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ABSTRACT

As a step towards developing a new design
philosophy, one that moves away from the
traditional empirical approach used today in
design towards a science-based design
technology approach, a recent test series of 5
composite shells carried out by Waters [1] at
NASA Langley Research Center is used. It is
shown how the hierarchical approach to
buckling load calculations proposed by Arbocz
et al [2] can be used to perform an approach
often called “high fidelity analysis”, where the
uncenrtainties involved in a design are
simulated by refined and accurate numerical
methods. The Delft Interactive Shell DEsign
COde (short, DISDECO) is employed for this
hierarchical analysis to provide an accurate
prediction of the critical buckling load of the
given shell structure. This value is used later

as a reference to establish the accuracy of the

Level-3 buckling load predictions. As a final
step in the hierarchical analysis approach, the
critical buckling load and the estimated
imperfection sensitivity of the shell are verified
by conducting an analysis using a sufficiently
refined finite element model with one of the
current generation two-dimensional
analysis codes with the advanced capabilities
needed to represent both geometric and
material nonlinearities.
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INTRODUCTION

It is generally agreed that, in order to make
the development of the Advanced Space
Transportation System a success and to
achieve the very ambitious performance goals
(like every generation of vehicles 10x safer and
10x cheaper than the previous one), one must
make full and efficient use of the technical
expertise accumulated in the past 50 years or
so, and combine it with the tremendous
computational power now available. It is
obvious that with the strict weight constraints
used in space applications these performance
goals can only be achieved with an approach
often called “high fidelity analysis”, where the
uncertainties involved in a design are
simulated by refined and accurate numerical
models. In the end the use of “high fidelity”
numerical simulation will also lead to overall

“cost reduction, since the analysis and design

phase will be completed faster and only the
reliability of the final configuration needs to be
verified by structural testing.

The light-weight shell structures used in
aerospace applications are often buckling
critical. The buckling load calculations are
usually carried out by one of the many
currently available finite element based
computer codes [e.g., 3,4]. In order to reduce
computer execution time, buckling analyses
are often done wusing only the small
displacement stiffnress matrix Kg. This

approach is used, despite the fact that the
“initial stability problem” so formulated can only
give physically meaningful answers if the
elastic solutions based on K, (at least
approximately) are identically equal to zero [5].
_When the qualitative nature of the expected
behavior is completely unknown, the stability of
the structure must be investigated using the full

tangent stiffness matrix Ky in order to

guarantee accurate and reliable buckling load
and buckling mode predictions. In order to
discover the load level at which KT ceases to

be positive definite (that is, the load level when
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buckling occurs),
procedure is needed.

In addition, it is imperative (though often
completely neglected), that at the beginning of
any stability investigation, the accuracy of the
discrete model used should be checked
against available analytical or semi-analytical
results. This step is part of a mandatory study
needed in order to establish the dependence of
the buckling load predictions on the mesh
distribution used. Furthermore, as has been
pointed out in the past by Byskov [6], if one
carries out imperfection sensitivity
investigations, which involve an extension of
the solution into the postbuckling response
region, further mesh refinement may be
needed since the wavelength of the dominant
large deformation pattern may often decrease
significantly.

Finally, whenever one is engaged in shell
stability analysis it is especially important that
one is aware of the possible detrimental effects
of a whole series of factors, that have been
investigated extensively in the late 1960s and
the early 1970s. Thus for an accurate and
reliable prediction of the critical buckling load
of a real structure, one must account not only
for the influence of initial imperfections [e.g.,
7,8] and of the boundary conditions [e.g. 9], but
one must also consider the effects of stiffener
and load eccentricity [e.g., 10] and the
prebuckling deformations caused by the edge
restraints [e.g. 11,12].

A recent test series of 5 composite shells
carried out by Waters [1] at NASA Langley
Research Center is used to illustrate how such
a hierarchical approach to buckling load
calculations can be carried out. The platform
for the multi-level computations, needed for an
accurate prediction of the critical buckling
loads and a reliable estimation of their
imperfection  sensitivity, is provided by
DISDECO ([13]. With this open ended,

a step-by-step analysis

hierarchical, interactive computer code the

user can access from his workstation a
succession of programs of increasing
complexity.

SOLUTION OF THE BUCKLING PROBLEM

In the following it will be shown that with the
help of DISDECO, the Delft Interactive Shell
DEsign COde, the shell designer can study the
buckling behavior of a specified shell, calculate
its critical buckling load quite accurately and
make a reliable prediction of the expected
degree of imperfection sensitivity of the critical
buckling load. The proposed procedure
consists of a hierarchical approach, where the
analyst proceeds step-by-step from the simpler

2

(Level-1) methods used by the early
investigators to the more sophisticated
analytical and numerical (Level-2 and Level-3)
methods used presently.

Level-1 Perfect Shell Buckling Analysis
The geometric and material properties of
the 8-ply, composite shell with symmetrical lay-

up of Ref. [1] are listed in Table 1.

