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ABSTRACT INTRODUCTION

As a step towards developing a new design
philosophy, one that moves away from the
traditional empirical approach used today in
design towards a science-based design
technology approach, a recent test series of 5
composite shells carried out by Waters [1] at
NASA Langley Research Center is used. It is
shown how the hierarchical approach to
buckling load calculations proposed by Arbocz
et al [2] can be used to perform an approach
often called "high fidelity analysis", where the
uncertainties involved in a design are
simulated by refined and accurate numerical
methods. The Delft Interactive Shell DEsign
COde (short, DISDECO) is employed for this
hierarchical analysis to provide an accurate
prediction of the critical buckling load of the
given shell structure. This value is used later
as a reference to establish the accuracy of the
Level-3 buckling load predictions. As a final
step in the hierarchical analysis approach, the
critical buckling load and the estimated
imperfection sensitivity of the shell are verified
by conducting an analysis using a sufficiently
refined finite element model with one of the
current generation two-dimensional shell
analysis codes with the advanced capabilities
needed to represent both geometric and
material nonlinearities.
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It is generally agreed that, in order to make
the development of the Advanced Space
Transportation System a success and to
achieve the very ambitious performance goals
(like every generation of vehicles 10x safer and
10x cheaper than the previous one), one must
make full and efficient use of the technical
expertise accumulated in the past 50 years or
so, and combine it with the tremendous
computational power now available. It is
obvious that with the strict weight constraints
used in space applications these performance
goals can only be achieved with an approach
often called "high fidelity analysis", where the
uncertainties involved in a design are
simulated by refined and accurate numerical
models. In the end the use of "high fidelity"
numerical simulation will also lead to overall
cost reduction, since the analysis and design
phase will be completed faster and only the
reliability of the final configuration needs to be
verified by structural testing.

The light-weight shell structures used in
aerospace applications are often buckling
critical. The buckling load calculations are
usually carried out by one of the many
currently available finite element based
computer codes [e.g., 3,4]. In order to reduce
computer execution time, buckling analyses
are often done using only the small

displacement stiffness matrix Ko. This

approach is used, despite the fact that the
"initial stability problem" so formulated can only
give physically meaningful answers if the
elastic solutions based on Ko (at least

approximately) are identically equal to zero [5].
When the qualitative nature of the expected

behavior is completely unknown, the stability of
the structure must be investigated using the full

tangent stiffness matrix KT in order to

guarantee accurate and reliable buckling load
and buckling mode predictions. In order to

discover the load level at which KT ceases to

be positive definite (that is, the load level when
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buckling occurs), a step-by-step analysis

procedure is needed.
In addition, it is imperative (though often

completely neglected), that at the beginning of
any stability investigation, the accuracy of the
discrete model used should be checked

against available analytical or semi-analytical

results. This step is part of a mandatory study
needed in order to establish the dependence of

the buckling load predictions on the mesh
distribution used. Furthermore, as has been

pointed out in the past by Byskov [6], if one

carries out imperfection sensitivity
investigations, which involve an extension of

the solution into the postbuckling response
region, further mesh refinement may be

needed since the wavelength of the dominant
large deformation pattern may often decrease

significantly.
Finally, whenever one is engaged in shell

stability analysis it is especially important that

one is aware of the possible detrimental effects
of a whole series of factors, that have been

investigated extensively in the late 1960s and

the early 1970s. Thus for an accurate and
reliable prediction of the critical buckling load

of a real structure, one must account not only
for the influence of initial imperfections [e.g.,

7,8] and of the boundary conditions [e.g. 9], but
one must also consider the effects of stiffener

and load eccentricity [e.g., 10] and the
prebuckling deformations caused by the edge

restraints [e.g. 11,12].
A recent test series of 5 composite shells

carried out by Waters [1] at NASA Langley
Research Center is used to illustrate how such

a hierarchical approach to buckling load
calculations can be carried out. The platform
for the multi-level computations, needed for an

accurate prediction of the critical buckling
loads and a reliable estimation of their

imperfection sensitivity, is provided by
DISDECO [13]. With this open ended,
hierarchical, interactive computer code the
user can access from his workstation a

succession of programs of increasing

complexity.

SOLUTION OF THE BUCKLING PROBLEM

In the following it will be shown that with the
help of DISDECO, the Delft Interactive Shell

DEsign COde, the shell designer can study the
buckling behavior of a specified shell, calculate

its critical buckling load quite accurately and
make a reliable prediction of the expected
degree of imperfection sensitivity of the critical
buckling load. The proposed procedure

consists of a hierarchical approach, where the

analyst proceeds step-by-step from the simpler

(Level-I) methods used by the early

investigators to the more sophisticated
analytical and numerical (Level-2 and Level-3)

methods used presently.

Level-1 Perfect Shell Buckling Analysis

The geometric and material properties of
the 8-ply, composite shell with symmetrical lay-

up of Ref. [1] are listed in Table 1.

Table 1.

