
Accelerating Time-Varying Hardware Volume Rendering

Using TSP Trees and Color-Based Error Metrics

David Ellsworth"

AMTI / NASA Ames Research Center

Ling-Jen Chiang t

AMTI / NASA Ames Research Center

Han-Wei Shen _:

Department of Computer and Information Science, The Ohio State University

Abstract

This paper describes a new hardware volume rendering algorithm

for time-varying data. The algorithm uses the Time-Space Parti-

tioning (TSP) tree data structure to identify regions within the data

that have spatial or temporal coherence. By using this coherence,

the rendering algorithm can improve performance when the vol-

ume data is larger than the texture memory capacity by decreas-

ing the amount of textures required. This coherence can also al-

low improved speed by appropriately rendering flat-shaded poly-

gons instead of textured polygons, and by not rendering transpar-

ent regions. To reduce the polygonization overhead caused by the

use of the hierarchical data structure, we introduce an optimization

method using polygon templates. The paper also introduces new
color-based error metrics, which more acCuraiely identify coherent

regions compared to the earlier scalar-based metrics. By showing

experimental results from runs using different data sets and error
metrics, we demonstrate that the new methods give substantial .im-

provements in volume rendering performance.

Keywords: scalar field visualization, volume visualization, volume

rendering, time-varying fields, graphics hardware.

1 Introduction

Time-varying data sets are common, and are often difficult to vi-
sualize using volume rendering because of their size. Volume ren-

dering can be accelerated by using 3D texture mapping on standard

graphics hardware. The volume rendering algorithm for these ac-
celerators loads the volume data into texture memory, and textures

a series of polygons as part of the volume rendering process. Most

3D texturing hardware use dedicated memory to hold the texture

data. While many accelerators can render using textures that are

larger than the dedicated memory, the rendering is at reduced per-
formance because the texture data must be moved from main mem-

ory to the accelerator memory. This limitation particularly affects

time-varying volumes since they tend to be large.

Better use of the dedicated volume memory would increase the

amount of volume data that can be rendered at full speed. Many

volumes have portions that do not vary, or are coherent, in certain

regions. Time-varying volumes often have regions that also do not
vary within a series of time steps. These spatial and temporal re-

•NASA Ames Research Center, Mail Stop T27A-2, Moffen Field, CA

94035 (cllswort@nas.nasa.gov)

tNASA Ames Research Center. Mail Stop T27A-I. Moffett Field, CA

94035 (Ichiang@nasnasa.gov)
tDepartment of Computer and Information Science, The Ohio State

University, 2015 Nell Ave., 395 Dreese Lab., Columbus, OH 43210
(hwshen g_cis.ohio-state.edu)

gions of coherence can be exploited by using a data structure intro-
duced by Shen et al. [I] called Time-Space Partitioning (TSP) trees.

By using this data structure along with a new rendering algorithm,
we will show that regions that have spatial coherence can instead

be rendered using untextured polygons, and the associated texture

memory freed. The data structure will also detect regions that are

entirely transparent, which can be skipped. Regions with tempo-
ral coherence can be shared between two or more time steps, thus

also saving texture memory. In addition, the reduction in memory
means that smaller amounts of textures need to be created, speeding

up the texture creation process.

The decision to use untextured polygons or to share regions of

volume memory is made by computing error metrics for a hierarchy

of regions, or subvolumes, that indicate the amount of spatial and

temporal coherence. At runtime, the user specifies spatial and tem-

poral error tolerances. Regions with error tolerances greater than
the error metrics are rendered using flat-shaded polygons or voxels

from _a previous time step. Specifying zero error tolerances result

in renderings using data equal to the actual data, but will still result

in a smaller memory requirement in many cases.

The error metrics described in the earlier TSP paper [1] were
based on the scalar values of the voxels. Since the scalars are

mapped into colors using a transfer function, the amount of coher-
ence in the scalar values can be unrelated to the coherence in the

colors. This paper introduces color-based error metrics that im-

prove the selection of texture volumes to be loaded into texture

memory. Two color-based error metrics are described. One uses
the same statistics as the earlier paper but based on the voxel's color

values. The second metric uses metrics that are approximations to

the first metric. The first metric is quite slow, taking a few to many

minutes to compute, but is included to show that the second metric

performs similarly even though it is an approximation. The second
metric takes a fraction of a second to a few seconds to compute,

which allows interactive modification of the transfer function.

The remainder of the paper is structured as tbllows. Section 2

reviews related work, Section 3 provides a review of the TSP tree

data structure and algorithm, and Section 4 describes how TSP trees
can be used for hardware volume rendering. Section 5 discusses the

error metrics considered, and the last sections cover the experiments

performed, the results, and the conclusions.

2 Related Work

Several earlier efforts have used data coherence to accelerate vol-

ume rendering. In general, two types of coherence can be usually

observed in a time-varying volume dataset. One is called spatial
coherence, which refers to the fact that voxels in adjacent regions

tend to have values that are very close to each other. The other is

temporal coherence, which refers to the fact that voxels tend not

Figure I : The TSP tree's skeleton is an octree, and each of the TSP
tree nodes is a binary time tree. In the example here. the time-

varying field has four time steps.

to change drastically from one time step to the next. In the past,

researchers have proposed the use of hierarchical data structures to

exploit the coherence for speeding up the rendering of steady-state

volumes [1, 2, 3, 4]. Laur and Hanrahan proposed a Hierarchical

Splatting algorithm [3], where a pyramid data structure is used to
store the voxels' mean value and the standard deviation in differ-

ent subvolumes. Given a user-supplied error tolerance, an octree is

fit to the pyramid, and the traversal of the octree allows different

regions in the volume to be drawn in different resolutions, Shen

et al. proposed a hierarchical data structure called the Time-Space

Partitioning (TSP) tree that decouples the characterizations of tem-

poral and spatial coherence, and allows efficient rendering of time-

varying volume data. This work is discussed in more detail in the
next section.

