Galileo Probe Doppler Residuals as the Wave-Dynamical Signature of Weakly Stable, Downward-Increasing Stratification in Jupiter’s Deep Wind Layer

Prepared January 19, 2001

for Geophysical Research Letters

Michael Allison
NASA/Goddard Institute for Space Studies

David H. Atkinson
Department of Electrical Engineering
University of Idaho
Abstract

Doppler radio tracking of the Galileo probe-to-orbiter relay, previously analyzed for its in situ measure of Jupiter’s zonal wind at the equatorial entry site, also shows a record of significant residual fluctuations apparently indicative of varying vertical motions. Regular oscillations over pressure depth in the residual Doppler measurements of roughly 1-8 Hz (increasing upward), as filtered over a 134 sec window, are most plausibly interpreted as gravity waves, and imply a weak, but downward increasing static stability within the 5 – 20 bar region of Jupiter’s atmosphere. A matched extension to deeper levels of an independent inertial stability constraint from the measured vertical wind shear at 1 – 4 bars is roughly consistent with a static stability of ~ 0.5 K/km near the 20 bar level, as independently detected by the probe Atmospheric Structure Instrument.

Introduction

The density stratification of Jupiter’s deep wind layer, as imposed by the vertical gradient of mean molecular weight and/or non-adiabatic departures in the temperature lapse rate, is key to understanding its atmospheric circulation and meteorology (cf. Gierasch and Conrath, 1993). Numerical models of Jovian equatorial waves, spots and vortices (e.g. Li and Read, 2000; Showman and Dowling, 2000; Williams, 1997) must assume a specified stratification at deep tropospheric levels, as in the form of an adopted vertical profile of the Brunt-Vaisala frequency or some equivalent measure of the static stability. If the deep atmosphere (below the 1 – 5 bar level) were to conform sufficiently to an adiabatic interior, the observed cloud-top winds might extend throughout the molecular hydrogen envelope (e.g. Ingersoll and Pollard, 1982). If, however, there are strong buoyancy contrasts within a vertically hydrostatic wind layer, the stratification could be of controlling importance to the configuration and strength of the zonal jets, possibly via the dynamical adjustment of the latitudinal distribution of the potential vorticity (cf. Allison, 2000). The effect of a deep
stable layer on the interior adiabat also has important implications for Jupiter’s evolutionary history and could be linked to the planet’s interior water abundance.

Unfortunately, vertical lapse rates in temperature below the 1 bar level cannot be inferred from available remote sensing data with sufficient accuracy to characterize small but dynamically significant departures from an adiabatic profile. In situ measurements of temperature and pressure by the Galileo Probe Atmospheric Structure Instrument (ASI) suggest the presence of a weakly statically stable region, with a lapse rate that is sub-adiabatic by some \(0.2 - 0.5\) K/km down to the 20 bar level (Seiff et al., 1998; Magalhaes et al., 2000). Although dynamically significant, the indicated values are not greatly in excess of the ASI noise limits. A comparably weak static stability at the 1 – 5 bar level is also implied, however, by the inertial stability constraint on the Richardson number (Ri) for the Probe Doppler measurement of a vertical wind shear \(\partial U/\partial ln P \approx 52\) m·s\(^{-1}\) per scale height (Atkinson et al., 1998). Assuming \(Ri = R_H S / (\partial U/\partial ln P)^2 \approx 1.3\) or greater (cf. Allison et al., 1995), with a gas constant \(R = 3600\) m\(^2\)s\(^{-2}\)K\(^{-1}\) and a scale height \(H \approx 36\) km at the 3 bar level, the implied (lower limiting) static stability \(S = (\partial T/\partial z + g/C_p) \approx 0.03\) K/km. These are so far the only in situ constraints on the static stability of Jupiter’s troposphere.

