2nd Generation Reusable Launch Vehicle
NASA Led Propulsion Tasks

Steve Richards
TD20
NASA/ Marshall Space Flight Center
Phone: (256) 544-7053
E-mail: steve.richards@msfc.nasa.gov

Space Transportation Technology Workshop
Agenda

- 2nd Generation RLV Propulsion Project
- Overview of NASA Led Tasks in Propulsion
- Gen2 Turbo Machinery Technology Demonstrator
- Combustion Devices Test Bed
- GRCop-84 Sheet For Combustion Chambers, Nozzles And Large Actively Cooled Structures
The Propulsion Project has been formulated to reduce risk in support of a Full Scale Development decision as early as 2005.

Propulsion Project includes the following elements for Earth-to-Orbit Launch Vehicles:
- Main Engine
- Main Propulsion System
- Auxiliary Propulsion Systems

Cryogenic Upper Stage Propulsion is included in the Propulsion Project.

2nd Generation RLV Propulsion Project
The 2nd Generation RLV Program Has Provided for NASA-Led Tasks within the Projects

‘Gated’ Selection Approach

- Gate 1
 - Does task address the Program Goals
 - Contribute to the safety and cost goals
- Gate 2
 - Is task appropriate for NASA to lead
 - Gov’t can do it better and cheaper than anyone else
 - If the Gov’t doesn’t do it, it won’t get done
 - Cross-cutting ... supports multiple architectures
- Gate 3
 - Does it need immediate start
 - Loss of a unique and necessary capability if not funded.
 - Schedule supports TRL6 by 05 ... OR
 - Task is needed to support the 2 year Program focusing

Only Tasks That Passed All Three Gates Were Selected

The Propulsion Project Has Selected Eight Tasks for Execution in FY01.

Space Transportation Technology Workshop

Final Selection Process
This Session Will Provide Information on Each of the NASA-Led Tasks Selected by the Propulsion Project

Summarized by Introduction

- Large Composite Valve Technology
- Actively Cooled Ceramic Matrix Composite Nozzle RampLOX/H2
- Smart Leak Sensor
- Test of Large Scale Liquid Hydrogen Propellant Densification Hardware
- Full Flow Staged Combustion Injectors

Presentations Following Introduction

- GRCop-84 Sheet For Combustion Chambers, Nozzles And Large Actively Cooled Structures
- Combustion Devices Test Bed
- Gen2 Turbo Machinery Technology Demonstrator

Space Transportation Technology Workshop

Funded Task List for Propulsion
Products
- Stand-alone Leak Detection System With a Surface Area the Size of Postage Stamp
- Detection of Both Fuel and Oxygen at the Same Time
- Integrated Signal Conditioning, Data Storage, Power, and Telemetry

Benefits
- Fundamental Need for Gen II vehicle for increased vehicle safety, increased reliability and maintainability, Reduced testing time and costs,

Customers
- Any 2nd Gen Vehicle

Unique / Enabling and Enhancing

Current State of the Art
- Hydrogen sensor Shuttle-tested
- Oxygen/Hydrocarbon sensors under development
- Prototype hydrogen/oxygen sensor system fabricated with limited miniaturization of electronics

Performance Metrics
- 20x decrease in individual sensor system size over present Shuttle tested technology/10x increase of sensor coverage
- Reduction in Maintenance Time and Costs by an order of magnitude

Risks
- Technology readiness of hydrocarbon sensor

USG Participants
- GRC (Lead Center), KSC, Make Engineering, Case Western Reserve University

Miniaturized Smart Leak Sensor System
Products
- Validation of LH2 densification process at large scale (TRL=6)
- Operable (portable) densification skid available for flight experiment or engine test program

Benefits
- Densification can reduce vehicle weight significantly (RLV studies showed ~18% weight reduction)

Customers
- Multiple STAS vehicles utilize densified LH2

Current State of the Art
- TRL 5, Small Breadboard Densification Unit tested in 1996=>30°C LH2; X-33 scale unit fabricated and in storage

Performance Metrics
- 8 lbs/sec LH2 densification rate from 37°C to 27°C
- Demonstrate recirculation tank loading process (thermal stratification)

Risks
- SOA 4-stage compressor performance

USG Participants
- GRC lead

Test of Large Scale LH2 Densification Hardware
Current State of the Art
- Small PMC valve built for DC-XA vehicle
- No large composite valves built

Performance Metrics
- Demonstrate a composite valve can be built and meet Shuttle requirements while at the same time reduce weight

Risks
- Composite parts and assembly do not meet Shuttle requirements.

