Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the lead center for NASA's scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA’s institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- **TECHNICAL PUBLICATION.** Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA’s counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- **TECHNICAL MEMORANDUM.** Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- **CONTRACTOR REPORT.** Scientific and technical findings by NASA-sponsored contractors and grantees.

- **CONFERENCE PUBLICATION.** Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- **SPECIAL PUBLICATION.** Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.

- **TECHNICAL TRANSLATION.** English-language translations of foreign scientific and technical material pertinent to NASA’s mission.

Specialized services that complement the STI Program Office’s diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results . . . even providing videos.

For more information about the NASA STI Program Office, see the following:

- E-mail your question via the Internet to help@sti.nasa.gov

- Fax your question to the NASA Access Help Desk at (301) 621-0134

- Telephone the NASA Access Help Desk at (301) 621-0390

- Write to:
 NASA Access Help Desk
 NASA Center for AeroSpace Information
 7121 Standard Drive
 Hanover, MD 21076–1320
SeaWiFS Postlaunch Technical Report Series

Stanford B. Hooker, Editor
NASA Goddard Space Flight Center, Greenbelt, Maryland

Elaine R. Firestone, Senior Technical Editor
SAIC General Sciences Corporation, Beltsville, Maryland

Volume 12, SeaWiFS Postlaunch Technical Report Series
Cumulative Index: Volumes 1–11

Elaine R. Firestone
SAIC General Sciences Corporation, Beltsville, Maryland

Stanford B. Hooker
NASA Goddard Space Flight Center, Greenbelt, Maryland

May 2001
ABSTRACT

The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) is the follow-on ocean color instrument to the Coastal Zone Color Scanner (CZCS), which ceased operations in 1986, after an eight-year mission. SeaWiFS was launched on 1 August 1997, onboard the OrbView-2 satellite, built by Orbital Sciences Corporation (OSC). The SeaWiFS Project at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC), undertook the responsibility of documenting all aspects of this mission, which is critical to the ocean color and marine science communities. The start of this documentation was titled the SeaWiFS Technical Report Series, which ended after 43 volumes were published. A follow-on series was started, titled the SeaWiFS Postlaunch Technical Report Series. This particular volume of the so-called Postlaunch Series serves as a reference, or guidebook, to the previous 11 volumes and consists of 5 sections including an errata, an addendum, an index to key words and phrases, a list of acronyms used, and a list of all references cited. The editors will publish a cumulative index of this type after every five volumes.

1. INTRODUCTION

This is the second in a series of indexes, published as a separate volume in the SeaWiFS Postlaunch Technical Report Series, and includes information found in the previous 11 volumes of the series. The SeaWiFS Postlaunch Technical Report Series has been written under National Aeronautics and Space Administration (NASA) Technical Memorandum (TM) numbers 1998-206892, 1999-206892, 2000-206892, and 2001-206892, with the year part of the TM number changing with each calendar year of its existence. The volume numbers, authors, and titles of the volumes covered in this index are:

This volume serves as a reference, or guidebook, to the preceding volumes of the so-called Postlaunch Series. It consists of three main sections: a cumulative index to key words and phrases, a glossary of acronyms, and a bibliography of all references cited in the series. An errata section has been added to address issues and needed corrections which have come to the editors’ attention since the volumes were first published. In addition, an addendum section has been added to include the revised SeaWiFS Project In Situ Data Policy, which is too short in length to warrant a separate volume within the series.

The nomenclature of the index section is a familiar one, in the sense that it is a sequence of alphabetical entries, but it uses a unique format because multiple volumes are involved. Unless indicated otherwise, the index entries refer
to some aspect of the SeaWiFS Project or instrument. An index entry is composed of a keyword or phrase followed by an entry field that directs the reader to the possible locations where a discussion of the keyword can be found. The entry field is normally made up of a volume identifier shown in bold face, followed by a page identifier, which is always enclosed in parentheses:

keyword, volume(pages).

If an entry is the subject of an entire volume, the volume field is shown in slanted type without a page field:

keyword, Vol. #.

An entry can also be the subject of a complete chapter. In this instance, both the volume number and chapter number appear without a page field:

keyword, volume(ch. #).

Figures or tables that provide particularly important summary information are also indicated as separate entries in the page field (even if they fall within an already specified page range). In this case, the figure or table number is given with the page number on which it appears.

keyword, volume(Fig. # p. #).

or

keyword, volume(Table # p. #).

2. ERRATA

In Volume 10, page 51, the table should be labeled “Table 13” instead of “Table 3.”

Figure 29 in Volume 10 did not appear in the published document because of a printing error. The appropriate figure and caption appears above.

Note: Since the issuance of previous volumes, a number of the references cited have changed their publication status, e.g., they have gone from “submitted,” “accepted,” or “in press” to printed matter. In other instances, some part (or parts) of the citation, e.g., the title or year, has changed. Listed below are the references in question as they were cited in one or more of the first 11 volumes in the series, along with how they now appear in the references section of this volume.

Original Citation

Revised Citation
Original Citation

Revised Citation

Original Citation

Revised Citation

Original Citation

Revised Citation

Original Citation

Revised Citation
3. ADDENDUM

SeaWiFS Project In Situ Data Policy

This policy provides the guidelines for data collected under the NASA Research Announcement (NRA) Biological Oceanography Program and SeaWiFS Project field collaborations for inclusion in the calibration and validation database. The in situ data is to be submitted to the SeaWiFS Bio-optical Archive and Storage System (SeaBASS) [Hooker et al. 1994c, Fargion and Mueller 2000, and Fargion and McClain 2001]. The SeaBASS database is co-managed by the Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) and SeaWiFS Projects at Goddard Space Flight Center (GSFC).

