Abstract
The concept of designing for reliability will be introduced along with a brief overview of reliability, redundancy and traditional methods of fault tolerance is presented, as applied to current logic devices. The fundamentals of advanced circuit design and analysis techniques will be the primary focus. The introduction will cover the definitions of key device parameters and how analysis is used to prove circuit correctness. Basic design techniques such as synchronous vs asynchronous design, metastable state resolution time/ahbiter design, and finite state machine structure/implementation will be reviewed. Advanced topics will be explored such as skew-tolerant circuit design, the use of triple-modular redundancy and circuit hazards, device transients and preventative circuit design, lock-up states in finite state machines generated by logic synthesizers, device transient characteristics, radiation mitigation techniques, worst-case analysis, the use of timing analyzers and simulators, and others. Case studies and lessons learned from spaceflight designs will be given as examples.

This Seminar
- This is a seminar, not a class
 - Two Way Conversation
 - Basic Theory
 - Lessons Learned
 - Case Studies for Discussion
 - Present Your Own Case Studies for Discussion and Future Inclusion
- Under Development
 - First Time This Seminar Is Given
 - Not All Topics Are Fully Developed
 - What Areas Are Useful? Guide Development.

Reliability
Motivation - A Case Study (1961)
First, I believe that this nation should commit itself to achieving the goal, before this decade is out, of landing a man on the moon and returning him safely to the earth.
Special Message to the Congress on Urgent National Needs
President John F. Kennedy
Delivered in person before a joint session of Congress
May 25, 1961

Reliability
Motivation - A Case Study (1986)
It appears that there are enormous differences of opinion as to the probability of a failure with loss of vehicle and of human life. The estimates range from roughly 1 in 100 to 1 in 100,000. The higher figures come from the working engineers, and the very low figures from management. What are the causes and consequences of this lack of agreement? Since 1 part in 100,000 would imply that one could put a Shuttle up each day for 300 years expecting to lose only one, we could properly ask "What is the cause of management's fantastic faith in the machinery?"
Reliability
Motivation - A Case Study (2001)

When discussing the impact of the high observed FIT rate for the FPGAs, the IAT asked Lockheed Martin “What’s the reliability allocation?” Lockheed Martin responded, “Hell if I know.”

The IAT followed up by stating that it appeared that there has been no calculation of the probability of mission success. Lockheed Martin concurred and JPL added: “No programmatic requirement for reliability numbers.”

From the Mars Odyssey FPGA Independent Assessment Team, April 2, 2001

Increasing Reliability

- Fault Prevention
 - Eliminate Faults
 - In Practice, Reduce Probability of Failure to an Acceptable Level
- Fault Tolerance
 - Faults Are Expected
 - Use Redundancy
 - Additional Hardware, Software, Time

Conventional Techniques for High-Reliable Spaceborne Digital Systems

- Use of Conservative Design Practices
 - Derating, Simplicity, Wide Tolerances
- Parts Standardization
- 100% Screening of Parts and Assemblies, Including Thorough Burn-In
- Detailed Laboratory Analyses and Corrective Action for All Failed Parts
- Use of Extreme Care in Manufacture of Parts
- Thorough Qualification of Parts and Manufacturing Processes

Conventional Techniques for High-Reliable Spaceborne Digital Systems (cont’d)

- Thermal Cycling and Vibration Testing of All Completed Assemblies
- Establishment of an efficient field service feedback system to report on equipment failures in the Field
- Design of the Equipment to Minimize Stress During Assembly and to Facilitate Replacement of Failed Components

What We Will Do

- Cover Basic Concepts
- Present Data and Design Techniques
- Case Studies
 - Solutions for Previous Missions
 - Mistakes from Previous Missions

What We Will Not Do

- Provide Exhaustive Coverage
 - We only have a few hours
 - Too much material
- Solve All Problems
 - Goal is to make you think
- Not discuss “Mom and Apple Pie” [well, at least minimize it]
The Lessons of Designing for Reliability

"... we must not repeat the errors of the past. This is blocking and tackling, not rocket science."

Barto's Law: Every circuit is considered guilty until proven innocent.
Special Pins

A Very Basic Topic But A Source of Frequent Failures and Problems

Termination of Special Pins

- MODE pin (test program mode).
- V_{pp} pin (programming voltage).
- TRST* (Reset to JTAG TAP controller)
- TCLK (provides clock to TAP controller)
- SDI, DCLK (varies for each device type)
- Others

MODE Pin

- Left Floating
 - Device can be non-functional
 - High currents
 - Uncontrolled I/O

- Tied High During Test
 - Working device stopped functioning
 - Power supply rise time key

MODE Pin - Test, Debug and Programming Control

IEEE JTAG 1149.1 TCLK

The CLK pin may turn into an output driving low, clamping the oscillator's output at a logic '0'. The TAP controller cannot reset and restore I/O operation. Most FPGAs do not have the optional TRST* pin. Note TRST*, when present, has a pull-up.
Input Stages - Introduction

• Most CMOS inputs have rise/fall time limits
 – Most inputs also have some hysteresis
• Typical symbols in specifications
 – t_r, t_{TRH} - rise time
 – t_f, t_{THR} - fall time
 – t - transition time
• Waveform measurement
 – typically from 10% to 90% but not always
 – sometime parameter measurement method is not specified

Input Stages - Practice

• Data sheets may list a parameter for information only and not 100% tested
• Laboratory devices have shown that not all qualified devices will meet the data sheet
 – One case was when a part was shrunk
 – Migration to a faster process
 – Oscillations observed
• Conservative margins recommended

Input Stages - Termination

• Floating CMOS inputs are, in general, 'bad.'
 – Totem-pole currents, oscillations, etc.
• Some devices offer pull-up/down resistors
 – SX-S only active during power transitions
 – Xilinx resistors controlled by SRAM
 – Care on internal tri-state lines
• Dedicated Inputs
 – Actel unused inputs were handled by s/w
 – Not true for some SX, SX-S clocks
 ⇒ Check each case carefully

Input Transition Times

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Reference</th>
<th>t_z max (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X20</td>
<td>2</td>
<td>500</td>
</tr>
<tr>
<td>AIJ200</td>
<td>3</td>
<td>550</td>
</tr>
<tr>
<td>AT1200</td>
<td>4</td>
<td>590</td>
</tr>
<tr>
<td>AT3000</td>
<td>5</td>
<td>500</td>
</tr>
<tr>
<td>AT3500</td>
<td>6</td>
<td>550</td>
</tr>
<tr>
<td>AT4000</td>
<td>7</td>
<td>590</td>
</tr>
<tr>
<td>AT4050</td>
<td>8</td>
<td>65</td>
</tr>
<tr>
<td>AT4000</td>
<td>9</td>
<td>65</td>
</tr>
<tr>
<td>AT4000</td>
<td>10</td>
<td>65</td>
</tr>
<tr>
<td>AT4000</td>
<td>11</td>
<td>65</td>
</tr>
<tr>
<td>AT4000</td>
<td>12</td>
<td>65</td>
</tr>
<tr>
<td>AT4000</td>
<td>13</td>
<td>65</td>
</tr>
<tr>
<td>AT4000</td>
<td>14</td>
<td>65</td>
</tr>
<tr>
<td>Overall</td>
<td></td>
<td>65</td>
</tr>
</tbody>
</table>
Input Transition Times

References

Clock Transition Time Specification
A Difficult Case

AC Electrical Characteristics Over the Operating Temperature Range (Read and Write Cycle Timing) [1.0] (VDD = 3.3V ± 150mV, Ta = 0°C to +70°C)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min.</th>
<th>Max.</th>
<th>Avg.</th>
<th>Std.</th>
</tr>
</thead>
<tbody>
<tr>
<td>×</td>
<td>t_HH or t_TL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>×</td>
<td>t_HL or t_LH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Transition Time Requirements

Implications - Pullup Resistors

- Often used for tri-state or bi-directional busses
- Rise time (10% - 90%) = τ = 2.2 RC
- Example
 - C = 50 pF
 - R = 10 kΩ (keep power levels reasonable)
 - τ = 500 ns
 - violates many devices' specifications (see table)

Implications - Filters and Protection Circuits

- Often used on signals
 - Elimination of noise
 - ESD protection
 - Etc.
- RC filters or clamps (high C) can often substantially degrade transition times
- Consider discrete hysteresis buffers, particularly for clock signals

Transition Time Requirements

Implications - Interfacing with older logic families

- Case Study (1)
 - CD4000B CMOS NOR gate
 - V_{DD} = 5V
 - t_{r} (typ) = 100 ns
- Case Study (2)
 - CD4050B (used as a level shifter, for example)
 - V_{DD} = 5V
 - t_{r} (max, 25 °C) = 160 ns

