Scattering by randomly oriented thin ice disks with moderate equivalent-sphere size parameters

Nadia T. Zakharova and Michael I. Mishchenko

*SGT, Inc., 2880 Broadway, New York, NY 10025, USA
bNASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025, USA

Abstract

We use the T-matrix method to compute the scattering matrix for randomly oriented circular ice cylinders with diameter-to-length ratios 1 and 20 and surface-equivalent-sphere size parameters up to 12. We show that wavelength-sized, sharp-edged ice plates with extreme diameter-to-length ratios possess the same scattering properties as smooth platelike spheroids: their phase functions are similar to those of surface-equivalent compact particles, whereas all other elements of the scattering matrix are typical of Rayleigh scattering.

Keywords: Electromagnetic scattering; Nonspherical particles; T-matrix method; Remote sensing

*Corresponding author. Tel.: +1-212-678-5590; fax: +1-212-678-5552.

E-mail address: crntz@giss.nasa.gov (N. T. Zakharova).
In a recent paper [1], we have applied the T-matrix method [2,3] to compute light scattering by randomly oriented prolate and oblate ice spheroids with aspect ratios up to 20 and surface-equivalent-sphere size parameters up to 12. (The aspect ratio is defined as the ratio of the largest to the smallest particle dimensions.) We have demonstrated that plate-like and needle-like ice spheroids with moderate size parameters possess unique scattering properties: their phase functions are similar to those of surface-equivalent compact particles, whereas all other elements of the scattering matrix are typical of Rayleigh scatterers. Because the value of the size parameter along the shorter axis of the highly aspherical spheroids studied was less than 1, we have concluded that the phase function for such particles is mostly determined by the value of the size parameter of the sphere having the same surface area, whereas all other elements of the scattering matrix are sensitive to the value of the size parameter along the smallest particle dimension (see also [4,5]).

Since spheroids are particles with smooth surfaces, it is important to verify whether sharp-edged wavelength-sized particles with extreme aspect ratios possess similar scattering properties. The simplest type of sharp-edged particles that can be studied with the T-matrix code described in [6] is a finite circular cylinder [7]. The computation of light scattering by prolate ice cylinders with very large length-to-diameter ratios turned out to be problematic because of convergence problems discussed in [6]. However, we have been able to perform computations for randomly oriented oblate ice cylinders with equal-surface-sphere size parameters up to 12 and diameter-to-length ratios as large as 20.

The results of our computations are summarized in Figs. 1–3, which depict the phase function $a_1(\Theta)$ and the normalized elements of the Stokes scattering matrix [8]

$$
F(\Theta) = \begin{bmatrix}
 a_1(\Theta) & b_1(\Theta) & 0 & 0 \\
 b_1(\Theta) & a_2(\Theta) & 0 & 0 \\
 0 & 0 & a_3(\Theta) & b_2(\Theta) \\
 0 & 0 & -b_2(\Theta) & a_4(\Theta)
\end{bmatrix},
$$

where Θ is scattering angle. As usual, the phase function satisfies the normalization condition

$$
\frac{1}{2} \int_0^\pi d\Theta \sin \Theta a_1(\Theta) = 1.
$$

We show results for cylinders with diameter-to-length ratios $D/L = 1$ and 20 and for surface-equivalent spheres. As in [1], we have suppressed the interference structure by averaging the
results for spheres and cylinders with $D/L = 1$ over a narrow gamma distribution of surface-
equivalent-sphere radii r_s given by [9]

$$n(r_s) = \frac{1}{r_s,\text{eff} \, \nu_{\text{eff}}} \left(\frac{r_s}{r_s,\text{eff} \, \nu_{\text{eff}}} \right)^{(1-3\nu_{\text{eff}})/\nu_{\text{eff}}} \exp \left(-\frac{r_s}{r_s,\text{eff} \, \nu_{\text{eff}}} \right)$$ \hspace{1cm} (3)

with an effective variance of $\nu_{\text{eff}} = 0.05$. The curves for monodisperse cylinders with $D/L = 20$
were sufficiently smooth and did not require averaging over sizes. Accordingly, the size of
cylinders with $D/L = 20$ is specified in Figs. 1–3 in terms of the monodisperse surface-
equivalent-sphere size parameter $x_s = 2\pi r_s/\lambda$, whereas the size of polydisperse spheres and
cylinders with $D/L = 1$ is specified in terms of the effective surface-equivalent-sphere size
parameter $x_{s,\text{eff}} = 2\pi r_{s,\text{eff}}/\lambda$, where λ is the wavelength of the incident light. The refractive
index is 1.311.