Another approach that can significantly speed up volume ren-

dering is to use 3D texture hardware [5, 6, 7, 8]. in essence, 3D

texture hardware can be used to perform volume rendering by first

generating a sequence of slicing planes perpendicular to the view-

ing direction, and then use 3D texture hardware to map colors and
opacities based on' the underlying data attributes to these planes,

The sequence of parallel planes are then composited together in

a back-to-front visibility order to generate the final image. Yagel

et al, [9] proposed an algorithm that can efficiently generate the

slicing planes based on incremental slicing. LaMar et al. [10l pro-

posed to use texture hierarchical and spherical shells to render very

large data sets. Both of the methods allow fast volume rendering of

large datasets. However, the rendering of time-varying data, which

requires fast texture animation, was not discussed.

3 Time-Space Partitioning Trees

This paper uses the Time-Space Partitioning (TSP) tree data struc-

ture and algorithm, first proposed by Shen et al. [I], for capturing

both the temporal and spatial coherence in time-varying data. The

skeleton of a TSP tree is a standard complete octree, which recur-

sively subdivides the volume spatially until the size of the subvol-

ume is less than a predefined threshold. At each node of the octree
skeleton, there is a binary time tree, which recursively bisects the

time-varying data set's time span. Figure ! depicts a two dimen-
sional version of TSP tree and one of its tree nodes in the form of a

binary time tree.

The nodes of the binary time tree store I:x)th the temporal and

spatial error metrics. Our TSP tree implementation also includes

statistics about the corresponding suhvolumc and time span: the
mean. minimum, and maximum scalar values as well as the stan-

dard deviation. The earlier work's spatial error metric was the co-
efficient of variation, which is a normalized standard deviation of

the voxels. To quantify a subvolume's temporal error in a given

time span, the mean of the individual voxels' coefficients of varia-
tion over time was used. This temporal error measurement is more

effective in capturing those subvolumes that do not change dramat-

v,_ 2] _ct- r_e _- E V.',-? ESe ' i

T_meSpan _pan = _me%reerooE_tme[ree[raverse();

_f tspan == Fa_leO>

add to listlsubvolurne(curEentoc_ree_node), span):

else if (is[eaf(current_octreenodei)

add__o_list(subvol_me(currentoctree_node),

curr_time_step)

else for (each octreechi[d under current_octreenode)

octreechild.octree_traverse[)

TimeSpan timerreetraverse()

{

if (time tree_node.temporal_error <= temporal tel) {

if (is leaf(currentoctreenode))

return current timetreenode.timespan;

else if (time treenode.spatial_error <= spatial_tol)

return curren__timetreenode.time_span;

else i£ (is leaf(currenttimetreenode)l

return Failed;

else

return child__orcurr_timestep().timetree_traverse(l;

}

else if (is leaf(current_timetree_node))

return Failed;

else

return child for_currtimestep()._imetreetraverse();

}

Figure 2: TSP tree traversal algorithm.

ically even with the presence of high spatial variation [1].

For a time-varying volume data set, the TSP tree can be con-

structed once and then updated whenever the data used by the error

metric calculations changes. Once the tree has been constructed or

updated, it can be used repeatedly. The TSP tree traversal algo-

rithm traverses both the TSP tree's octree skeleton and the binary
time tree associated with each encountered octree node, as shown

in Figure 2. When rendering a frame, the TSP tree is traversed to

identify a set of subvolumes that cover the entire volume. Each

subvolume is chosen to cover the largest spatial and temporal ex-

tent and also satisfy the user-supplied spatial and temporal error

tolerances. The tolerance for the spatial error provides a stopping
criterion for the octree and time tree traversal. The traversal first

descends the octree skeleton, checking if the error tolerance allows
the subvohime corresponding to the current node to be added to the
subvolume list. The octree traversal is different from the time tree

traversal: the octree traversal descends until the entire volume is

covered, while the time tree traversal only follows the time spans

enclosing the current time step.

Shen et al. use the TSP tree data structure to accelerate a soft-

ware ray casting algorithm for time-varying data [1]. Their render-

ing algorithm first collects the subvolumes that meet the specified

spatial or error tolerance. Then. it renders each of these subvolumes

independently into a partial image. The final image is constructed

by compositing the colors and opacities of the partial images. In

this implementation, partial images for those subvolumes that have

high temporal coherence are cached. The time span for each subim-

age is also saved. When the user chooses to render the volume at

a different time step, the tree traversal process is performed again.

During traversals when the viewing parameters remain the same, if

a subvolume that has high temporal coherence is encountered and

the subimage cached previously is re-usable, then the cached image

is directly used, and the re-rendering of the subvolume is entirely

skipped. From the experimental studies in Ill, the utilization of
previously cached images due to high temporal coherence can sig-

nificantly reduce both the rendering time and I/O overhead.