Bus Hold Circuit in an FPGA

Supplies leakage current only.
Transition Time Requirements
Implications - Interfacing with older logic families (cont'd)

- Case Study (3) - 54HC00 CMOS NOR gate
 - 5962.8403701VDA, NAND GATE, QUAD 2-INPUT

<table>
<thead>
<tr>
<th>Test</th>
<th>Symbol</th>
<th>Test condition</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transition time, output rise and fall</td>
<td>t_{\text{TR}} , t_{\text{TH}}</td>
<td>T_c = \pm 25\degree C \text{ or } 125\degree C \quad \text{ unless otherwise specified }</td>
<td>75 ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C_l = 50 \text{ pF}</td>
<td>13 ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>See figure 4</td>
<td>13 ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transition time, output fall and rise</td>
<td>t_{\text{TF}} , t_{\text{TL}}</td>
<td>T_c = \pm 55\degree C \text{ or } 55\degree C \quad \text{ unless otherwise specified }</td>
<td>110 ns</td>
<td>22 ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C_l = 50 \text{ pF}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>See figure 4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(T_c \) : Transition time \(t_{\text{TR}}, t_{\text{TF}} \), if not tested, shall be guaranteed to the specified limits in table 1.

From: Figure 4, 5962.8403701VDA, NAND GATE, QUAD 2-INPUT

Transition Time Requirements
Case Study: RH1020

- Production Parts
 - Input stage was modified for clock upset
- \(V_C C = +5\text{VDC} \)
- \(T = 25\degree C \)
- CLKBUF monitored on output
 - Because of design of the buffer, difficult to see effects on the input pin
- Used a low-impedance signal generator, triangle waveform
- Commercial specification is \(t_R, t_F \) of 500 ns
 - RH1020 did not meet this specification
 - SMD 5962-90965 does not specify this parameter

Transition Time Requirements
Case Study: RH1020 CLKBUF

- Oscillations detected consistently at \(t_R = 360 \text{ ns} \)
- Sporadic output pulses at \(t_R = 300 \text{ ns} \)
- Transition time requirement not symmetric
 - Oscillations detected consistently at \(t_F = 1.5 \mu\text{s} \)
 - Sporadic output pulses observed at \(t_F = 1.0 \mu\text{s} \)

Transition Time Requirements
Case Study: RH1020 CLKBUF Notes

- Conditions: Room temp; \(V_C C = 5.0 \text{V} \).
- Oscillations detected consistently at \(t_R = 360 \text{ ns} \)
- Sporadic output pulses at \(t_R = 300 \text{ ns} \)
- Transition time requirement not symmetric
 - Oscillations detected consistently at \(t_F = 1.5 \mu\text{s} \)
 - Sporadic output pulses observed at \(t_F = 1.0 \mu\text{s} \)
Interfacing - Voltage Margin

- **TTL → CMOS**
 - Problem with discrete circuits (still seen)
 - Normally not a problem with 5V FPGAs
 - Issue with new FPGAs
 - 0.35 μm may only pull up to 3.3 VDC
 - 0.25 μm may only pull up to 2.5 VDC
 - Can be issue with parts having a $V_{\text{IH}} = 70\% V_{\text{DD}}$
 - Ringing can cause false triggering
- $V_{\text{IL}} = 0.8V$ and fast devices are sensitive to ringing on a backplane.

Inputs: RT54SX16 t_r

RT54SX16 output (bottom trace) with a slow rising input (top trace) which clocks a divide by two counter resulting in a "glitch." The clock input was provided by an HP8110 pulse generator.

JTAG and Loss of Control

- Run TCK with TMS='1'
 - Guaranteed to return to TEST_LOGIC_RESET state within 5 clocks.
- Share system clock with TCK
- JTAG Hit
- Inputs turn to outputs
 - Clock pin turns to output, clamps system clock
 => No TCK, system hangs.
Startup Transients

Start up Transient - Outputs

FPGA Output

Critical System

[From Actel Application Note]

Power Up

Actel FPGAs are nonvolatile and therefore require no external configuration circuitry on power up. However, at power up it does take a finite amount of time for the device to become stable and operate normally. For a V_{cc} slew rate of ~30 ms/V, it takes approximately 250 ms for the device to become fully operational. Power up time varies with temperature, where cold is worst case. At power up, the state of all flip-flops is undefined. Some new designs will be power up safe.

Start up Transient - Outputs

Charge Pump and Isolation

Antifuses

Start up Transient - Outputs

Fire Cover

Arm

V_{cc}

Hor: 5 ms/Division; Ver: 2 volts/Div

Start up Transient - Inputs

FPGA Input

During the start up time with many FPGA models, an input may source current. In this application, a buffer with Schmidt trigger inputs is recommended.

Flight Oscillator Start Time

200 kHz

$+5V$

1 ms/div; $t_{RISE} = 1$ ms
Flight Oscillator Start Time

Summary

Synchronous Reset

- FPGA may not be functional during power-on transient
- Crystal oscillator start time

Startup Current Transient
Case Study: RT54SX32 Post-Irradiation

Startup current transient (3.3V supply) of an RT54SX32 after 98 krad (Si). Voltage at 1V/Div and current at 100 mA/Div.
Startup Current Transient
Xilinx Technology

- Two sets of requirements for the power-on transient for Xilinx XQR4000XL and Virtex 2.5V FPGAs.
 - Rise time
 - Current capability of the power supply.
- Noted that unlike Actel FPGAs where slower power supply rise times result in higher current values, in Xilinx devices, faster rise times result in higher current values.

Startup Current Transient
Xilinx XQR4000XL

- Rise Time
 - Slowest power supply rise time is 50 ms. Many power supplies can meet this specification easily.
 - Some spaceborne power supplies may have longer rise times.
- Current Levels
 - The minimum current is broken into two groups: XQR4013-36XL and XQR4062XL. Note that according to the specification, the values refer to commercial and industrial grade products only, with the transition measured from 0 VDC to 3.6 VDC. Actual currents may be higher than the minimums specified.
 - Note 3 in the specification states that the duration of the peak current level will be less than 3 ms.

Startup Current Transient
Xilinx Virtex

- Complete power supply requirements are not yet specified in the radiation hard data sheet. Some of the information is taken from the commercial data sheet.
- Rise Time
 - Slowest power supply rise time for this series of parts is 50 ms.
 - The fastest suggested ramp rate is 2 ms.
- Current Levels
 - The data sheet only specifies a minimum required current supply for Virtex devices at a power supply rise time of 50 ms.
 - According to the non-military specification, it is 500 mA for commercial grade devices and 2 A for industrial grade parts.
 - Additionally, shorter power supply rise times will result in higher currents.
 - The duration of peak currents will be less than 3 ms

Icc Start-Up Transient Study
in the RT1280A

An examination of the effects of radiation, a detailed look at the response of the part, annealing, and impacts to the board-level and system designs.

Figure 1. Startup transient after 4 krad (Si) exposure at 1 krad (Si)/day. The current peak is unchanged from the pre-irradiation measurement and remained unchanged over the course of this experiment. Analysis on next slide.
Shartup transient after 4 krad (Si) exposure at 1 krad (Si)/day.
- Left current peak is unchanged from the pre-irradiation measurement and remained unchanged over the course of this experiment.
- This current peak is expected as the NMOSFET isolate transistors are not fully conducting, resulting in serious pole currents in the input circuit of the logic modules.
- The 350 mA current peak on the right appears when Vcc reaches 3.5 VDC.
- The power supply used for these tests had a rise time of < 2 msec.
- Voltage is at 1V/div; current is at 100 mA/div.

Figure 2. Startup transient after 5 days of room temperature, biased anneal, following the 4 krad (Si) irradiation. The radiation-induced current peak is essentially gone. Voltage is at 1V/div; current is at 100 mA/div.

Figure 3. Startup transient after an additional 2 krad (Si) exposure at 1 krad (Si)/day for a total of 6 krads (Si). The radiation-induced current peak is now about 700 mA. Analysis on next slide.

- The radiation-induced current peak is now about 700 mA.
- The current draw still appears when Vcc reaches 3.5 VDC, unchanged from the 4 krad (Si) radiation step.
- At Vcc=3.5VDC, bulk capacitors on the board will have charge Q = 3.5V x C, which will provide charge in addition to that available from the power supply and helping to support the voltage rail. An 18 pF bulk capacitor will store 630 uC.
- The current draw for this transient is approximately 100 uC.
- Voltage is at 1V/div; current is at 100 mA/div.