The purpose of SeaBASS is to ensure that a user-friendly, searchable database of in situ and airborne bio-optical measurements is readily available to the NASA Ocean Color Science Team members and to other approved individuals (members of other ocean color instrument teams, voluntary data contributors, etc.) for advanced algorithm development and data product validation purposes. In addition, SeaBASS contains a variety of data collected using different methods (e.g., subsurface and above-surface reflectance, high performance liquid chromatography, and fluorometric chlorophyll a) which are useful for measurement protocol evaluation purposes (Mueller and Austin 1995, Hooker et al. 1999b, and Fargion and Mueller 2000). This policy supersedes the SeaWiFS Project 1991 policy (Appendix A in Hooker et al. 1993b).

Submission: Ocean color algorithm development is essentially observation limited, and rapid turnaround and access to such data are crucial for progress. Principal Investigators (PIs) supported under the SIMBIOS and SeaWiFS Programs must meet a 6-month data submission deadline. Bio-optical data collected under funding from the NASA Ocean Biology Program, however, must be submitted within 1 year. International Science Team members and members of other ocean color instrument teams who are making suitable observations for algorithm development and validation are encouraged to provide their data as well, to foster collaboration.

Formats and Metadata: Data should be provided in the currently agreed-upon format, along with relevant information describing collection conditions, instrument specifications, instrument performance and calibration, and statements of data accuracy. The currently used data format specifications and examples are posted on the SeaBASS Web site (http://seabass.gsfc.nasa.gov/~seabass/seabass/html/seabass.html). The provider should use FCHECK, which is an automated format checker program, to test the format validity of SeaBASS data files via return e-mail. Appropriate instrument information, cruise reports, and calibration histories are expected from each data provider. For data providers supported by the SeaWiFS Project Office, submission of the above information is mandatory. Data values shall be in appropriate units (e.g., providing volts together with conversion coefficients and drift data is unacceptable). High level data sets, such as normalized water-leaving radiance spectra, are encouraged together with descriptions or citations of the procedures used to derive the values. Descriptions of data should be segmented into logical groupings, e.g., by station, date, parameter, etc. Data quality, calibration traceability and history, instrument drift, and sampling protocols may be in text format. Future recommended format modifications may be proposed during NASA Ocean Color Science Team meetings and then discussed for approval and implementation.

Data Delivery and Access: Researchers, who are supported by the SeaWiFS Project Office, will be required to deliver data to the SeaWiFS Project Office within six months of data collection. For a period of three years following data collection, access to the digital data will be limited to the NASA Ocean Color Science Team and other approved users as agreed upon by the SeaWiFS Project Office and data providers unless earlier access is granted by individual data providers. Data providers can declare their data sets available for open access anytime prior to the three-year anniversary. The SeaWiFS and SIMBIOS Project Offices will grant access to international science team members on a case-by-case basis according to ongoing collaboration efforts. Other investigators from the ocean color community will be able to query SeaBASS for information about the data (i.e., parameters, locations, dates, and investigators), but will not have access to the data itself. If the investigators are interested in obtaining the data, they will be referred to the appropriate provider. After the third-year anniversary of data collection, all restricted data will change to an open status, and a copy of the data will be given to the National Oceanographic Data Center (NODC) for distribution. Exceptions to this plan may be made with the approval of the Ocean Color Science Team. For example, some special data sets for algorithm development may be made available to the research community without restrictions.

Use Conditions: Prior to the three-year data collection anniversary, users of data will be required to provide proper credit and acknowledgment of the provider. A citation should also be made of the data archive. Users of data are encouraged to discuss relevant findings with the provider early in the research. The user is required to give all providers of the data being used a copy of any manuscript resulting from use of the data prior to the initial submission for publication, thus giving the data provider an opportunity to comment on the paper. The

† Note that all citations given in this addendum are listed in their entirety in the References section of this Technical Memorandum.
provider(s) shall have the right to be named as a co-author. All users and providers are requested to report possible data errors or mislabeling found in the database, to the SeaBASS administration.

Updates and Corrections: A major purpose of the SeaBASS database is to facilitate comparisons between in situ observations (regionally, temporally, by technique, by investigator, etc.), as well as between in situ and remotely sensed observations. Updates and corrections to submitted data sets are encouraged. Records will be maintained of updates and corrections; summaries of updates will be posted on a database board, and users shall be notified of the updates. It will be the provider’s responsibility to ensure that the current data in the archive is identical to the data used in the provider’s most recent publications or current research. When an investigator has determined that the data sets are final, a written certification of data quality is mandatory.

Distribution: After receiving the final data, the SeaWiFS Project Office will forward the data at the appropriate time to NODC for open distribution. A courtesy citation, naming the provider and the funding agency, will accompany the data. The SeaWiFS Project will not be held responsible for any data errors or misuse.
INDEX

Unless otherwise indicated, the index entries that follow refer to some aspect of the SeaWiFS instrument or project.

A

aerosol index, 10(ch. 1).
Case-2 water, 10(5).
potential applications, 10(5).
sensitivity studies, 10(3-5, Table 1 p. 4, Fig. 1 p. 4).

AMT-5, 5, ch. 2).

ATM-5, cont.
sun photometer, 2(25-27, Figs. 16-17 pp. 28-30, Table F1 pp. 73-77).
surface optics, 2(24-25, Fig. 15 p. 25).
TOPEX, 2(13-14, Figs. 10-11 p. 15).
UOR optics, 2(27).
XBT casts, 2(Table D1 pp. 65-67).
XOB T cast log, 2(Table G1 p. 77).
zooplankton, 2(39-41, Table M1 p. 94).
archived products, 9(Table 2 pp. 8-9).
Atlantic Meridional Transect, see AMT-5.
atmospheric correction:
aerosol look-up tables, 9(58-60, Table 13 p. 58, Fig. 35 p. 59, Table 14 p. 60, Fig. 36 p. 61).
algorithm, 9(57-58).
algorithm updates, 9(ch. 8).
Ångström exponent, 9(62-63, Fig. 37 p. 62).
Rayleigh tables, 9(62).
transmittance tables, 9(60).
whitecap contributions, 9(60, 62).
atmospheric transmittance, 5(9, Figs. 19-21).
diffuser, 5(9-11, Tables 1-4).