Table 1.

Geometric properties of NASA layered composite

shell AW-CYL-1-1 [1] - [#45/0/90]g

total (= h) =0.039976  in (=1.01539 mm )
L =14.0 in (= 355.600 mm )
R =7.99945  in (=203.18603 mm )
E1q =18.5111x108 psi (= 12.7629x10% N/mm? )
Eoo =1.64x108  psi (= 1.13074x10% N/mm? )
Gi2 =0.8706x10% psi (= 6.00257x10% N/mm? )
vi2 =0.300235

Note: Symmetrical lay-up with 8 plys of equal
thicknesses (= 0.004997 in)

Assuming a perfect shell(W=0) and the
following membrane prebuckling state

w) = hW,, =hA12 %

(1)
Fo)__En® 1, 2

=X
cR 2 y
where
(4] N Eh
A=—=—% 060 =—;Ngg =0¢h
O'Ce NC[ CR

and ¢ = y3(1-v?)

then the nonlinear equations governing the
prebuckling state are identically satisfied and
the linearized stability equations reduce to a
set of equations with constant coefficients. It
has been shown in Ref. [14] that by assuming
an asymmetric bifurcation mode of the form

W(1) =hsinmn%cos%(y—r|(x) (2)

where

m = k = number of axial half waves
n = ¢ = number of circumferential full waves

1K = Khot's skewedness parameter
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one can reduce the solution of the linearized
stability equations to an algebraic eigenvalue
problem. Notice that the eigenvalue Amnpg

depends besides on the wave numbers m and
n also on Khot’s skewedness parameter 1K, a

real number. The critical load parameter A is

the lowest of all possible eigenvalues. Thus
finding Ao involves not only a search over the
integer valued wave numbers m and n but the
search has to be repeated over a range of
possible positive and negative real numbers for
1K . Using the Level-1 computational module
AXBIF [14] a search over integer valued axial
half-wave numbers m and over a range of
possible positive and negative real numbers
K Yielded the lowest eigenvalues listed in

Table 2 for the specified circumferential wave
numbers n.

Table 2.

Buckling loads of the NASA layered
composite shell AW-CYL-1-1

Buckling load map for the perfect shell
using AXBIF [14] (Ng¢ = - 2238.325 Ib/in)

n=4 AQ'=0.371613 (m=7, 1K =3.320)
n=5  Ag =0.370302 (m=7, 1K =2.680)
n=6  Ag =0.370029 (m=7, 1K =2178)
n=7 A3 =0.365992 (m=1, 1K =0.011)
n=8  AN'=0.370131 (m =6, Tk =1681)

n=9 AT=0.371980 (m=6, 1K =1488)
n=10 AQ'=0.372880 (m=5, 1K =1345)
n=11 AQ'=0.375261 (m =4, 1K =1214)
n=12 AJ'=0.369089 (m=1, 1K =0.579)
n=13 AQ'=0.370076 (m=1, 1K =0.653)
n=14 AQ'=0.376748 (m=1, 1K =0.734)

Notice that besides the absolute minimum
of Al'= 0.365992 at n = 7 there is a local
minimum of A" = 0.369089 at n = 12.

To facilitate the interpretation of the
numerical results obtained, DISDECO provides
the user with various graphical interfaces.

Thus the results of the search for the critical
(lowest) buckling load A; can be displayed in

a contour map as shown in Fig. 1. Using
membrane prebuckling the critical eigenvalue
is (see also Table 2)

AQ =0.365992

3

with m=1 half-waves in the axial direction and
n=7 full waves in the circumferential direction.
In order to provide a quick overview of the
distribution of eigenvalues, the wvalues
displayed in the contour plot are re-normalized.
Thus in Fig. 1 the following re-normalized
eigenvalues are plotted

oM = Amnt
€~ 0.365992

Notice that the critical buckling load can be
calculated using a simple multiplication

m_.m
Ne =AcNer =
0.365992(-2238.325) = -819.209 ib/in

Level-2 Perfect Shell Buckling Analysis

To investigate the effects of edge constraint
and of different boundary conditions on the
critical buckling load of the perfect shell

(W=0) one has to switch to the Level-2

computational module ANILISA [15]. In this
module the axisymmetric prebuckling state is
represented by

wi) - hWy, +hwg (x)
(3)

2
EnZ 1
o) = c_n[_E)‘yz +R21y (x)]

it has been shown in Ref. [15] that with these
assumptions the prebuckling problem is
reduced to the solution of a single fourth order
ordinary differential equation with constant
coefficients, which always admits exponential
solutions. Closed form solutions for simply
supported and clamped boundary conditions
have been published in the literature [16].