Figure 5. Effects of 100 °C, biased anneal after the 6 krads (Si) irradiation step and room temperature annealing. The radiation-induced startup current is now virtually eliminated, showing that annealing is effective.
- Voltage is at 1V/div; current is at 100 mA/div.
Static Hazards

Definitions

- If the change of a single variable causes a momentary change in other variables, which should not occur, then a static hazard is said to exist.
- If, after switching an input, the output has multiple transitions for a short time, then a dynamic hazard exists. For example:
 - S/B: 0 → 1
 - IS: 0 → 1 → 0 → 1

Static Hazard

2:1 Mux implemented by minimized Sum-of-Products

Idealized matched delays

We now have a "glitch."

Same waveform, zoomed in.

Illustrating the minimized function on a Karnaugh map. Only two 2-input AND gates are needed for the product terms.
The blue oval shows the redundant term used to cover the transition between product terms.

Asynchronous Decoding
High Level

Asynchronous Decoding
High Level - Another Form

2:4 Decoder

What happens when the inputs go from 01 to 10?

2:4 Decoder with Enable
Implementation Level

- 0000 0
- 0001 1
- 0010 2
- 0011 3
- 0100 4
- 0101 5
- 0110 6
- 0111 7
- 1000 8
- 1001 9
- 1010 10
- 1011 11
- 1100 12
- 1101 13
- 1110 14
- 1111 15
- 0000 16

Terminal count of a 4-bit synchronous counter.

Asynchronous Decoding Glitch Generation

- 011111111111
- 100000000000
- ...
- 111111101111
- 111111110000

Because of unequal propagation delays, the sequence can momentarily go through state 111111111111 generating a glitch.

Decoder Output Used As Clock

From Erickson, MAPLD 2000

Logic Design

Asynchronous decode used as a clock

Static Hazard

Flight Design Example

Care is needed when using TMR circuits. First, the output of the voter may be susceptible to a logic hazard "glitch." This is not a problem if the TMR is feeding the input of another synchronous input. However, the TMR output should never feed asynchronous inputs such as flip-flop clocks, clears, sets, read/write inputs, etc.

High-skew buffer
Dynamic Hazards

We have covered static hazards. There are also dynamic hazards. An example of a dynamic hazard would be when a circuit is supposed to switch as follows:

\[0 \rightarrow 1 \]

But instead switches:

\[0 \rightarrow 1 \rightarrow 0 \rightarrow 1 \]

Any circuit that is static hazard free is also dynamic hazard free.
Asynchronous Logic

Synchronous vs. Asynchronous Logic
- Asynchronous signals are not synchronized to a clock.
- Timing Analysis for Asynchronous Circuits
 - Many tools do not support this
 - Complex, sometimes not tractable
 - Error-prone
- Asynchronous logic may result in smaller, faster, or lower power circuits
- Asynchronous logic, well done, is reliable.

Is It Or Isn’t It?

Common Asynchronous Design Problems
- Design may be marginal
 - Adequate margin non-verifiable
- Aging and radiation effects
 - Can not test for these
- Failures may occur late in the test program
 - i.e., thermal of thermal/vacuum testing
 - This is always on Friday night
- System may have unexplained glitches
 - Often difficult to troubleshoot
Some Examples of Problems

- Spacecraft Experienced Inadvertent Reset During System Testing
 - Only from 17 to 20 °C
 - FPGAs were redesigned
- Lots and lots of 'rookie mistakes.'
 - No analysis and unknown margin
 - Decoded outputs used as clocks
 - High-skew signals used as clocks
 - Counters
 - Shift Registers

Case Study
Potential Race Condition
<table>
<thead>
<tr>
<th>Transition Time ((t_T)) Compliance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transition Time ((t_{THL}))</td>
</tr>
<tr>
<td>High-Speed: RT54SX16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Spec. Req.</th>
<th>Specification Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rise Time</td>
<td>10 ns</td>
<td>Maximum</td>
</tr>
<tr>
<td>Fall Time</td>
<td>20 ns</td>
<td>Minimum</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transition Time ((t_{TLH}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-Speed: RT54SX16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Spec. Req.</th>
<th>Specification Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rise Time</td>
<td>5 ns</td>
<td>Maximum</td>
</tr>
<tr>
<td>Fall Time</td>
<td>10 ns</td>
<td>Minimum</td>
</tr>
</tbody>
</table>
Fail Safe Logic

Orbiting Astronomical Observatory (OAO) Technology

Quad Redundant AND Gate
Orbiting Astronomical Observatory

Quad Redundant OR Gate
Orbiting Astronomical Observatory

Quad Redundant Inverter
Orbiting Astronomical Observatory
Reliability

• Introduction to Reliability
• Historical Perspective
• Current Devices
• Trends

The Bathtub Curve

- Infant Mortality
- Useful Life
- Wear out
- Failure rate, \(\lambda \)
- Constant
- Time

Introduction to Reliability

- Failure in time (FIT)
 - Failures per 10^9 hours
 - \(\sim 10^4 \) hours/year
 - Acceleration Factors
 - Temperature
 - Voltage

Introduction to Reliability (cont'd)

Most failure mechanisms can be modeled using the Arrhenius equation.

\[
\text{ttf} = C \cdot e^{\frac{E_A}{kT}}
\]

- \(\text{ttf} \) - time to failure (hours)
- \(C \) - constant (hours)
- \(E_A \) - activation energy (eV)
- \(k \) - Boltzmann's constant \((8.616 \times 10^{-5} \text{eV/°K}) \)
- \(T \) - temperature (°K)

Integrated Circuit Reliability

Historical Perspective

<table>
<thead>
<tr>
<th>Application</th>
<th>Reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apollo Guidance Computer</td>
<td>< 10 FITs</td>
</tr>
<tr>
<td>Commercial</td>
<td>(1971) 500 Hours</td>
</tr>
<tr>
<td>Military</td>
<td>(1971) 2,000 Hours</td>
</tr>
<tr>
<td>High Reliability</td>
<td>(1971) 10,000 Hours</td>
</tr>
<tr>
<td>SSI/MSI/PROM 38510</td>
<td>(1976) 44-344 FITs</td>
</tr>
<tr>
<td>MSI/LSI CICD Hi-Rel</td>
<td>(1987) 43 FITs</td>
</tr>
</tbody>
</table>
Actel FPGAs

<table>
<thead>
<tr>
<th>Technology (µm)</th>
<th>FITS</th>
<th># Failures</th>
<th>Device-Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0/1.2</td>
<td>33</td>
<td>2</td>
<td>9.4 x 10^6</td>
</tr>
<tr>
<td>1.0</td>
<td>9.0</td>
<td>6</td>
<td>6.1 x 10^4</td>
</tr>
<tr>
<td>0.8</td>
<td>10.9</td>
<td>1</td>
<td>1.9 x 10^4</td>
</tr>
<tr>
<td>0.6</td>
<td>4.9</td>
<td>0</td>
<td>1.9 x 10^4</td>
</tr>
<tr>
<td>0.45</td>
<td>12.6</td>
<td>0</td>
<td>7.3 x 10^7</td>
</tr>
<tr>
<td>0.35</td>
<td>19.3</td>
<td>0</td>
<td>4.8 x 10^7</td>
</tr>
<tr>
<td>RTSX 0.6</td>
<td>33.7</td>
<td>0</td>
<td>2.7 x 10^7</td>
</tr>
<tr>
<td>0.25</td>
<td>88.9</td>
<td>0</td>
<td>1.0 x 10^7</td>
</tr>
<tr>
<td>0.22</td>
<td>78.6</td>
<td>0</td>
<td>1.2 x 10^7</td>
</tr>
</tbody>
</table>

Xilinx FPGAs

- XC40xxXL
 - Static: 9 FIT, 60% UCL
 - Dynamic: 29 FIT, 60% UCL
- XCVxxx
 - Static: 34 FIT, 60% UCL
 - Dynamic: 443 FIT, 60% UCL

UTMC and Quicklogic

- FPGA
 - < 10 FITS (planned)
 - Quicklogic reports 12 FIT, 60% UCL
- UT22VP10
 - UTER Technology, 0 failures, 0.3 [double check]
- Antifuse PROM
 - 64K: 19 FIT, 60% UCL
 - 256K: 76 FIT, 60% UCL

Actel FIT Rate Trends

![Actel FIT Rate Trends](image-url)
Power Switching

- Protecting I/O's
- Powering Circuits
- RT54SX16/32
 - Perhaps RT54SX32S
 - UTMC buffers
- EEPROMs/write protection
- SMEX/WIRE