B

band 7:
band 8 accuracy, 9(39, Table 10 p. 39).
calibration method, 9(40-41, Fig. 26 p. 40, Figs. 27-28 p. 41).
vicarious calibration, 9(ch. 5).
bilinear gain knee calibration, 9(ch. 2, Fig. 4 p. 15, Tables 3-4 p. 16).

C

calibration, Vol. 7; Vol. 9; Vol. 10; Vol. 11.
A/D, 7(Table 3 p. 47, 49, Fig. 30 p. 50).
band 7, 9(ch. 5).
bilinear gain knee, 9(ch. 2).
chronology and methods, 9(Fig. 1 p. 10).
coefficients, 7(66).
field, 7(25-26, Fig. 16 p. 26, 32-34, Fig. 22 p. 33, Table 24 p. 35).
lamp, 7(49-50, Fig. 31 p. 51).
lunar, 9(ch. 3).
near infrared, 9(44).
NIST, 7(50-63, Table 35 p. 52, Tables 36-49 pp. 54-57, Tables 50-53 p. 58, Table 54 p. 59, Figs. 32-35 pp. 60-62, Table 55 p. 63).
overview, 9(ch. 1).
solar, 9(ch. 4).
time series, 9(24, Figs. 10-13 pp. 25-26, 29).
vicarious, 9(ch. 5, ch. 6).
visible band, 9(44-50, Figs. 29-31 pp. 46-49, Table 11 p. 49).

see also AMT-5, SeaWiFS.

Calibration and Validation Team, see CVT.
chlorophyll a algorithm, 11(ch. 1, ch. 2).
initial, updated [OC2v2], 11(ch. 1).
instrumentation, cont.
SeaBOARR-99, 8(3-14, Table 1 p.3, Tables 2-3 p.4, Fig. 1 p.5, Figs. 2-3 p.6, Fig. 4 p.7, Figs. 5-6 p.8, Figs. 7-8 p.9, Fig. 9 p.10, Fig. 10 p.11, Figs. 11-12 p.12, Fig. 13 p.15).

integrating sphere sources, Vol. 1; Vol. 4.
see also SXR.

intercalibration, Vol. 7.
in-water studies, 7(8-13, Fig. 1 p.9, Table 5 p.10, Fig. 2 p.11, Fig. 3 p.13, Table 6 p.13).
results, 7(12-13).

irradiance, 7(59, Table 54 p.59).
irradiance field source, 7(25-34).
field calibrator, 7(16 p.26, Table 23 p.33).
irradiance values, 7(Table 17 p.27).
results, 7(27-34, Tables 18-19 p.28, Fig. 17 p.29, Fig. 18 p.30, Table 21 p.30, Figs. 19-21 p.32, Table 22 p.32, Table 22 p.33, Table 23 p.33).
see also calibration, field.

K
K(490), see diffuse attenuation coefficient.

L
LoCNESS, 8(3-6, Table 1 p.3, Table 2 p.4, Fig. 1 p.5, 7-8, Fig. 4 p.7, 16, Fig. 14 p.19).
deployment log, 8(Table C1 pp.27-29).
station log, 2(Table E3 p.72).
lunar calibration, see calibration, lunar.
lunar data analysis, 9(ch.3).
normalizing factors, 9(18-20, Figs. 6-8 pp.21-22, Fig. 9 p.23).
time corrections, 9(24, Figs. 10-13 pp.25-26).

M
Marine Environmental Radiometer, see MER.
MER, 11(ch.4).

I
ICESESS facility and methods, 11(28-33, Fig. 17 p.30, Table 8 p.31, Fig. 18 p.32, Table 9 p.33).
immersion effects, 11(43, Table 15 p.44, Fig. 26 p.44).

long-term averages, 11(41-43, Tables 12-13 p.42, Table 14 p.43).

plaque aging, 11(Fig. 24 p.40, 43, 45).

quality control measures, 11(45, Fig. 27 p.45).
results, 11(33 41, Fig. 19 p.34, Fig. 20 p.36, Table 10 p.37, Figs. 21-24 pp.38-40, Fig. 25 p.41, Table 11 p.41).

MOBY:
data analysis, 9(ch.6).
see also calibration.

N
normalized water-leaving radiance, 10(ch.7).

O
operational SeaWiFS processing, 10(ch.3).

second reprocessing, 10(12-18, Table 3 p.13, Fig. 5 p.16, Fig. 6 p.17, Table 7 p.24).
operational SeaWiFS processing, cont.
third reprocessing, 10(18–28, Table 4 p. 19, Table 5 p. 23, Table 6 p. 23, Table 7 p. 27, Figs. 7–9 pp. 25–26, Figs. 10–11 p. 27).
optics:
in-water, 2(19–24, Fig. 14 p. 23); 7(8–13, Fig. 1 p. 9, Table 5 p. 10, Fig. 2 p. 11, Fig. 3 p. 13, Table 6 p. 13).
surface, 2(24–25, Fig. 15 p. 25).
ozone, see TOMS ozone.

- P -

phytoplankton pigment distributions, 2(31–32, Fig. 18 p. 33).
plaque lab, 7(34–46).
results, 7(36–46, Tables 25–27 p. 37, Fig. 23 p. 38, Tables 28–30 p. 39, Figs. 24–27 pp. 40–43, Tables 31–32 p. 44, Fig. 28 p. 45, Table 33 p. 46, Table 34 p. 47).
see also SIRREX-5.
primary productivity, 2(32, 35).
product:
archived, 9(Table 2 pp. 8–9).
evaluations, 9(9).
quality control (QC), 9(11).
validation, 9(10–11).
see also QC products.