For anisotropic shells the linearized stability
equations admit separable solutions of the
form

wil = hfw1(x)cosnB + w2 (x) sinnd]
4)

2
F( = %[ﬁ (x)cosng + f (x) sinn6]

where 6=X- .
R

Using a generalization of Stodola’s method
[17] first published by Cohen [18] the resulting
nonlinear eigenvalue problem is reduced to a
sequence of linearized eigenvalue problems.
The resulting ordinary differential equations are
solved numerically by a technique known as
“parallel shooting over N-intervals” [19]. Notice
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that by this approach the effect of edge
restraint and the specific boundary conditions
are satisfied rigorously. To find the critical load
parameter Ao an n-search must be carried
out, whereby one must be careful to find not a
local minimum but the absolute minimum. As
can be seen from the results presented in
Table 3 the n-search using membrane
prebuckling and a rigorous satisfaction of SS8-3
(Nx =v=w =My =0) boundary conditions for
the stability problem now vyields a local
minimum of A, =0.364715 at n =7 and an

absolute minimum of A, =0.364370 atn=11.

Table 3
Buckling loads of the NASA layered composite

shell AW-CYL-1-1(Ng, =-2238.325 Ib/in)
Buckling load map for the perfect shell using
ANILISA [15](BC. Ny =v=w =My =0)

Prebuckling: Membrane Nonlinear
n=6 AT = 0371920 AD'=0.347378
n=7 AM = 0364715  AD'=0.337088
n=8 Al = 0372502 AD'=0.339701
n=9 AT - 0.371460 AD'=0.330957
n=10 AT = 0367479 AD'=0.329163
n=11 AT = 0.364370 A= 0.328594
n=12 Al = 0.364551  AD'=0.330271
n=13 AT = 0.368528 AD'= 0.334044
n=14 AM - 0.376314 AD'=0.339388

The most accurate Level-2 solutions are
obtained when one employs a rigorous
nonlinear prebuckling analysis. As can be seen
from the results listed in Table 3, for this
particular shell the critical buckling loads with
nonlinear prebuckling are always lower than
the corresponding results obtained using a
membrane prebuckling analysis. Specifically,
the local minimum of A0l = 0.337088 atn =7
is about 8% lower, whereas the absolute
minimum of ARl = 0.328594 at n = 11 is about
11% lower. Notice that the critical load Ng can
be calculated easily by multiplying the lowest
eigenvalue Ac by the normalizing factor
Nce = -2238.325 Ib/in yielding

Ne =AcNgs = -735.500 Ib/in  (n=11)

In fig. 2 the critical buckling modes using
membrane and rigorous nonlinear prebuckling
are depicted. Notice that the solutions with
nonlinear prebuckling differ significantly from
the ones obtained wusing membrane
prebuckling, especially at n = 11 where one
observes a typical edge buckling type
behavior.

Level-3 Perfect Shell Buckling Analysis

To verify the earlier predictions the finite
difference version [20] of the well known shell
analysis code STAGS [21] will be used. Due to
the slightly skewed buckling pattern predicted
by the Level-1 and Level-2 computations one
is forced to model the whole shell.

Initially a convergence study must be
carried out in order to establish the mesh size
needed for accurate modeling of the buckling
behavior of the shell in question. For this
purpose the asymmetric bifurcation from a
nonlinear prebuckling path option was used,
whereby the earlier results obtained with the
Level-2 module ANILISA listed in Table 3
serve as a reference.

In the convergence study, at first, for a fixed
number of mesh points in the axial direction
(NR = 161) the number of mesh points in the
circumferential direction (NC) was increased
until the bifurcation load approached a
horizontal tangent. As can be seen from Fig. 3
the results converge to a limiting value from
below at about NC = 201. Next, for a fixed
number of mesh points in the circumferential
direction (NC = 201) the number of rows (NR)
was varied. This time convergence is from
above and as can be seen from Fig. 3 the
horizontal tangent is reached at about NR =
201.

Using a mesh of 161 rows and 201 columns
{(a model with 99268 D.O.F.'s and a maximum
semi-bandwidth of 795) and SS-3 boundary
conditions (Nx =—Ng,v=W=My =0) the
following 3 lowest eigenvalues were obtained:

2 = 0327759 (n=11) -

N = 2Ng, = -733.630 Ib/in

A2 0328652 (n=10) -
N@ = 1IN, =-735.631 Ib/in

A3 0320421 n=12) -
N3 = aBINg, = -737.3521b/in
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Details of the critical buckling mode are
displayed in Fig. 4. Notice that the sequence of
the 3 lowest buckling loads and the
corresponding buckling modes agree closely
with the predictions obtained with the Level-2
module ANILISA (see also Table 3).

IMPERFECTION SENSITIVITY STUDY

That initial imperfections may decrease the
load carrying capacity of thin-walled shell
structures is by now widely known and
accepted. However, in order to calculate the
effect of initial imperfections one must know
their shape and amplitude, an information that
is rarely available.

In the absence of initial imperfection
measurements, as a first step one must
establish whether a given shell-loading
combination is imperfection sensitive, and if
the answer is positive to estimate how
damaging certain characteristic imperfection
shapes are.