Geometric properties of NASA layered composite

shell AW-CYL-I-1 [1] - [+45 / 0 / 90] s

ttotal(= h) = 0.039976

L

R

E11

E22

G12

v12 = 0.300235

in (= 1.01539 mm )

= 14.0 in (= 355.600 mm )

=7.99945 in (= 203.18603 mm )

= 18.5111x106 psi (= 12.7629x104 N/mm 2 )

= 1.64x106 psi (= 1.13074x104 N/mm 2 )

=0.8706x106 psi (= 6.00257x103 N/mm 2 )

Note: Symmetrical lay-up with 8 plys of equal
thicknesses (= 0.004997 in)

Assuming a perfect shell(W=0) and the

following membrane prebuckling state

W (°) = hWv = hA12 X
c

F(O)= Eh 2 1Xy 2
cR 2

where

(1)

N x Eh
=__ ; Oc_ =_ ; Nc_ =oc_h

Ocf Nc._

and c = #3(1 -v 2)

then the nonlinear equations governing the

prebuckling state are identically satisfied and
the linearized stability equations reduce to a

set of equations with constant coefficients. It
has been shown in Ref. [14] that by assuming

an asymmetric bifurcation mode of the form

x n _ "CKX)W (1) = h sin m_ _ cos _ (y

where

(2)

m = k = number of axial half waves

n = t. = number of circumferential full waves

_K = Khot's skewedness parameter

2
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one can reduce the solution of the linearized
stability equations to an algebraic eigenvalue
problem. Notice that the eigenvalue Xmn_

depends besides on the wave numbers m and
n also on Khot's skewedness parameter "cK , a

real number. The critical load parameter Xc is
the lowest of all possible eigenvalues. Thus
finding Xc involves not only a search over the

integer valued wave numbers m and n but the
search has to be repeated over a range of
possible positive and negative real numbers for
"_K. Using the Level-1 computational module

AXBIF [14] a search over integer valued axial
half-wave numbers m and over a range of
possible positive and negative real numbers
"_K yielded the lowest eigenvalues listed in

Table 2 for the specified circumferential wave
numbers n.

Table 2.
Buckling loads of the NASA layered
composite shell AW-CYL-I-1
Buckling load map for the perfect shell
using AXBIF [14] (Nc_ = - 2238.325 Ib/in)

n=4 _,cm=0.371613 (m=7,'_K=3.320)

n = 5 Xm = 0.370302 (m = 7, "cK = 2.680)

n = 6 Xm = 0.370029 (m = 7, '_K = 2.178)

n=7 ;Lm=0.365992 (m=l, "_K=0-011)

n=8 _.m=0.370131 (m=6, '_K=1.681)

n = 9 _.cm = 0.371980 (m = 6, "_K = 1.488)

n = 10 Xcm = 0.372880 (m = 5, "_K = 1.345)

n = 11 _,cm = 0.375261 (m = 4, "cK = 1.214)

n=12 Xm=0.369089 (m=l, "cK=0.579)

n = 13 X_q= 0.370076 (m = 1, '_K = 0.653)

n=14 z,m=0.376748 (m=l,'c K=0.734)

Notice that besides the absolute minimum

of;Lm= 0.365992 at n = 7 there is a local
minimum of ;Lcm = 0.369089 at n = 12.

To facilitate the interpretation of the
numerical results obtained, DISDECO provides
the user with various graphical interfaces.

Thus the results of the search for the critical

(lowest) buckling load ;Lc can be displayed in

a contour map as shown in Fig. 1. Using
membrane prebuckling the critical eigenvalue
is (see also Table 2)

X_ = 0.365992

with m=l half-waves in the axial direction and
n=7 full waves in the circumferential direction.
In order to provide a quick overview of the
distribution of eigenvalues, the values
displayed in the contour plot are re-normalized.
Thus in Fig. 1 the following re-normalized
eigenvalues are plotted

Notice that the critical buckling load can be
calculated using a simple multiplication

= =
0.365992 (-2238.325) = -819.209 Ib/in

Level-2 Perfect Shell Buckling Analysis

To investigate the effects of edge constraint
and of different boundary conditions on the
critical buckling load of the perfect shell

(W=0) one has to switch to the Level-2

computational module ANILISA [15]. In this
module the axisymmetric prebuckling state is
represented by

W (°) = hW v + hwo(x)

F(O) Eh2 . 1_ 2 a2fo(X)]
=-_L-_ _'Y +

(3)

It has been shown in Ref. [15] that with these
assumptions the prebuckling problem is
reduced to the solution of a single fourth order
ordinary differential equation with constant
coefficients, which always admits exponential
solutions. Closed form solutions for simply
supported and clamped boundary conditions
have been published in the literature [16].

