Performance and Safety of Lithium Ion Cells

Supported by Mars Program Office and NASA Code S Battery Programs

Wright-Patterson Air Force Base, Dayton, OH
R. Marsh
and
Jet Propulsion Laboratory, Pasadena, California
B. V. Ratnakumar, M. C. Smart, L. Whittenack and S. Surampudi
Thermal characterization

Electrical characterization by a.c. impedance

VT charge characterization tests

Storage characterization tests (cruise conditions)

Accelerated IEO Tests

Capacity retention tests

Charge rate characterization (at 40°, 25°, 0°, and -20°C)

Discharge rate characterization (at 40°, 25°, 0°, and -20°C)

Cycle life at alternating temperatures (40 and -20°C)

Cycle life performance at low temperature (-20°C)

Cycle life performance at room temperature (25°C)

Evaluation of Lithium-Ion Cells at JPL
Objectives

NASA-DOD Interagency Li-Ion Program

<table>
<thead>
<tr>
<th>Technology Drivers</th>
<th>Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Voltage Batteries (100V)</td>
<td>LEO Missions by 2003 -</td>
</tr>
<tr>
<td>Large Capacity cells (200 Ah)</td>
<td>Aircraft -</td>
</tr>
<tr>
<td>Low Temperature Operation</td>
<td>Military Terrestrial -</td>
</tr>
<tr>
<td></td>
<td>Avionics/NAV, 2003</td>
</tr>
<tr>
<td>High Voltage Batteries (270 V)</td>
<td>LEO Missions by 2003 -</td>
</tr>
<tr>
<td>Low Temperature Operation</td>
<td>Rovers/BV, 2003 -</td>
</tr>
<tr>
<td>Medium Capacity Cells (50 Ah)</td>
<td>Lander, 2004 -</td>
</tr>
<tr>
<td>Long Cycle Life (30,000)</td>
<td>Redundancy -</td>
</tr>
<tr>
<td>Plantarys/C</td>
<td>Demonstrate Technology -</td>
</tr>
<tr>
<td></td>
<td>Sources -</td>
</tr>
<tr>
<td>Ah</td>
<td>Establish U.S. Production -</td>
</tr>
<tr>
<td>Large Capacity cells (50-200)</td>
<td>Batteries -</td>
</tr>
<tr>
<td>10-20 Year Operating Life</td>
<td>Develop High Specific Energy -</td>
</tr>
</tbody>
</table>
Cycle Life of Li Ion Cells - Energy Efficiency

Watt-Hour Efficiency (%)

Cycle Number

Temp = 20°C

Temp = 23°C
Accelerated LEO Cycle Life of Li Ion Cells to Partial DOD
Tolerance to Higher Charge Voltage
Temperature = 23°C
5.0 Amp Discharge Current top 3.0 V
Total Charge time = 24 Hours
Constant Voltage Charging at 4.1 V to 0.001 A cut-off
5.0 Amp Charge Current (C/5) to 4.1 V

Tolerance to Extended Tapered Charge
Charge on Cycling

Charge Capacity (Ahr)

Charge Time (Hours)

23°C

4.1 A (Taper to C/50)
5.0 A Charge Current (C/5)

Cycle # 400
Cycle # 300
Cycle # 200
Cycle # 100
Cycle # 10
Specific Energy (Watt-Hr/Kg)

Temperature = 23°C

- 3.5 Amp Discharge Current (C/2)
- 2.2 Amp Discharge Current (C/3)
- 1.4 Amp Discharge Current (C/5)
- 0.70 Amp Discharge Current (C/10)
- 0.140 Taper current cut-off (C/50)
- 0.700 A Charge current to 4.1 V

Cell Voltage (V)
Specific Energy (Watt-Hr/Kg)

Cell Voltage (V)

Low Temperature Discharge

Temperature = -20 °C

- 3.5 Amp Discharge Current (C/2)
- 2.2 Amp Discharge Current (C/3.3)
- 1.40 Amp Discharge Current (C/5)
- 0.70 Amp Discharge Current (C/10)

0.140 Taper Current to 0.1 V
0.700 A Charge Current to 4.1 V
Charge Capacity (Ah)

Temperature = 20°C

Constant potential charge to C/50
Cell charged to 4.1 V

Low Temperature Charge

Time (Hours)

Charge Capacity (Ah)
Storage Characteristics

Discharge Capacity (Ah)

Cell Voltage (V)

- Capacity After Prolonged Storage (Dec 1999)
- Initial Capacity (Aug 1997)

4.0 Amp Discharge Current (C/5 Rate)
22.120 Ah
24.061 Ah

(0.299% Per Month)
8.9% Capacity Loss
28 Month Testing Period

(91.9% Reversible Capacity)
Storage Characteristics
Need to define specific conditions under which lithium plating can occur (rate

- Are higher charge voltages justified at lower temperature?

\[\text{Charge Capacity (Ahr)} \]

![Graph of V/T Curves of Li Ion Cells]
DC Polarizations in Li Ion Cell

EIS of a Li Ion Cell

Impedance in a Li Ion Cell
Discharge Capacity (Ah)

Cycle Number

1.0 Amp Charge current (C/5) to 3.0 V
Taper Cut-Off at 0.100 A (C/50)
1.0 Amp Discharge current (C/5) to 4.1 V

Temp = 23°C

Cycling (100% DOD) at 25°C
EIS During Cycling

Cell Fully Charged Prior To Measurements

OCV = ~4.07V

23°C
Variable Temperature Cycling
EIS During Variable Temperature Cycling
Heat Generation Rates on Discharge
- No damage to equipment
- Venting of a pouch (polymer) cell
- No damage to equipment
- No injuries to personnel

(10 Ah)

- Li-ion Cell Venting on Extended LT Cycling (5-

- Li-ion Cell Venting upon Undervent LT External
- Li-ion Cell Venting upon Inadvertent External

Safety Events at JPL
• AC Impedance

• Mars Mission Profile

• Extended storage at 0°C

• 10 month on OCV stand.

• 2 month storage in Open Circuit

• History of the Cell

• Short Circuit Incident
<table>
<thead>
<tr>
<th></th>
<th>Ten Month Storage</th>
<th>Two Month Storage</th>
<th>Initial Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOC (60% and 80%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOC (70% and 90%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOC (80% and 90%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOC (90% and 100%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOC (100% and 110%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOC (110% and 120%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOC (120% and 130%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
such safety events.

Further improvements in cell design will minimize

hundreds of lithium ion cells of 1-35 Ah sizes.

period of three years of testing more than five

Three minor safety incidents occurred over a

Good storage characteristics.

Excellent low temperature performance (under 20 °C Operation)

Long cycle life (over 10,000 cycles)

High specific energy (>120 W/Wh and >80 Wh/kg)

Lithium ion cells developed under the

Summary