- Q -

QC products, 9(11).

- R -

radiance, 7(59).
cloud-top, 9(ch. 2, Fig. 3 p. 14).
normalized water-leaving, 10(ch. 7).
radiometer, Vol. 7.
see also SXR.
radiometric calibration, Vol. 4; Vol. 5; Vol. 7.
1993 calibration, 4(2–6, Tables 1–3 p. 3, Table 4 p. 4); 5(13, Table 5 p. 13, Figs. 6–7 p. 15, Table 15 p. 18).
1997 calibration, 5(13, Table 5 p. 13, Figs. 6–7 p. 15, Table 15 p. 18).
measurement procedures, 4(9–14, Table 8 p. 13).
SXR, 4(6–7, Table 6 p. 7, 10, 12–17, Figs. 1–2 pp. 15–16, Table 10 p. 17, Fig. 3 p. 18, 18–19).
test equipment, 4(6–9, Table 6 p. 7, Table 7 p. 8).
references:
cumulative, 6(9–13).
reflectance equations:
band-averaged center wavelength, 5(5–6).
band-averaged spectral radiance, 5(5).
BRDF, 5(3–4, Fig. 1 p. 4).
SBRC basic equation, 5(6, Fig. 2 p. 7).
solar radiation-based calibration, 5(3–6).
spectral response, 5(4–5).
reflectance equations, cont.
transfer-to-orbit experiment, 5(22, Tables 19–20 p. 23).
round-robin experiment, Vol. 7.
see also SIRREX.