For anisotropic shells the linearized stability
equations admit separable solutions of the
form

W (1) = h[w l(X) cos ne + w 2 (x) sin ne]

F(1) = ERh2 [fl(x)cos n8 + f2 (x) sin nO]
C

where 0 Y
R

(4)

Using a generalization of Stodola's method
[17] first published by Cohen [18] the resulting
nonlinear eigenvalue problem is reduced to a
sequence of linearized eigenvalue problems.
The resulting ordinary differential equations are
solved numerically by a technique known as
"parallel shooting over N-intervals" [19]. Notice

3
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that by this approachthe effect of edge
restraintandthe specificboundaryconditions
aresatisfiedrigorously.Tofindthecriticaltoad
parameterXc an n-searchmustbe carried
out,wherebyonemustbecarefulto findnota
localminimumbut the absoluteminimum.As
can be seen from the resultspresentedin
Table 3 the n-search using membrane
prebucklinganda rigoroussatisfactionof SS-3
(Nx =v =w =Mx = 0) boundaryconditionsfor
the stability problem now yields a local
minimumof Xc=0.364715 at n = 7 and an

absolute minimum of Xc = 0.364370 at n = 11.

Table 3
Buckling loads of the NASA layered composite

shell AW-CYL-I-1 (Nc_ =-2238.325 Ib/in)

Buckling load map for the perfect shell using
ANILISA [15](B.C. N x = v = w = M x = 0)

Prebuckling: Membrane Nonlinear

n = 6 Xcm = 0.371920 _nl= 0.347378

n = 7 Xm = 0.364715 _nl= 0.337088

n = 8 Xm = 0.372592 _nl= 0.339701

n = 9 Xcm = 0.371460 ;_cnl=0.330957

n = 10 Xcrn = 0.367479 _nl= 0.329163

n = 11 Xm = 0.364370 _,_1=0.328594

n = 12 Xcm = 0.364551 _nl= 0.330271

n = 13 _,cm = 0.368528 _,cnl=0.334044

n = 14 Xm = 0.376314 xnl= 0.339388

The most accurate Level-2 solutions are

obtained when one employs a rigorous
nonlinear prebuckling analysis. As can be seen
from the results listed in Table 3, for this
particular shell the critical buckling loads with
nonlinear prebuckling are always lower than
the corresponding results obtained using a
membrane prebuckling analysis. Specifically,

nl
the local minimum of _,c = 0.337088 at n = 7
is about 8% lower, whereas the absolute
minimum of ;_cnl = 0.328594 at n = 11 is about
11% lower. Notice that the critical load N c can
be calculated easily by multiplying the lowest
eigenvalue )_c by the normalizing factor
Nc_ = -2238.325 Ib/in yielding

Nc = XcNc_ = -735.500 Ib/in (n = 11)

In fig. 2 the critical buckling modes using
membrane and rigorous nonlinear prebuckling
are depicted. Notice that the solutions with
nonlinear prebuckling differ significantly from
the ones obtained using membrane
prebuckling, especially at n = 11 where one
observes a typical edge buckling type
behavior.

Level-3 Perfect Shell Buckling Analysis

To verify the earlier predictions the finite
difference version [20] of the well known shell
analysis code STAGS [21] will be used. Due to
the slightly skewed buckling pattern predicted
by the Level-1 and Level-2 computations one
is forced to model the whole shell.

Initially a convergence study must be
carried out in order to establish the mesh size
needed for accurate modeling of the buckling
behavior of the shell in question. For this
purpose the asymmetric bifurcation from a
nonlinear prebuckling path option was used,
whereby the earlier results obtained with the
Level-2 module ANILISA listed in Table 3
serve as a reference.

In the convergence study, at first, for a fixed
number of mesh points in the axial direction
(NR = 161) the number of mesh points in the
circumferential direction (NC) was increased
until the bifurcation load approached a
horizontal tangent. As can be seen from Fig. 3
the results converge to a limiting value from
below at about NC = 201. Next, for a fixed
number of mesh points in the circumferential
direction (NC = 201) the number of rows (NR)
was varied. This time convergence is from
above and as can be seen from Fig. 3 the
horizontal tangent is reached at about NR =
201.

Using a mesh of 161 rows and 201 columns
(a model with 99268 D.O.F.'s and a maximum
semi-bandwidth of 795) and SS-3 boundary
conditions (Nx=-N O,v=W=M x=0) the
following 3 lowest eigenvalues were obtained:

X(c1) = 0.327759 (n = 11)

N(c1) = X(cl)Nc_= - 733.630 Ib/in

;L(c2) = 0.328652 (n = 10) -->

N(c2) = X(c2)Nc_=- 735.631 Ib/in

k(c3) = 0.329421 (n = 12) -->

N(3) = X(c3)Nc_,= -737.352 Ib/in

4
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Details of the critical bucklingmode are
displayedinFig.4.Noticethatthesequenceof
the 3 lowest buckling loads and the
correspondingbucklingmodesagreeclosely
withthe predictionsobtainedwiththe Level-2
moduleANILISA(seealsoTable3).

IMPERFECTION SENSITIVITY STUDY

That initial imperfections may decrease the
load carrying capacity of thin-walled shell
structures is by now widely known and
accepted. However, in order to calculate the
effect of initial imperfections one must know
their shape and amplitude, an information that
is rarely available.

In the absence of initial imperfection
measurements, as a first step one must
establish whether a given shell-loading
combination is imperfection sensitive, and if
the answer is positive to estimate how
damaging certain characteristic imperfection
shapes are.

