location of this transition, however, was much further

downstream than observed in the experiments.

Additional two dimensional calculations were obtained to investigate the boundar\'

treatment of the splitter plate trailing edge and of the mixing section walls.

Calculations obtained for a case in which the finite thickness splitter base was

changed to a sharp tip indicated that the vortex shedding was removed, bul the

development of turbulence downstream occurred a.t nearly the same position as fox.

the case with vortex shedding induced by the splitter base geometry. (lomputations

were also obtained for a modified geometry in which the mixing section walls were

effectively removed, to determine if Mach waves reflecting off these walls in the

baseline calculations affected the turbulent mixing layer development. These
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calculations indicated thal removingthe mixing sectionwalls did nol changelhe

fundanlental structure of the flow relative to (he l)aseli)w case.

Three dilnensional calculalions were obtained next for grids constructed by copying

the two dimensional planar grids to locations in the third computational direction.

normal to both the st reamwise and transverse directions. Only a small domain was

modeled in )his (hird direction, and periodic boundary conditions were employed

along the extrenle boundaries. For lhe coarse three dimensional grid. again no

turbulent flow development was observed. For the intermediate grid. the vortex

shedding fotmd previously in the two dimensional simulations was also observed in

the three dimensional calculations. Itowever, the organized vortical structure

rapidly disintegrated into it significantly more realistic turbulenl flow structure.

This rapid transition 1o turbulent flow was nearly identical to that found in

experimental investigations of a similar mixing layer configuration. Although the

extent of the third dimension in these calculations was very small, an unsteady

mechanism by which disturbances could develop in all (hree directions and result ill

a rapid transition to turbulent flow was enabled by the three dimensional

calculations, tn contrast, a two dimensional al:)proach, bv definition, does not allow

for such three dimellsional disturbances lo develop. The results of these calculations

verified that LES simulations must be performed in three dimensions.

Parametric studies of the subgrid model length scale and the Smagorinsky model

coefficient were examined with this intermediate grid, but no significant differences

were noted. Comparisons of time-averaged axial velocities and turbulence intensities

fl'om the calculations to experimental data indicated reasonable agreement, with the
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solutions indicating somewhathigher levelsof turbulent mixing. A ma.iorsourceof

discrepancybetweenthe calculationsand experiment is believedto be lhe lack of

adequategrid resolution to reso]ve the small _urbulet_t scales eo_tained withi, l l,.

larger l.mbulenl str,ctures. Another source of discrepaJ_cy was the very small

domain used il_ the third computational direction.

Despite these limitations, the three dimensional cal¢'ulations demonstrated the

success of the hybrid lnethod to capture the dominanl characteristics of the mixing

layer, and in particular, the rapid transition of the organized vortex st.ructure to a

turbulent mixing layer structure. It. is expected that iint)rovements in the fidelity of

the solution scheme, and more importantly, improvements in computing power, will

elm.ble better predictions of the turbulent statistics, as will be discussed briefly.

A final three dimensional calculation was investiga.ted using a computational grid

constructed from the most densely packed two dimensional grid. Because a

prohibitively long run time would be required to cornplete this solution for turbulent

statistics purposes, the calculations were run only long enough to allow the flow to

fully develop in the mixing section. The large scale turbulent structures evident for

this case were very similar to those for the intermediate three dimensional cases.

More resolution of the finer turbulent scales contained with the larger structures

was observed for the fine grid case, which is in line with tile philosophy of LES t.o

resolve finer scales as the grid density is increased.

The effects of improved subgrid scale models on the quality of LES simulations is an

issue of considerable debate. Research into advanced subgrid scale models has
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vielde<tinll)rovelnent_in tile accuracyof' LES simulaliousoblained for low t{evnolds

number wall boundary layer flows. However,authors suchas Spa,larl [,q(i]and

Fur('bv and (',rillslein [2!t]offer the opinion ttiat subgrid scalerefinementwill offer

only small imt)rovemenlsfor largeeddy Silnulationso[ flowsawayfrom boundaries

and without chemical reactions. Both authors further suggestthat it, may even be

f'easibleto perform an LIqSsilnulation without an explicit subgri(] scalenlodel.

provided the numerical schemeis su/fi('ient to prevent unresolvedwavenuml)ersfrom

conlaminating the solution and thal the simulation resolvesturbulent scah'sin the

inertia[ subrange.

hnl)rovementsto the numericalmethod ma_'enablemore accurateresolution of the

smaller turbulent scales,which appearedto be the greatest limitation of the currenl

method in simulationsof the compressiblemixing laver experiment. The classof

numerical methodsknown ascOinl)actschemes,suchasthosepresentedby Lele [55].

havebeenshownto providehigher spatial accuracyand improvedcal)a.bility to

resolvehigherwavenumbersfor a given grid sizethan is possibleusing

Mac('ormack-type predict.or-correclorschemessuchas the Gottlieb-Turkel method.

