Presentation/Publication Information:

A contributed talk at the 8th Foresight Conference on Molecular Nanotechnology in Bethesda, MD, Nov 2-5, 2000. A copy of the talk is attached.

Acknowledgments:
This work is supported under NASA contract DTTS59-99-D-00437 / A61812D.
Curvature Dependent Reactivity of Fullerenes and Nanotubes

Example: Hydrogenation of Fullerenes and Nanotubes

- External Surface: Nucleophilic
- Internal Surface: Electrophilic
- Chemical reactivity is a function of the curvature of fullerene.

Dependence on Pyramidalization Angle?

- The Chemical Reactivity of Fullerene
- Pyramidalization
- Between sp^2 and sp^3
- Pyramidal angle (θ) = $\theta_{sp^2} - \theta_{sp^3}$

Three Examples of Surfaces

- Graphite (0.00)
- (10,0) Nanotube (0.99)
- C_{60} (0.22)
Example: Reaction on Surfaces

- Hydrogenation of graphene sheet and Fullerenes

\[E = -4.50 \text{ eV} \]
\[\theta_1 = 12.95^\circ (0.226) \]
\[\theta_2 = 20.56^\circ (0.359) \]
\[\theta_3 = 0.0^\circ (0.0) \]
\[\theta_4 = 7^\circ (0.22) \]

- Chemical reactivity difference = Strain energy difference ?

External Chemical Reaction on Fullerene

- Total reaction energy
 1. Straining the bonds. (+ \(\Delta E \))
 2. Breaking \(\pi \) bonds. (+ \(\Delta E \))
 3. Reacting with external reactant (X) in given structure. (- \(\Delta E \))
 4. Global relaxations (- \(\Delta E \))

Strain Energy Contribution to Reaction

- Fix all the carbon atoms, pull only one carbon up and calculate the energy difference

\[E_{\text{strain}} = \sqrt{\tan(\theta_4)} \quad E_{\text{total}} = \sqrt{\tan(\theta_4) + \sqrt{1 - 2 \tan^2(\theta_4)}} \quad E_{\text{shift}} = \sqrt{\tan(\theta_4) + \sqrt{1 - 2 \tan^2(\theta_4)}} \]

Need a new title for this slide

- The relation with the pyramidal angle (\(\theta_4 \))

\[E_{\text{energy}} = \sqrt{\tan(\theta_4)} \quad E_{\text{total}} = \sqrt{\tan(\theta_4) + \sqrt{1 - 2 \tan^2(\theta_4)}} \quad E_{\text{shift}} = \sqrt{\tan(\theta_4) + \sqrt{1 - 2 \tan^2(\theta_4)}} \]

- Binding energy with external reactant X

Where \(E_\text{ex} \) and \(E_\text{ex} \) depends only on external reactant X.
Binding Energy Dependence on Pyramidal Angle

- Hydrogen is used as the point probe.

- \[E_1 = 5.34 \text{ eV} \]
- \[E_2 = 1.71 \text{ eV} \]
- \[\Delta E_{\text{pyramidal}} = 0.1 \text{ eV} - 0.3 \text{ eV} \]
- Independent of \(\theta_p \)
- Almost linear in small \(\theta_p \)

Total Reaction Energy Estimation

- Total reaction energy = Minimum (strain energy + binding energy)
- Small Errors (\(-0.1 \text{ eV}\)) from ignoring global relaxation

Formation Energy Comparison with Full Relaxation Results

<table>
<thead>
<tr>
<th>Pyramidal Angle ((\theta_p))</th>
<th>Total Reaction Energy (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Initial Value</td>
</tr>
<tr>
<td>Graphite</td>
<td>0.000</td>
</tr>
<tr>
<td>Nanotube</td>
<td>0.091</td>
</tr>
<tr>
<td>C_60</td>
<td>0.202</td>
</tr>
</tbody>
</table>

The forces are relaxed up to the first nearest neighbors

External Chemical Reactivity (Conclusions?)

- \(\theta_p \) (initial pyramidal angle)
 - Strain Energy curve shift \(\theta_p \)
 - Binding Energy curve shift \(-0.3 \text{ eV}\)
- Binding Energy curve - almost linear
 - \(\theta_p = \theta_{p1} + \theta_{p2} - \delta \) (stiffness change)
- Total reaction energy changing by \(\theta_p \)
 - Strain energy effect \(-0.3 \text{ eV}\)
 - Binding energy effect \(- \theta_p E_1 \text{ eV}\)

Internal Reaction

- Less Reactive than External Reaction \(-\) Less Electron Density
- Total reaction energy
 1. Straining the bonds (\(+\Delta E\))
 2. Breaking x bonds (\(+\Delta E\))
 3. Reacting with external reactant (X) in given structure (\(-\Delta E\))
 4. Global relaxations (\(-\Delta E\))
 5. Weak bonds with neighbor carbon atoms (\(-\Delta E\))

Same as External Chemical Reaction

Difference from External Reaction
Internal Chemical Reactivity

The portion of \(\pi \) state decreases (+ \(\Delta E \))

- As \(\theta \) increases, \(\pi \) bond breaking energy decreases (- \(\Delta E \))
- Global Interaction increases (- \(\Delta E \))

- Two negative effect and one positive effect combined.

Hard to estimate reaction energy
Quantum Computer

- Solid state quantum computer can be designed by 31P atoms in bulk Si [1].
- Remaining Problems: Placing of a 31P atom, Diffusion of a 31P atom
- 31P @ Bucky Onion: Possible self-ordering, Preventing diffusion of 31P

P @ the Center of C$_{60}$

- Full Relaxation
- Binding Energy: Center = 0.99 eV, (6,6) Bond = 0.81 eV
- Diffusion Barrier: Center = Bond = 0.33 eV

H @ C$_3$D$_{60}$

- No meta-stable site and Diffusion Barrier = 1.17 eV

Conclusions

- The external reaction energy is determined by a competition of strain energy and binding energy.
- We can estimate external reaction energy up to 0.1 eV error, which is from global relaxation.
- External Chemical Reactivity is enhanced by binding energy difference due to initial pyramidal angle.
- Inner Chemical Reactivity is enhanced by Global Interactions.
- Possible candidates for Quantum Computer: 31P @ C$_{60}$ and H @ C$_3$D$_{60}$
Future Work

- We are going to test more examples on external chemical reactivity.
- We will continue to work on the reactivity of the multi-bonds reactions and non-covalent bond reactions.
- We need more systematic study on internal chemical reactivity.
- Since we found the way to encapsulate P and H, we will work on self-ordering of endo-fullerene for quantum computer application.
- As another candidate for quantum computer, we are looking into compressed bucky onion, which has diamond core structure.