- S -

DaBOSS, 3(11–13, Figs. 10–11 p. 12, Fig. 13 p. 15, Table G1 pp. 34–35); 8(3, Table 1 p. 3, Fig. 1 p. 5, 12–13, Figs. 11–12 p. 12, 15, Fig. 13 p. 15, Table B1 pp. 25–27).
DaSAS, 3(10–11, Fig. 9 p. 11, Table F1 pp. 33–34).
instrumentation, 3(2–17, Table 1 p. 3, Fig. 1 p. 4, Table 2 p. 4, Fig. 2 p. 5, Fig. 3 p. 6, Figs. 4–5 p. 7, Figs. 6–7 pp. 8–9, Figs. 8–9 pp. 10–11, Figs. 10–12 pp. 12–13, Fig. 13 p. 15, Figs. 14–15 pp. 17); 8(3–14, Table 1 p. 3, Tables 2–3 p. 4, Fig. 1 p. 5, Figs. 2–3 p. 6, Fig. 4 p. 7, Figs. 5–6 p. 8, Figs. 7–8 p. 9, Fig. 9 p. 10, Fig. 10 p. 11, Figs. 11–12 p. 12, Fig. 13 p. 15).
methods, 3(18–24, Fig. 16 p. 19, Table 3 pp. 20, Table 4 pp. 22); 8(14–19, Tables 4–5 p. 18).
preliminary results, 3(24–26, Table 5 p. 24, Fig. 17 p. 25); 8(19–22, Fig. 14 p. 19, Table 6 pp. 20–21, Fig. 15 p. 21, Fig. 16 p. 22, Tables 7–8 p. 22, Fig. 17 p. 23).
science team, 3(27); 8(24).
SeaBOSS, 8(3–7, Table 1 p. 3, Table 3 p. 4, Table B1 pp. 25–27).
SeaFALLS, 2(Table E2 pp. 69–71); 8(3–7, Table 1 p. 3, Table 3 p. 4, Fig. 1 p. 5, Figs. 3 p. 6, Fig. 5 p. 8, Fig. 13 p. 15, 16, Fig. 14 p. 19, Table B1 pp. 25–27).
SeaSAS, 3(7–8, Figs. 4–6 pp. 7–8, Table C1 pp. 30–31); 8(3–6, Table 1 p. 3, Table 2 p. 4, Fig. 1 p. 5, 8–9, Fig. 6 p. 8, Fig. 7 p. 9, 16–17, Table D1 pp. 30–36).
SeaSHADE, 8(3–6, Table 1 p. 3, 8, 9, 11, Fig. 10 p. 11).
SQM-II, 3(13–14, Fig. 13 p. 15, 23–24, Table H1 p. 35–36).
SuNwSAS, 8(3–6, Table 1 p. 3, Table 2 p. 4, Fig. 1 p. 5, 9–11, Fig. 8 p. 9, Fig. 9 p. 10, 16–17, Table E1 pp. 37–43).
THOR, 3(6, Fig. 4 p. 7); 8(3, 7, Fig. 5 p. 8).
WISPER, 3(9–10, Figs. 7–8, pp. 9–10, 18, Fig. 16 p. 19, Table D1 p. 32).
SeaBOSS, 8(3–7, Table 1 p. 3, Table 3 p. 4).
deployment log, 8(Table B1 pp. 25–27).
SeaFALLS, 8(3–7, Table 1 p. 3, Table 3 p. 4, Fig. 1 p. 5, Figs. 3 p. 6, Fig. 5 p. 8, Fig. 13 p. 15, 16, Fig. 14 p. 19).
deployment log, 8(Table B1 pp. 25–27).
station log, 2(Table E2 pp. 69–71).
SeaOPS station log, 2(Table E1 pp. 67–69).
SeaSHADE, 8(3–6, Table 1 p. 3, 8, 9, 11, Fig. 10 p. 11).
SeaWiFS Bio-Optical Algorithm Round-Robin, see SeaBOARR.
SeaWiFS Quality Monitor, see SQM.
SeaWiFS Transfer Radiometer, see SXR.
SIRREX, Vol. 7.
SIRREX-1, 7(1–3).
SIRREX-2, 7(1–3).
SIRREX-3, 7(1–3).
SIRREX-4, 7(1–3).
SIRREX-5, Vol. 7.
agenda, 7(4–5, Table 1 p. 5).
conclusions, 7(67).
SIRREX-5, cont.
in-air studies, 7(13–25, Figs. 4–5 p. 14, Fig. 6 p. 17, Tables 7–10 p. 18, Figs. 7–12 pp. 19–21, Tables 11–16 pp. 22–26, Figs. 13–15 pp. 23–24).
instruments, 7(5 7, Table 2 p. 6, Tables 3–4 p. 7).
in-water studies, 7(8–13, Fig. 1 p. 9, Table 5 p. 10, Fig. 2 p. 11, Fig. 3 p. 13, Table 6 p. 13).
irradiance field source, 7(25–34).
NIST calibrations, see calibrations, NIST.
participants, 7(67–71).
plaque lab, 7(34–46).
see also plaque lab.
solar data analysis, 9(ch. 4).
calibration, 9(28–37, Figs. 15–24 pp. 30–34, Fig. 25 p. 36).
solar irradiances, 5(7–9, Tables 10–16 pp. 17–19).
6S, 5(16, Table 12 p. 17, Table 13 p. 18, Table 16 p. 19).
band-averaged, 5(16, Table 10 p. 17, Table 12 p. 17, Table 14 p. 18).
Fraunhofer lines, 5(19–21, Fig. 9 p. 20, Table 18 p. 21).
MODTRAN, 5(16, Tables 10–11 p. 17, Table 16 p. 19).
SeaWiFS, 5(16, Table 16 p. 19).
Thuiller, 5(16, Tables 14–17 pp. 18–19, Table 17 p. 19).
Wehrli, 5(13–16, Table 7 p. 14, Table 9 p. 14, Table 16 p. 19).
solar radiation-based calibration, 5(1–21).
reflectance equations, 5(3–6).
risk and disadvantages, 5(2).
spectral band-pass:
analyses, 10(ch. 2).
corrections, 10(Fig. 4 pp. 9–10, 10–11, Table 2 p. 11).
distribution, 10(Fig. 3 p. 8).
effects, 10(8–10).
response function, 10(Fig. 2 pp. 7–8).
spectral radiance, 4(19–21, Fig. 3 p. 18, Figs. 4–5 p. 20, Tables 11–13 p. 21).
see also SXR.
spectral response, 5(7, Fig. 3 p. 8, 19–21, Fig. 8 p. 19).
SMQ, 7(46–47, Figs. 29 pp. 48–49); 8(13–14, Fig. 13 p. 15, 18–19, 22–24, Fig. 17 p. 23, Table F1 pp. 43–44).
SMQ-II:
see SeaBOARR.
see SQM.
sun glint contamination, 9(ch. 9).
SeaWiFS mask, 9(65).
winds speed data, 9(65, Fig. 38 p. 66).
sun photometer, 2(25–27, Figs. 16–17 pp. 28–30, Table F1 p. 73–77).
SU-SAS, 8(3–6, Table 1 p. 3, Table 2 p. 4, Fig. 1 p. 5, 9–11, Fig. 8 p. 9, Fig. 9 p. 10, 16–17).
deployment log, 8(Table E1 pp. 37–43).
description of, 1(1–2, Table 1 p. 2).
electrical systems, 1(11–14, Table 3 p. 12, Fig. 9 p. 12, Tables 4–5 p. 13, Table 6 p. 14, Table 7 p. 15).
instrument design, 1(2–16, Table 2 p. 3, Fig. 1 p. 3, Figs. 3 pp. 7–9, Fig. 9 p. 12, Table 3 p. 12, Tables 4–5 p. 13, Table 6 p. 14).
measurement channels, 1(4–6, Fig. 2 p. 5).
measurements, 1(50–52, Tables 17–18 p. 52); 4(12–17, Figs. 1–2 pp. 15–16, Table 10 p. 17, Fig. 3 p. 18, 18–19).
measurement wavelengths, 7(Table 27 p. 37).
parts used, 1(Table A1 p. 55).
performance analysis, 1(16–50).
relative flux response, 1(38–43, Table 13 p. 39, Fig. 22 pp. 40–42).
signal voltage, 1(Table 16 p. 46, Fig. 24 pp. 47–49).
spectral radiance, 1(Table 14 p. 44, Table 15 p. 45, Fig. 23 p. 45) 4(Table 6 p. 7, Table 10 p. 17, Fig. 3 p. 18, Fig. 4 p. 20).
stoichiometric studies, 7(59, 63, Table 55 p. 63, Figs. 36–38 pp. 64–65).

T, U –

THOR, 3(6, Fig. 4 p. 7); 8(3, 7, Fig. 5 p. 8).
TOMS ozone, 9(ch. 10).
chlorophyll comparison, 9(72, Figs. 44–45 pp. 72–73).
new ozone scheme, 9(69–70, Figs. 41–42 p. 70).
ozone comparison, 9(71–72, Fig. 43 p. 71).
see also SXR.
transfer-to-orbit experiment, Vol. 5.
concept, 5(21).
in-flight measurements, 5(22–25, Fig. 10 p. 24, Table 21 p. 25, Fig. 11 p. 25).
reflectance equations, 5(22, Tables 19–20 p. 23).

–V, W, X, Y, Z –

overview, 9(ch. 1).
product, 9(10–11).
Glossary

6S Not an acronym, but an atmospheric photochemical and radiative transfer model.