The continuing advancesin computing speedand computer memorywill also enable

calculationsof higher fidelity, and eventually to the limit of direct,numerical

simulations (DNS) whereall turbulent scalesof importanceare resolved.Estimates

of Spalart [.%],however,suggestthat improvementsof severalordersof magnilude

in computer speedand memorywilt be required to perform full LES or DNS

calculationsof realistic engineeringconfiguratiolls. His estimatesproject full LES
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simulalions requiring 1011'_grid points 1obe i_ossibh• in the year 2045. and I)NS

simulations reqttiring 10 _ grid points to bc l>ossible in the 5'car 20S0.

In tile interim. RANS and hybrid H:\NS-LES nlet, hods will ('ach 1_" the inosl

al)t)ropriale COmlmtaliollal tool for cerlain classes of turbtllenl ttows. For wall

1)ounded lurbulenl flows without massive st,paralion regions. HANS melhods will

likely be the mosl al)prol)riate choice for some time. [tvbrid melhods, such as thai

developed in this work, will very possibly become lhe apl)roprial_ _ tool for flows wil h

significant mixing regions or large scale separation zones. As a resull, research 1o

flirt.her d_welop both RANS and hybrid RANS-LES methods will 1)e imporlant to

improve the capal)ility to sinmlale complex turbulent flows.
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APPENDIX A

ACCURACY ANALYSIS OF THE GOTTLIEB-TURKEL

SCHEME

Ill this appendix. (,he teml)oral and spatial accuracy of the (;ottlieb-Turke] schenw

are invest igat, ed.

The (;ot.tlieb-Turkel scheme is illustrated using a. one dimensional l)roblenl that is a

inodel for the Navier-Stokes equa(ions written in vector form. This model problem

is given as:

The predictor step is:

Oq Of
_+_=0 (A.l)

The corrector step is:

AI

(t7 = q_ -- G_.------7(--7.fi + 8fi-1 -- fl-2) (A.9)

q,,+, 1[ Lt f*l= _ q_ + q7 6_x (7"f7 -8.f,:+, +. _+2) (A.3)
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The tinleslep of the (;otilieb-Tm'ke]predictor-correcI¢)rsche]lle,_. isrelatedto the

gri(1 spacing, _.X,r. and Ill(' l)ropagatio11 speed. A. lhrough the ('FI.

(('ourant-Vriedvichs-I,ewy) nmnl)er:

..X{ = (' F L -xx (:\.,1)
A

Nelson [71] investigated lhe spatial and teull)oral accuracy of several

pre(lictor-corrector schemes, including the Gottlieb-Turkel scheme, investigated here

using a linearizalion of the model problenl shown in equation A.1. This proce(lure

will also be used here. The linearization of equation (-\.1) begins by assuming a

constant propagation speed. A:

,f = Aq (A.5)

The equation for the predictor slep (A.2) can be substituted into the equation for

the corrector (A.3). which results in

The terms in this equation having a superscript (*). which represent the fluxes f

after the predictor update, can be rewritten using .f* = Aq*. Equation (A.6) then

becoines

qn+ I n
i = qi

_Xt

122Xx
(--T fi + Sfi+l -- L+2)

A At .
(A.7)
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The q* terms are replace(t using lh(' l)re(li('tor exl)ression (:\.2). This enal)les the

corn plete 1)redictor-corrector up(lal(' to 1)("ext)ressed as funcl ion of' i he original

values of q au(1 f:

A! .4 __kl
" - <qi-1 + q,-e) +

q:'+_ = qi 12A,r (-7.f; + 8.f;+_ - ,t;+_) 1"2A.r (7q,

"4 (At) 2 S"r=, [r(-r/: + sL+, -fi+_) - s(-rf__, + S.l_-./,+, )+ {-7.:,._2+ ,.I,-, -.f;)]
(:\.s)

lTsixlg f = Aq and combining terms results in:

q_+l

A!
'* S ' ,q

= q' l'2._X.r(-.f:+2 + ,.l,+l -, .f,-i + ,fi-2)