Single Axisymmetric Imperfection

Based on Koiter's pioneering work on the
effect of initial imperfections [7,22] the simplest
imperfection model consists of a single
axisymmetric imperfection

W = hE; cosin—)L(— (5)

where i is an integer denoting the number of
half-waves in the axial direction and E; is the

amplitude of the axisymmetric imperfection
normalized by the shell wall-thickness h.

if one assumes that both the axial load and the
boundary conditions are independent of the
circumferential coordinate, then the prebuck-
ling solution will also be axisymmetric, a fact
that simplifies the solution considerably.

Level-1 Analysis of Axisymmetric
Imperfection
Neglecting the effect of the prebuckling
boundary conditions the nonlinear equations
governing the prebuckling state admit the
following axisymmetric solutions

W) = hw,, +hwg(x)
(6)

2
F(o) =—% L kyz +fo(x)

R 2

where

Wo(X)= o _kh& cosin{-
i
(1+B210.2) g3
A i /Eh" ¢

13 cosin>
1 z
Agj =M 2ai2 L

fO(X)___ _*
A22
(7)
1 p=* (1+§;g1ozi2)2
Agj =5 loy D11+ ————}
2oci A22
Notice that the linearized stability equations

become now a set of equations with variable
coefficients. The reduced wave number o;

and the normalized stiffness coefficients Kzg ,

B21 and D11 are all listed in Ref. [14].

It has been shown in Ref. [14] that by
assuming an asymmetric bifurcation mode of
the form

W“):hsinmnicosE - T X 8
T 00y — T X) (8)
where

m = k = number of axial half waves

n = ¢ = number of circumferential full waves

K = Khot's skewedness parameter

a Galerkin type approximate solution yields for
the eigenvalues (read, buckling loads) A of the
problem a characteristic equation in the form of
a cubic polynomial

23 — (Amine + 2g; - C1ESimom? )
+{2Amnt +Ac; + (€2 -C )E1Si=2m}7»ci7\

- A -2 o
—{Amnt + C2818i=2m +(C3 - C48im )&y }7»0i =0

where

Sj=om =1 fi=2m
=0 otherwise

dm=1 ifi=m
=0 otherwise

and the constants C1,Cp,... are listed in
Appendix C of Ref. [14].
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Here it must be remembered that one will
only get any noticeable degrading influence of
the assumed axisymmetric imperfection if &4
is negative and if the coupling condition i=2m
is satisfied. The physical explanation for this
can be found in Koiter's 1963 paper [22].
Furthermore, in order to obtain the smallest
real root of Eq. (9), for a given axisymmetric

imperfection &4 an n-search must be carried

out. It should also be noticed that the terms
involving the Kronecker delta 6j=pm are all

linear in &y, and thus they dominate the

buckling behavior of the shell with
axisymmetric imperfection.

Assuming that the most likely axisymmetric
imperfection of the steel mandrel used to lay-
up the NASA composite shell AW-CYL-1-1 is
given by

W =hé, cos2n% (10)

the Level-1 DISDECO computational module
AXBIF generated the solid curve shown in Fig.
5. Notice that the curve is re-normalized by
K? =0.366892, the critical Level-1 buckling
load of the perfect shell computed using AXBIF
[14] with membrane prebuckling for 1x =0.0
and n=7. Notice also that an initial imperfection
amplitude equal to the wall thickness of the
shell (§4 =-1.0) generates a “knockdown
factor” of pe =Ac /A =0.486 , resulting in the
following rather low buckling load

Ae = 0.4861{3” = 0.486(0.366892) = 0.178310

N c=AcNgy =
0.178310(-2238.325) = -399.1151b/in

with T = 0.0 and n = 7 full waves in the

circumferential direction.

Level-2 Analysis of Axisymmetric
Imperfection
Since the external loading, the boundary
conditions and the assumed initial imperfection
are axisymmetric, therefore the prebuckling
solution will also be axisymmetric. It has been
shown in Ref. [23] that by assuming

W(o) =hWv +hwg(x)

2
Eh 1
F(O) =—Eﬁ—{——2‘7\.y2 + szo()()}

the solution of the nonlinear partial differential
equations governing the prebuckling state can
be reduced to the solution of a single fourth
order ordinary differential equation with
constant coefficients, which can be solved
routinely.

For anisotropic shells the resulting
linearized stability equations admit separable
solutions of the form

W = h[w1(x)cosn6 + wa (x)sinne]
(12)

£() _ERh®

o [f1(x)cosn® + f2(x) sinno]

y
where 6 =—=—.
R

Solution proceeds as outlined on Ref. [23].
Using an updated version of the Level-2
computational module ANILISA [24] and SS-3
(Ny =v=w=My =0) boundary conditions
one obtains the results presented in Table 4.
Notice that a rigorous nonlinear prebuckling
analysis was used and an n-search was
carried out for each specified axisymmetric

imperfection amplitude E1 .

