Effects of AEA Cell-Bypass-Switch Closure on Charged EOS-Aqua NiH₂ Cell

2000 NASA Aerospace Battery Workshop

Denney Keys
Gopalakrishna M. Rao
David Sullivan
Harry Wannemacher*

NASA GODDARD SPACE FLIGHT CENTER
*QSS GROUP, INC
Objectives

- Verify the performance of AEA Cell Bypass Protection Device (CBPD) under simulated EOS-Aqua/Aura flight hardware configuration.

- Assess the safety of the hardware under an inadvertent firing of CBPD switch, as well as the closing of CBPD switch under simulated high cell impedance.

- Confirm that the mode of operation of CBPD switch is the formation of a continuous low impedance path (a homogeneous low melting point alloy).
EOS-Aqua Flight Hardware

- **Battery Cells:**
 - Eagle-Picher 160 Ah NiH$_2$ (RNH 160-3)
 - Size: ~ 12cm Diameter
 ~ 32cm overall Height
 - Weight: ~ 4.3kg

- **Cell-Bypass-Switch:**
 - AEA Technology
 Cell Bypass Protection Device (CBPD)
AEA Hardware Tested

- A total of five (5) CBPDs were tested using the charged EOS Cell
 - Three FLIGHT devices (F01, F02 and F03)
 - Two ENGINEERING MODEL devices (EM01 & EM02)

- The two types of CBPDs are basically the same, with a change in separator and minor outer dimension changes
Effects of AEA Cell-Bypass-Switch Closure on Charged EOS-Aqua NiH2 Cell

AEA Bypass Switch Schematic

CBPD - LMPA Schematic
(Low Melting Point Alloy)

cell+

\[r' = \text{resistors} \]

cell-

NOTE: Tested devices have 6 series diodes in charge path (not 4 as shown)

FLIGHT CBPD
AEA Cell-Bypass-Switch Spec

CBPD - Specification

- 75 grams
- I_charge < 35A
- I_discharge < 235A
- Triggering - see operation summary
- R ~ 200 microOhms
- I_operation < 400A - dependent on leads and mounting

TRW spec for Aqua

90 grams
I_charge ~ 75A
R ~ 500 microOhms
Tests Performed

- Test#1: CBPD F01
 Activated with heatgun
 Switch-axis ~45° from Horizontal

- Tests #2 & 3: CBPD EM01 & EM02
 Activated through charge diodes
 Switch-axis Vertical

- Test#4: CBPD F02
 Activated through charge diodes
 Switch-axis Horizontal (launch orientation)

- Test#5: CBPD F03
 same as Test#4, with added 50 mΩ resistance in current path
Test #1 setup
(switch activated with heatgun)

R ≈ 0.08mΩ
(4.3 inches of #2 awg wire + terminals)

R ≈ 0.17mΩ
(11 inches of #2 awg wire + terminals)
Test #1

First application of heatgun

Heatgun repositioned for second application
Test #1 Scope Traces

Effects of AEA Cell-Bypass-Switch Closure on Charged EOS-Aqua NiH2 Cell

2000 NASA Aerospace Battery Workshop
Test #1 Data

- V-Cell
- V-Switch
- Oscilloscope Display
 - Cell current (35mS scan)
- Cell current (1000mS scan) - Hi and Lo legs
- Switch(+) temp
- Switch(-) temp
- Cell temps

Effects of AEA Cell-Bypass-Switch Closure on Charged EOS-Aqua NiH2 Cell
Test #2 thru 5 setup
(switch activated through diodes)

\[R \approx 0.08 \text{m} \Omega^* \]
(4.3 inches of #2 awg wire + terminals)

\[R \approx 0.17 \text{m} \Omega \]
(11 inches of #2 awg wire + terminals)

*increased by 50m\(\Omega \) for Test #5
Test #2

Engineering Model CBPD after test

CBPD opened after test.
Test #2 & 3 Scope Traces

Cell Voltage (0.5V/div)
- 2400A
- 1800A
- 1200A
- 600A
- 0A

Cell Current (600A/div)
- 2400A
- 1800A
- 1200A
- 600A
- 0A

Time (1ms/div)
Test #4

Charge diode string connection

CBPD in launch orientation.
Test #4 Scope Trace

Cell Voltage
(0.5V/div)

Cell Current
(600A/div)

Time (1ms/div)
Effects of AEA Cell-Bypass-Switch Closure on Charged EOS-Aqua NiH2 Cell

Test #4 Data

Oscilloscope Display

Cell current (35mS scan)

Cell current (1000mS scan) - Hi and Lo legs

Diode supply ON

Diode current (~12A)

Diode supply OFF

Diode current reduced to maintain switch temperature

Switch (+) temp

Switch (-) temp

Cell temps

Elapsed Time (Seconds)
Test #5

50 mΩ resistance added to positive current path
Test #5 Data (with added 50mΩ)
Effects of AEA Cell-Bypass-Switch Closure on Charged EOS-Aqua NiH2 Cell

Scope traces for Tests #1 thru 4

Test #1 (F01)
Test #1 (F01)
Test #1 (F01)

Test #2 (EM01)
Test #3 (EM02)
Test #4 (F02)
Test Summary

<table>
<thead>
<tr>
<th>Test #</th>
<th>CBPD #</th>
<th>Result</th>
</tr>
</thead>
</table>
| 1 | F01 | - Seven distinct current bursts were recorded
 | | - Switch failed to provide continuous short even
 | | after heating to near 300°C
 | | - It is expected that both charge and discharge
 | | switches were activated by the high temperature |
| 2 | EM01 | - One distinct current burst was recorded
 | | - Switch failed to provide continuous short |
| 3 | EM02 | - One distinct current burst was recorded
 | | - Switch failed to provide continuous short |
| 4 | F02 | - One distinct current burst was recorded
 | | - Switch temperature was maintained over three
 | | minutes past the event, and switch still failed to
 | | provide continuous short |
| 5 | F03 | - With 50 milliohms added to the current path, switch
 | | closed as expected, and maintained low impedance
 | | after diode current was removed and switch cooled |

2000 NASA Aerospace Battery Workshop
Conclusions

- The nominal performance of AEA CBPD under simulated EOS-Aqua/Aura flight hardware configuration has been demonstrated.

- There is no evidence of cell rupture or excessive heat production during or after CBPD switch activation under simulated high cell impedance (open-circuit cell failure mode).

- Inadvertent CBPD switch activation with a charged cell (low impedance path) intermittently closes and opens up the switch, therefore the device may or may not provide protection against future open-circuit cell failure. Further testing with switches F01 and F02 may provide clarification.

- The formation of a continuous low impedance path (a homogeneous low melting point alloy), has been confirmed - which is the expected mode of operation.
Further Work

- DPA of F03 (the only device to operate and carry continuous current) is in progress to confirm the formation of a stable, low impedance path

- Retest of F01 and F02 using added 50mΩ resistance is planned, with DPAs to follow
Acknowledgements

- Mr. G. Morrow, GSFC, Aqua Project Support
- Dr. R Tobias, TRW, Hardware and Technical Advice
- Mr. B. Beaman, GSFC, Technical Assistance
- Mr. T. Rozanski, GSFC, Technical Assistance
- Mr. R. Stickle, GSFC, Technical Assistance
- Mr. H. Stintz, GSFC, Technical Support
- Mr. A. Teverovsky, GSFC, Technical Support
- Mr. D. Wise, GSFC, Technical Support