Performance and Safety of Lithium Ion Cells

Wright-Patterson Air Force Base, Dayton, OH
R. Marsh

Jet Propulsion Laboratory, Pasadena, California
B. V. Ramesh, M. C. Smart, L. Whittemore and S. Surampudi

Supported by Mars Program Office and NASA Code S Battery Programs
Thermal characterization
• Electrical characterization by a.c. impedance
• VT charge characterization tests
• Storage characterization tests (cruise conditions)
• Accelerated LEO tests
• Capacity retention tests
• Charge rate characterization (at 40, 25, 0, and -20°C)
• Discharge rate characterization (at 40, 25, 0, and -20°C)
• Cycle life at alternating temperatures (40 and -20°C)
• Cycle life performance at low temperature (-20°C)
• Cycle life performance at room temperature (25°C)

Evaluation of Lithium-Ion Cells at JPL
Technology Drivers

<table>
<thead>
<tr>
<th>Objective</th>
<th>Mission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology Driver</td>
<td>Lander</td>
</tr>
<tr>
<td>Low Temperature Operation</td>
<td>Rover</td>
</tr>
<tr>
<td>10-20 Year Operating Life</td>
<td>GEO S/C</td>
</tr>
<tr>
<td>Large Capacity Cells (50-200 Ah)</td>
<td>LEO</td>
</tr>
<tr>
<td>High Rate Pulse Capability</td>
<td>LEO</td>
</tr>
<tr>
<td>Long Cycle Life (30,000)</td>
<td>PLANETARY/CE</td>
</tr>
<tr>
<td>Low Temperature Operation</td>
<td>Aircraft</td>
</tr>
<tr>
<td>High Voltage Batteries (270 V)</td>
<td>UAV</td>
</tr>
<tr>
<td>Large Capacity Cells (200 Ah)</td>
<td>NLB</td>
</tr>
<tr>
<td>Long Cycle Life (100 V)</td>
<td>LEO</td>
</tr>
</tbody>
</table>

Objectives

- LEO Missions by 2003
- Aircraft by 2004
- Military Terrestrial
- Aviation/UAV’s by 2001
- GEO Missions by 2003
- Rovers by 2003
- Lander by 2001

Sources

- Establish US production of Batteries
- Long Cycle Life Li-Ion
- Develop High Specific Energy

NASA-DOD Interagency Li-Ion Program
Cycle Life of Li Ion Cells

- Temp = -20°C
- Temp = 23°C
Cycle Life of Li-ion Cells - Energy Efficiency
Accelerated LEO
Cycle Life of Li Ion Cells to Partial DOD
Temperature = 23°C
5.0 Amp Discharge Current top 3.0 V
Total Charge time = 24 Hours
Constant Voltage Charging at 4.1 V to 0.001 A Cut-Off
5.0 Amp Charge Current (C/5) to 4.1 V

Discharge Capacity (AHr)
Cycle Number
Tolerance to Extended Tapered Charge
Charge on Cycling

Charge Capacity (Ahr)

Charge Time (Hours)

23°C

4.1 V (Taper to C/50)
5.0 A Charge Current (C/5)

Cycle #400
Cycle #300
Cycle #200
Cycle #100
Cycle #10
Temperature = -20 °C

Low Temperature Discharge

Specific Energy (Watt-Hr/Kg)

Cell Voltage (V)

- 3.5 Amp Discharge Current (C/2)
- 2.212 Amp Discharge Current (C/3.3)
- 1.40 Amp Discharge Current (C/5)
- 0.70 Amp Discharge Current (C/10)
- 0.140 Taper current cut-off (C/50)
- 0.700 A Charge current to 4.1 V
Temperature = 20°C

Charge Capacity (Ah)

Time (Hours)

Low Temperature Charge

Constant potential charge to C/50

Cell charged to 4.1 V

Legend:
- 4.50 A Charge current (C/2)
- 2.725 A Charge current (C/3.3)
- 1.80 A Charge current (C/5)
- 0.900 A Charge current (C/10)
Storage Characteristics

Discharge Capacity (Ah)

Cell Voltage (V)

Recent capacity after prolonged storage at 0°c (3/00)
Capacity after 2 month storage (12/98)
Capacity prior to 2 month storage (10/98)
Initial capacity after conditioning (9/98)

D = 3.951 Ah (92.4% of Initial)
C = 3.991 Ah (93.4% of Initial)
B = 4.055 Ah (94.9% of Initial)
A = 4.274 Ah (5th cycle of conditioning)
Need to define specific conditions under which lithium plating can occur (rate

- Are higher charge voltages justified at lower temperature?

<table>
<thead>
<tr>
<th>Charge Voltage (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.05</td>
</tr>
</tbody>
</table>

Charge Capacity (Ah)
Electrochemical Technologies Group

EIS of a Li Ion Cell
Impedance in a Li Ion Cell
DC Polarizations in Li Ion Cell

Anode Potential (mV vs Li+/Li)

Cathode Potential (mV vs Li+/Li)

Temperature = 23°C

1.0 M LiPF6 EC+DEC+DME (1:1:1)
Li Reference Electrode

MCM Carbon-LiNiCoO2 Cell

Current (amps)

(Z') (Ohms)
EIS During Cycling

Z'' (Ohms)

Cell Fully Charged Prior To Measurements

OCV = 4.07V

23°C
Variable Temperature Cycling

Discharge Capacity (Ahr)

Cycle Number

Cell 1 (4.0 V @ 40°C) - 90% of Initial
Cell 2 (4.1 V @ 40°C)

RT Capacity 45.6% of Initial
EIS During Variable Temperature Cycling

Effect of Variable Temperature Cycling

After 15 cycles
After 55 cycles

Cell Changed to 4 h V Cycling All Cycling

23°C

After 40 cycles at 40°C

Cell 50210

Cell 50210

Cell 50210

Cell 50210
Heat Generation Rates on Discharge
- No damage to equipment
- Venting of a pouch (Polymer) cell
- No damage to equipment
- No injuries to personnel

10 Ah

Li Ion Cell Venting on Extended LT Cycling (5-)

Li Ion Cell Venting upon Inadvertent External Short (20-35 Ah)

Safety Events at JPL
AC Impedance

Mars Mission Profile

Extended Storage at 0°C

10 Month on OCV Stand.

2 Month Storage in Open Circuit

History of the Cell

Short Circuit Incident
<table>
<thead>
<tr>
<th>Ten Month Storage</th>
<th>Two Month Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 Air Generation</td>
<td>Lithium-Ion Cells</td>
</tr>
</tbody>
</table>

Storage
Such safety events.

Further improvements in cell design will minimize

Hundreds of lithium ion cells of 1-35 Ah sizes

Period of three years of testing more than five

Three minor safety incidents occurred over a

Good storage characteristics

Excellent low temperature performance (-20°C operation)

Long cycle life (over 1000 cycles)

(300 Wh/l)

High specific energy (>120 Wh/kg) and High energy density

DOE/NASA consortium were found to exhibit

Lithium ion cells developed under the

Summary