4 Using TSP Trees for Hardware Volume

Rendering

The rendering algorithm described above for a ray-casting imple-
mentation must be modilied when it is used for hardware volume

rendering using 3D texture mapping. The TSP tree construction al-

gorithm does not need to be changed, nor does the initial traversal

algorithm need to be. Like before, the TSP tree is traversed at ren-

dering time to gather a list of subvolumes to be rendered. These
subvolumes may have a larger spatial extent than the octree leaf

nodes if the spatial error tolerance caused the traversal algorithm
to terminate early. Or. the subvolumes may represent several time

steps if the temporal error tolerance caused early termination.
Once the list of subvolumes has been collected, the subvolumes

can be rendered. Subvolumes that meet the the spatial error tol-

erance are rendered using flat-shaded polygons. This is an advan-

tage because many graphics systems render flat-shaded polygons
faster than 3D textured polygons, and because the associated tex-

ture memory is saved. The time to load the volume data into tex-

ture memory is also saved. Other subvolumes are rendered using

3D textured polygons. However. if a subvolume meets the tempo-
ral error tolerance and represents a time span, then that subvolume

uses the texture defined for the first time step in the span. This is the

mechanism that causes textures to be shared between time steps.

When using TSP trees, the standard 3D-texture-based volume

rendering algorithm must be changed in two ways. The first change
is that the volume data is rendered a subvolume at a time, with each

subvolume using its own set of slicing polygons to allow both the

flat-shaded versus textured polygon decision and the texture sharing

decision to be made on a per-subvolume basis. This can be done by

using the standard hardware volume rendering algorithm but slicing

a single subvolume instead the entire data set. The second major

change is that an order must be defined among the subvolumes so
that the subvolumes are rendered in back to front order. The order

can be determined during the octree traversal by selecting the cor-
rect traversal order for the children of the node. Fang et al. [11]

have devised a solution for parallel projections that examines the

signs of components of the view direction vector and from them

chooses from eight fixed orderings.

4.1 Polygon Templates

While using TSP trees with hardware volume rendering has several

important performance benefits, it also has some additional costs.
One cost is the overhead of traversing the octree data structure, but

this cost is minimal since there are typically tens or hundreds of
oetree nodes. The main additional cost is due to the increased num-

ber of slicing polygons. There are more slicing polygons compared

to number used with the single-volume hardware rendering algo-

rithms since each of the single-volume polygons is broken up along

the subvolume boundaries in our algorithm. The additional poly-

gons require more time to calculate, which must be done whenever

the view direction changes. Also, the additional polygons may also

take additional rendering time since the polygons must be sent to

the graphics system and transformed. However, the additional poly-

gons does not change the number of pixels that must be rendered

because the per-subvolume slicing polygons could be merged to

form the slicing polygons for the entire volume.

The cost of generating the additional polygons can be reduced

using several methods. One approach would be to save the poly-

gons between frames, and to only generate them when the view
direction changes. This wilt improve the performance during time

animations that do not also have viewpoint changes. A second ap-

proach would be to use the incremental slicing algorithm described

by Yagcl et al. 10l to reduce the cost of calculating the slicing poly-

gons.

view direction

/

Figure 3: Example of polygon mismatch between subvolumes

when polygon templates are used.

We use a third approach that reuses the calculated polygons for

several subvohimes. The algorithm generates a set of slicing poly-

gons for each of the different subvolume sizes. It then reuses this

set of polygons for each subvolume of the same size by translat-

ing the polygons to the actual location of the subvolume. Usually,
about a dozen sets of polygons must be generated: eight for the

eight possible leaf node subvolume sizes (each dimension may ei-
ther be full size or a partial size), plus a few larger subvolumes for

internal leaf oetree nodes that are being rendered using flat-shaded

polygons. We reduce the number of vertices that must be sent to the

graphics system by generating polygons with three to six vertices
instead of only generating triangles.

Using polygon templates speeds up the overall rendering algo-

rithm, since fewer polygons must be calculated. One consequence

of using polygon templates is that artifacts are occasionally visible
at the subvolume boundaries. The artifacts are due to the slicing

polygons not matching up at the boundaries, as shown in Figure 3.

We cannot see these artifacts in Figures 4 through 9. The slicing

polygons can only match up if polygons are calculated for every

subvolume. In the future, we hope to implement Yagel et al.'s al-

gorithm [9] to see whether it speeds up the slicing polygon calcula-

tions so they are not the bottleneck.

4.2 Texture Caching

Our algorithm has another optimization that reduces the rendering

time, We use the OpenGL function glBindTextureExt that allows
the textures to be loaded into texture memory and retained when a

time step is first displayed. By not deleting a time step's textures
when the algorithm displays later time steps, the time required to

display the time step is reduced when it is shown the second and

subsequent times. However. this texture caching requires additional
logic when the transfer function or error tolerances are changed.

When these values are changed, some previously-created textures

may no longer be needed, and should be deleted. The texture gen-
eration code must maintain data structures so that this texture man-

agement can be done correctly.

4.3 Choosing the Subvolume Size

TSP tree algorithms have one important parameter: the minimum

subvolume size. Smaller subvolumes allow smaller regions of co-

herence to be exploited without reducing image quality. If the en-

tire subvolume has high spatial or temporal coherence, it can be

respectively replaced with flat-shaded polygons or use another time

step's volume data without significantly reducing the image qual-

ity. Larger subvolumes are less likely have spatial or temporal co-

herence throughout the subvolume, which means that the TSP tree

optimizations cannot be done without reducing image quality.
However, smaller subvolumes have associated costs. One cost is

afurtherincreasemthenumberofslicingpolygons,asdescribed
above.Asecondcostisincreasedoverheadmmanagingtextt,res.
Wedidnotexpectthistobealargecost,butourOpenGLim-
plementationhasshowngreatlyreducedperformancewhenusing
morethan4096textures.Sloanet al. [121 have seen similar lim-
itations. Because of this limit on the total number of textures, we

were not able to run experiments using the scalar-based error met-

rics with 16 x 16 x 1.6 subvolumes. Instead, we present results

using 32 x 32 x 32 subvolumes.