USG Participants
- MSFC (Lead center), JSC

Products
- A large diameter LH2 valve made from PMC material.
- A series of protective coatings that can be applied to composites and be used in a cryogenic environment. These coatings will increase the materials damage resistance.

Benefits
- The composite valve technology will enable weight reduction of large MPS components on a vehicle.
- The coating technology will enable the program to operate at a higher confidence level since the risks of impact damage are greatly reduced.

Customers
- Second Generation Program, Shuttle, Aerospace Industry

Cross-Cutting Benefits
- Lightweight components are applicable to all present and future launch vehicles.

Space Transportation Technology Workshop

Large Composite Valve Technology

<table>
<thead>
<tr>
<th>FY</th>
<th>01</th>
<th>02</th>
<th>03</th>
<th>04</th>
<th>05</th>
<th>06</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Complete testing of composite piece parts and off-the-shelf coatings
- Complete testing of valve assay, and development of new coatings
- Full scale demonstration on an MPS
- **Current State-of-the-Art (SOTA)**
 - No other concepts existing or in development capable of meeting nozzle ramp requirements
 - These NASA-Funded concepts represent the SOTA
- **Performance Metrics**
 - Areal weight requirement is 2.0 lb/ft² with a goal of 1.5 lb/ft² for the heat exchanger
- **Risks**
 - Aggressive development schedule
 - Manufacturing scale-up to flight design (industry task)
- **USG participants**
 - MSFC (lead Center), LaRC, GRC, AFRL/ML

- **Products**
 - Design level mechanical, physical, and thermal property database
 - Test validated thermal and thermostructural models
 - Demonstrated thermal performance and ability to contain high pressure hydrogen
 - Demonstrated manufacturing scale-up and manifolding

- **Benefits**
 - Potential performance, operability, and safety pay-offs for high temperature capability
 - CMC materials are high
 - Strength-to-weight of advanced CMCs at high temperature may provide a significant weight reduction at far aft end of vehicle where benefit is needed
 - High use temperature of CMCs provides additional temperature margin for uncooled reentry
 - High temperature capability expected to increase safety margins and allow significant simplification of aerospike engine features required for engine-out operation

- **Customers**
 - Primary industry customer, Lockheed Martin, has identified a wide variety of vehicles that would benefit from this technology including SSTO, TSTO, Shuttle Derived, CRV, CTV, and LFBB concepts
 - 3rd Generation RLV and all Rocket Based Combined Cycle (RBCC) propulsion concepts

- **This project is essential to maintain viable technology development schedule consistent with 2nd Generation RLV**
Products
- Optimized MCC injector concept that fully meets Gen 2 operability, life and performance goals (timed to support concept downselect)
- Optimized MCC injector concept(s) that exceed Gen2 requirements
- Experience in design and operation of LOX-rich preburners
- Seamless injector design package with tools validated to TL RL 6-can be used to calculate environments for tie predictions

Benefits
- High performing injectors with manageable heat fluxes
- Lower part count that increases reliability and lowers costs

Customers
- Injector Element Concepts-2nd Generation RLV (FFSC cycle)
- Injector Design Package- all projected 2nd Generation RLV cycles, 3rd Gen and SSME

Current State of the Art
- Limited data base and empirical design methodologies create high-risk designs

Performance Metric
- Increase reliability by reducing part count (10x) and lowering heat fluxes (30%)
- Decrease injector development cost (2x), ops cost (2x) and weight (20%)

Risks
- Tight schedule to complete portions of task before cycle down-select

USG Participants: MSFC (Lead)/GRC

Space Transportation Technology Workshop

Full Flow Staged Combustion Cycle Injectors