The diagnostic analysis of atmospheric waves has, however, afforded an indirect, “seismographic” characterization of the static stability at deeper levels where their forcing and/or resonant trapping is seated. In this sense Jupiter is fortuitously registered with several visual and thermal features showing apparent vertical/longitudinal wave-phase oscillations at a variety of scales. Allison (1990) interpreted large-scale oscillations in the equatorial stratospheric temperature profiles retrieved from Voyager radio data as vertically propagating Rossby waves leaking out of a tropospheric waveguide, speculatively associated with a deep stable region imposed by a super-solar water cloud (Gierasch and Conrath, 1985; Del Genio and McGrattan, 1990). Recently, Ortiz et al. (1998) have analyzed an extensive Earth-based patrol of infrared features in Jupiter’s
equatorial atmosphere implying essentially the same horizontal wave-phase speed, vertical structure and static stability for this region. Ingersoll and Kanamori (1995) obtained a similar result based on their gravity-wave interpretation of the expanding wavefronts apparent at the sites of the Shoemaker-Levy 9 impacts, assuming a statically stable waveguide of the form studied by Ingersoll et al. (1994), with a Brunt frequency times the scale height increasing as the pressure depth. The inference of a deep tropospheric stable layer from the SL9 wavefronts has been challenged by Walterscheid et al. (2000), who claim that time dependent numerical simulations of the response to the modeled comet impact within a variably stable, sponge-topped stratosphere reproduce the observed phase speeds with a strictly adiabatic lapse rate below the 1 bar level.

Measured residual oscillations in the Galileo probe Doppler measurement now appear to provide a third avenue to the detection of deep static stability in Jupiter’s atmosphere, via their diagnostic analysis as vertically propagating waves. Although subject to interpretation, the method is inherently the most sensitive in situ indication of deep tropospheric stability structure.

Probe Doppler Residual Measurements

The Galileo probe radio frequency was sampled at a rate of 1.5 Hz (at a 2/3 s period) throughout its atmospheric descent. Following the retrieval of the large scale zonal wind profile, the removal of the Doppler wind contributions from the frequency data yielded a vertical profile of remaining small residuals, as shown in Figure 7 of Atkinson et al. (1998). A number of short-period oscillations over roughly 10s periods are evident, and with peak-to-peak amplitudes up to about 12 Hz, presumably due to probe spin, pendulum motion, and possibly local aerodynamic buffeting and turbulence. As filtered by a simple 201-point averaging with a triangular weighting function, thereby removing the effects of the short period motions, the residual long period motions correspond to Doppler variations between 1 and 8 Hz, and are shown as plotted over even increments of log-pressure in Figure 1.
Based on the relationship between velocity and Doppler frequency \(\Delta f_{\text{Dopp}} = f_0 \Delta v/c \) where \(f_0 \) is the frequency of the transmitted signal (1387 MHz) and \(c \) is the speed of light (3 x 10^8 m·s\(^{-1}\)), a one-meter per second variation in the probe to orbiter range rate results in a Doppler shift of about 4.6 Hz. Throughout the probe descent, the orbiter was almost directly above the probe (within -5 to +12 degrees) and variations in probe descent velocity were projected almost entirely along the line of sight. While it cannot be conclusively shown at this point that the inferred residual motions are entirely due to vertical velocity fluctuations, it seems unlikely that the oscillations apparent in the filtered signal for the continuously changing geometry of the probe relative to the orbiter are primarily the effect of variations in the meridional/zonal wind. Meridional wind variations between 8.3 and 12.4 m/s would be required for a 1 Hz Doppler residual, as compared with variations in descent velocity of only 0.22 m/s. The zonal velocity changes required for a 1 Hz Doppler residual varied between 2.5 m/s at the start of the descent, to infinity at orbiter overflight, to 0.9 m/s at the end of the mission. The filtered residuals plotted in the figures account for the removal of the effects of the retrieved zonal winds.