Power Supply Sequencing

- Protecting I/O's
- Parasitic/ESD diodes
- PCI clamp diodes
- Cold-sparing capable I/O's

Power-On Reset (POR)

- ESD Protection diode to VCC
- No current limiting resistor

Power Supply Sequencing

RT54SX16/32

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Time</th>
<th>Sequencing</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>5V</td>
<td>120 ms</td>
<td>Power Up Sequence</td>
<td>No damage to device</td>
</tr>
<tr>
<td>5V</td>
<td>120 ms</td>
<td>Power Down Sequence</td>
<td>Possible damage to device</td>
</tr>
</tbody>
</table>

Power Supply Sequencing

RT54SX32S

- To date, our lab work has shown, on some parts, that when VCCI is applied before VCCA, significant currents, > 10 mA, can be seen flowing into the VCCI pin.
- Power supply sequencing may also affect reliability of the safe power on/off feature.
- These are under investigation.
Power Supply Sequencing
EEPROMs: Hardware Write Protection

In order to reduce the probability of inadvertent writes, the following power supply sequences shall be observed.

a. For device types 1-18, a logic high state shall be applied to WE and/or CE at the same time or before the application of Vcc. For device types 16-18, an additional precaution is available, a logic low state shall be applied to RES at the same time or before the application of Vcc.

b. For device types 1-18, a logic high state shall be applied to WE and/or CE at the same time or before the removal of Vcc. For device types 16-18, an additional precaution is available, a logic low state shall be applied to RES at the same time or before the removal of Vcc.

Power Supply Sequencing
EEPROMs: Software Write Protection

To protect against unintentional programming caused by noise generated by external circuits, AS58C1001 has a Software data protection function. To initiate Software data protection mode, 3 bytes of data must be input, followed by a dummy write cycle of any address and any data byte. This exact sequence switches the device into protection mode. This 4th cycle during write is required to initiate the SDP and physically writes the address and data. While in SDP the entire array is protected in which writes can only occur if the exact SDP sequence is re-executed or the unprotect sequence is executed.

The Software data protection mode can be cancelled by inputting the following 6 Bytes. This changes the AS58C1001 to the Non-Protection mode, for normal operation.

<table>
<thead>
<tr>
<th>Enable Protection</th>
<th>Disable Protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>Data</td>
</tr>
<tr>
<td>5555</td>
<td>AA</td>
</tr>
<tr>
<td>2AAA</td>
<td>55</td>
</tr>
<tr>
<td>5555</td>
<td>A0</td>
</tr>
<tr>
<td>5555</td>
<td>AA</td>
</tr>
<tr>
<td>5555</td>
<td>20</td>
</tr>
</tbody>
</table>

Power Supply Sequencing
SMEX/WIRE

- System applied power simultaneously to the FPGA, drive circuitry, and relay.
- Control FPGA generated both ARM and FIRE signals based on spacecraft optically isolated inputs.
- Transient analysis not performed.
- Saved 1 relay.

Power Supply Sequencing
SMEX/WIRE

SPE -28V
SCS
ARM
FIRE

 Relay
FET
PYRO
Redundancy

Definitions

• Simplex
 - Single Unit
• TMR or NMR
 - Three or n units with a voter
• TMR/Simplex
 - After the first failure, a good unit is switched out with the failed unit.
• TMR/Switchable Spare
 - After the second failure is detected, the last good unit is switched in.

Types of Redundancy

• Static Redundancy
• Dynamic Redundancy
• Hybrid Redundancy

Static Redundancy

• Uses Extra Components
• Effect of a Fault is Masked Instantaneously
• Two Major Techniques
 - N-Modular Redundancy (generalization of TMR or Triple Modular Redundancy)
 - Error Correcting Codes

Static Redundancy

• TMR flip-flops
• What happens when you add a Hamming code and error correct to a finite state machine?
 - Hint: Are SEUs synchronous?

TMR/Voter Structures

With no active clock, it's an SEU integrator.
Static Redundancy Example
SEU-Hardened Flip-Flop

Dynamic Redundancy
- Uses Extra Components
- Only 1 Copy Operates At A Time
 - Fault Detection
 - Fault Recovery
- Spares Are On "Standby"
 - Hot Spares
 - Cold Spares

Hot and Cold Spares
- Hot Spares
 - Modules/components are powered or 'hot'
- Cold Spares
 - Modules/components have their power removed or are 'cold'
 - Sneak path analysis is necessary, particularly with CMOS interfaces
 - Some CMOS I/O structures are high-impedance when powered down

Interfacing - Blocks
ESD and parasitic diodes (not shown here) to the power bus (present in most CMOS devices) form a sneak path.

Cold Sparing - SX-S

Types of Redundancy
- Classified on how the redundant elements are introduced into the circuit
- Choice of redundancy type is application specific
- Active or Static Redundancy
 - External components are not required to perform the function of detection, decision and switching when an element or path in the structure fails.
- Standby or Dynamic Redundancy
 - External elements are required to detect, make a decision and switch to another element or path as a replacement for a failed element or path.
Redundancy Techniques

Simple Parallel Redundancy
Active - Type 1

In its simplest form, redundancy consists of a simple parallel combination of elements. If any element fails open, identical paths exist through parallel redundant elements.

Duplex Parallel Redundancy
Active - Type 2

This technique is applied to redundant logic sections, such as A1 and A2 operating in parallel. It is primarily used in computer applications where A1 and A2 can be used in duplex or active redundant modes or as a separate element. An error detector at the output of each logic section detects noncoincident outputs and starts a diagnostic routine to determine and disable the faulty element.

Bimodal Parallel Redundancy
Active - Type 3

A series connection of parallel redundant elements provides protection against shorts and opens. Direct short across the network due to a single element shorting is prevented by a redundant element in series. An open across the network is prevented by the parallel element. Network (a) is useful when the primary element failure mode is open. Network (b) is useful when the primary element failure mode is short.

Simple Majority Voting
Active - Type 4

Decision can be built into the basic parallel redundant model by inputting signals from parallel elements into a voter to compare each signal with remaining signals. Valid decisions are made only if the number of useful elements exceeds the failed elements.

Adaptive Majority Voting
Active - Type 5

This technique exemplifies the majority logic configuration discussed previously with a comparator and switching network to switch out or inhibit failed redundant elements.
Gate Connector Voting
Active - Type 6

Similar to majority voting. Redundant elements are generally binary circuits. Outputs of the binary elements are fed to switch-like gates which perform the voting function. The gates contain no components whose failure would cause the redundant circuit to fail. Any failures in the gate connector act as though the binary element were at fault.

Non-Operating Redundancy
Standby - Type 7

A particular redundant element of a parallel configuration can be switched into an active circuit by connecting outputs of each element to switch poles. Two switching configurations are possible:
1) The element may be isolated by the switch until switching is completed and power applied to the element in the switching operation.
2) All redundant elements are continuously connected to the circuit and a single redundant element activated by switching power to it.

Operating Redundancy
Standby - Type 8

In this application, all redundant units operate simultaneously. A sensor on each unit detects failures. When a unit fails, a switch at the output transfers to the next unit and remains there until failure.

Redundant Processors
Software Voting for the Space Shuttle

Killingbeck - There are approaches to the instability problem that involve equalization and periodic exchanges of data: some kind of averaging, middle select, or whatever, to keep things from getting too far apart. The problem is that, for every sensor, an analysis has to be made of what values are reasonable and how an average should be picked. The extra computation consumes a lot of manpower and time, and creates a lot of accuracy problems. It's very hard to set a tolerance level that throws away bad data and doesn't somehow throw away some good data that happen to be extreme. It wasn't so much that we felt that this scheme couldn't be made to work, it's just that we believe there had to be a better way.

Redundant Processors
Architecture for the Space Shuttle

Killingbeck - We originally looked at three redundancy management schemes. First, we considered running as a number of totally independent sensor, computer, and actuator strings. This is a classic operating system for aircraft - the Boeing 767, for example, uses this basic approach. We also looked at the master/slave concept, where one computer is in charge of reading all the sensors and the other computers are in a listening mode, gathering information. One of the backups takes over only if the master fails. The third approach we considered is the one we decided to use, the distributed command approach, where all the computers get the same inputs and generate the same outputs.

Calculation of TMR
Reliability for SEUs

The probability of i arrivals in a time t is calculated as:

\[M(i, \lambda) = \frac{(\lambda t)^i}{i!} e^{-\lambda t} \]

(1)

Following this, the interarrival time is a continuously distributed exponential random variable with the average time between arrivals of 1/\(\lambda \).