5 Error Metrics

The TSP tree algorithm uses two types of error metrics. Spatial er-
ror metrics indicate the amount of coherence within a subvolume.

and determine which subvolumes should be rendered without tex-

tures. Temporal error metrics indicate the amount of coherence
within a series of subvolumes, and determine which subvolumes

should share textures between time steps. This section describes

three methods for calculating both types of error metrics. The first

method for calculating error metrics bases the metrics on the vox-
els' scalar values, and are called scalar-based error metrics. The

second two methods are color-based error metrics, and are based

on the actual color of the voxels. Although the description of the

error metrics in this section assumes that they are used for hard-

ware volume rendering, the error metrics could also be used with

the ray-casting implementation by Shen et al. [1].

5.1 Scalar-Based Error Metrics

The scalar-based error metncs are the same ones used in the first

TSP tree paper [I]. The metrics calculate the the coefficient of vari-

ation (COV), which is the standard deviation divided by the mean.

The COV can be thought of as a normalized version of the standard

deviation. The scalar-based spatial error metric e,, is calculated

by computing the coefficient of variation of scalars for the voxels

in the subvolume and time steps in question, and is given by the

following formulas:

1 EfJ = -_ vi,t (1)
i,t

1 E(vi,t _ f;)2 (2)
a=

i,t

or

e** = = (3)
13

where vi.t is the value of voxel i at time step t, N is the total number

of voxels in the subvolume across the time steps. 0 is the voxel's
mean, and tr is the voxel's standard deviation.

The temporal error metric is calculated by first computing a COV

for each voxel position within the subvolume for all the voxels in

the desired time span [tt, t2]. The scalar temporal error metric e_t

is the average of the per-voxel COV's. as shown below:

-- (4)
t2-tt+l

/_"_t=t2[v _ _'

ort _ _/ d-'at=tl k i,/- tl-

V g--?_ -7-f (5_

1 E°he.,t = - -- (6)

i

where n is the number of voxels in the subvolume, Oi is the per-

voxel mean, and 07 is the per-voxel standard deviation. If this error

metric seems similar to _hc previous spatial CrTor metric, note that

the spatial error memo calculates a single COV for all the voxels
in the subvolume across the time series, while the temlx_ral error
metric calculates COV R_r each ',oxet in the subw_tume, and then

averages the COV's across the time series.

If implemented nafvely, these error metrics would require two

passes over the voxels, one to compute the mean and a second to

compute the standard deviation. However. the lormulas can he re-

arranged so that they only require the sum of all the voxel's values

and the square of all the values, as shown in many statistics texts.

Because the scalar-based metrics only depend on the data, they can

be precomputed and saved in the octree file.

5.2 Reference Color-Based Error Metrics

The color-based error metrics are more accurate because they are

based on the color of the voxel, which is more closely related to the

image than the scalar value. Their disadvantage is that they must be

recomputed when the transfer function is changed, which is often

done interactively.

The first color-based error metrics compute statistics based on
each voxel's color, much like the scalar-based metrics compute

statistics based on each voxel's scalar value. Because the equa-

tions are quite similar, we call these error metrics the reference
error metrics. Since the standard deviation is not defined for vec-

tor quantities such as colors, we instead compute the distance in

RGBo space between each voxel's color and the mean color of the

set of voxels in question. The distance in RGB space is weighted by

the opacity of the voxel because low-opacity voxels have a smaller

contribution to the final image than high-opacity voxels. The dis-

tance function d takes two color vectors et = (rl,.qt, bt, c_t) and

e= = (r2, g2,b_,a2), and is:

d(ct,c2) = c_l[(rl -r2) 2+(gt -g.9) 2+(bt -b._) 2]+ (al -_2)2
(7)

where r, g, b, and o_ have been normalized to the range [0,1]. The

mean color values f, ,_./_. and & are computed with equations sim-

ilar to equation I. We combine them by computing d(_:, 0). the

alpha-weighted distance between the average color e = (_. _, b,

and &) and the origin. The color-based mean analogue/] is:

= d(e,0) = x/6(ea+_ 2 + _2) + 5a (8)

We can create the color-based standard deviation analogue & by

replacing the squared difference between vi,t and _ in equation 2

by the distance equation 7. The reference color-based spatial er-
ror e,,s is the mean replacement divided by the standard deviation

analogue. The formulas are:

/1 E d(ci,t, c.)
i,t

(9)

8
e = -: (10)

/a

The reference color temporal error equation also computes a per-
voxel COV like the scalar-based spatial temporal error equation (6).

The analogue to the per-voxel mean value is. like before, d(_',, 0),

where e, = (?,, t),, b,, _i,)). Each of the mean values are computed

using equations similar to equation 4. The equations for the stan-

dard deviation analog and the reference color-based temporal error

metric are modified versions of equations 5 and 6 with the scalar

value difference replaced by the distance equation. The equations
are:

, = v/,(:'',+03 +t,:)+c,: _ll_

" d(c, , a,)
/ .t=tl " ,

IZ&,e,,,t = - -- (13)

1

The reference color-based error metrics have one large draw-

back: they are very slow. They are slow because every voxel must

have its color computed, and then have equations 8 to 13 evaluated

using the voxel color. The time to compute the error metric for the
three data sets ranged from 4 to 20 minutes; see Table 2 for more

details. The computation can be accelerated by optimizing the cal-

culation so it can be made in one pass. Another optimization is to

not recalculate the metrics for subvolumes that do not use any part

of the lookup table that was changed in the editing operation. This

second optimization can be done efficiently by precomputing the
minimum and maximum scalar values for each subvolume. How-

ever. these optimizations cannot speed up the calculations so they
will run at interactive rates for typical large data sets.