The values of Table 4 are plotted as the
dashed curve in Fig. 5. A comparison of the
results obtained via the Level-1 module AXBIF
(solid curve) and the Level-2 module ANILISA
(dashed curve) shows that also in the case of
axisymmetric imperfections a rigorous pre-
buckling analysis should be used. Especially
for very small initial imperfection amplitudes

(|E1l<0.1) the Level-1 predictions are

inaccurate and overestimate the critical
buckling load. Notice further that both curves

have been normalized by AT =0.366892, the
critical Level-1 buckling load of the perfect

shell computed using membrane prebuckling
by AXBIF [14] for 1 =00andn=7. This way

the effect of using a rigorous prebuckling
analysis becomes easily discernible.

It is interesting to see that for small enough
initial imperfection amplitudes ( §1| <0.07,
say) the critical buckling load of the shell is
insensitive to the initial imperfection shape
specified by Eq. (10). Notice that the critical
buckling modes have n = 11 full waves in the
circumferential direction, and as can be seen in
Fig. 6, a somewhat skewed buckling mode
shape which is dominated by edge buckling.
However, larger initial imperfections
(‘§1L2 0.07, say) force the shell to respond in
another mode shape with n = 7 full waves in
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the circumferential direction and with
practically straight nodal lines. Interestingly
enough now the critical buckling load of the
shell is sensitive to the axisymmetric initial
imperfection shape specified by Eq. (10) and
an initial imperfection amplitude equal to the
wall thickness of the shell (&1 =-10)
generates a  “knockdown  factor”  of
Pc =Ac/AD' =0.418. It predicts thus the
following rather low buckling load

A = 0.418)7 = 0.418(0.366892) = 0.153361

Ne =AcNgy =
0.153361(—2238.325) = -343.2711b/in

with a very slight skewedness of the buckling
pattern and n = 7 full waves in the
circumferential direction.

Table 4

Buckling loads of the NASA layered composite
shell AW-CYL-1-1(Ng, = -2238.325 Ib/in)
Axisymmetric imperfection using ANILISA [24]
(BC.:Ny =v=w=My =0)

&4 Al & | Al

0. 0.328594 (n=11) |- 0.2 | 0.299830 (n=7)
-0.01 |0.328671 (n=11) |-0.3 |0.274773 (n=7)
-0.02 |0.328745 (n=11) |-0.4 |0.251275 (n=7)
-0.05 |0.328939 (n=11) |-0.5 |0.229976 (n=7)
-0.06 |0.328994 (n=11) |-0.6 |0.210876 (n=7)
-0.07 |0.328332 (n=7) |-0.7 |0.193827 (n=7)
-0.08 |0.326652 (n=7) |-0.8 |0.178655 (n=7)
-0.09 |0.324860 (n=7) |- 0.9 |0.165187 (n=7)
-0.10 |0.322960 (n=7) |- 1.0 | 0.153263 (n=7)

Level-3 Analysis of Axisymmetric
Imperfection
Recalling that since both the axial load and
the boundary conditions are independent of the
circumferential  coordinate, therefore the
prebuckling solution will also be axisymmetric,
one can use once again the asymmetric
bifurcation from a nonlinear prebuckling path
option. By modeling the full shell the code can
choose itself the critical number of full waves in
the circumferential direction. No n-search must
be carried out. Using a uniformly spaced mesh
of 161 rows and 201 columns and the user
written subroutine option WIMP to introduce

the following axisymmetric imperfection

W=1.0h0052n%

7

(remember STAGS defines W  positive
outward) the following critical bifurcation load
was found

N = —333.449 Ib/in

As can be seen from Fig. 7 the critical buckling
mode has n=7 full waves in the circum-
ferential direction and no visible skewedness.
The nondimensional bifurcation load of the
shell with axisymmetric imperfection is for

N  -333.449

= = 0.148973
Ney -2238.325

XC=

The re-normalized bifurcation load is

N _
ol =—N—C where Ngy = AN,

cl
thus

ni_Ac _0.148973

Pe Al 0.327759 >45
Notice that the level-3 re-normalization is
done using X2|=0.327759, the critical
Level-3 buckling load of the perfect shell
computed using STAGS-A with nonlinear
prebuckling and a 161x201 mesh.

Notice also that the Level-2 ANILISA prediction
(p[;“ =0.4664, n=7) agrees closely with the
Level-3 STAGS-A prediction (pR! = 0.4545,
n=7). The slight difference is partly due to
the fact that ANILISA uses the Donnell type
nonlinear shell equations, whereas STAGS-A
employs the higher order Marlowe-Fliigge
equations.