Preflight testing showed that, following a 5-6 hour warmup, the probe ultrastable oscillator (USO) was stable to about 4 parts in 10^{10} over 30 minutes, corresponding to a frequency drift of approximately 0.5 Hz in 30 minutes. During the cruise to Jupiter the USO was turned on and tested three times. In each case the measured 30 minute fractional frequency drift was somewhat higher, approximately 1 to 1.4 parts in 10^9 (corresponding to 30 minute frequency drifts of 1.387 to 1.942 Hz). But in all cases this drift was both uniform and monotonic and subsequently removed from the USO profile. As the probe descended through 10-12 bars, the internal temperatures surpassed the USO acceptance and qualification test limits of 50 and 60 degrees C, respectively, on the way to a final temperature of exceeding 140 degrees C. Post-flight thermal testing of three flight spare ultrastable oscillators characterized the USO behavior at temperatures and temperature rates measured on the probe at Jupiter.
In each case the USO warmup profile and temperature cycling experienced during the post-flight tests showed the behaviors to be consistent and repeatable, leaving little doubt that the high temperature behavior has been characterized. The remaining uncertainty in the drift rate, less than 10^{-10}, corresponds to a residual frequency uncertainty over 30min of about 0.129 Hz. (cf. Table 1 in Atkinson et al., 1998.)

The semi-regular oscillations, with upward increasing amplitudes, are most plausibly interpreted as the effect of a vertically propagating wave, although apparently not over even increments of altitude or log-pressure. As evident by the inspection of Fig. 1, the number of oscillatory inflections between 1 and 2 scale heights below the the 1 bar level, is only about half the number between 2 and 3 scale heights. Figure 2 shows the same data plotted over a linear variation pressure depth, clearly showing a more even spacing of the oscillations. (For comparison, a simple harmonic waveform crudely indicative of the vertical structure of a two-component wave as described in the next section, is also plotted as a dotted curve.)

Deep Tropospheric Structure and Wave Propagation

The vertical scale of a propagating wave depends upon the static stability via the vertical structure equation. In its "canonical" form,

\[
\frac{d^2 \chi}{dz^*^2} + \left(\frac{\Gamma}{gh} - \frac{1}{4} \right) \chi = 0
\]

where $z^* = \ln(p_T/p)$ is the height coordinate, with p_T the pressure at $z^* = 0$, and χ a vertical structure variable proportional to $e^{-z^*/2w^*}$, where $w^* = dz^*/dt = w/H$, the vertical (log-p) velocity. [cf. eqns. 11 and A3 of Allison (1990) or 9.22 and 9.23 of Lindzen (1990).] $\Gamma \equiv \frac{N^2H^2}{g} \equiv R(\partial T/\partial z^* + RT/c_p)$ is the static stability parameter, $g = 23\text{m}\cdot\text{s}^{-2}$ the gravitational acceleration for Jupiter, and h the "equivalent depth" for which the corresponding horizontal structure is the same as for a "shallow water" system of the same mean thickness.

In a region of constant Γ, solutions to (1) are harmonic over height z^*, provided $0 < h < 4\Gamma/g$, and possess a vertical (log-pressure) wavelength.
$2\pi(\Gamma/gh - 1/4)^{-1/2} \leq 2\pi(gh/\Gamma)^{1/2}$. This appears to be a good representation of Jupiter’s equatorial stratosphere, where $\Gamma/g \approx 10$ km, and may also approximate the planet’s upper troposphere, between 1 and 4 bar, where by the inertial stability estimate of the probe vertical wind shear $\Gamma/g = \text{RHS}/g \sim 0.2$ km. In such a region the wave vertical velocity $w = w^*H = \text{He}^{z^*/2}x$, with $H = H_{\text{bar}}(p/1\text{bar})R/c_p$ and $R/c_p \approx 0.3$, would be expected to vary approximately as $p^{-0.2}$.

But if at deeper levels $\Gamma(p) = \Gamma(p/p_\text{T})^2$ or $NH = N_{\text{T}}H_{\text{T}}(p/p_\text{T})$, as assumed by Ingersoll et al. (1994), solutions to (1) are instead of the form

$$w^* \equiv e^{z^*/2}x = (1\text{bar}/p) \sum_i W_i^* \sin(m_i p + \phi_i)$$

where $m_i = 2\pi/\lambda_i = (\Gamma^i/\text{gh}_i)^{1/2}p_T^{-1}$.