Single Axisymmetric Imperfection

Based on Koiter's pioneering work on the
effect of initial imperfections [7,22] the simplest
imperfection model consists of a single
axisymmetric imperfection

where

Wo(X) = _' hE1cosi= x
Xci -X L

_. (1+B21 c_2) Eh3 - x
fo (x) = _1 cos i_--

;Lci-_ 20c2_22 c L

(7)

_'ci =1{°c2Dl1+ 2oc2A22 }

Notice that the linearized stability equations
become now a set of equations with variable
coefficients. The reduced wave number cq

and the normalized stiffness coefficients A22,

B21 and 1 are all listed in Ref. [14].
It has been shown in Ref. [14] that by

assuming an asymmetric bifurcation mode of
the form

X n

W (1) = h sin m_ _-cos _ (y - _K x)

where

(8)

m = k = number of axial half waves
n = _ = number of circumferential full waves

_K = Khot's skewedness parameter

: h_l cos i_ x (5)
L

where i is an integer denoting the number of

half-waves in the axial direction and _1 is the

amplitude of the axisymmetric imperfection
normalized by the shell wall-thickness h.

If one assumes that both the axial load and the
boundary conditions are independent of the
circumferential coordinate, then the prebuck-
ling solution will also be axisymmetric, a fact
that simplifies the solution considerably.

Level-1 Analysis of Axisymmetric
Imperfection

Neglecting the effect of the prebuckling
boundary conditions the nonlinear equations
governing the prebuckling state admit the
following axisymmetric solutions

W (°) =hW v +hwo(x)

F(O)= Eh 2 1Xy2+fo(x )
cR 2

(6)

a Galerkin type approximate solution yields for
the eigenvalues (read, buckling loads) ;L of the
problem a characteristic equation in the form of
a cubic polynomial

;L3 -(Xmn.: + 2_.ci - C1_16i=2m)X2 (9)

+ {2Xm n'_+ ;Lci + ((_2 - (_1)_1Si=2m}Xc i_

-{Xmnl: + (_2_15i=2m + ((_3 - (_45im)_2} ;L2 = 0i

where

6i=2m =I

=0

if i= 2m ;

otherwise

6im=1 ifi=m

= 0 otherwise

^ ^

and the constants C1,C 2 .... are listed in

Appendix C of Ref. [14].

5
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Hereit mustbe rememberedthatonewill
onlygetanynoticeabledegradinginfluenceof
the assumedaxisymmetricimperfectionif _1
is negativeand if thecouplingconditioni=2m
is satisfied.The physicalexplanationfor this
can be found in Koiter's1963paper [22].
Furthermore,in orderto obtainthe smallest
real rootof Eq.(9),for a givenaxisymmetric
imperfection_1 an n-searchmustbecarried
out. It shouldalso be noticedthat theterms
involvingthe Kroneckerdelta 5i=2m are all

linear in _1, and thus they dominatethe
buckling behavior of the shell with
axisymmetricimperfection.

Assumingthatthemostlikelyaxisymmetric
imperfectionof thesteelmandrelusedto lay-
up the NASAcompositeshellAW-CYL-I-1is
givenby

=h_l cos2_L (10)

the Level-1DISDECOcomputationalmodule
AXBIFgeneratedthesolidcurveshowninFig.
5. Noticethat the curveis re-normalizedby
X_n = 0.366892,the criticalLevel-1buckling
loadoftheperfectshellcomputedusingAXBIF
[14]withmembraneprebucklingfor I:K =0.0
andn=7.Noticealsothataninitialimperfection
amplitudeequalto the wall thicknessof the
shell (_1=-1.0) generatesa "knockdown
factor"of Pc= Xc/Xcm =0.486,resultinginthe
followingratherlowbucklingload

Xc = 0.486Xcm =0.486(0.366892)=0.178310

Nc=XcNc#.=
0.178310(-2238.325)=-399.115Ib/in

with "_K = 0.0 and n = 7 full waves in the

circumferential direction.

Level-2 Analysis of Axisymmetric
Imperfection

Since the external loading, the boundary
conditions and the assumed initial imperfection
are axisymmetric, therefore the prebuckling
solution will also be axisymmetric. It has been
shown in Ref. [23] that by assuming

W (°) = hWv + hw o (x)

F(o) Eh2. 1_ 2
= ---_--(.--_ JLy + R2fo(x)}

(11)

the solution of the nonlinear partial differential
equations governing the prebuckling state can
be reduced to the solution of a single fourth
order ordinary differential equation with
constant coefficients, which can be solved
routinely.