Single Asymmetric Imperfection

The effect of a single asymmetric initial
imperfection can be investigated either by
solving the full nonlinear response problem or
by employing the well known Lyapunov-
Schmidt-Koiter [7] reduction technique. When
investigating the degrading effect of a single
mode asymmetric imperfection

— = . X y
W =t&, sinmn—cosn-=— 13
2 m R (13)

where m and n are integers denoting the
number of axial haif-waves and the number of
circumferential  full waves, respectively,
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instability occurs at the limit point of the
prebuckiing state in the generalized load-
deformation space. Assuming that the
eigenvalue problem for the critical (lowest)
buckling load A, will yield a unique asym-
metric buckling mode W then for an
imperfect shell (£, #0) the shape of the

generalized load-deflection curve in the vicinity
of the bifurcation point A = A is given by the

following asymptotic expansion

(A=A )E=Acat% + A bES +

- Aty — (A = A )BE; +O(EE2)

(14)

Expressions for the postbuckling coefficients
“a” and “b" and the imperfection forms factors
‘o and “B” are derived in References [25,26].
If the limit point is close to the bifurcation point,
then the maximum load Ag that the structure
can carry prior to buckling can be evaluated
from Eg. (14) by maximizing A with respect to
€. For cases where the first postbuckling
coefficient “a” is zero, this analysis yields the
modified Koiter formula [26]

2 V-zaori-Li1-pg e, (15)

where pg = Ag/A..

(1-pg)¥/2 =

Notice that, if the second postbuckling
coefficient “b" is positive, Eq. (15) has no real
solutions. Thus the buckling load of the
specified shell-loading combination is not
sensitive to  small asymmetric initial
imperfections of the shape given by Eq. (13).
f, however, the second postbuckling
coefficient “b” is negative, the equilibrium load
A decreases following buckling and the
buckling load of the real structure Ag is
sensitive to the asymmetric initial imperfection
specified by Eq. (13).

Level-1 Analysis of Asymmetric
Imperfection
For the composite shell under investigation,
as can be seen from the partial results listed in
Table 2, there are many eigenvalues only
slightly higher than the critical one of
Ac =0365992 for m = 1, n = 7 and
Tk =0.011. Hence, strictly speaking, the
proposed form of the perturbation expansion
given by Egs. (14) is not applicable, since the
nonlinear interaction between the many nearly
simultaneous eigenmodes is not accounted for.
Thus the following results, where one
considers the eigenfunctions corresponding to

8

certain critica! eigenvalues chosen one at the
time, can at best give an indication as to the

severity of the expected imperfection
sensitivity.
Assuming initially an asymmetric

imperfection affine to the critical buckling mode
of the perfect NASA composite shell AW-CYL-
1-1 as computed by the Level-1 computational
module AXBIF (see also Table 2)

W=h§25inn-:—cos—;—(y—0.011x) (16)

and using the Level-1 computational module
BFACT to carry out the initial postbuckling
analysis yields the following resuits

Ae = M0 =0.365992(m=1,n=7, tx =0.011)

b =-0.048844 oa=p=10

Substituting these values into Eq. (15), one
can plot the degrading effect of an asymmetric
imperfection of the shape given by Eq. (16) as
a function of its amplitude > . As can be seen

from Fig. 8 an initial imperfection amplitude
equal to the wall thickness of the shell

(Ez =10) generates a “knockdown factor” of

Ps =Ag /K{;“ =0.541, resulting in the following
rather low buckling load

g = 0541\ =0.541(0.365992) = 0.198002

Ng =AgNgs =
0.198002(-2238.325) = —443.192 Ib/in

Notice that the imperfection form factors
"a" and "B" are identical equal to 1.0 because

BFACT uses membrane prebuckling to
calculate the necessary first and second order
fields and the assumed asymmetric
imperfection shape of Eqg. (16} is affine to the
buckling mode. Please notice that in Fig. 8 the
collapse load is re-normalized by

AM =0.365992, the critical Level-1 buckling

joad of the perfect shell computed using
membrane prebuckling by AXBIF [14] for

1K =0.011and n=7.

Level-2 Analysis of Asymmetric
Imperfection
To investigate the effects of edge-constraint
and/or different boundary conditions on the
imperfection sensitivity of the critical buckling
load of the NASA composite shell AW-CYL-1-1
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one has to switch to the Level-2 module
ANILISA [15] and run its postbuckling analysis
option. In this module, as described earlier, the
axisymmetric prebuckling state is represented
by Egs. (3), the buckling modes by Egs. (4)
and the postbuckling state by

w2 - hiw g (x) + WB(X) cosnd + wy (x)sinng]
(18)

F(g) _ ERh2
C

where 6=y /R. Details of the computational
procedures used are reported in Refs. [15,23].

Next, let us assume that the specified
asymmetric imperfection is affine to the critical
buckling mode obtained by the rigorous Level-
2 perfect shell analysis discussed earlier

W =hE, [wq(x)cos 118+ wa(x)sin11 6]

where 0=y /R and the component functions
wi{x) and wo(x) are shown in Fig. 2b.
Running ANILISA with rigorous prebuckling
and SS-3 boundary conditions (Ny =-Ng,
v =w = My = 0)yields the following results

he =AY =0328594 (n=11)
b =-0.37605; o = 0.46663; B = —0.22174

Using Eq. (15) to plot the degrading effect
of the asymmetric imperfection specified by

Eq. (18) as a function of its amplitude £5 one

obtains the results displayed in Fig. 9 as a
solid line. Obviously the fact that for an
imperfection shape affine to (similar to) the

buckling mode with an amplitude of Ez =10

one obtains a negative load carrying capacity
is unrealistic.