Here W_i^* represents the amplitude of dz^*/dt at the 1 bar level and ϕ_i the phase for the ith wave component. A two-component solution to the vertical structure equation for such a region may be specified in terms of the vertical velocity $w = w^*H$ (in meters per second), with (2) then transformed to read

$$w = (1\text{bar}/p)^{0.7} [W_1 \sin(m_1 p + \phi_1) + W_2 \sin(m_2 p + \phi_2)].$$

The Galileo Doppler residuals below the 4 bar level appear to be crudely fitted with $m_1 \approx 2\pi/5\text{bar}$, $m_2 \approx 2\pi/2\text{bar}$, and W_1, $W_2 \approx 5\text{Hz}(1 \text{ m}\cdot\text{s}^{-1}/4.6\text{Hz}) \approx 1 \text{ m}\cdot\text{s}^{-1}$, as assumed for the synthetic waveform shown in Figure 2. The fitted wavelengths are far too small to represent the trapped modes for the waveguide – corresponding to 1/4, 3/4, 5/4 etc cycles over the troposphere (cf. Ingersoll et al., 1994), themselves too large to be detected by the probe residuals, and therefore afford no direct numerical estimate of the Brunt frequency.

But assuming that $NH = (\text{RHS})^{1/2}$ can be continuously matched at the ~ 4 bar level to the inertial stability constraint for the Doppler-measured wind shear, as reviewed above, the static stability at deeper levels would be estimated as $NH = \Gamma^{1/2} \sim 60 \text{ m}\cdot\text{s}^{-1}(p/\text{4 bar})$ or $S = N^2H/R \sim 0.03 \text{ K}\cdot\text{km}^{-1}(p/\text{4 bar})^{-1.7}$. The vertical profile of NH would then be essentially the same as shown in Fig.2 of Allison (2000), though not necessarily extended to the same pressure depth. But as extended to the 22 bar depth of the Galileo probe link, the implied static
stability would be \(S(22 \text{ bar}) \approx 0.5 \text{ K}\cdot\text{km}^{-1} \), the same as the deep value reported for ASI measurements by Seiff et al. (1998), equivalent \(\text{NH} \approx 300 \text{ m}\cdot\text{s}^{-1} \) at that level.

By Eqn. (3), \(\lambda_{1,2} \approx 5 \) and 2 bars would imply corresponding equivalent depths of \(h_{1,2} = (\Gamma T/g)(\lambda_{1,2}/2\pi\Gamma)^2 \approx 1 \) and 6 meters and most plausibly correspond to gravity waves with phase speeds of \((gh)^{1/2} \approx 5 \) and 12 m\cdot s\(^{-1} \), since the (~1/3 smaller) phase speeds of the alternative Rossby modes would likely be too small to avoid their absorption by the weak vertical shear apparent in the Doppler data at the 5–20 bar levels (Atkinson et al., 1998). Assuming \(h \approx 6 \text{ m} \) (<< \(4\Gamma/g \)) can be associated with the single oscillation over one scale height between the 1.5 and 4 bar levels apparent in Fig.1, this would be consistent with a roughly constant static stability there of \(\Gamma/g \approx 4\pi^2 h \approx 0.2 \text{ km} \), in good agreement with the intertial stability estimate from the probe wind shear. In the high (horizontal) wavenumber limit, the associated wave frequency is \(\sigma = k(gh)^{1/2} \). Although the horizontal wavenumber \(k \) is not known, \(1/H \) is a plausible upper bound consistent with hydrostatic motion (for which the vertical pressure scale must not exceed the horizontal scale), and is also comparable to that for near-equatorial mesoscale features studied by Flasar and Gieasch (1986). Then with \(h \approx 6\text{ m} \), and \(H \approx 36\text{ km} \), the upper limiting estimate of the wave frequency would be \(\sigma \approx 3 \times 10^{-4} \text{ s}^{-1} \). From the thermodynamic equation, the amplitude of the associated thermal oscillations would be \(\Delta T \approx S |\omega|/\sigma > 0.04 - 0.2K \), comparable to oscillations apparent in the ASI data (Magalhaes et al., 2000).