5.3 Approximate Color-Based Error Metrics

This section describes approximations to the reference color-based

error metrics that can be computed quickly. As will be shown in the

results section, they can be computed in at most a few seconds for

reasonably large data sets, and give similar results.

The approximation uses the fact that. if the frequency of occur-
rence fk for every unique value xk is known, the generic standard

deviation equation o- = X/1/n _i(x, - :_)2 can be rewritten as

a = _l/n }"_k fk(x_ - _)2 Our approximation does not actu-

ally count the frequency of appearances of the colors in the popu-

lation, but instead assumes that the counts are normally distributed.
We precompute and store in the TSP tree the parameters for each
subvolume's distribution, which are the mean and standard devia-

tion of the scalar values in the subvolume. The population distribu-

tion uses a distribution equation that only gives a population esti-

mate for every transfer function entry j because the later equations
iterate over the entries. The population equation is:

(_(j) _ _)2) (14)
p(j) = exp(2a:z

where the mean _ and standard deviation cr are from equations 1

and 2 in the scalar-based error metric section, and z(j) is the scalar

value corresponding to the center of transfer function entry j. Next,
we need to define the total estimated population of a subvolume

ptot since we will refer to it in several equations:

3maz

Ptot = Z p(j) (15)

)=Jrnin

where j,,,,_ and j,,,,, are the transfer function entries correspond-
ing to the minimum and maximum scalar values of the subvohime.

That is. we only iterate here, and in the following equations, over

the transfer functions used by the subvolume.

The error metric computes the difference between each transfer
function entry and the estimated mean color values. The mean val-

ues are computed by multiplying each transfer function entry by the

fraction of the population that is expected to use each transfer func-

tion entry, p(j)/ptot, and summing the products. The estimated
mean red value F_,t is :

),,L_z

"?_"' = Z P(J-_)r(j) (16)
Ptot

3_Jmln

where r(j) is the red value of color entry j. The equations fl)r _.),_t.
h,,_. and (-_,_,t are similar.

The final steps in computing the approximate spatial color-based

error metric are to compute the approximate mean and deviation

values. The mean fi is a combinatton of the average color val-

ues as shown in equation 8. The deviation value ,_ uses the dis-

tance function defined earlier to compute the distance between

each transfer functi_on entry c(j) and the average subvolume color

r:_t = (_t, .F/_t, b,,_, _-_t). The distance for each transfer func-

tion entry is weighted by the population estimate p(j), and summed

as before. The error metric e,_, is the deviation divided by the
mean.

- -._ -o -2 -_ = d(?:_,t,0) = k/oz_t(rg_t +g;,t +b¢_t)+ag_t (17)

(18)

e,_c_ = = (19)
#

This error metric can be computed quickly since it at most iterates
over the number of transfer function entries, which is 256 in our

implementation. Typical computation times take at most about a
second, as shown in Table 2.

We cannot use the population estimate approach for computing

an approximate temporal error because it would require storing (or

recomputing) a mean and standard deviation for every voxel for

every node in the time tree. This would consume more storage than

the original data, and would also be slow to compute. Instead, we

use a more ad-hoc approach that computes a scaling factor to turn

the scalar-based temporal error metric e_t into a color-based metric.

This scaling factor is a measure of the amount of variation in the

transfer function. The idea is that a large or small amount of varia-

tion will magnify or minimize the amount of deviation computed by
the scalar-based error metric. The variation measure calculates the

distance between the colors in successive transfer function entries;

the total scale factor is the square root of the sum of the distances
between the entries. The distance measure is the same one used

in earlier equations. No normalization is necessary since the color

components have been normalized to the range [0, 1]. The equation
for the approximate color-based temporal error metric e,_¢, is:

east =e_t_?d(e(j),c(j+ 1)
(20)

where the summation is over the transfer function entries excluding

the last entry. This error metric can be very quickly computed be-

cause the variation measure is only computed once after the color
table changes. The individual subvolume error metrics can then be

computed by multiplying the precomputed e_t for each subvolume
by the variation measure.

6 Implementation and Results

We have implemented the TSP tree algorithm using the three sets

of error metrics. We also have a non-TSP-tree reference imple-
mentation based on the SGI Volumizer subroutine library [131. We

have run experiments to compare the pertbrmance with and with-

out TSP trees, and also to show the improved performance of the

color-based error metrics. Other experiments show how the error

tolerances give the user a tradeoff between image quality and per-
formance.

6.1 Experimental Design

We ran the implementations on two Cartesian grid data sets, The

Delta Wing dataset is a CFD computation of a delta wing aircraft
Ilying at a high angle of attack, and was performed on a single

curvilinear grid. We resampled the data set's density values onto a

Cartesian grid/'or our experiments. The resampling was performed

twice at two different resolutions so we could explore the effect of
data set size. The data set's main feature is the vortex flow over

the wings. The FIB dataset is also a CFD computation, but was

computed using multiple overlapping curvilinear grids. The density

values from the data show a vortex structure over the leading-edge

extension that breaks up as it passes over the wing. Table I gives
some statistics about the data. The texture sizes in this table are for

one byte per voxel: the original data files use floating point values
and thus require 4 bytes per voxel.

Both data sets were run with a sparse transfer function that many
of the voxets transparent, and reveals the main features of the data.

We also ran experiments with the Delta Wing data with a filled

transfer function that makes most of the voxels have a positive opac-
ity. The function shows the slow variations in the data and thus

makes it more difficult for the spatial error metric to classify sub-
volumes as coherent.