Each particular bit is modeled independently of all other bits. In practice, this is not always true. For instance, certain memory devices may have multiple upsets in a single byte within one address [6]. This phenomena has not been seen in FPGAs.
Calculation of TMR
Reliability for SEUs

The probability for a single bit not being upset can now be computed as the probability of an even number of arrivals in the scrub period and the probability for a bit being upset is computed as the probability of an odd number of arrivals.

PS = Probability of Success
- Probability of no upset
- Probability of an even number of upsets

PF = Probability of Failure
- Probability of upset
- Probability of an odd number of upsets

and

PS = \frac{1}{2} + \sum_{i=1}^{\infty} \binom{n}{i} \times PS^i \times PF^{n-i} \tag{11}

where \binom{n}{i} is defined as \frac{n!}{i!(n-i)!} \tag{12}

Once the probability of a word failing is calculated, multiplication by the number of words will give a failure rate.

Simplex vs. TMR Reliability

The probability of a failure for an experiment is having more errors than the code can correct, which is either 2 or 3 for the TMR flip-flop.

Reliability of Redundant Systems
Diverse Design

Definition

In diverse design redundancy two or more components of different design furnish the same service.

This has two advantages: it offers high protection against failures due to design deficiencies, and it can offer lower cost if the back-up unit is a "life-boat," with lower accuracy and functionality, but still adequate for the minimum mission needs. The installation of diverse units usually adds to logistic cost because of additional test specifications, fixtures, and spare parts. This form of redundancy is, therefore, economical primarily where the back-up unit comes from a previous satellite design, or where there is experience with it from another source. Where there is concern about the design integrity of a primary component, diverse design redundancy may have to be employed regardless of cost.

Diverse Design

Skylab Lessons Learned

When designing redundancies into systems, consider the use of nonidentical approaches for backup, alternate, and redundant items.

Background

A fundamental design deficiency can exist in both the prime and backup system if they are identical. For example, the rate gyro in the Skylab attitude control system were completely redundant systems, i.e., six rate gyro were available, two in each axis. However, the heater elements on all gyro were identical and had the same failure mode. Thus, there was no true redundancy and a separate set of gyro had to be sent up on Skylab 4 for an in-flight replacement.

Diverse Design

Case Study: LEM Abort Guidance Computer

- Main computer
 - 15-bit AGC, common with the CSM
 - Single string
- Not enough resources for redundancy
- TRW produced a small computer
 - MARCO 4418
 - 8-bit
- Limited functionality
 - Put the LEM in lunar orbit

Diverse Design

Case Study: Space Station

- No intentional diverse design, despite Skylab's lessons learned. Very expensive.
- Overlap in functions between US and Russia provides some diversity in ISS.
- Russian side has some diversity more as a result of heritage then an objective.

1 As far as I know.
Diverse Design

Topic for Discussion: Software

• Not widely applied in software
 - Difficult to quantify expected improvement

• N-version Programming
 - In hardware NMR, there are identical copies; in software NMR, independent coding.
 - Voted: Reference states "sufficiently similar."

• Limitation: 50% of faults in software control systems are in the specification.

Diverse Design

Software Voting

In the N-version programming approach a number of independently written programs for a given function are run simultaneously; results are obtained by voting upon the outputs from the individual programs. In general the requirement that the individual programs should provide identical outputs is extremely stringent. Therefore, in practice "sufficiently similar" output from each program is regarded as equivalent; however, this increases the complexity of the voters [4.54].

Diverse Design

Case Study: Space Shuttle Computers

• Five Identical Sets of Computer Hardware
 - 4 run the primary software (PASS)
 • Each computer sees all I/O
 • Displays status to crew
 - 1 runs the Backup Flight System (BFS)
 • Runs during critical stages but does not control I/O unless engaged by the crew
 • Voting is done at the actuators (dynamic)
 • Crew provides decision making on switching redundancy (static)

As I mentioned, there is a fifth computer that runs the Backup Flight System (BFS). Early on, NASA was concerned about the possibility of a generic software problem in the PASS—what if there were a "bug" in the PASS that brought the entire primary system down? The way they alleviated their fears was by developing independent ascent and entry software from a subset of the requirements; they had given us this independent software was written by Rockwell International and resides in the fifth computer. The decision to engage the VGS is totally crew function. Their procedures identify certain situations for which the switch should be made: instance, loss of control, multiple consecutive failures of PASS computers, or the infamous two-on-two split where the computers split up into two pairs (we've never seen this occur). To date the crew has never had to use the BFS during a mission.

Diverse Design

Case Study: Small Satellites/Surrey

• Components: risk inherent in the use of components which are not formally "space qualified"
• New technologies: employed alongside flight-proven technologies in a "layered architecture"
 - Top-layer systems use state-of-the-art high-performance device types
 - Lower-layer systems use device types which have been flown and tested in previous spacecraft, and which are able to carry out most of the same functions, albeit with a possible loss of performance
• Layered architecture protects against design faults.

Some more information on this is available from Computers in Spaceflight: The NASA Experience, James E. Tomayko, Wichita State University.

As first the backup flight system computer was not considered to be a permanent fixture. When safety level requirements were lowered, some IBM and NASA people expected the fifth computer to be removed after the Approach and Landing, Test phase of the Shuttle program and certainly after the flight test phase (STS-1 through 4). However, the utility of the backup system as insurance against a generic software error in the primary system outweighed considerations of the savings in weight, power, and complexity to be made by eliminating it.

Diverse Design
Case Study: Small Satellites/Surrey

From the "Design Philosophy" section

Recognising the risk inherent in the use of components which are not formally "space qualified", we use redundancy at many levels to reduce the risk of total mission failure. When adopting new technologies, we employ them alongside flight-proven technologies in order to reduce risk. Thus we build a "layered architecture", in which each successive layer relies on different systems comprising increasingly well-proven technologies. The top-layer systems use state-of-the-art high-performance device types - often without flight-heritage - but which gave a high degree of functionality. Whereas the lower-layer systems use device-types which have been flown and tested in previous spacecraft, and which are able to carry out most of the same functions, albeit with a possible loss of performance. In this way, problems caused by an inherent system design fault, or by the failure of a particular device-type, are not duplicated in the different layers.
Configuration Control

This sounds boring and what is this topic doing in the middle of a design reliability seminar?

Use of a “Standard” I/F Module

- Design team comprised of members from multiple organizations
- “Standard” module (Shift Register) intended to be used throughout the system.
 - Four different versions found in 11 FPGAs.
 - Two use “reverse buffering” for the clocks
 - Two use clock trees.

"Reverse Buffering"

Data Direction

Clock Direction

<table>
<thead>
<tr>
<th>Subsystem</th>
<th>FPGA</th>
<th>Version Used</th>
<th>Clock Buffer Tree Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A1</td>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td>B</td>
<td>B1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>C1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>D1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>E1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E2</td>
<td>2</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>E3</td>
<td>4</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Violation of the Project’s "reverse buffering" clock topology.

Sources of skew include routing between elements as well as the buffers in the tree. For Act 1 and Act 2 devices, routing and buffer delays can not be separated. Other considerations include rise time of the signal and the receivers threshold.
Clock Skew

Shift register is given as an example. Also seen in counters and other logic structures.

Clock Skew - Timing Model

- Hold time at FF2 is the concern.
 - Worst-case
 - Low V_{IH} FF1
 - Hi V_{IH} FF2
 - Fast T_{CO}, T_{ROUTE}
 - High T_{SKW}
- $T_{CO} + T_{ROUTE} + T_{H} > T_{SKW}$

Local Clock: Physical Realization

Note: Antifuse located at each junction.

Design Strategy (2)
Use of Local, High-Skew Clock

- This project had a design rule of no more than 5 loads on a local, high-skew clock. This was repeatedly violated.
Clock Skew - Timing Analysis

Most static timing analyzers give bounded numbers for min, max.

Just setting "MAX" or "MIN" does not account for variations as a result of fabrication differences, anti-fuse resistance, changes as a result of aging, etc. and will be too liberal.

A full MIN/MAX analysis is too conservative since elements near each other on the same die can vary that widely. E.g., one part can be at 4.5VDC, the other at 5.5VDC.

For each environmental condition, it is fair to hold temperature, voltage, fixed.

MIN/MAX will still be a bit conservative, since will range over all manufacturing conditions, not limited to variation within a single die.

Antifuse Resistance Variation

ONH Antifuse Resistance Distribution
Programming Current = 5mA
(from Antifuse FPGAs, J. Greene, et al.)

Prop Delay Delta vs. Life

RH1280 Change in Propagation Delay
After 1000 Hour Life Test
Tested at 4.5 VDC, 125C

Note: Over a long path, 16 modules + I/O, Tp exceeding 100 ns.

