Title: A Comprehensive Investigation of the Structuring of the Interstellar Medium of Massive Stars

PI: You-Hua Chu, University of Illinois
Co-I: Bart Wakker, University of Wisconsin

We proposed to use the IUE, ROSAT, ASCA, and HST archival data, complemented by data obtained from ground-based observatories, to study the physical structure of the interstellar medium as a result of interactions between massive stars and the ambient medium.

During the granting period, we have carried out the major tasks proposed originally and reported the results in a large number of papers. The papers published during the last two years below. We conclude that this program has been highly successfully.

Papers published during the last three years of the granting period:

X-rays from Superbubbles in the Large Magellanic Cloud. V. The HII Complex N11

Multi-Wavelength View of the Interstellar Medium in the Large Magellanic Cloud

Coronal C^{+3} in the Large Magellanic Cloud: Evidence for a Hot Halo

The Multi-Phase Medium in the Interstellar Complex N44

ROSAT X-ray Observations of Two Planetary Nebulae: NGC 1535 and NGC 3587
Detection of Pre-Shock Dense Circumstellar Material of SN 1978K

Physical Structure of Small Wolf-Rayet Ring Nebulae

SNRs in the Magellanic Clouds II: SNR Breakouts from N11L and N86


The Supergiant Shell LMC2: I. Kienmatics and Physical Conditions

Morphology and Physical Structure of the Interstellar Medium

HST WFPC2 Imaging of Shocks in Superbubbles

RXJ050736-6847.8: A Large Supernova Remnant around an X-ray Binary in the Large Magellanic Cloud

Hot Gas in the Large Magellanic Cloud
Chu, Y.-H. 2000, Revista Mexicana de Astronomía y Astrofísica (Conference Series), Vol. 9, pp. 262-269. [invited]

A Morphological Diagnostic for Dynamical Evolution of Wolf-Rayet Bubbles

An Observer's View of the Multi-Phase ISM: Interactions and Evolution

The Supergiant Shell LMC2: II. Physical Properties of the 10^6 K Gas