For anisotropic shells the resulting
linearized stability equations admit separable
solutions of the form

W (1) = h[w l(X) cos ne + w 2 (x) sin ne]

F(1) = ERh2 [fl(x)cosn 8 + f2(x) sinne]
C

Ywhere e =--.
R

(12)

Solution proceeds as outlined on Ref. [23].
Using an updated version of the Level-2
computational module ANILISA [24] and SS-3
(Nx=v=w=M x=0) boundary conditions

one obtains the results presented in Table 4.
Notice that a rigorous nonlinear prebuckling
analysis was used and an n-search was
carried out for each specified axisymmetric

imperfection amplitude El-

The values of Table 4 are plotted as the
dashed curve in Fig. 5. A comparison of the
results obtained via the Level-1 module AXBIF
(solid curve) and the Level-2 module ANILISA
(dashed curve) shows that also in the case of
axisymmetric imperfections a rigorous pre-
buckling analysis should be used. Especially
for very small initial imperfection amplitudes

(El <0"1) the Level-1 predictions are

inaccurate and overestimate the critical
buckling load. Notice further that both curves

have been normalized by ;Lm = 0.366892, the

critical Level-1 buckling load of the perfect
shell computed using membrane prebuckling

by AXBIF [14] for 'cK =0.0 and n = 7. This way

the effect of using a rigorous prebuckling
analysis becomes easily discernible.

it is interesting to see that for small enough
initial imperfection amplitudes (_1<0.07,
say) the critical buckling load of {he shell is
insensitive to the initial imperfection shape
specified by Eq. (10). Notice that the critical
buckling modes have n = 11 full waves in the
circumferential direction, and as can be seen in

Fig. 6, a somewhat skewed buckling mode
shape which is dominated by edge buckling.
However, larger initial imperfections

( -_11_>>0.07, say) force the shell to respond in
another mode shape with n = 7 full waves in

6
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the circumferential direction and with

practically straight nodal lines. Interestingly

enough now the critical buckling load of the

shell is sensitive to the axisymmetric initial

imperfection shape specified by Eq. (10) and

an initial imperfection amplitude equal to the

wall thickness of the shell (_1=-1"0)
generates a "knockdown factor" of

Pc =Xc/Xm =0.418. It predicts thus the

following rather low buckling load

Xc = 0.418X m = 0.418(0.366892) = 0.153361

N c = XcNc_ =

0.153361(-2238.325) = -343.271 Ib/in

(remember STAGS defines W positive
outward) the following critical bifurcation load
was found

Nc = -333.449 Ib/in

As can be seen from Fig. 7 the critical buckling
mode has n =7 full waves in the circum-

ferential direction and no visible skewedness.
The nondimensional bifurcation load of the

shell with axisymmetric imperfection is for

_1 = 1.0

Xc = N_£_c -333.449
Nce -2238.325

= 0.148973

with a very slight skewedness of the buckling

pattern and n = 7 full waves in the
circumferential direction.

Table 4

Buckling loads of the NASA layered composite

shell AW-CYL-I-1 (Nc_ = -2238.325 Ib/in)

Axisymmetric imperfection using ANILISA [24]

(B.C.:N x =v =w =M x =0)

_1 Xcnl

0. 0.328594 (n=l 1)

- 0.01 0.328671 (n=11)

- 0.02 0.328745 (n=l 1)

- 0.05 0.328939 (n=l 1)

- 0.06 0.328994 (n=11)

- 0.07 0.328332 (n=7)

- 0.08 0.326652 (n=7)

- 0.09 0.324860 (n=7)

- O.10 0.322960 (n=7)

_1 X nl

- 0.2 0.299830 (n=7)

- 0.3 0.274773 (n=7)

- 0.4 0.251275 (n=7)

- 0.5 0.229976 (n=7)

- 0.6 0.210876 (n=7)

- 0.7 0.193827 (n=7)

- 0.8 0.178655 (n=7)

- 0.9 0.165187 (n=7)

- 1.0 0.153263 (n=7)

Level-3 Analysis of Axisymmetric
Imperfection

Recalling that since both the axial load and
the boundary conditions are independent of the
circumferential coordinate, therefore the

prebuckling solution will also be axisymmetric,
one can use once again the asymmetric

bifurcation from a nonlinear prebuckling path
option. By modeling the full shell the code can
choose itself the critical number of full waves in

the circumferential direction. No n-search must

be carried out. Using a uniformly spaced mesh
of 161 rows and 201 columns and the user

written subroutine option WlMP to introduce
the following axisymmetric imperfection

= 1.0hcos2_ x
L

The re-normalized bifurcation load is

pnl= _----Ncwhere Nc4' = _.nl Ncf.
Nce

thus

p_l= X_.E_c= 0.148973 _ 0.4545
X_ I 0.327759

Notice that the Level-3 re-normalization is

done using xn1=0.327759, the critical

Level-3 buckling load of the perfect shell

computed using STAGS-A with nonlinear

prebuckling and a 161x201 mesh.

Notice also that the Level-2 ANILISA prediction

(pnl= 0.4664, n = 7) agrees closely with the

Level-3 STAGS-A prediction (p_l_ =0.4545,

n = 7). The slight difference is partly due to

the fact that ANILISA uses the Donnell type

nonlinear shell equations, whereas STAGS-A

employs the higher order Marlowe-FISgge

equations.