Clock Skew - From VHDL

Coding Example

Synthesized Results

Results will depend on coding, directives and attributes, synthesizer, and synthesizer revision.

Here we see that the logic synthesizer generated a poor circuit.
Clock Skew Correction

No "PRESERVE"

High-skew Clock

Clock Skew - Chip-to-Chip

Analysis may show problems. Some architectures are designed with 0 ns t_{ck}, others incorporate delay elements (configurable) on the data inputs to ensure reliable clocking.
Self-Test: Processors

Processor Hardware Self-Test

Typically, a self-test program for checkout or restarting is a boot-strapping procedure which begins with the verification of the most elementary set of instructions, i.e., those which rely only on a fraction of the computer hardware in order to operate. These instructions are then used to construct a decision-making subroutine which verifies some primitive condition on a YES-NO basis. Once verified, this subroutine (or several similarly constructed) is used to check all other instructions and variations in sequence, beginning with the next least complex instruction and working up to the most complex instruction. After all instructions are verified, input/output (I/O) and memory self-test programs check the remaining hardware.

Processor Hardware Self-Test

Case Study: Gemini

Self-test routines are also important for detecting malfunctions during operation. In the Gemini project, for example, diagnostic subroutines were interleaved in the operational computer program. When they detected a fault, a discrete command was issued to light a malfunction indicator lamp on the control panel. The circuit had a manual reset capability to test whether it was set by a transient malfunction.

Processor Hardware Self-Test

Case Study: Gemini (cont'd)

Three self checks were performed during flight:
- A timing check, based on the noncoincidence of certain signals within the computer under proper timing conditions.
- A thorough diagnostic test which exercised all of the computer's arithmetic operations during each computer cycle in all modes.
- A looping check, to verify that the computer was following a normal program loop. A counter in the output processor was designed to overflow every 2.7 sec. Each program was written to reset this counter every 2.7 sec; thus, any change in the program flow would cause an overflow and indicate a malfunction.

Processor Hardware Self-Test

Case Study: Apollo Guidance Computer

The Apollo guidance computer is equipped with a restart feature comprising alarms to detect malfunction and a standard initiation sequence which leads back into the programs in progress. The AGC has six malfunction detection devices that cause a restart, as follows:
- A parity test of each word read from memory. An odd-parity bit is added to each fixed-memory word at manufacture time and to each erasable word at write time.
- A looping check much like the one on Gemini. A specified register must be periodically tested by any correctly operating program. This register is "wired" and if it is not tested often enough will cause restart.
- A transfer control trap, which detects endless loops containing only control transfer instructions, such as a location L, which contains the instruction "transfer control to location L."
- An oscillator fail check caused by stopping of the timing oscillator.
- Voltage fail circuits to monitor the 28-, 14-, and 4-V power levels which drive the computer.
- An interrupt check, which detects excessive time spent in the interrupt mode, or too much time spent between interrupts.
Processor Hardware Self-Test
Case Study: Saturn V Launch Vehicle

- Logic used TMR
 - Disagreement detector for faults
 - Switches to simplex if fault detected.
 - Memory was dual-redundant with parity
 - Both memories read in parallel
 - If fault, then backup memory read, correct data written to both memories (DRO core)
 - Switch prime and backup units

Need to verify from a second source.

Processor Hardware Self-Test
Case Study: Space Shuttle

- 4 of the 5 identical computers operate in an NMR configuration
 - Computers synchronized and outputs between computers are compared on the I/O busses
- Voting at the actuator
 - Hydraulic voting mechanism: force-fight voter
- After two failures, operates as a duplex system with comparison and self-test techniques

Processor Hardware Self-Test
Case Study: MA31750/MIL-STD-1750A

- On-chip parity generation/checking
- Built-In test
 - Part of initialization
 - Manufacturer defined XIO Instruction
 - Code 840D
 - For Tracor RHEC and MAS281
 - BIT part of initialization
 - Called using Built-In Function (BIF) 4F
Processor Hardware Self-Test
Case Study: MA31750/MIL-STD-1750A

Built-In Test (BIT) Coverage
- Temporary Registers (T0-T11)
- General Registers (R0-R15)
- Flags Block
- Sequence Operation and ROM Checksum
- Divide Routine Quotient Shift Network
- Multiplier and ALU
- Barrel Shift Network
- Interrupts and Fault Handling and Detection
- Address Generator Block
- Instruction Pipeline

Processor Hardware Self-Test
Case Study: MAS281/MIL-STD-1750A

Built-In Test (BIT) Coverage
- Microcode sequencer; IB Register Control; Barrel Shifter; Byte Operations and Flags
- Temporary Registers (T0-T7); Microcode Flags; Multiply; Divide
- Interrupt Unit - MK, PI, FT; Enable/Disable Interrupts
- Status Word Control; User Flags; General Registers (R0-R15)
- Timer A; Timer B

Hardware Self-Check
Case Study: IA-64

- L2 and L3 are ECC protected
 - L2 is on-chip, 96 KB unified, 6-way set associated, 64-byte line
 - L3 is on-cartridge, up to 4 MB, 4-way set associated, 64-byte line
- "The processor implements a machine check architecture (MCA) that provides the ability to continue, Recover, or Contain detected errors. All significant structures on the chip are protected by parity of ECC."

Hardware Self-Test
Case Study: MIL-STD-1553B

- Mode Code 00011 - Initiate Self-test
- Terminal fail-safe. Hardware ensures that no transmission is greater than 800.0 μs (4.4.1.3)
- Listening to the transmitted signal to ensure it matches what was sent.
 - (Look up to see if 1553 requirement or implementation)
Metastable States

Metastability

- In practical circuits, there is sufficient noise to move the device output of the metastable state and into one of the two legal ones. This time cannot be bounded. It is statistical.
- Factors that affect a flip-flop’s metastable “performance” include the circuit design and the process the device is fabricated on.
- The resolution time is not linear with increased circuit time and the MTBF is an exponential function of the available slack time.

Metastability - Introduction

- Can occur if the setup (t_{st}), hold time (t_{ht}), or clock pulse width (t_{pw}) of a flip-flop is not met.
- A problem for asynchronous systems or events.
- Can be a problem in synchronous systems.
- Three possible symptoms:
 - Increased CLK \rightarrow Q delay.
 - Output a non-logic level
 - Output switching and then returning to its original state.
- Theoretically, the amount of time a device stays in the metastable state may be infinite.
- Many designers are not aware of metastability.

Flip-Flop Timing: RT54SX-S

Metastable State: Possible Output from a Flip-flop
Metastable State:
Possible Outputs from a Flip-flop

Metastability - Calculation

- $\text{MTBF} = \frac{\phi_{\text{MT}}}{(K_1 \times F_{\text{SCLK}} \times F_{\text{DATA}})}$

- t is the slack time available for settling
- K_1 and K_2 are constants that are characteristic of the flip-flop
- F_{SCLK} and F_{DATA} are the frequency of the synchronizing clock and asynchronous data.
- Software is available to automate the calculations with built-in tables of parameters.
- Not all manufacturers provide data.

Metastability - Sample Data

MTBF versus Metastability Resolution Time

Synchronizer

Synchronizer - Bad
Synchronizing an Asynchronous Input

Improperly Synchronized

Properly Synchronized
Finite State Machines

- One-Hot Finite State Machines
 - Normal operation has exactly one flip-flop set, all other flip-flops reset
 - Next state logic equations for each flip-flop depend solely on a single state (flip-flop) and external inputs
- Binary encoded state machines
 - Next state logic equations are dependent on all of the flip-flops in the implementation
- Lookup State
 - A state or sequence of states outside the normal flow of the FSM that do not lead back to a legal state
- CAE Tools - Synthesizers
 - Generates logic to implement a function, guided by the user
 - Typically does not generate logic for either fault detection or correction

Sample State Machine

- Lockup States
- A One-Hot Implementation
 - Note: Results depend on version of synthesis software.
Lockup States
Yet Another One-Hot Implementation

Modified one-hot state machine (reset logic omitted) for a 4-state, two-phase, non-overlapping clock generator. A NOR of all flip-flop outputs and the home state being encoded at the zero vector adds robustness. Standard one-hot state machines (Q3) would be ded to the input of the first flip have 1 flip-flop per state, with exactly one flip-flop set per state, presenting a non-recoverable SEU hazard.

Lockup States
A “Safe” One-Hot Implementation

Reset flip-flops. Note second one is on falling edge of the clock. This implementation uses 6 flip-flops.

Lockup States - Binary Encoding

Three unused states.