A -

AAOT Acqua Alta Oceanographic Tower
AC Alternating Current
ACS Average Calibration Slope
A/D Analog-to-Digital
ADCP Acoustic Doppler Current Profiler
AERONET Aerosol Robotic Network
A1 Absorbing Aerosol Index
A19991 Atlantic–Indian Ocean Cruise, 1999
ALOHA A Long-term Oligotrophic Habitat Assessment
AMT Atlantic Meridional Transect
AMT-1 The First AMT Cruise
AMT-2 The Second AMT Cruise
AMT-5 The Fifth AMT Cruise
AMT-8 The Eighth AMT Cruise
AOP Apparent Optical Property
AOT Aerosol Optical Thickness
ASCII American Standard Code for Information Interchange
ASTD Analytical Spectral Devices
ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer
ASTM American Society for Testing and Materials
ATA Ambient Temperature Plate Assembly
ATSR Along-Track Scanning Radiometer
AU Astronomical Unit
AVHRR Advanced Very High Resolution Radiometer

B -

BAS British Antarctic Survey
BATS Bermuda Atlantic Time-series Study
BBOP Bermuda BioOptics Project
BCD Binary Coded Decimal
Ber95 Bering Sea Cruise, 1995
Ber96 Bering Sea Cruise, 1996
BNC Bayonett Nut Connector
BNL Brookhaven National Laboratory
BOPSII Bio-Optical Profiling System II (second generation)
BPA Back Plate Assembly
BRDF Bidirectional Reflectance Distribution Function
BSI Biospherical Instruments, Inc.
BSST Bulk Sea Surface Temperature
BTBM Bermuda Test Bed Mooring

C -

CalCOFI California Cooperative Fisheries Institute
CANIGO Canary Islands, Azores, Gibraltar Observations
CARIACO Carbon Retention in a Colored Ocean
CB-MAB Chesapeake Bay–Middle Atlantic Bight
CC Cloud Cover
CCAR Colorado Center for Astrodynamics Research
CCD Charge-Coupled Device
CCMS Centre for Coastal and Marine Studies
CCN Cloud Condensation Nuclei
CCPO Center for Coastal Physical Oceanography
C/CSC NOAA Coastal Services Center, Charleston, South Carolina

CDOM Colored Dissolved Organic Matter
CEC Commission of the European Communities
CERT Calibration Evaluation and Radiometric Testing
C-FALLS Combined (software package for logging) SeaFALLS data.
CHN Carbon-Hydrogen-Nitrogen
CHORS Center for Hydro-Optics and Remote Sensing
C-mount Not an acronym, but a mounting system for camera lenses.
CNR Consiglio Nazionale delle Ricerche (National Research Council)
COARE Coupled Ocean Atmosphere Response Experiment
CoASTS Coastal Atmosphere and Sea Time Series
CoBOP Coastal Benthic Optical Properties (Bahamas)
C-OPS Combined (software package for logging) SeaOPS data.
COTS Commercial Off-The-Shelf
CSC Coastal Service Center
CSH UNIX “C-shell” (script programming utility)
CT Cylindrical Tube or Conductivity and Temperature, depending on usage.
CTD Conductivity, Temperature, and Depth
CV Coefficient of Variation
CVE Calibration and Validation Element
CVT Calibration and Validation Team
CZCS Coastal Zone Color Scanner

D -

DAAC Distributed Active Archive Center
DalBOSS Dalhousie Buoyant Optical Surface Sensor
DalSAS Dalhousie SeaWiFS Aircraft Simulator
DARR Data Analysis Round-Robin
DARR-94 The first DARR (1994)
DAS Data Acquisition Sequence
DATA Not an acronym, but a designator for the Atlantic, Inc., series of power and telemetry units.
dc Direct Current
DC Direct Current
DCM Deep Chlorophyll Maximum
DCP Data Collection Platform
DIO Digital Input-Output
DIR Not an acronym, but a designator for the Atlantic, Inc., series of directional units.
DMA Dimethylamine
DMM Digital Multimeter
DMS Dimethyldisulfide
DMSP Dimethylsulphonio-propionate
DMSPd Dissolved DMSP
DMSPp DMSP within phytoplankton cells
DNA Deoxyribonucleic Acid
DOC Dissolved Organic Carbon
DPA Detector Plate Assembly
DU Dobson Unit (of total ozone)
DUT Device Under Test
DVM Digital Voltmeter

E -

EcoHAB Ecology of Harmful Algal Blooms
EDTA Ethylenediaminetetraacetic Acid
EEZ Exclusive Economic Zone
E.R. Firestone and S.B. Hooker

- F -
FARCAL Facility for Advanced Radiometric Calibrations
FASCAL Facility for Automated Spectroradiometric Calibrations
FEL Not an acronym, but a lamp designator.
FET Field-Effect Transistor
FIGD-IC Flow Injection Gas-Diffusion Coupled to Ion Chromatography
FL-Cuba Florida-Cuba (cruise)
FS Field Stop
FWHM Full-Width at Half-Maximum

- G -
GAC Global Area Coverage
GF/F Not an acronym, but a specific type of glass fiber filter manufactured by Whatman.
GLOBEC Global Ocean System Eco-Dynamics
GMT Greenwich Mean Time
GoA97 Gulf of Alaska 1997 (cruise)
GoCal Gulf of California
GOES-8 The Eighth Geostationary Operational Environmental Satellite
GOM Gulf of Maine
GPIB General Purpose Interface Bus
GSE Ground Support Equipment
GSFC Goddard Space Flight Center

- H -
HACR High-Accuracy Cryogenic Radiometer
HDF Hierarchical Data Format
HMS Her Majesty’s Ship
HOT Hawaii Optical Time-series
HP Hewlett-Packard
HPLC High Performance Liquid Chromatography
HRPT High Resolution Picture Transmission
HTCO High Temperature Catalytic Oxidation