+ _ _x ( - 7 fi+ 2 + 64,fi+ 1 - 1 14 fi + 64,/'i_ 1 - 7,fi_ 2 )

(A.9)

Next, the q,'_ term is moved to the left side of the equation, and the q and .f terms

are expressed in terms of Taylor series expansions about the points q'_ and ./),

respectively:

Oq" At _ 02q

At_ + '2 Ot 2 At :3?):_q 1( ?).f A ar_ O'_f )÷ 6 Ol 3 -t- ..... 1--22 12Axt_x 48120 i):r 5 ÷ "'"

._ (A/) _(a6A:oV ._._OV+_ \Ax/ 0.r2 __xa _ +...)

Reorganizing equation (A.10) and dividing all of the terms by At results in:

(A.IO)

Oq O.f _ At 02q At 20"aq A.r 4 Oaf AAtAx 2 04.f AAI O_.f
0--[ + Ox '2 Of 6 t)t :3 + 300.r 5 18 Ox 4 + 2 O:r2

Finally, the first, and fifth terms on the right side of equation (A.11) are removed by

taking the second derivative of f = Aq, and then recognizing that
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The resulling expression is:

._kt O2q A_St O_f

"2 ill" "2 _).c2
(:\.12)

Oq OJ' -_kl2 03q :t-Xl-X:r _ 04f _X.r4 051
0-7 + O,r -- 6 0l :_ 18 Oa'4 + 30 0.r _ +''" (A.13)

The left side of equation (:\. 13) is the original lnodel problenl given in equation

(:\.1). :ks a result, the right side of equation (A.13) is the truncation error resulting

fi'om the discretization of the model equation using the Gottlieb-TurkeI scheme.

The first term on the righl side of equation (A.13) indicates that temporal accuracy

of the scheme is second order. The second truncation error term involves both __kt

a.nd _Xa'2, and we can use relation between the time step, grid size and (!EL number

shown in equation (A.4) to rewrite this equation (A.13) as:

i)q Of __kf2_)3q _;1:3 04f ,._._,l,4 05./"

O_ + &r - 6 OU ('FL 1_ i-)x4 4- 30 Oa,_ -q- ... (A.14)

The Gottlieb-Turkel explicit scheme is only stable for C'FL values smaller than one.

For (TL values on the order of one, the spatial accuracy of the scheme is third

order. In practice, the maximum CFL number is usually set to a value of 0.5 or

less. For stretched grids, the limiting time step is proportional to the smallest grid

spacing and then the effective local CFL number is much smaller in regions of the

computational domain where the grid spacing is larger. This can be observed by

considering equation (A.4) for the case of variable grid spacing, Aa-, but a constant

time step _Xt. As a result., the truncation error term in equation (A.14) becomes
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insignificant away fl'om the region o[ tigh)esl grid spacing. For such regions, the

nex( (runcat.ion error lenn indica(('s ('ourt.h or(ler sl)alia.] accuracy, in conclusion,

the (_ol(lieb-Ttu'kel scheme is st ricllv second order accurate in time and lhird order

accurale in space. ])ul in the case of highly s)relched grids. )he spatial accuracy is

effec)ive]v [burl h order.
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APPENDIX B

TRANSFORMATION METRICS

The metric terms that are required to transfornl tile RAN$ and I,E5 equations from

t)hysical space t,o comt)utational space are derived in this appendix. The l)ro('edure

used in this work is the same as tha! presented in reference [.12].

The equations derived in chapter 2 are transformed from l)hysical space (.r, y, _) t.o

computational space (_, 7/. C) using the rela.tions:

= _(x,y. :)

11= q(.r, y, :)

C = i(*,u,:)

The chain rule of partial differentiation allows the cartesian derivatives to be

expressed as:

(_._)

0 0 0 0

o /9 0 0

0 0 0 0

(B.9)
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In equation (B.:2), the tern> _. I/.,.<,, _u,i/._,,q,,._._.i/=.and £.:are l]w metrics of t]w

Iransformalion. To conlpule these melric terms, the firsl slet) is Io COml)ute the

derivalives .r e, .r,,, .re..{te, !1,,..9_- ze,-:,,, and :c. The slepsizes of these derivalives are

equal in computational space and can be obtained using finile difference

expressions. To be consistent with the (_olllieb-Turkel schelne, which efl'eclivelv has

fourllt order spatial accuracy and uses a five point stencil, these spatial derivatives

are also calculaled with a live point, fourth order accurate finite difference method.