Lockup States - Binary Encoding

Type StateType Is = (Home, One, Two, Three, Four); Signal State = StateType;

Case State Is

When Others => State <= Home;

“When Others” refers to states in the enumeration, not the physical implementation. Also, states that are not reachable can be deleted, depending on the software and settings.

Two Most Common Finite State Machine (FSM) Types

- Binary: Smallest m (flip-flop count) with 2^m ≥ n (state count), highest encoding efficiency.
- One Hot: m = n, i.e., one flip-flop per state, lowest encoding efficiency.
- Modified One Hot: m = n-1 (one state represented by 0 vector).

Issue: How To Protect FSMs Against Transient Errors (SEUs and MEUs):
- Illegal State Detection
- Adding Error Detection and Correction (EDAC) Circuitry

Many of the following slides are from:
Sequential Circuit Design for Spaceborne and Critical Electronics
Encoding Efficiency: Binary vs. One Hot

Gray Code
Illegal Transition Detection

One Hot FSM Coding

Modified One Hot FSM Coding

Note: Often used by synthesis when one hot FSM specified. Modified one hot codings use one less flip-flop.
Modified One Hot FSM
Illegal State Detection
• Error detection more difficult than for one hot
 - $i \rightarrow 0$ upsets result in a legal state.
 - Parity will not detect all SEUs.
 - If an SEU occurs, most likely the upset will be detectable
• Recovery from lockup sequence simple
 - If all 0's (NOR of state bits), then generate a 1 to first stage.
 - If multiple 1's (more difficult to detect), then will wait until all 1's are "shifted out."

Is There a Best FSM Type, and Is It Best Protected Against Transient Errors By Circuit-Level or System-Level EDAC?
• Circuit-level EDAC
 - Expensive in power and mass if used to protect all circuits
 - Can be defeated by multiple-bit transient errors
• System-level EDAC
 - Required for hard-failure handling
 - Relies on inherent redundancy in system, high-level error checking, and some EDAC hardware

System-Level Error Checking Mechanisms
• Natural error checking mechanisms
 - e.g., fire a thruster, check for spacecraft attitude change
• Checking mechanisms arising from multiple subsystems
 - e.g., command a module to power on, check its current draw and temperature
• Explicitly added checking mechanisms
 - Watchdog timers
 - Handshake protocols for command acknowledgement
 - Monitors, e.g., thruster on-time monitor

Transient Errors Cause FSM Jumps to Erroneous States

<table>
<thead>
<tr>
<th>Jump to</th>
<th>Pathology</th>
<th>Circuit Level Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Illegal state</td>
<td>Imperfectly decoded state allows erroneous state machine output</td>
<td>Homing sequence, reset controlled circuitry</td>
</tr>
<tr>
<td></td>
<td>Appropriate recovery state difficult to determine</td>
<td>Success depends on nature of system</td>
</tr>
<tr>
<td>Legal state</td>
<td>Incorrect sequencing of state machine activities</td>
<td>Stop, raise error flag, handle at system level</td>
</tr>
</tbody>
</table>

System-Level Error Handling Mechanisms Also Handle Transient Error Effects

<table>
<thead>
<tr>
<th>Transient Error Effect</th>
<th>System Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command Rejection</td>
<td>Command Retry</td>
</tr>
<tr>
<td>Telemetry or Data Corruption</td>
<td>Data Filtering, also required to handle system noise</td>
</tr>
<tr>
<td>FSM Lock-up, e.g., detected by multiple command rejections</td>
<td>Indistinguishable from hard error</td>
</tr>
</tbody>
</table>

EDAC Required For Some FSMs Based on Criticalness of Circuit and Probability of Error

<table>
<thead>
<tr>
<th>Common EDAC Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
</tr>
<tr>
<td>Parity</td>
</tr>
<tr>
<td>NMR</td>
</tr>
<tr>
<td>Hamming</td>
</tr>
</tbody>
</table>
Impact of Adding EDAC to Common FSM Types

<table>
<thead>
<tr>
<th>FSM Type</th>
<th>Protecting with EDAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary</td>
<td>High encoding efficiency => smallest EDAC impact</td>
</tr>
<tr>
<td></td>
<td>Potentially few illegal states => fairly easy to detect</td>
</tr>
<tr>
<td></td>
<td>Full decoding eliminates effects of illegal states</td>
</tr>
<tr>
<td>One-hot</td>
<td>Poor encoding efficiency => greatest EDAC impact</td>
</tr>
<tr>
<td></td>
<td>Many illegal states => complex circuit to detect</td>
</tr>
<tr>
<td></td>
<td>Full decoding defeats advantage of easy state decoding</td>
</tr>
</tbody>
</table>

FSM Conclusion

- Binary state machine may be optimal for highly reliable systems
- Most amenable to the addition of EDAC circuitry if necessary because of high encoding efficiency
- Full state decoding protects against erroneous outputs
- Easier to detect illegal states
- Overall EDAC scheme must also consider system-level action
- Will be there for hard failures, anyhow
- Must consider system response to defeated circuit-level EDAC
VHDL and Software Issues

VHDL "Interface"
```vhdl
Library IEEE;
Use IEEE Std_Logic_1164 All;
Entity Bool_T is
Port (X : in Std_Logic;
Y : in Std_Logic;
Z : out Boolean);
End Bool_T;
Library IEEE;
Use IEEE Std_Logic_1164 All;
Architecture Bool_Test of Bool_T is
Begin
P : Process (X, Y)
Begin
If (X = Y)
Then Z = True;
Else Z = False;
End If;
End Process P;
End Bool_Test;
```

Boolean signal was mapped to different logical values in different versions of the same VHDL logic synthesizer.

An HDL Flow

Act 2 Flip-flop Implementation

Act 2 SEU Flip-Flop Data

Logic Translation/Optimization Flow
Logic Translation/Optimization

Implementation

Original

"Optimized"

The two circuits are logically equivalent when analyzed with Boolean logic equations with the lower CAD-optimized circuit, permitting higher device speeds. An SEU analysis shows the addition of a second state variable with an output resulting in the "optimized" circuit containing a state where Q = Q'N, violating the system equations and causing a failure.

Delay Generation

VHDL Code and Synthesizer Analysis

Case Study - Hardened Clock Generator

- The VHDL synthesizer, unknown to the designer, generated a poor circuit for a TMR voter
 - Used 3 C-Cells for a voter
 - Slowed the circuit down
- The implementation of the voter is hidden from the user
 - Synthesizer generated a static hazard
 - An SEU can result in a glitch on the "hardened" clock signal.

VHDL Code and Synthesizer Analysis

Case Study - Hardened Clock Generator

-- Divide 25 MHz (40 ns) clock by 4
-- to produce 6.25 MHz clock (160 ns)
-- This clock should be placed on
-- an internal global buffer

clkint: clkin
Port Map (A => clk_div_cnt(1),
 Y => clk_div(1));

clkdiv: Process (reset_n, clk)
Begin
 If reset_n = '0' Then
 clk_div_cnt <= "00";
 Elif clk = '1' And clk'EVENT Then
 clk_div_cnt <= clk_div_cnt + 1;
 End If;
End Process clkdiv;

Most significant bit of the counter. 3 C-Cells are used for the voter.
Loss of Functionality

- FRAM
- DRAM - JEDEC
- JTAG
- PROM
- Microprocessor

DRAM Modes

DRAM Special Test and Operational Modes

This standard defines a scheme for controlling a series of special modes for address multiplexed DRAM. The standard defines the logic interface required to enter, control, and exit from the special modes. In addition, it defines a basic special test mode plus a series of other special test and operational modes.

TEST MODES are those that implement some special test of measurement function or algorithm designed to enhance the ability of the Vendor or User to determine the integrity of, or to characterize, the part.

OPERATIONAL MODES are those that alter the operational characteristics of the part but do not interfere with its function as a storage device and are intended to be used in system operation.

IEEE JTAG 1149.1

TCK → TAP Controller (State Machine) → Shift Register is undefined in TEST-LOGIC-RESET State

TDI → Shift Register → TDO

Reset → Parallel Latch → Chip Control

DRAM Refresh

CAS#-BEFORE-RAS# REFRESH is a frequently used method of refresh because it is easy to use and offers the advantage of a power savings. Here's how CBR REFRESH works. The die contains an internal counter which is initialized to a random count when the device is powered up. Each time a CBR REFRESH is performed, the device refreshes a row based on the counter, and then the counter is incremented. When CBR REFRESH is performed again, the next row is refreshed and the counter is incremented. The counter will automatically wrap and continue when it reaches the end of its count. There is no way to reset the counter. The user does not have to supply or keep track of row addresses.