Since the lower limiting time scale for wave variations, estimated as \(\sigma^{-1} > 56 \text{ min} \), barely exceeds the duration of the probe descent from 1 to 22 bars, it is possible that the apparent phase of the residual Doppler oscillations at the deepest measured levels is partly convolved with the temporal propagation, as well as the above noted small drift of the USO reference frequency (roughly 0.5 Hz over 30 min). The Doppler residual oscillations over apparently smaller pressure intervals between the upper 1–5 bar levels may reflect a more nearly uniform static stability there and may also be convolved with the effects of the Doppler measured wind shear. The consequent uncertainty in the precise wavelength,
phase, and equivalent depth of the oscillations, does not, however, affect the inference of an overall downward increasing static stability for the deep wind layer, as further evidenced by their apparent downward decreasing amplitudes shown in Fig.2.

Summary and Discussion

The vertical velocity oscillations indicated by the filtered Galileo Doppler residuals over roughly even increments of the pressure depth are plausibly interpreted as vertically propagating gravity waves and imply a weak but downward increasing static stability below the 5 bar level. Although the inferred wavelengths are too small to represent the trapped modes of the deep tropospheric waveguide, their apparent waveform provides the first *in situ* evidence within Jupiter's deep atmosphere of the static stability profile assumed by Ingersoll and Kanamori (1995), with NH (the Brunt frequency times the scale height) increasing roughly as the pressure depth. This qualitative corroboration lends confidence to the waveguide assessment of a deep-seated stable region based on independent but mutually consistent estimates of the equivalent depth of planetary-scale waves in Jupiter's equatorial region (Allison, 1990; Ortiz *et al.*, 1998), with NH exceeding 300 m\(s^{-1}\) in the deep wind layer. The downward increase of the static stability is also qualitatively consistent with various models for the large-scale stabilization of the Jupiter wind layer by moist-convection, including contributions from the vertical gradient of mean molecular weight (e.g. Acterberg and Ingersoll, 1989; Del Genio and McGrattan, 1990; Nakajima *et al.*, 2000). Although radiative zones might also stabilize an interior layer of the planet, recent estimates of the relevant opacities suggest this is most likely to occur at kilobar levels (Guillot, 1999). While the measured subsolar depletion of water at the probe entry site (Niemann *et al.*, 1998) remains a significant puzzle, perhaps involving both large scale dynamics and a super-solar abundance at deeper levels, the accumulated evidence for a statically stable region (or "thermocline") in Jupiter's deep troposphere demands the account of realistic models of its circulation and dynamics. Whatever its source, the size of the estimated stability in Jupiter's deep wind layer implies an associated Rossby deformation scale, \(L_D = NH/\Omega \sim 2000\text{km}\), comparable to the spacing of the planet's jet streams.
References

Ingersoll, A.P. and D. Pollard, Motion in the interiors and atmospheres of Jupiter and Saturn: scale analysis, anelastic equations, barotropic stability

Fig. 1. Filtered Doppler residuals in Hz plotted over log-pressure. The equivalent vertical velocity in m/s is indicated at the top. Pressure scale heights (H = RT/g) below the 1 bar level are marked on the left side ordinate. The evident downward bunching and substantially decreased amplitudes for the oscillations below the ~ 5 bar level, interpreted as a vertically propagating wave, implies a downward increasing static stability.
Figure 2. Filtered Galileo Doppler residuals (solid curve) and an idealized synthetic wave form (short dashed curve) plotted over even pressure increments. The upper spike in the filtered amplitude at the 1.4 bar level implies a vertical velocity of -1.6 m·s⁻¹. The synthetic, two-component wave corresponds to Eqn.(4), with \(m_1 = 2\pi/5\text{bar}, m_2 = 2\pi/2\text{bar}, \phi_1 = 3\pi/2, \phi_2 = \pi/2, \) and \(W_1 = W_2 = 5\text{Hz} \times (1 \text{ m·s}^{-1}/4.6\text{Hz}) \approx 1 \text{ m·s}^{-1} \). The funneled envelope indicated by the long dashed curves represents the sum of the amplitudes of the same two-component waveform, given as \((W_1 + W_2)(1\text{bar}/p)^{0.7} \), while that for the short dashed curve shows the weaker modulation of a constant-stability region, proportional to \((1\text{bar}/p)^{0.2} \).