The experiments were run using OpenGL on a SGI Onyx2

workstation using one of two 195 MHz MIPS RI0(K_ processors,

512MB of main memory, and lnfiniteReality graphics with 64MB

of texture memory. All of the runs used a minimum subvolume

size of 32 x 32 x 32 voxels (except for boundary subvolumes),

and were rendered at a resolution of 640 x 480. The experimental

runs for each data set were run using the same viewpoint for all the

frames, as shown in Figures 4 through 8. The tables show values
that are averages of the per-frame values.

We measured runs with three error tolerances: a zero error tol-

erance, a slight error tolerance that showed barely noticeable arti-
facts, and a moderate error tolerance that showed small but notice-

able artifacts. When using non-zero error tolerances, we used error

tolerances for the three types of error metrics that gave the same

image quality. This was complicated by the fact that using the same

error tolerance with different error metrics produces images with
different amounts of error, which meant that we had to make mul-

tiple runs to search for the correct error tolerances. We measured

image quality by computing the average distance between images
with zero error tolerance and the ones with some error allowed.

The distance was defined as the distance in L*u*v* color space,
a perceptually uniform color space [14, 15]. The RGB to L*u*v*

conversions assumed a D65 white point.

6.2 Results

Tables 3 and 4 show the average rendering speed for several com-
binations of model, error metric, error tolerance, transfer function,

and use of TSP trees. The non-TSP tree algorithm could not be run

with all of the time steps for the two larger data sets, the large Delta

Wing and the FI8. These runs with all 12 time steps failed due to

lack of memory, so the entries are for runs using 4 time steps. We
were not able to determine whether the failure was due to our inef-

ficient use of the Volumizer library or to the library requiring more
memory than was available.

Table 5 give statistics about average the amount of coherence
exploited by the algorithm. The first two columns for each error

metric show the fraction of subvolumes that pass the spatial error
tolerance test so that they can either be not rendered, if the mean

opacity was zero, or rendered as polygons. The values are give as

percentages of all the voxels to avoid possible distortions caused

by overweighting the small subvolumes at the edges of the volume.

The next column gives a temporal coherence statistic, the percent-
age of voxels that were in subvolumes that were reused from an

Data Set

Small Delta Wing

Large Delta Wing
FI8

limc fcxture

Steps Dimensions Size (MB)

30 l I.t × 126 x 51. 20.4

12 .)r_ --., 66.2.2_ x z;).) x 103

12 -11]2x 135 x 103 64

Table I: Experimental datasets.

Data Set

Small Delta Wing

Large Delta Wing

FI8

Tr n 'erI I JAperFunction Scalar Color Color

sparse 21 262 0.2 I
filled 20 320 0.21

sparse 231 966 1.0
filled 253 1167 3.0

sparse 246 949 1.0

Table 2: Build time in seconds. The scalar metrics are built once,

while the color metrics must be built after each transfer function

change.

earlier time step. The last column gives the balance of the voxels,

the ones in subvolumes that correspond to the current time step.
Our results in Table 3 show that the TSP tree algorithm with the

color error metrics and the sparse transfer function has higher per-
formance than the non-TSP-tree algorithm when the textures have

previously been loaded into texture memory. The TSP tree algo-
rithm runs at 30 ms per frame, twice as fast with the small Delta

Wing, which runs at 60.6 ms per frame. With the large Delta Wing,
the TSP-tree algorithm runs four times faster than the non-TSP-

tree: they respectively run at 33 and 129 ms per frame. The speed
difference is largely due to the 29% of the data that did not need to

be rendered because the TSP tree detected that it was transparent.
The TSP-tree FIB runs with the color error metrics was also faster

than the non-TSP-tree runs (30 versus 388 ms) even though it had

to handle 12 time steps of data instead of four.

The zero-error runs with the Delta Wing with the filled transfer

function are harder to interpret (see Table 3). We cannot explain

the reason that the TSP tree was faster with the small Delta Wing

because, as shown in Table 5, the TSP tree algorithm used all of

the volume data. The difference may be due to different amounts of

optimization in the implementations. The TSP-tree and non-TSP-

tree large Delta wing runs cannot be compared since they are for

different numbers of time steps. The TSP tree runs are slow be-

cause the graphics system is moving textures in and out of texture

memory during rendering. This texture is too large even though the
7% of voxels rendered as polygons reduces the 66MB of textures

to 61MB, less than the 64MB capacity, because there are two inef-

ficiencies: the texture subvolumes require that the border voxels be

replicated, and the graphics system may not be able to use all of the

texture memory due to memory fragmentation.

The runs using color-based error metrics clearly give better per-
formance than the ones that use scalar-based metrics. The most

dramatic examples are with the large Delta Wing with the transpar-

ent transfer function, and with the FI8. The cached rendering runs
using color error metrics are more than 100 times the speed of the

scalar error metric runs (see Table 3). The timings for scalar- versus

color-based error metrics are 5.4 s versus 33 ms for the large Delta
Wing, and 3.6 s versus 28 ms for the FI8.

The non-cached runs are not as impressive. The zero-error TSP-
tree runs are slower than the non-TSP-tree runs. This is due to

the additional overhead of creating and managing many small tex-

tures compared to fewer large textures. We may be able to decrease
the difference in speed by optimizing our texture creation routines

since they have not yet been optimized. If moderate image error is
acceptable, the non-cached runs can run faster than the zero-error

Sparse Transfer Functuon Filled ['ranslcr Funcuon

Non-TSP Scalar] Ref. Color App. Coh)r Non-TSP [Scalar Ref Color j App. ColorModel NC [C NC [C NC[C NC [C NC [C i NC I C XC [C XC I C
Small Delta Wing 237 60.6 804 46.0 488 30.2 487 30.0 232 60.6 :p 806 45. I 805 45.0 807 45.1

_.4_s __. 1.54s* 134" [18. Is 4.78s 16.5s 4.16s 21.8s 4.90sLarge Delta Wing 1.49s" 129" 20.0s 5.40s 2.30s 33.0 " " _,_0

FI8 1.43s" 388" 17. Is 3.62s 1.50s 28.0 2.0Is! 28.0 -- -- !