- I -
IAD Ion-Assisted Beam Deposition
IC Integrated Circuit
ICESS Institute for Computational Earth System Science
ID Inside Diameter
IDL International Date Line or Interactive Data Language (depending on usage).
IEEE Institute of Electrical and Electronic Engineers
IF Interference Filter
ILX Not an acronym, but part of the name of ILX Lightwave Corporation of Bozeman, Montana.
IMSL International Mathematical and Statistical Libraries
IOP Inherent Optical Property
IOS (SOC) Institute of Oceanographic Sciences
ISDGM Istituto per lo Studio della Dinamica delle Grandi Masse (Italy)
ISIC Integrating Sphere Irradiance Collector

J - K -
JCR (RRS) James Clark Ross
JES9906 Japan East Sea Cruise, 1999-06
JGOF5 Joint Global Ocean Flux Study
JRC Joint Research Centre

- L -
L1 Level-1 SeaWiFS data product
L1A Level-1a SeaWiFS data product with navigation information
L2 Level-2 SeaWiFS data product
L3 Level-3 SeaWiFS data product
Lab96 Labrador Sea Cruise, 1996
Lab97 Labrador Sea Cruise, 1997
Lab98 Labrador Sea Cruise, 1998
LAC Local Area Coverage
LANDSAT Land Satellite
LLR Low Level Radiance
LoCNESS Low-Cost NASA Environmental Sampling System
LS Light Stability
LSB Least Significant Bit
LTER Long Term Ecological Research
LXR LANDSAT Transfer Radiometer

- M -
MA Methylamine
MBARI Monterey Bay Aquarium Research Institute
MBR Maximum Band Ratio
MCP Modified Cubic Polynomial
MER Marine Environmental Radiometer
MERIS Medium Resolution Imaging Spectrometer
METEOSAT Meteorological Satellite
MF0796 R/V Miller Freeman Cruise, 1996-07
MFR-6 Multi-Filter Rotating Shadow-Band Radiometer
miniNESS miniature NASA Environmental Sampling System
MISR Multiangle Imaging Spectroradiometer
MLML Moss Landing Marine Laboratory
MMA Mirror Mount Assembly or Monomethylamine, depending on usage.
MOBY Marine Optical Buoy
MOCE Marine Optical Characterization Experiment
MODIS Moderate Resolution Imaging Spectroradiometer
MODTRAN Not an acronym, but an atmospheric photochemical and radiative transfer model.
MOS Modular Optoelectronic Scanner (spaceborne sensor) or Marine Optical Spectroradiometer (depending on usage)
MSB Most Significant Bit
MVDS Multichannel Visible Detector System

N	NABE North Atlantic Bloom Experiment
	NASA National Aeronautics and Space Administration
	NCEP National Center for Environmental Prediction
	NCSA National Center for Supercomputing Applications
	NDVI Normalized Difference Vegetation Index
	NEC Not an acronym, but the present name for the Nippon Electric Company (Japan)
	NECC North Equatorial Counter Current
	NEGOM Northeast Gulf of Mexico
	NEUC North Equatorial Undercurrent
	NIR Near-Infrared
	NIST National Institute of Standards and Technology
	NOAA National Oceanic and Atmospheric Administration
	NRL Naval Research Laboratory
	NRSR Normalized Remote Sensing Reflectance

O	OC2 Ocean Chlorophyll 2 (algorithm)
	OC2v1 OC2 version 1
	OC2v2 OC2 version 2
	OC4 Ocean Chlorophyll 4 (algorithm)
	OC4v2 OC4 version 2
	OC4v3 OC4 version 3
	OC4v4 OC4 version 4
	OCI Ocean Color Irradiance (sensor)
	OCP Ocean Color Profiler
	OCR Ocean Color Radiance (sensor)
	OCTS Ocean Color Temperature Scanner
	OD Outside Diameter
	OL Optronic Laboratories, Inc.
	OPC Optical Plankton Counter
	OrbView-2 Not an acronym, but the current name for the SeaStar satellite.
	ORINOCO Orinoco River Plume
	OSC Orbital Sciences Corporation

P	PAR Photosynthetically Available Radiation
	PC Personal Computer
	PCR Polymerase Chain Reaction
	PD Percent Difference
	PI Principal Investigator
	P-I Photosynthesis-Irradiance
	PID Proportional, Integral, Differential
	PlyMBoDY Plymouth Marine Bio-Optical Data Buoy
	PM Particulate Matter
	PML Plymouth Marine Laboratory
	POC Particulate Organic Carbon
	PRIME Plankton Reactivity in the Marine Environment
	PROSOPE Productivité des Systèmes Océaniques Pélagiques (Productivity of Pelagic Oceanic Systems)
	PRR Profiling Reflectance Radiometer
	PRT Platinum Resistance Temperature (sensor)
	PST Pacific Standard Time
	PSU Practical Salinity Units
	PTFE Polytetrafluoroethylene
	PVC Polyvinylchloride

| Q | QC Quality Control |

R	RAM Random Access Memory
	RE Ramsden Eyepiece
	RED9503 Red Tide Cruise, 1995-03
	Res94 Resolve Cruise, 1994
	Res95-2 Resolve Cruise, 1995
	Res96 Resolve Cruise, 1996
	Res98 Resolve Cruise, 1998
	RH Relative Humidity
	RL Relay Lens
	RMS Root Mean Square
	RMSSD Root Mean Square Difference
	ROAVERRS Research on Ocean–Atmosphere Variability and Ecosystem Response in the Ross Sea
	ROSSA Radiometric Observations of the Sea Surface and Atmosphere
	RRS Royal Research Ship
	RSG (PML) Remote Sensing Group
	RMSAS Rosenstiel School for Marine and Atmospheric Science
	RSR Relative Spectral Response
	RSS Root-Sum Square
	RTV Room Temperature Vulcanizing
	RVS (BAS) Research Vessel Services