Here one must remember that Koiter's
Sensitivity Theory is asymptotically exact, that
is, it yields accurate predictions for sufficiently
small  imperfections, whereby what s
sufficiently small may vary from case to case.
Also, Eq. (15) was obtained by using the
perturbation expansion given by Eg. (14),

where terms of order (F,E) are neglected. As

can be seen from the dotted curve plotted in
Fig. 9, by using more advanced computational
modules such as COLLAPSE [27], where a full
nonlinear solution is used and terms up to and

including order (&Ez) are kept, one obtains
more reasonable predictions.

[fo () + fﬁ (x)cos2n0 + fY (x)sin2n6]

9

Notice that up to about Ez=o.3 the

asymptotic predictions from ANILISA and the
nonlinear results of COLLAPSE agree very
closely. Thus one can say that in this case the
range of validity of the asymptotic solution is

02&5 >03.

DISCUSSION OF THE RESULTS

When comparing and analyzing the results
obtained sofar it is important to keep in mind
that all Level-1 and Level-2 solutions are
based on approximate representations of the
unknown functions. As pointed out in the
previous sections Level-1 solutions use a
single  term double Fourier  series
approximation to reduce the solution of the
stability problem, formulated in terms of partial
differential equations, to algebraic eigenvalue
problems. The effect of edge restraint is
neglected (one uses a membrane prebuckling
solution) and the assumed field functions
satisfy approximately SS-3 (Nyx =-Ng,
v =w =My =0) boundary conditions.

Level-2 solutions eliminate the y-
dependence by a truncated Fourier
decomposition in the circumferential direction.
The resulting system of nonlinear ordinary
differential equations are solved numerically,
whereby both the specified boundary
conditions and the effect of edge restraint are
rigorously satisfied. Thus by this approach the
only approximation is that one represents the
variation of the solution in the circumferential
direction by a single harmonic with n full
waves, whereby an n-search is used to
establish which wave number is the critical
one. The Level-2 module ANILISA can also be
used to investigate the effect of using different
boundary conditions. In Table 5, the resuits for
four different boundary conditions are
presented. As expected the fully clamped C4
boundary conditions has the highest critical
buckling load. The increase in load carrying
capacity with respect to the weaker SS3
boundary conditions is about the same as for
an isotropic shell of similar characteristic
dimensions (same L/R and R/t ratios) of Ref.
[28]. ,

The Level-3 solutions are based either on a
2-dimensional finite difference or finite element
formulation. In both cases, if one uses the
appropriate meshes, one can obtain rigorous
solutions where all nonlinear effects are
properly accounted for. The only real problem
with Level-3 type solutions is that for each
problem one must establish the appropriate
mesh size. Coarse meshes vyield inaccurate
solutions. What is coarse depends on the
particular problem under investigation. Thus,
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for a general nonlinear solution a convergence
study must always be carried out.

Using a hierarchical simulation platform
such as DISDECO (Delft Interactive Shell
DEsign Code), where the analyst has at his
disposal computational modules of different
level of sophistication, such a convergence
study can be carried out relatively quickly and
accurately. In Table 5 a summary of the resuits
obtained in this study is presented using
normalized variables. [n Table 6 the same
results are repeated but this time the imperfect
buckling loads are printed as re-normalized
variables p. Looking at the first column, where
the critical buckling loads and the critical
buckling mode shapes of the perfect shell are
listed, one sees that using the Level-3 code
STAGS-A one must indeed use a relatively fine
mesh (161 rows and 201 columns) in order to
obtain an accurate prediction of the critical
buckiing load. Remember, all preceding
computational modules are based on Donnell
type anisotropic shell equations, however,
STAGS-A uses the more accurate Marlowe-
Fligge type equations. Usually the use of a
more refined theory implies a lower buckling
load. The value of the normalization factor
used, Ngy =Enh2/cR, is printed in the
heading of the table. The lowest critical
buckling load was found using STAGS-A and
modeling the whole shell with a mesh
consisting of 161 rows and 201 columns. The
asymmetric bifurcation from a nonlinear
prebuckling path option with SS-3 boundary
conditions yielded

N = 0.327759(-2238.325)
=-733.630 Ib/in (n=11)

Considering now the effect of different
types of imperfection shapes a second
normalization is introduced, whereby the new
normalization factors are chosen such that for
vanishingly small imperfections the normalized
variable p approaches unity (i.e. 1.000). The
only exception to this rule is the case of the
axisymmetric imperfection

W = -hE cos 2n{—

where by using as the normalization factor
Ac =0.366892 (the asymmetric bifurcation
perfect shell buckling load with membrane
prebuckling, Tk =0.0 and n = 7) in the limit as
€40, pc approaches the value

10

Pc = Ae _0.328594 _, 495615 - 0.896
x, 0.366892

This value represents the effect of edge
restraint. See also the results of Table 4 and
Fig. 5. Notice that using membrane
prebuckling, thus neglecting the effect of edge
restraint, the normalized buckling load of the
perfect shell is 1.000.