Table 3: Average rendering times with zero error. The columns give times, in milliseconds unless otherwise indicated, when using the scalar,

reference color, and approximate color metrics for when textures are cached _C) and not cached (NC). "With the non-TSP implementation,

the large Delta Wing and the FIB could only be run with 4 time steps.

Error

Tolerance

slight
moderate

Sparse Transfer Function Filled Transfer Function

Scalar [Ref. Color App. Color Scalar Ref. Color App. Color

NC I C [NC 1 C NC I C NC I C NC I C NC I C

344 44.7 352129.01325129.3 [347144.4]364143.3 I 340143.3 I
152 30.1 166 30.2 149 30.0 156 44.9 174 448 160 43.5

Table 4: Average rendering times for the small Delta Wing with some error allowed. The columns give times, in milliseconds, when using

the scalar, reference color, and approximate color metrics for when textures are cached (C) and not cached (NC).

Model

Small

Delta

Wing

Large

Delta Wing

Transfer

Function

sparse

filled

sparse
filled

Error %Tolerance NR[% Scalar CT % Reference Color t[Approximate ColorP I%RT[% NR1%P]%RTI%CT %NR] %P 1%RTI%CT
zero 0 0 0 i 00 29 0 0 71 29 0 0 7 !

slight 15 0 35 50 29 0 22 49 29 0 24 47
moderate 29 0 51 20 29 0 50 2 ! 29 0 49 20

zero 0 0 0 100 0 0 0 100 0 0 0 100

slight 0 15 35 50 0 2 48 50 0 15 37 48
moderate 0 29 51 20 0 2 77 2 ! 0 29 50 2 I

zero 0 0 0 [100 66] 0 0 t 34 66 I 0 0 34zero 0 0 0 100 0 7 0 93 0 7 0 93

FI8 sparse zero 0 0 0 100 63 0 10 27 63 0 0 37

Table 5: Statistics on how subvolumes were rendered, given as a percentage of Voxels in each case. Key: % NR = not rendered because

subvolume was transparent, % P = rendered as untextured polygons, % RT = rendered using textures from reused timestep, % CT = rendered

using textures loaded specifically for the current time step.

non-TSP-tree case.

Another result is that the behavior of the reference and approxi-

mate error metrics are quite similar. The numbers in the respective

columns of the tables are within 10% except with the Delta Wing

using the filled transfer function. In the non-zero error cases, the

approximate color metrics finds more spatial coherence and less
temporal coherence than the reference color metrics. The differ-

ence in computation speeds is dramatic, as shown in Table 2. The

approximate error metrics can be calculated between approximately
300 to 1000 times faster, and run at interactive speeds for the data

sets we considered. Allowing the error metrics to be recalculated

at interactive rates is important because it must be done when the

transfer function is changed, and changing the function is a com-

mon operation. Because the timings in this table give the time to

compute the metrics for all the time steps, the approximate error

metrics could allow an even faster response by only computing the

metrics needed for the current time step, and computing the other

time steps' metrics later.
The values in Tables 3 and 4 show that the different error toler-

ance allow the user to trade quality for speed. There is over a factor

of three difference in performance between all the corresponding
zero-error and moderate-error runs for the non-cached small Delta

Wing using the sparse transfer function. There is little difference
between the zero-error and moderate-error cached runs with this

data set because there is little r_n_m for improvement: the zero-error

cases run at over 20 and 30 Hz when using the color error metrics.

The use of polygon templates, where the generation of poly-

gons is shared between between subvolumes, allows an improve-

ment from 168 ms to 33 ms per frame when the textures are cached

(see Table 6). There is little or no advantage in using the poly-
gon templates when the textures have not been cached or with the

filled transfer function since the polygons are a small fraction of the

overall work. The slight artifacts due to the polygon mismatch at

subvolume boundaries cannot be noticed in Figures 4 through 9.

Finally, for the TSP-tree color error metric cases, the use of tex-

ture caches allows improvements in performance by allowing the
texture generation to be performed only the first time a time step

is displayed with a given transfer function instead of every time

the time step is displayed. The difference in performance ranges

between about one and two orders of magnitude. This is a useful
result since it is common for users to enable animation in time.

7 Conclusions and Future Work

We have presented a fast volume rendering algorithm using 3D tex-

ture hardware for visualizing large-scale time-varying datasets. Uti-

lizing a time-varying hierarchical data structure called the TSP tree,

we are able to exploit the spatial and temporal coherence that exists

in time-varying fields and substantially reduce the amount of tex-

ture memory that is required. The fast volume rendering is achieved

by rendering a combination of flat-shaded and solid-textured poly-

gons, where flat-shaded polygons are used to represent those re-

gions having high spatial coherence, and the solid-textured poly-

gons are to represent regions that have high variation, both in spa-

tial and temporal domains. We exploit the property that there is

With Without

Transfer Templates Templates

Function NC] C NC] C

Sparse _Filled

Table 6: Average rendering speed for the large Delta Wing with and

without polygon templates, in seconds. These runs used the approx-

imate color error metrics with zero error tolerance. Key: NC = non-
cached, C = cached.

only a limited number of subvolumes with different sizes in the hi-

erarchical data structure by using polygon templates, which reduces

the overhead of generating additional parallel sample planes due to

the use of multiple subvolumes. In addition, we have developed

color-based error metrics that more accurately identify spatial and

temporal coherence compared to the scalar based error metrics used

by most of the existing hierarchical volume rendering techniques.

