Mathematical Modeling of Ni/H₂ and Li-Ion Batteries

John W. Weidner, Ralph E. White

Roger A. Dougal

Department of Chemical Engineering

Department of Electrical Engineering

Center for Electrochemical Engineering

University of South Carolina

Columbia, SC 29208
Analysis of Battery Systems
Capacity loss on cycling
Hysteresis between charge and discharge
Self-discharge rates (i.e. oxygen-evolution kinetics)
Diffusion coefficients of protons
Experimental characterization of Nickel Hydroxide
Impregnation of porous electrodes
Deposition rates of thin films
Electrochemical Deposition of Nickel Hydroxide

Modeling Effort
Modeling Effort

- Experimental Verification of Integrated Systems Model
- Integrated Power System Models for Satellites
- Experimental Verification of the Li-Ion Battery Model
- Mathematical Modeling of Li-Ion Batteries
- Experimental Verification of the Ni/H² Battery Model
- Mathematical Modeling of Ni/H² Batteries
Schematic of Ni/H₂ Battery
Proton Diffusion Coefficient
Utilization of the NIOOH
Utilization of the NIOOH
Potato Intercalation/Extraction
Boundary and Scanning Curves During
Potential (mV) vs. Ag/AgCl

The History-Dependent Path of the Ni Electrode
Potential (V) vs Ag/AgCl

Internal Hysteresis Loops in The Ni Electrode
Potential (mV) vs. Ag/AgCl
Nickel Hydroxide

Crystal Structures for
\[
\frac{\text{total number of \(\text{Ni} \) lattice sites}}{\text{number of interlamellar protons}} = 2 - z
\]

\[
\frac{\text{total number of \(\text{Ni} \) lattice sites}}{\text{number of water molecules}} = X
\]

\[
\frac{\text{number of \(\text{Ni} \) vacancies not occupied by \(K^+ \)}}{\text{number of \(H^+ \)}} = u
\]

\[
\frac{\text{number of \(\text{Ni} \) vacancies occupied by \(K^+ \)}}{\text{number of \(\text{Ni} \) vacancies}} = X
\]

![Diagram of Nickel Hydroxide Electrode]

Nickel Hydroxide Electrode

Detect Representation of the
\[
\begin{align*}
\left[\frac{(1x-I)}{(1\lambda - 1x)^1u - 1\lambda - 2} - \frac{(\zeta x - I)}{2(\zeta x - 1x)^2u - \zeta x - 2}\right] = \gamma \\
\left[\frac{(1x-I)}{1\lambda} - \frac{(\zeta x - I)}{\zeta \lambda}\right] = \zeta \gamma \\
\frac{\zeta x - I}{I - (\zeta x - 1x)^2u} - \frac{(1x-I)}{(1\lambda - 1x)^1u} = \varepsilon \gamma \\
\left[\frac{(\zeta x - I)}{\varepsilon - (\zeta x - 1x)^2u} - \frac{(1x-I)}{2 - (1\lambda - 1x)^1u}\right] = 1\gamma
\end{align*}
\]

\[
\begin{align*}
-\Theta^\gamma + \Theta^\gamma \cdot \Theta^\gamma + \Theta^\gamma \cdot \Theta^\gamma \\
\begin{bmatrix}
\frac{\zeta x - I}{1} & \frac{\zeta x - I}{1} & \frac{(\zeta x - I)}{\zeta \lambda} \\
\frac{\zeta x - I}{\zeta \lambda - \zeta x} & \frac{(\zeta x - I)}{\zeta \lambda} & \Theta^\gamma \cdot \Theta^\gamma \\
\Theta^\gamma \cdot \Theta^\gamma & \Theta^\gamma \cdot \Theta^\gamma & \Theta^\gamma \cdot \Theta^\gamma \\
\end{bmatrix}
\end{align*}
\]

Nickel Hydroxide Redox Reaction
As described by the Defect Model

Redox Reactions In the Nickel Electrode
Simulated Charge/Discharge of a Ni-H₂ Cell

Concentration of KOH (M)

Voltage (V)

Time (h)

2x-3y cycle

x=0.25

2x-3y cycle

x=0.11

No defects
Cell Potential with T/W Data
Comparison of Model Predicted
Cell Temperature With TRV Data

Comparison of Model Predicted
Cell Pressure with TRW Data
Comparison of Model Predicted
LI-Ion Cell with 1.25 M Initial Salt Concentration

Experimental and Simulated Discharge Curves for a
Li-Ion Cell with 0.5 M Initial Salt Concentration

Experimental & Simulated Discharge Curves for a
Lithium Cell with 0.25 M Initial Salt Concentration
Experimental & Simulated Discharge Curves for a
Investigate the optimal design of hybrid power systems for use in mobile systems.

Project Objectives
And at a detail level

VTB supports analysis at the system level
The VTB is a highly interactive environment for collaborative design and virtual prototyping of advanced power systems.
amplifying user knowledge at every step
stovepipe work threadling (by capturing and
distributed team work (and eliminates
V TB facilitates interdisciplinary and
Collaborators

Bin Wu
Ralph E. White
John W. Weidner
John W. Van Zee
Christopher Streintz
Venkat Srinivasan

John Newman
Satyava Motupally
Antoni S. Gozdz
Marc Doyle
Roger A. Dougall
Bahne Cornelsen
Pankej Aora