Derivatives in x:

.Fj_ 2 -- ,._./'d_ 1 _3 .]-I-1 d'j+2

we = 12

- 8 + 8:rk+l - ,ca.+2

1"2
(B.:_)

Derivatives in v:

,r/-2 - 8:t'/-1 q- 8:rl+t - .r/+2

1'2

/Jd-2 -- 8ffj-1 "{- 8_j+l -- ,q.j+2

_q¢= 12

,qt.-2 - 8/4_--1 + 85'_-+_ - Ya.+2

9" = 12
(B.4)

I)erivatives in z:

Y4 z

,ql-2 - _91-_S + 89l+1 - b'l+2

1'2
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2,1-2 -- { ~I-I -}- _ -_/+1 -- 2'._+2

z_ -- 12

ZL._ 2 -- SZL._ 1 "4- _ZL.+I -- Zt,.+M

'" 12
(B.5)

-- _2,l_ 12l-2 _ -'_ _2;I+1 -- Z/+2

z< = 12

For grid points thai are located at, a boundary, a one sidod fourth order differenced

expression is used, and at grid points one point off of a boundary, a skewed fourth

order difference expression is used. Both expressions are obtained in the same

manner as the central differenced expressions in equatio)ls (B.3 - B.5) through use of

the approI)ria.te Tavlor's series exI)ansions. :ks an example, the xe term at. a

1)oundary corresponding to (j = 1) is:

g-25xi + 4, x i+a - 36xi+2 + 16x.i+3 3x.>+4

:re = 12

Similarly, the ire term at, (j = 2) is

(B.6)

--3xj-i -- 10.v.i + 1_$3j+2 -- 6x j+3 + ;vj+3

:re = 12
(B.r)

Once all of these spatial derivatives are obtained, the Jacobian of the

transformation, J, is calculated:

xe (y,,:_ - y¢z,,) - a:, (yez( - ycze) + a'( (y_z, - y,z¢)
(B.S)
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l::in_tl_iseXl>ressionfor lhe ,]a<'ol)i_n.tl_emelric temps _re:

L :J(.",:J(-:_J,,)

% =J(x_ zc - a'<z_ )

(, :.l(y_:,, - y.,=_)

i, =.l(x,z_ - .,_=,,)

C =./(_'_y,,- :r,,y,)

(B..9)
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APPENDIX C

TURBULENT TIME AVERAGING PROCEDURE

The procedure used to obtain the time-averaged axial velocities and the two

turbulent intensities for the LES regions is detailed in this appendix.

As each of the two dimensional calculations discussed in chapter .5 and the three

dimensional calculations discussed ill chapler 6 progresse(I in lime. quantities were

accumulated fl'om the instantaneous velocity fields at. each time step. These

quantities were then used t.o calculate the mean axial velocity )7 and the two

t.urbulei_ce intensities u,.,,,, and c,.,,,._. The mean velocity field is calculated using:

-5 = udt

While the two turbulence intensities u,._ and v_._, are obtained from:

(C.1)

and

l

[;-/0u _._._= (u')2dl ((?.2)

1

(C.3)
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The lwo quanlilies u' and _" are nol known unli] _ is (lelerrnilw(t. which in lurn

requires comphqion of the lime averaging period T. As a result, an allernativc to

equations (('.2) and (('.3) is used to fin(I the turbulence intensities u,.,,,_ and r,,,,,_.

I:sing , = _ + u' and t' = F + c_. equations (C.2) and (('.3) can be rewriltell as:

alld

'ttrm_ = u2d! _ -({2

1

_',.,,,._= c2 dt _ -g2 _ (C.5)

For all of the two and three dimensional mixing laver simulations, a constant time

step was used so lhat equations ((I.1), (('.4). and (('.5) can be obtained through a

straightforward summation t)ro(:e(ttlr(_. This I)rocedur(' consists of storing

summations of u. t,, u 2. and v2 at each grid point from each time slep. Equations

(('.1), (C. 1). and ((i'.5) then can be replaced with equations (('.6), (C.8), and ((!.9).