Single Asymmetric Imperfection

The effect of a single asymmetric initial

imperfection can be investigated either by
solving the full nonlinear response problem or

by employing the well known Lyapunov-
Schmidt-Koiter [7] reduction technique. When

investigating the degrading effect of a single
mode asymmetric imperfection

-- . x n y (13)W = t_2 sin m_-- cos
L R

where m and n are integers denoting the
number of axial half-waves and the number of

circumferential full waves, respectively,

7
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instability occurs at the limit point of the
prebuckling state in the generalized load-
deformation space. Assuming that the
eigenvalue problem for the critical (lowest)
buckling load Ac will yield a unique asym-

metric buckling mode W (1), then for an

imperfect shell (_2 _ 0) the shape of the

generalized load-deflection curve in the vicinity
of the bifurcation point A = Ac is given by the

following asymptotic expansion

(A- Ac)_ = Aca_ 2 + Acb_ 3 +...

- Aca_2 - (A - Ac )1_2 + O(_2)
(i4)

Expressions for the postbuckling coefficients
"a" and "b" and the imperfection forms factors
"(z" and "[5" are derived in References [25,26].
If the limit point is close to the bifurcation point,
then the maximum load As that the structure
can carry prior to buckling can be evaluated
from Eq. (14) by maximizing A with respect to
_. For cases where the first postbuckling
coefficient "a" is zero, this analysis yields the
modified Koiter formula [26]

where Ps = As/Ac"

Notice that, if the second postbuckling
coefficient "b" is positive, Eq. (15) has no real
solutions. Thus the buckling load of the
specified shell-loading combination is not
sensitive to small asymmetric initial
imperfections of the shape given by Eq. (13).
tf, however, the second postbuckling
coefficient "b" is negative, the equilibrium load
A decreases following buckling and the
buckling load of the real structure As is
sensitive to the asymmetric initial imperfection
specified by Eq. (13).

Level-1 Analysis of Asymmetric
Imperfection

For the composite shell under investigation,
as can be seen from the partial results listed in
Table 2, there are many eigenvalues only
slightly higher than the critical one of
X,c =0.365992 for m = 1, n = 7 and
XK = 0.011. Hence, strictly speaking, the
proposed form of the perturbation expansion
given by Eqs. (14) is not applicable, since the
nonlinear interaction between the many nearly
simultaneous eigenmodes is not accounted for.
Thus the following results, where one
considers the eigenfunctions corresponding to

certain critical eigenvalues chosen one at the
time, can at best give an indication as to the
severity of the expected imperfection
sensitivity.

Assuming initially an asymmetric
imperfection affine to the critical buckling mode
of the perfect NASA composite shell AW-CYL-
1-1 as computed by the Level-1 computational
module AXBIF (see also Table 2)

= hE2sin _ x cos 7 (y _ 0.01 lx)
L I-1

(16)

and using the Level-1 computational module
BFACT to carry out the initial postbuckling
analysis yields the following results

Xc = X.cm = 0.365992 (m = 1, n = 7, "_K= 0.011)

b =- 0.048844 _ = # = 1.0

Substituting these values into Eq. (15), one
can plot the degrading effect of an asymmetric
imperfection of the shape given by Eq. (16) as

a function of its amplitude _2 • As can be seen

from Fig. 8 an initial imperfection amplitude
equal to the wall thickness of the shell

(_2 = 1.0) generates a "knockdown factor" of

Ps = X,s/;tcm = 0.541, resulting in the following
rather low buckling load

;ts = 0.541 X,m = 0.541(0.365992) = 0.198002

Ns = XsNc_ =

0.198002(-2238.325) = -443.192 Ib/in

Notice that the imperfection form factors
"c¢' and "I_" are identical equal to 1.0 because
BFACT uses membrane prebuckling to
calculate the necessary first and second order
fields and the assumed asymmetric
imperfection shape of Eq. (16) is affine to the
buckling mode. Please notice that in Fig. 8 the
collapse load is re-normalized by

X,m = 0.365992, the critical Level-1 buckling
load of the perfect shell computed using
membrane prebuckling by AXBIF [14] for

"cK =0.011 and n=7.

Level-2 Analysis of Asymmetric
Imperfection

To investigate the effects of edge-constraint
and/or different boundary conditions on the
imperfection sensitivity of the critical buckling
load of the NASA composite shell AW-CYL-I-1
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one has to switch to the Level-2module
ANILISA[15]andrunits postbucklinganalysis
option.Inthismodule,asdescribedearlier,the
axisymmetricprebucklingstateis represented
by Eqs.(3), the bucklingmodesby Eqs.(4)
andthepostbucklingstateby

W(2)=h[woc(x)+ wl3(x)cosne+ wy(x)sinn0]
(18)

F(2) = ERh2 [fa (x) + f13(x) cos 2nO + fy (x) sin 2ne]
C

where e = y/R. Details of the computational

procedures used are reported in Refs. [15,23].
Next, let us assume that the specified

asymmetric imperfection is affine to the critical
buckling mode obtained by the rigorous Level-
2 perfect shell analysis discussed earlier

= h_2 [Wl(X)COS 11 _)+ w2 (x) sin11 e]

where 0 = y/R and the component functions
Wl(X ) and w2(x ) are shown in Fig. 2b.
Running ANILISA with rigorous prebuckling
and SS-3 boundary conditions (Nx =-No,
v = w = Mx = 0) yields the following results

Xc = Xn_ = 0.328594 (n = 11)

b = -0.37605 ; oc= 0.46663 ; 13= -0.22174

Using Eq. (15) to plot the degrading effect
of the asymmetric imperfection specified by

Eq. (18) as a function of its amplitude _2 one

obtains the results displayed in Fig. 9 as a
solid line. Obviously the fact that for an
imperfection shape affine to (similar to) the
buckling mode with an amplitude of _2 =1.0

one obtains a negative load carrying capacity
is unrealistic.