S	S South
	SACZ Sub-Antarctic Convergence Zone
	SAI Space Applications Institute
	SAS Surface Acquisition System
	SAS-II Atlantic Airborne Sensor
	SBE Sea-Bird Electronics
	SBRC Santa Barbara Research Center (Raytheon)
	SBRS Santa Barbara Remote Sensing (Hughes)
	SBUV Solar Backscatter Ultraviolet Radiometer
	J/CSC Stennis (Space Center) Coastal Services Center
	SDSU San Diego State University
	SDY Sequential Day of the Year
	SeaACE SeaWiFS Atlantic Characterization Experiment
	SeaBAM SeaWiFS Bio-optical Algorithm Mini-workshop
	SeaBASS SeaWiFS Bio-Optical Archive and Storage System
	SeaBOARR SeaWiFS Bio-Optical Algorithm Round-Robin
	SeaBOARR-98 The First SeaBOARR (1998)
	SeaBOARR-99 The Second SeaBOARR (1999)
	SeaBOSS SeaWiFS Buoyant Optical Surface Sensor
	SeaDAS SeaWiFS Data Analysis System
	SeaFALLS SeaWiFS Free-Falling Advanced Light Level Sensors
	SeaOPS SeaWiFS Optical Profiling System
	SeaPRISM SeaWiFS Photometer Revision for Incident Surface Measurement
	SeaSAS SeaWiFS Surface Acquisition System
	SeaSHADE SeaWiFS Shadow Band (radiometer)
	SeaStar Not an acronym, but the former name of the satellite on which SeaWiFS was launched, now known as OrbView-2.
	SeaSURF SeaWiFS Square Underwater Reference Frame
	SeaWiFS Sea-viewing Wide Field-of-view Sensor
E.R. Firestone and S.B. Hooker

SEC South Equatorial Current
SEM Scanning Electronic Microscopy
SEUC South Equatorial Undercurrent
SIMBIOS Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies
SIO Scripps Institution of Oceanography
SIRREX SeaWiFS Intercalibration Round-Robin Experiment
SIRREX-1 The First SIRREX (July 1992)
SIRREX-2 The Second SIRREX (June 1993)
SIRREX-3 The Third SIRREX (September 1994)
SIRREX-4 The Fourth SIRREX (May 1995)
SIRREX-5 The Fifth SIRREX (July 1996)
SIS Spherical Integrating Source
SMAB Southern Mid-Atlantic Bight
SMR SeaWiFS Multichannel Surface Reference
S/N Serial Number
SNR Signal-to-Noise Ratio
S/NRL Stennis Space Center, Naval Research Laboratory
SOC Southampton Oceanography Centre
SOMARE Sampling, Observations and Modelling of Atlantic Regional Ecosystems
SOOP SeaWiFS Ocean Optics Protocols
SOSSTR Ship of Opportunity Sea Surface Temperature Radiometer
SPMR SeaWiFS Profiling Multichannel Radiometer
SPO SeaWiFS Project Office
SQM SeaWiFS Quality Monitor
SQM-II The Second Generation SQM
SRF Spectral Response Function
SS Sea State
SSE Size-of-Source Effect
SSH Sea Surface Height
SSM/I Special Sensor for Microwave/Imaging
SSST Sea Surface Skin Temperature
SUnSAS SeaWiFS Underway Surface Acquisition System
SXR SeaWiFS Transfer Radiometer

TOPEX Topography Experiment
TOTO Tongue of the Ocean (Bahamas)
TOVS TIROS Operational Vertical Sounder
TSG Thermosalinograph
TSM Total Suspended Matter
TTL Transistor - Transistor Logic

UC University of California, Santa Barbara
UIC Underway Instrumentation and Control
UK United Kingdom
UM University of Miami
UNC Unified Course
UOR Undulating Oceanographic Recorder
UPS Uninterruptable Power Supply
URL Universal Resource Locator
USF University of South Florida
USN United States Navy
UTC Coordinated Universal Time (definition reflects actual usage instead of following the letters of the acronym)
UV Ultraviolet
UVA Ultraviolet-A

VAFB Vandenberg Air Force Base
VisSCF Visible Spectral Comparator Facility (NIST)
VXR Visible Transfer Radiometer

W West
WETLabs Western Environmental Technology Laboratories (Inc.)
WiSPER Wire-Stabilized Profiling Environmental Radiometer

XBT Expendable Bathythermograph
XOTD Expendable Optical, Temperature, and Depth

YB71 Not an acronym, but a type of paint for solar diffusers.
REFERENCES

E.R. Firestone and S.B. Hooker

18

L.

---, 1988: Optical modeling of the upper ocean in relation to its biogenous matter content (Case I waters). *J. Geophys. Res.*, 93, 10,749 10,768.

Page 81

S

— T, U —

— V —

The SeaWiFS Postlaunch Technical Report Series

Vol. 1

Vol. 2

Vol. 3

Vol. 4

Vol. 5

Vol. 6

Vol. 7

Vol. 8

Vol. 9

Vol. 10

Vol. 11

Vol. 12
The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) is the follow-on ocean color instrument to the Coastal Zone Color Scanner (CZCS), which ceased operations in 1986, after an eight-year mission. SeaWiFS was launched on 1 August 1997, onboard the OrbView-2 satellite, built by Orbital Sciences Corporation (OSC). The SeaWiFS Project at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC), undertook the responsibility of documenting all aspects of this mission, which is critical to the ocean color and marine science communities. The start of this documentation was titled the SeaWiFS Technical Report Series, which ended after 43 volumes were published. A follow-on series was started, titled the SeaWiFS Postlaunch Technical Report Series. This particular volume of the so-called “Postlaunch Series” serves as a reference, or guidebook, to the previous 11 volumes and consists of 5 sections including an errata, an addendum, an index to key words and phrases, a list of acronyms used, and a list of all references cited. The editors will publish a cumulative index of this type after every five volumes.