Turning now to the effect of asymmetric
imperfections, from the results listed in Table 5
it is evident that for an imperfection amplitude
equal to one wall-thickness the range of
validity of the asymptotic solutions s
exceeded, and the predictions of Koiters
imperfection sensitivity theory computed by
ANILISA [15] are no longer valid (see also Fig.
g9). On the other hand, there seems to be good
agreement between the results obtained by
COLLAPSE [27], a Level-2 computational
module which computes a nonlinear solution
based on a two modes approximation, and the
STAGS-A [20] solution obtained sofar for the
two modal imperfections and the affine
imperfection listed in Table 5. In general the
more accurate STAGS-A, Level-3 solutions are
slightly lower than the Level-2 COLLAPSE
solutions, with exception of the asymmetric
imperfection affine to the perfect shell buckling
mode. The reason for this anomaly lies in the
fact that this imperfection triggers more than
one circumferential harmonic close to the fimit
point (as can be seen in Fig. 66 of Ref. 29).

CONCLUSIONS

By relying on a series of theoretical results of
various degree of sophistication published in
the literature, the hierarchical approach used in
this paper has resulted in a series of buckling
load predictions of increasing accuracy. It was
shown that in order to be able to arrive at a
reliable prediction of the critical buckling load
and to make an estimate of its imperfection
sensitivity which can be used with confidence,
one must proceed step by step from simple to
more complex models and solution proce-
dures.

In particular one can state, that in order to
predict the critical buckling load accurately and
to make a reliable estimate of its imperfection
sensitivity, the nonlinear effects caused by the
edge restraint conditions must be included in
the analysis. Any solution procedure which
fails to account for these effects, should be
suspect of having provided incorrect results.

The most approximate of the here
described analyses, the Level-1 solutions
which neglect the effects caused by the edge
restraints, can still be used to great advantage

American Institute of Aeronautics and Astronautics



to establish the approximate behavior of a shell
subjected to the specified external loading.
However, depending on the value of the
prebuckling stiffness, resulting from the
different types of wall constructions used, the
solutions may be either conservative or
nonconservative.

As can be seen from the results shown in
Tables 5 and 6, the buckling load of the
composite shell AW-CYL-1-1 is sensitive to all
the initial imperfection shapes investigated. For
a more specific prediction of the final collapse
load, the final goal of a “High Fidelity Buckling
Load Analysis”, one would have to carry out a
refined Level-3 analysis including measured
values of all the significant generalized
imperfections such as the traditional shell-wall
imperfections, variations in the shell-end or
loading surface geometry and especially for
composite shells variations in the shell-wall
thickness distribution. It has been shown in
Ref. 30 that such an approach yields very good
agreement between the predicted collapse
load and the experimental buckling load. Such
a paper is in preparation.
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Contour map of the buckling loads for the NASA composite shell AW—CYL—1-—1
rhoc = Nc / Nci—bar where Ncl—bor=lombdac=Ncl=~819.209 b /in
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Fig. 1  Distribution of buckling loads based on Level-1 membrane prebuckling
analysis - NASA composite shell AW-CYL-1-1
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NASA composite shetl #1 — STAGS-—-A convergence plot — $5—-3 B.C.

nurmber of columns NC (or rows NR) vs critical oxial line load N-—crit

000 NR=161 Q603 NC=201 Aniliso
8 N T T T T T T T v T T T T
o
<
~
—
C
we
0 [ B .
0«
ot o
> o
-
v
l o RN - o
z 0 -
e F Y. . 1
n IR T
3 o s __
o o=~
IV -9
p]
) 161x201 mesh
s G‘
«F ]
R
0
]
A
-
0
-~ Q
0 Q
gnT 1
R
C
0]
o
Q
8
"~ SR 1 j DR WS GRUUU R . 1k & e 2
107.00 121 00 141 .00 161.00 181.00 201 00 221.00 241 00

number of columns NC (or rows NR)

Fig. 3 STAGS-A convergence study - NASA composite shell AW-CYL-1-1

15
American Institute of Aeronautics and Astronautics



NASA composite shell AW—CYL—1—1 — 1861 rows x 207 columns = sSs—3 B.C.
critical buckling mode — w field — Nc=—733.640 Ib/in — delta—teto=360 degrees
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a. General view of the critical buckling mode

NASA composite shell AW—CYL—1—1 — 161 rows x 207 colurmns — sSsS—-3 B.C.
x—troce critical buckling mode — Ne=—733.640 Ib/in — delta—teta=360 degrees
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Fig. 4 Buckling mode of the axially compressed layered composite shell AW-CYL-1-1
SS-3B.C. -N, = -Ng,v=W =M, =0; Ng, =-2238.325 Ib/in; STAGS-A results
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