" = y Z " ((!.6)
n=l

where :\,_ is l:tle total number of time steps, corresponding to the total time interval

T, which are related through the time step size At:

T = :\'AI (C.7)

1

[1,
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1

In all of the mixing laver simulalio_ls, the initial iterations used lo slat! 1he flow

devehq)nlent were run using a CFL nulnber of 0,3 with the Gottlieb-Turkel scheme.

.,ks tile unsteady flow developed, however, tile inininmm time step fluctuated in the

flow. so that lhe actual time step given ])v equation 3.:11 also fluctualed, even wilh

the use of a constant ('FL number. The smallest actual time sle 1) observed during

these iteralions needed to allow the flow to fully develo t) was monitored, and then

this fixed time step was imposed for the iterations in which the turbulent statistics

were accumulated.

Each of the two-dimensional calculations were run for approximately three average

flow-through periods, once the initial flowfield in the entire dolnain was established.

This number of flow-through periods was sufficient, 1o allow the mean velocity and

turbulence statistics to reach converged levels. Due to the larger turbulent

unst, eadiiless that was found in the three dimensional calculations, these calculations

were run for approximately four average flow-through periods, once the flowfield in

the entire computational domain was fully developed.
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APPENDIX D

TIME SERIES OF INITIAL MIXING LAYER

DEVELOPMENT

In this appendix, a time series of density and entropy contours are I)rovi(led 1o

illustrale tile initial mixing layer development for a three dimensional hyl)rid

method calculation of tile Goebel-Dutton ext)eriment. The computation discussed

here used the standard length scale expression and ('_ = 0.1 with the Sinagorinsky

suhgrid scale model. As discussed in chapter 5, the densit.v contours provide a close

analogy to the Schlieren photographic technique used in experiments t,o illuslra.te

mixing laver development. In addition, entropy contours enable eml)hasis to 1)e

placed on the shear layer alone, and do not show the Mach wave contours between

the shear layer and the mixing section walls that are evident in the density contours.

These entropy contours are generated using the entropy function of the PLOT3D

program. In reference [109] the entropy function is defined as:

/' P'::1 (D.1)

Figures D.1 and D.2 show sixteen snapshots of the density and entropy contours,

respectively. Each successive snapshot represents a march forward in time of
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:l.TxlO-" se('omts, which corresF, onds 1o 250 l imo slops obtained with lhe

(',oltliel)-Turkel prediclor-corrector sclleme. This lime interval was chosen such lhal

in every olher snapshot, a ll¢'W VOI'|ex iS shed froln the Irailing edge of the sl)litler.

Tho iniliaI organized vortex patt.ern, which very similar to the I(arman vorlex streel

eharaclerislic of the sepa.ra.ted flow past a cylinder, exlelMs approxinaately the

length of six vortices ])efore t.he mixing layer disintegrates into a inore l.urlmleIll

l)alterll.

\Vilh Ill(' shedding of new vorti('es occurring approximately every 500 time steps

with ltle numerical scheme, or 7.4,r10 -_ secon(ls, a Strouhal number may be

calculaled for further analogy wilh tile separated flow pas! a cylinder, where in this

case of the separated flow past the splitter plate:

.s't - f// (D.2)

l;sing the splitter plate base height of 0.,5 _nm and the difference in velocilies of the

two incoming streaIns equal to 300 rn/.q, the calculated Strouha.1 number is 0.225,

which is w_ry close to the Strouhal numbers found for flow past cylinders [54, 74] of

0.20 - (I.21.
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Figure D.I" Time series of density contours for the 3D hybrid calculation using the
standard length scale expression and ('_ = 0.10
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Figure D.1 : Continued
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Figure D.I: C,ontinued
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Figure D.I" Concluded
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Figure D.2: Time series of entropy contours for the 3D hybrid calculation using the

standard length scale expression and C_ = 0.10
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Figure D.2: Continued
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Figure D.2: Continued

NASA/TM_2001-210811

207



(n) t = 14

...... . -_q;_,.

(o) t = 1,5

........................................ . -- . ° _:'." : ,. --. .".-,_'_':.a:: ;_M,.. ...... 2:-;: ,_-
....... ,--,..- _ - _ ., . .. .., ,. > _ .................................................................. , _ ._.................. ,,. _ _,

........................................................................ _j_;::7_ _" ...."_>

Figure D.2: Concluded
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