Here one must remember that Koiter's
Sensitivity Theory is asymptotically exact, that
is, it yields accurate predictions for sufficiently
small imperfections, whereby what is
sufficiently small may vary from case to case.
Also, Eq. (15) was obtained by using the
perturbation expansion given by Eq. (14),

where terms of order (_) are neglected. As

can be seen from the dotted curve plotted in
Fig. 9, by using more advanced computational
modules such as COLLAPSE [27], where a full
nonlinear solution is used and terms up to and

including order (_2) are kept, one obtains

more reasonable predictions.

Notice that up to about _2 =0.3 the

asymptotic predictions from ANILISA and the
nonlinear results of COLLAPSE agree very
closely. Thus one can say that in this case the
range of validity of the asymptotic solution is

0_>_2 >_0.3.

DISCUSSION OF THE RESULTS

When comparing and analyzing the results
obtained sofar it is important to keep in mind
that all Level-1 and Level-2 solutions are
based on approximate representations of the
unknown functions. As pointed out in the
previous sections Level-1 solutions use a
single term double Fourier series
approximation to reduce the solution of the
stability problem, formulated in terms of partial
differential equations, to algebraic eigenvalue
problems. The effect of edge restraint is
neglected (one uses a membrane prebuckling
solution) and the assumed field functions
satisfy approximately SS-3 (Nx =-N o,

v = w = M x = 0) boundary conditions.

Level-2 solutions eliminate the y-
dependence by a truncated Fourier
decomposition in the circumferential direction.
The resulting system of nonlinear ordinary
differential equations are solved numerically,
whereby both the specified boundary
conditions and the effect of edge restraint are
rigorously satisfied. Thus by this approach the
only approximation is that one represents the
variation of the solution in the circumferential
direction by a single harmonic with n full
waves, whereby an n-search is used to
establish which wave number is the critical
one. The Level-2 module ANILISA can also be
used to investigate the effect of using different
boundary conditions. In Table 5, the results for
four different boundary conditions are
presented. As expected the fully clamped C4
boundary conditions has the highest critical
buckling load. The increase in load carrying
capacity with respect to the weaker SS3
boundary conditions is about the same as for
an isotropic shell of similar characteristic
dimensions (same L/R and R/t ratios) of Ref.
[28].

The Level-3 solutions are based either on a
2-dimensional finite difference or finite element
formulation. In both cases, if one uses the
appropriate meshes, one can obtain rigorous
solutions where all nonlinear effects are
properly accounted for. The only real problem
with Level-3 type solutions is that for each
problem one must establish the appropriate
mesh size. Coarse meshes yield inaccurate
solutions. What is coarse depends on the
particular problem under investigation. Thus,

9
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for a generalnonlinearsolutiona convergence
studymustalwaysbecarriedout.

Using a hierarchicalsimulationplatform
such as DISDECO(Delft InteractiveShell
DEsignCode),wherethe analysthasat his
disposalcomputationalmodulesof different
level of sophistication,sucha convergence
studycanbecarriedout relativelyquicklyand
accurately.InTable5 asummaryoftheresults
obtainedin this study is presentedusing
normalizedvariables.In Table 6 the same
resultsarerepeatedbutthistimetheimperfect
bucklingloads are printedas re-normalized
variablesp. Lookingatthefirstcolumn,where
the critical bucklingloads and the critical
bucklingmodeshapesof theperfectshellare
listed,one sees that usingthe Level-3code
STAGS-Aonemustindeedusea relativelyfine
mesh(161rowsand201columns)inorderto
obtainan accuratepredictionof the critical
buckling load. Remember,all preceding
computationalmodulesarebasedon Donnell
type anisotropicshell equations,however,
STAGS-Auses the moreaccurateMarlowe-
FILiggetypeequations.Usuallythe useof a
more refinedtheoryimpliesa lowerbuckling
load. The value of the normalizationfactor
used, Nc_.=Eh2/cR, is printed in the
heading of the table. The lowest critical
bucklingloadwasfoundusingSTAGS-Aand
modelingthe whole shell with a mesh
consistingof 161rowsand201columns.The
asymmetricbifurcation from a nonlinear
prebucklingpath optionwith SS-3boundary
conditionsyielded

NcIn=0.327759(-2238.325)
= -733.630Ib/in(n=11)

Consideringnow the effect of different
types of imperfectionshapes a second
normalizationis introduced,wherebythe new
normalizationfactorsarechosensuchthatfor
vanishinglysmallimperfectionsthenormalized
variablep approachesunity(i.e. 1.000).The
onlyexceptionto thisrule is the caseof the
axisymmetricimperfection

= -h_l cos2_L

whereby usingas the normalizationfactor
X_=0.366892 (the asymmetricbifurcation
perfectshell bucklingload with membrane
p_rebuckling,"_K= 0.0 andn =7) inthelimitas
_1_ 0, Pcapproachesthevalue

Xc _ 0.328594
Pc- •

Xc 0.366892
-0.895615~0.896

This value representsthe effect of edge
restraint.See alsotheresultsof Table4 and
Fig. 5. Notice that using membrane
prebuckling,thusneglectingtheeffectof edge
restraint,the normalizedbucklingloadof the
perfectshellis 1.000.