Examination of Figs. 1–3 and figures 2 and 3 from [1] shows that despite their sharp-edged
shapes, wavelength-sized circular ice cylinders with extreme aspect ratios possess the same
scattering properties as smooth platelike spheroids. Specifically, their phase functions are
similar to those of surface-equivalent spheres and nonspherical particles (spheroids and
cylinders) with moderate aspect ratios and have a forward-scattering lobe with magnitude rapidly
increasing with size parameter. In contrast, all other elements of the scattering matrix closely
resemble those of the Rayleigh scattering matrix as long as the size parameter along the smallest
cylinder dimension is less than 1. For example, all curves of linear polarization $(-b_l/a_1)$ for
plates with $D/L = 20$ have the renowned bell-like shape with a maximum reaching almost 100%
at side-scattering angles. Unlike the case for compact particles, the scattering angle of maximal
positive polarization decreases rather than increases with increasing size parameter. The ratio
$a_2(\Theta)/a_1(\Theta)$ is close to unity, the elements $a_3(\Theta)$ and $a_4(\Theta)$ are almost the same and do not
vary significantly with size parameter, and the ratio $b_2(\Theta)/a_1(\Theta)$ is close to zero at most
scattering angles. This behavior differs very much from that exhibited by surface-equivalent
spheres and compact nonspherical particles.

Our theoretical computations are in excellent agreement with the results of recent laboratory
measurements of electromagnetic scattering by plates with very large width-to-thickness ratios
and thicknesses smaller than a wavelength [10]. Indeed, these microwave analog measurements also show phase functions characteristic of compact wavelength-sized scatterers and polarization curves typical of Rayleigh scattering. In particular, the observed maximal polarization values reach values close to 100% and occur at scattering angles less than 90°.

As discussed in [1], unusual scattering properties of wavelength-sized particles with extreme aspect ratios should be accounted for in analyses of laboratory and remote-sensing measurements of light scattering. For example, the fact that \(a_2(\tau) = a_1(\tau) \) and \(a_4(\tau) = -a_1(\tau) \) for needlelike and platelike particles with moderate size parameters makes the linear and circular depolarization ratios [11,12] close to zero. Therefore, small measured values of depolarization should not be automatically interpreted as an indication of Rayleigh scattering or the spherical particle shape. Similarly, measurements of Rayleigh-like polarization (e.g. [13–16]) should not be automatically attributed to particles much smaller than a wavelength.

The simplicity of the scattering matrix for needlelike and platelike particles with moderate size parameters allows a convenient analytical parameterization similar to those developed in [17,18]. Such parameterizations can be very useful in first-order analyses of remote sensing observations when the plausible range of particle microphysical characteristics is unknown and is difficult to estimate a priori. Also, our results provide a benchmark for checking the accuracy of approximate formulations of light scattering by wavelength-sized particles with one dimension much smaller than the wavelength [19–22].

This research was sponsored by the NASA Radiation Science Program managed by Donald Anderson.

References

Figure captions

Fig. 1. Phase function $a_1(\Theta)$ and ratio $a_2(\Theta)/a_1(\Theta)$ (%) versus scattering angle Θ for spheres with size parameters ranging from 0.1 to 12 (see legend) and surface-equivalent, randomly oriented circular cylinders with diameter-to-length ratios $D/L = 1$ and 20. Note that for spheres $a_2(\Theta)/a_1(\Theta) \equiv 1$

Fig. 2. Ratios $a_3(\Theta)/a_1(\Theta)$ and $a_4(\Theta)/a_1(\Theta)$ (%) versus scattering angle Θ for spheres with size parameters ranging from 0.1 to 12 and surface-equivalent, randomly oriented circular cylinders with diameter-to-length ratios $D/L = 1$ and 20. Note that for spheres $a_3(\Theta) = a_4(\Theta)$.

Fig. 3. Ratios $-b_1(\Theta)/a_1(\Theta)$ and $b_2(\Theta)/a_1(\Theta)$ (%) versus scattering angle Θ for spheres with size parameters ranging from 0.1 to 12 and surface-equivalent, randomly oriented circular cylinders with diameter-to-length ratios $D/L = 1$ and 20.