Our fast approximate color-based error metric, which is orders of

magnitudes faster than a na_fve color-based error metric, enables

the user to change the transfer function interactively. Finally, we

have presented results from experimental studies that show that we

can overcome the limitation of texture memory capacity and sig-

nificantly speed up the time-varying volume rendering using 3D
texture hardware.

One area of possible future work is improved error metrics. One

possible improvement is to compute color differences in a percep-
tual color space instead of RGBo space. This might give more

accurate error metrics. While the RGB to perceptual color space

conversion adds computation, the additional computation is mini-

mal for the approximate color-based error metrics because only the
transfer function needs to be convened. Other error metric work

includes adding population estimates to the approximate temporal
color-based error metric, and to evaluate error metrics that do not

use o-weighting.

An additional area of future work would be to implement the in-

cremental scan conversion algorithm described by Yagel et al. [9].

This faster polygon generation algorithm may allow us to avoid us-

ing polygon templates without slowing down the implementation.

This is possible because the current implementation's performance

is limited by the graphics subsystem, which means that some addi-

tional computation would not reduce the performance. This would
remove the artifacts between the subvolume boundaries. A third

area of future work would be to explore the advantages of the color-

based error metrics with a ray casting volume renderer.

Acknowledgments

This work was supported in part by NASA contract NAS2-14303.

We would like to thank Neal Chaderjian, Scott Murman and Ken

Gee for providing the datasets. We also thank Pat Moran and other

members in the Data Analysis Group at NASA Ames Research

Center for their helpful comments and technical support.

References

III H,-W. Shen, L.-J, Chiang, and K.-L. Ma. A fast volume ren-

dering algorithm for time-varying fields using a time-space

partitioning (TSP) tree. In Proceedings of Visualization '99,
pages 371-377. IEEE Computer Society Press, Los Alamitos.
CA, 1999.

[21 M, Levoy. Elticient ray tracing of volume data. ACM Trans-

actions on (;raphics, 9(3):245-261, July 1990.

131

[41

151

[61

[7]

[81

[91

[10]

[11]

[121

[131

[141

[151

D. Laur and P. Hanrahan. Hierarchical splatmg: A progressive

retinement algorithm for volume rendering. In Proceedings of

SIGGtL'IPfl 91, pages 285-287. ACM SIGGRAPH, 1991.

J. Wilhelms and A, Van Gelder. Multi-dimensional tree for

controlled volume rendering and compression. In Proceed-

ing_ of I094 Symposium on Volume l,Tsuali-ation, pages 27-

34. IEEE Computer Society Press, Los Alamitos, CA, 1994.

K. Akeley. RealityEngine graphics, in James T. Kajiya, ed-

itor. Computer Graphics (SIGGRAPH '93 Proceedings), vol-

ume 27. pages 109-116, August 1993.

B. Cabral, N. Cam, and J. Foran. Accelerated volume ren-

dering and tomographic reconstruction using texture mapping

hardware. In Proceedings of 1994 Symposium on Volume Vi-

sualization, pages 91-98, 1994.

O. Wilson. A. Van Gelder, and J, Wilhelms. Direct volume

rendering via 3D textures. UCSC Technical Report, UCSC-
CRL-94-19, 1994.

T. Cullip and U. Neumann. Accelerating volume reconstruc-

tion with 3D texture hardware. UNC Technical Report, TR93-
0027, 1993.

R. Yagel, D. M. Reed, A. Law. P.-W. Shih. and N. Sha-

reef. Hardware assisted volume rendering of unstructured

grids by incremental slicing. In 1996 Volume Visualization

Symposium, pages 55--62. IEEE Computer Society Press, Los
Alamitos, CA, October 1996.

E. LaMar. B. Hamann. and K. Joy. Multiresolution tech-

niques for interactive textured-based volume visualization. In

Proceedings of Visualization "99, pages 355-361. IEEE Com-

puter Society Press, Los Alamitos. CA, 1999,

S. Fang, R. Srinivasan, S. Huang, and R. Raghavan. De-

formable volume rendering by 3D texture mapping and octree

encoding. In Proceedings of Visualization '96, pages 73-80.
IEEE Computer Society Press, Los Alamitos, CA, 1996.

E-P. Sloan and C. Hansen. Parallel lurmgraph reconstruction.

In Proceedings 1999 IEEE Parallel Visualization and Graph-

ics Symposium, pages 7-14. IEEE Computer Society Press,
Los Alarmtos, CA, 1999.

Silicon Graphics, Inc., Mountain View, CA. OpenGL Volu-

mizer Programmer's Guide, 1998. Document Number 007-
3720-001.

J, D. Foley, A. van Dam, S. K. Feiner, and J. E Hughes.

Fundamentals of Interactive Computer Graphics, page 584.

Addison-Wesley Publishing Company, second edition. 1990.

C. Poynton. Frequently asked questions about color.

http://www.i n foramp, net/"poy nton/Poynton-color.html. De-
cember 1999.

Figure 4: Small Delta Wing with no error and the sparse
transfer function.

Figure 5: Small Delta Wing ',sith slight error and the sparse
transfer function.

Figure 6: Small Delta Wing with moderate error and the
sparse transfer function.

Figure 7: FIB with no error and the sparse transfer function.

I)clta V_"im- wilh no error and (he lilled transfer I"igutc O: I,argc [)clla V_mg _ ilhsparse transfer function and

lil)es sllt_._. Illg [hc sllbxoltllllC boundaries. I.arge subvolumes
ha'_c htgh '.,l'palial ,._'l)hcrcllcC