Turningnow to the effectof asymmetric
imperfections,fromtheresultslistedinTable5
it isevidentthatforan imperfectionamplitude
equal to one wall-thicknessthe range of
validity of the asymptotic solutions is
exceeded,and the predictionsof Koiter's
imperfectionsensitivitytheorycomputedby
ANILISA[15]areno longervalid(seealsoFig.
9).Ontheotherhand,thereseemsto begood
agreementbetweenthe resultsobtainedby
COLLAPSE[27], a Level-2 computational
modulewhichcomputesa nonlinearsolution
basedona twomodesapproximation,andthe
STAGS-A[20]solutionobtainedsofarfor the
two modal imperfectionsand the affine
imperfectionlistedin Table5. In generalthe
moreaccurateSTAGS-A,Level-3solutionsare
slightlylower than the Level-2COLLAPSE
solutions,with exceptionof the asymmetric
imperfectionaffinetotheperfectshellbuckling
mode.Thereasonfor thisanomalyliesin the
fact thatthis imperfectiontriggersmorethan
onecircumferentialharmoniccloseto the limit
point(ascanbeseeninFig.66ofRef.29).

10

CONCLUSIONS

By relying on a series of theoretical results of
various degree of sophistication published in
the literature, the hierarchical approach used in
this paper has resulted in a series of buckling
load predictions of increasing accuracy. It was
shown that in order to be able to arrive at a
reliable prediction of the critical buckling load
and to make an estimate of its imperfection
sensitivity which can be used with confidence,
one must proceed step by step from simple to
more complex models and solution proce-
dures.

In particular one can state, that in order to
predict the critical buckling load accurately and
to make a reliable estimate of its imperfection
sensitivity, the nonlinear effects caused by the
edge restraint conditions must be included in
the analysis. Any solution procedure which
fails to account for these effects, should be
suspect of having provided incorrect results.

The most approximate of the here
described analyses, the Level-1 solutions
which neglect the effects caused by the edge
restraints, can still be used to great advantage

American Institute of Aeronautics and Astronautics



toestablishtheapproximatebehaviorofashell
subjectedto the specifiedexternalloading.
However,dependingon the value of the
prebucklingstiffness, resulting from the
differenttypesof wallconstructionsused, the
solutions may be either conservativeor
nonconservative.

As canbe seenfromtheresultsshownin
Tables 5 and 6, the bucklingload of the
compositeshellAW-CYL-I-1is sensitiveto all
the initialimperfectionshapesinvestigated.For
a morespecificpredictionof thefinalcollapse
load,thefinalgoalof a "HighFidelityBuckling
LoadAnalysis",onewouldhaveto carryouta
refinedLevel-3analysisincludingmeasured
values of all the significantgeneralized
imperfectionssuchasthetraditionalshell-wall
imperfections,variationsin the shell-endor
loadingsurfacegeometryand especiallyfor
compositeshellsvariationsin the shell-wall
thicknessdistribution.It has beenshownin
Ref.30thatsuchanapproachyieldsverygood
agreementbetweenthe predictedcollapse
loadandtheexperimentalbucklingload.Such
apaperis inpreparation.
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Contour mop of the buckling Ioo0s for the NASA composite she(i AW--CYL--1- 1

-- Nc / Ncl--bor where Ncl--bor--lombdoc-Ncl----819.209 Ib/in
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Fig. 1 Distribution of buckling loads based on Level-1 membrane prebuckling
analysis - NASA composite shell AW-CYL-I-1
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b. Buckl;ng Component Modes
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Fig. 2 Buckling modes of the axially compressed layered composite shell AW-CYL-I-1

SS-3 B.C. -N x = -No,v = W = M x = 0; Nc_ = -2238.325 Ib/in
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Fig. 3
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NASA cornposTte shell AW--CYL--I--I -- 161 roves x 2©] Col_rmns -- $5--3 B.C.
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a. General view of the critical buckling mode
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b. Axial trace of the critical buckling mode

Buckling mode of the axially compressed layered composite shell AW-CYL-I-1
SS-3 B.C. -N x =-No,v = W --M x = 0; Ncf =-2238.325 Ib/in; STAGS-A results
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Fig. 7 General view of the critical buckling mode - axisymmetric imperfection
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Wbor -- h-xibor2o[w1(×)*cos(n-y/R) + w2(x)osln(n-y/R)]
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Fig. 9 Imperfection sensitivity calculation for affine asymmetric imperfections
Asymptotic theory vs Nonlinear Collapse Analysis
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Fig. 10 Measured initial imperfections of NASA composite shell AW-CYL-I-1 [1]
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