Since CBR REFRESH uses the internal counter and not an external address, the address buffers are powered down. For power-sensitive applications, this can be a benefit because there is no additional current used in switching address lines on a bus, nor will the DRAMs pull extra power if the address voltage is at an intermediate state.

FRAM Memory Functionality Loss During Heavy Ion Test

Loss during heavy ion test

The device lost functionality during the test while the current increased from 9% normal function level of approximately 0.6 mA to 3.0 mA at the beginning of the test. The device recovered functionality and operated normally throughout the latter part of the test. This effect was not present three days during the limited testing of this device.
The CLK pin may turn into an output driving low, clamping the oscillator's output at a logic '0'. The TAP controller cannot reset and restore I/O operation. Most FPGAs do not have the optional TRST* pin. Note TRST*, when present, has a pull-up.
SEE Results - Loss of Functionality
Atmel AT28C010 EEPROM, D/C 9706

Type I Errors
- Manifested by the appearance of repeated errors, once the first error had been detected during an
 traversal. These errors then appeared at every next location that was read the number of times the
 reading cycle ('cycle') was defined in Section 1 after the first error had occurred. Therefore we observed one error
 every few cycles.
- Some errors were absorbed in a single address location.
- Simultaneously with the observation of the first error, the device has current increased to 25 mA, from 0 mA, current prior condition. The bias current continued to be 25 mA until the reading process stopped. At that time, the current decreased to 2 mA (nominal level).
- When the current was read, the device had been power cycled. The bias current returned to 25 mA and
 errors appeared again (even without the bias).
- If the power to the device was shut off and re-powered again (power cycle), the device again
 functioned properly (i.e., no errors).
- In one instance we confirmed the observation without power cycling for a long time, and the device
 no longer showed any errors. It appeared that the device had undergone additional upset, returning to
 the original power and thereby correcting the problem.

Type II Errors
- Manifested by "00" in all address locations, once the first "00" was read.
- These errors could be removed only by power-cycling the device.

Type III Errors
- Characterized by occasional errors in a byte, which appeared once in many cycles. There was
 no 'after-effect' for this type of error. In other words, one error appeared independently once in a
 while.
- Caused by an upset in the output buffer.

Atmel AT28C010 EEPROM, D/C 9706
• Xilinx XQR1701L
- 10% saturated intercept at LET=6, 1.2x10^-5
cm²/device

Loss of Functionality
Processors

- Processor simply stopped functioning without showing any observable bit errors.
- Noticed lockup in many microprocessors including MG80C186, MG80C286, and XC68302.
- Sensitivity to lockup was essentially independent of the test programs.

Loss of Functionality
Processors: XC68302 Example

<table>
<thead>
<tr>
<th>LET (MeV/(mg/cm²))</th>
<th>Cross-section (cm²/Device)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10⁻⁵</td>
</tr>
<tr>
<td>5</td>
<td>10⁻⁴</td>
</tr>
<tr>
<td>10</td>
<td>10⁻³</td>
</tr>
<tr>
<td>15</td>
<td>10⁻²</td>
</tr>
<tr>
<td>20</td>
<td>10⁻¹</td>
</tr>
<tr>
<td>25</td>
<td>10⁰</td>
</tr>
<tr>
<td>30</td>
<td>10¹</td>
</tr>
<tr>
<td>35</td>
<td>10²</td>
</tr>
<tr>
<td>40</td>
<td>10⁴</td>
</tr>
</tbody>
</table>
Specifications

General Principles

- No Specification Produced
- Specification not Followed

Common Error - Seen More Often Than One Would Expect

Case Study 1
• Gate Array Operation Differed from Specification
 - No Continuity of Personnel on Project
 - Features Added and Deleted During Development
 - Changes Were Not Documented in Specification

Case Study 2
• Continual Updates to FPGAs Caused Delays to Project
 - Drifting Software Requirements Impacted FPGA
 - Drifting System Requirements Impacted FPGA
• No Stable Specification
Simulators and Limitations

Reliance on Logic Simulators
General Principles

- Run Time Limited
- Number of Vectors
- Vector Generation
- Number of Operating Modes
- Time for Modeling External Circuitry
- CAE S/W Limitations

Case Study 1

- Simulator Could Only Simulate 1 ms.
 - Instrument Had a 125 ms Cycle Time.
- Simulating All Inputs Not Practical
 - Too Many Combinations

 → Failed to Find a Logic Error Which Caused an Arithmetic Error

Analysis vs. Simulation

From the Project documentation:
All... Actel designs were re-simulated using back-annotated timing data, to ensure that clock skews were within proper limits.

From Actel documentation:
To verify that a design works properly, both the design's functionality and its timing must be checked. Static timing analysis checks timing, but not the design's functionality. Simulation checks the functionality of a design, but it may miss some timing problems. Used together, static timing analysis and simulation complement each other to provide complete design verification.

Case Study 2

- FPGA Converted to ASIC
- No Gate Level Design Review Performed at Any Stage
- Test Vectors from FPGA Version Were Not Run on the ASIC Version
- Test Vectors Were Capable of Detecting the Design Error

Analysis vs. Simulation (cont'd)

From Actel documentation:
Both gate array and FPGA designs are susceptible to race conditions, which require careful analysis of setup and hold times, and clock skew across best-case and worst-case operating conditions. This application note describes how to use the Actel Timer to analyze accurately these types of potential timing problems. The Timer is a powerful static timing analysis tool that can be used successfully to check setup and hold times and clock skew.

Since gate array devices are not production tested for setup and hold times, these parameters must be sufficiently guaranteed to guarantee they will never cause a failure. This is difficult when using back-annotated timing simulation since simulation software does not allow best-case and worst-case timing analyses at the same time. Often such analysis is done by hand, if at all. In some cases, designers simply switch their data with the inactive edge of the clock to avoid such timing problems.
ONO Antifuse Resistance Distribution

Qualification By Test

- Qualification by test is sometime acceptable
 - Ex., measured tPD vs. data book worst-case values
- Qualification by test is limited
 - Cannot simulate all effects of radiation, life
 - Not all changes in tPD, for example, will track
- Qualification by test sometimes fails
 - Intel is recalling its 1.3 gigahertz Pentium III chip, which it has sold to
 only "a handful" of "power users" running advanced applications, because
 a certain combination of data, voltage, and temperature conditions may
 cause the chip to fail. The chip is expected to be back on the market in
 a couple of months.

Change in tPD Over Life

Note: All delay values are rounded to the nearest whole percent.

Data from Intel Corporation.
Verification

Verification Issues (1)
• Macro generators fail
 - Expect them to be correct by construction
 - Working macro fails in later revisions
 • ex., modulo counter
• VHDL Synthesis
 - Simulated vs. Synthesized Results
 • Latch vs. Flip-flops.
 • Lookup states in FSMs
 • Introduction of static hazards
 • No simulations or timing analysis.

Verification Issues (2)
• Detailed peer-review of the design is not performed
 - Designs "approved" at the CDR
 - FPGA designs not completed at the CDR
 - Management barriers to review
 - Simulation does not replace analysis
 - Testing does not replace analysis
• Complete worst-case analysis not performed
• Asynchronous design risks not identified, assessed and mitigated

Verification Issues (3)
• Inadequate Reviews
 - Slide flipping
 - Unskilled reviewers
 - Insufficient time
 - Findings not enforced
• Unresolved problems
 - Glitches not fully understood

Review Samples
• Red Team Review
 - No Issues
 - Good FPGA design practices applied
• NASA Civil Servant Design Engineer
 - "Oh my God!"
• NASA On-Site Contractor Design Engineers
 - "This circuit <expletive deleted>!"
 - "Oh, <expletive deleted>. <pause> Oh, <expletive deleted>!"

Design Rule Compliance
Violation of project clock loading rule of no more than 5 flip-flops on a local clock. PB_OSC has 23 loads.
Two Opinions

For a successful technology, reality must take precedence over public relations, for nature cannot be fooled.

They are our gremlin hunters who are empowered to stalk the shop floor, look over our shoulders and take us to task when they sense something might be wrong. This is not the traditional 2 days of viewgraph watching.

-- Dan Goldin, April 27, 1990, on independent review report.
Conclusion (1)

One must understand not only the "how" but the "why."

Otherwise, failure is not a matter of 'if' but of 'when.'

Conclusion (2)

The key to developing engineering confidence is the rigorous identification of the cause for ALL failures encountered for ALL phases of testing ...

Dr. Joseph F. Shea, Deputy
Director of Manned Space Flight,
Spaceborne Computer Engineering Conference
October, 1962.